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Abstract 

 
Human identification by gait has created a great deal of 

interest in computer vision community due to its advantage 
of inconspicuous recognition at a relatively far distance. 
This paper provides a comprehensive survey of recent 
developments on gait recognition approaches. The survey 
emphasizes on three major issues involved in a general gait 
recognition system, namely gait image representation, 
feature dimensionality reduction and gait classification. 
Also, a review of the available public gait datasets is 
presented. The concluding discussions outline a number of 
research challenges and provide promising future 
directions for the field.  
 

1. Introduction 
In recent years, there has been an increased attention on 

effectively identifying individuals for prevention of 
terrorist attacks. Many biometric technologies have 
emerged for identifying and verifying individuals by 
analyzing face, fingerprint, palm print, iris, gait or a 
combination of these traits [1]. 

Compared to other biometric methods, gait recognition 
offers several unique characteristics. The most attractive 
characteristic is its unobtrusiveness, which does not require 
observed subjects’ attention and cooperation. Also, human 
gait can be captured at a far distance without requiring 
physical information from subjects. This favorable 
characteristic has great advantages, especially when 
individual information such as face image is confidential [2] 
[3]. Moreover, gait recognition offers great potential for 
recognition of low-resolution videos, where other 
biometrics technologies may be invalid because of 
insufficient pixels to identify the human subjects [4]. 
Several review articles [2] [3] provide a general overview 
of gait recognition. However, a comprehensive survey of 
recent development of gait recognition can be rarely found. 

The general framework of automatic gait recognition 
consists of subject detection, silhouette extraction, feature 
extraction, feature selection, and classification. Once 
moving subjects are captured, individuals will be detected 

and separated from the image background. The most 
widely used method is background subtraction, which 
attempts to separate objects from the difference between 
the modeled background and the current frame [5]. The 
initial detection of humans within images and the 
consequent separation from the background can be 
considered as a preprocessing step of gait recognition, 
which is beyond the focus of this review. 

After individuals have been separated from the 
background, features that can be used for recognition are 
extracted from these segmented walking persons. There are 
mainly two kinds of gait features, i.e., model-based features 
and model-free features. Model-based features employ 
static and dynamic body parameters and are generally view 
and scale invariant [6] [7] [8]. One the other hand, 
model-free features usually only use binary silhouettes and 
do not need construction of a model for walking persons [9] 
[10] [11]. The model-based and model-free approaches are 
discussed in Section 2. 

Features extracted from segmented video sequences are 
commonly not effective for classification and require too 
many training samples because of high dimensionality. 
Many dimensionality reduction methods have been 
proposed to solve this problem. Among them, principal 
component analysis (PCA) [10] [12] and linear 
discrimination analysis (LDA) [12] are widely used. In 
Section 3, several feature dimensionality reduction 
methods are reviewed. 

The last step is to classify the test sequence to a particular 
individual based on the extracted features. The 
classification of gait features is mainly based on three 
categories of methods, namely, direct classification, 
similarity of temporal sequences and state-space model. 
The direct classification is usually used after single 
representation or key frames are extracted from a temporal 
sequence of gait frames. While the similarity of temporal 
sequences is used to measure the distance between two 
temporal sequences of gait, the state-space model such as 
Hidden Markov Model (HMM) [13] [14] [15] [16] [17] 
focuses on the pattern of state related to succession of 
stance. This stochastic approach explicitly employs both 
the similarity information between test and reference 
sequences, and probability of shapes appearance [2]. These 
three categories of classification methods are surveyed in 
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Section 4. Several standard gait datasets are publically 
available as described in Section 5. This is followed by 
concluding remarks and future work in Section 6. 

2. Gait Image Representations 

2.1. Model-based Approaches 
Model-based approaches obtain a series of static or 

dynamic body parameters via modeling or tracking body 
components such as limbs, legs, arms and thighs. Gait 
signatures derived from these model parameters are 
employed for identification and recognition of an 
individual. It is evident that model-based approaches are 
view-invariant and scale-independent. These advantages 
are significant for practical applications, because it is 
unlikely that reference sequences and test sequences are 
taken from the same viewpoint [2]. However, model-based 
approaches are sensitive to the quality of gait sequences. 
Thus, gait image sequences of high quality are required to 
achieve a high accuracy. Another disadvantage of the 
model-base approach is its large computation and relatively 
high time costs due to parameters calculations. 

Primary model-based approaches employ static structure 
parameters of body as recognition features. BenAbdelkader 
et al. [18] present structural stride parameters consisting of 
stride and cadence. The cadence is estimated via the 
walking periodicity, and the stride length is calculated by 
the ration of travelled distance and walking steps. Bobick 
and Johnson [19] calculate four distances of human bodies, 
namely the distance between the head and foot, the distance 
between the head and pelvis, the distance between the foot 
and pelvis, and the distance between the left foot and right 
foot, as shown in Fig. 1. They use the four distances to form 
two groups of static body parameters and reveal that the 
second set of parameters are more view-invariant 
comparing to the first set of body parameters. More 
recently, Yoo and Hwang [20] extract nine coordinates 
from the human body contours based on human anatomical 
knowledge to construct a 2D stick figure, as shown in Fig. 
2.  

 
Fig. 1. Static parameters of four distances [19] 

 

Fig. 2. Gait stick figures constructed from gait silhouettes [20] 

Unlike some model-based approaches that utilize  static 
structure parameters, Tanawongsuwan and Bobick [21] 
focus on the trajectories of joint angle from motion capture 
data. The joint angle trajectories are computed by 
estimating the offsets between the 3D marker and joints. 
Yam et al. [22] construct a structure and motion model of 
legs to analyze walking as well as running using 
biomechanics of human and pendular motion. A 
comparative higher recognition currency of running 
demonstrates that running may be more reliable for human 
identification due to more different gait pattern. 
Additionally, based on comprehensively analyzing the 
characteristics and description of human gait, Cunado et al. 
[8] implemented Velocity Hough transform (VHT) [23] to 
extract the structure model of the thighs and the motion 
model of the thighs. It is reported that the VHT achieved 
good performance of median noise immunity. 

Some other methods model human body parts 
separately. In Wang et al. [24]’s work, human body is 
modeled as fourteen rigid parts connected to one another at 
the joints. The whole model has forty-eight degrees of 
freedoms (DOFs). The tracking results, namely joint-angle 
trajectories signals, are considered as gait dynamics for 
identification and verification. They also obtain static 
information of body based on Procrustes shape analysis of 
the change of moving silhouettes, which can be 
independently or combinatively applied to improve the 
recognition. More recently, Boulgouris and Chi [25] 
separate human body into different components and 
combine the result obtained from different body parts to 
form a common distance metric. Based on the study of each 
part’s contribution to the recognition performance, the 
recognition rate is improved by using the most contributing 
parts. In addition, Li et al. [26] divide the average 
silhouettes over a gait cycle into seven different parts and 
summarize the impact of each part on gait recognition. 

2.2. Model-Free Approaches 
Model-free approaches focus on either shapes of 

silhouettes or the whole motion of human bodies, rather 
than modeling the whole human body or any parts of body. 
Model-free approaches are insensitive to the quality of 
silhouettes and have the advantage of low computational 
costs comparing to model-based approaches. However, 
they are usually not robust to viewpoints and scale.  
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The baseline algorithm proposed by Sarkar et al. [11] 
uses the silhouettes themselves as features, which are 
scaled and aligned before used. While the gait signature in 
the baseline algorithm is a sequence of gait silhouettes, 
Bobick and Davis [27] propose the motion-energy image 
(MEI) and motion-history image (MHI) to convert the 
temporal sequence of silhouettes to a 2D signal template. 
Han and Bhanu [9] employ the idea of MEI and propose the 
Gait Energy Image (GEI) for individual recognition, which 
is shown in Fig. 3. The left seven images in each row are 
silhouettes of walking sequences and the rightmost image is 
the corresponding gait energy image. GEI converts the 
spatial-temporal information during one walking cycle into 
a single 2D gait template, which avoids matching features 
in temporal sequences. GEI is comparatively robust to 
noise by averaging images of a gait cycle. However, it loses 
the dynamical variation between successive frames. Liu 
and Zheng [28] develop the Gait History Image (GHI) to 
retain temporal information as well as spatial information. 
Chen et al. [17] propose the frame difference energy image 
(FDEI) based on GEI and GHI to address the problem of 
silhouette incompleteness. They calculate the positive 
portion of frame difference as positive values of the 
subtraction between the current frame and the previous 
frame. FDEI is defined as the summation of GEI and the 
positive portion. Liu et al. [29] assess the quality of 
silhouette sequences to determine the contribution of each 
GEI for classification according the quality of GEI. Xue et 
al. [30] apply the wavelet decomposition of GEI to infrared 
gait recognition. The infrared gait sequences are robust to 
the covariates of holding a ball and loading packages. 

Kale et al. [31] use the width of the outer contour of 
silhouette to encode the information of silhouettes. The 
width is defined as the horizontal distance between the 
leftmost pixel and the rightmost pixel of the contour. The 
width of the outer contour may be unreliable due to the poor 
quality of silhouettes. However, the silhouette itself as 
features may be more suitable for low quality and low 
resolution data. Later, Kale et al. [32] combine the entire 
silhouette and the width of outer contour silhouette as gait 
features. Wang et al. [10] unwrap the 2D contour of 
silhouette to a 1D signal using the distance between pixels 
along the contour and the shape centroid, as shown in Fig. 
4. However, these 1D signals are easily affected by the 
quality of silhouettes. Dadashi et al. [33] apply wavelet 
transform to these 1D signals to extracted wavelet packets 
atoms coefficients as the gait signature. Instead of 
computing a distance between each pixel along the contour 
and the centroid, Boulgouris et al. [34] divide the silhouette 
into angular sectors and calculate the average distance 
between foreground pixels and the centroid in each angular 
sectors. 

Some other algorithms pay attention to analyzing the 
whole shape of silhouettes. Wang et al. [35] apply the 
Procrustes shape analysis to silhouette shapes and extract a 

Procrustes mean shape from a sequence of silhouettes as 
gait signature. Boulgouris and Chi [36] perform Radon 
Transform on the binary silhouettes to get a template from 
gait sequences. Linear discriminate analysis (LDA) and 
subspace projection are used to extract Radon template 
coefficients to construct the feature vector. 

3. Feature Dimensionality Reduction 
The dimensionality of features extracted from gait 

sequences is usually higher than training data, which gives 
rise to the failure of conventional classification algorithms. 
This is well known as the undersample problem. Thus, a 
feature reduction algorithm is necessary to extract useful 
and informative features for classification. Principal 
component analysis (PCA) and linear discriminant analysis 
(LDA) [37] are traditional but widely used feature 
reduction methods. Wang et al. [10] apply PCA to 
time-varying distance signals derived from silhouette 
images sequence to reduce the dimensionality of feature 
space. Tan et al. [38] perform PCA and LDA together to 
improve the topological structure and reduce the 
dimensionality of the feature space. Han et al. [9] combine 
PCA and Multiple Discriminant Analysis (MDA) [37] to 
process Gait Energy Image (GEI). 

PCA-based methods only preserve those features which 
contribute most to variance, which may be not optimal for 
classification. Tao et al. [39] develop a general GTDA to 
preserve discriminative information of Gabor features and 
use LDA for classification. More recently, Mu and Tao [40] 
utilize DLA to reduce dimensionality of biologically 
inspired features, while Hu et al. [41] apply a two-stage 
PCA+DLA to get Periodicity Feature Vector (PFV) and 
shape features. A two-dimensional LPP is used by Zhang et 
al. [42] to improve the discriminative power of features 
extracted based on active energy image (AEI). While most 
of the aforementioned approaches focus on feature 
dimensionality reduction, Guo and Nixon [43] [44] select 
gait feature subset by maximizing the mutual information 
of gait features. 

4. Gait Classification 

4.1. Direct Classification 
Direct gait classification methods do not pay attention to 

the temporal information of gait sequences. They are based 
on the single representation or key frames extracted from a 
sequence of gait frames. K-nearest neighbor classifier 
decides the class of test feature according to the number of 
the k closest training examples. The most common labeled 
class among the k closed training examples is chosen as the 
test feature’s class.  Collins et al. [45] extract key frames 
from a walking cycle to form a template, and then perform 
nearest neighbor classification to template scores. k-nearest 
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neighbor rule is applied by Cunado et al. [8] to frequency 
information of the hip motion for classification.  

Additionally, some authors use various discriminative 
classifiers. Support vector machine (SVM) is used by Xue 
et al. [30] for wavelet decomposed features from gait 
energy image (GEI). SVM is considered as a generalized 
linear classifier and is a supervised learning method. 
Instead of using a supervised learning classifier, Dadashi et 
al. [33] employ transductive support vector machine 
(TSVM) to perform semi-supervised classification on gait 
signature extracted by wavelet packets. The TSVM take 
high-dimensional features as input and effectively 
investigate correlational structures of gait features.  

4.2. Similarity of Temporal Sequences 
Gait is a dynamic human activity. The signature of gait 

commonly contains a sequence of gait features, which 
makes classification perform measurement of the similarity 
of two gait temporal sequences. Some authors directly use 
cumulative distance over a gait cycle as the distance 
between two sequences. Phillips et al. [46] slide the test 
sequence over the reference sequence to find the position of 
minimum distance [2]. Sarkar et al. [11] use the ratio of the 
number of pixels in the intersection and union of two 
silhouette frames to measure the similarity between probe 
silhouette frames and gallery silhouette frames. The probe 

sequences are partitioned into several subsequences 
according to the gait period. Based on the similarity of 
frames, they calculate the correlations between each 
subsequence and the whole gallery sequences and choose 
the median values of the maximum correlation as similarity 
for robustness. 

 However, the direct cumulative distance is clearly not 
suitable for measuring gait temporal sequences, as it 
assumes that the test sequence and the reference sequence 
have an identical gait period [2]. This does not often the 
case in practical applications. Dynamic time warping 
(DTW) is a useful method to align two temporal signals 
with different length. Wang et al. [10] apply the dynamic 
time warping to measure the similarity between two 
sequences of distance signals. The parameters of DTW are 
determined by the relative stride frequency and phase 
difference. Vega et al. [47] adopt the DTW to temporally 
normalize two traces, which are projections of motion types 
in the Space of Probability Function (SoPF). More recently, 
Veeraraghavan et al. [48] improve the DTW based on 
Procrustes shape distances to compute distances between 
shape sequences. 

Walking is a periodical activity, which means that 
frequency analysis of spatial-temporal gait signals can be a 
very appealing approach [2]. Lee and Grimson [6] divide 
gait silhouette into seven regions and use ellipses to fit each 
region. They apply Fourier Transform on the temporal 

Fig. 3. Normalized and aligned silhouettes of two different walking sequences and the rightmost image is the corresponding GEI [9]

Fig. 4. Unwrapping the 2D contour of silhouette: (a) counterclockwise unwrapping along contour, and (b) normalized 1D distance [10]
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signals from these ellipses and extract the magnitude 
components and phase components for classification. Yu et 
al. [49] compare Fourier descriptors and key Fourier 
descriptors as features for classification and achieve the 
conclusion that the key Fourier descriptors of human 
contours surpass the Fourier descriptors. 

4.3. State-space Model: HMM 
Hidden markov models (HMMs) have been successfully 

applied in speech recognition and hand gesture recognition 
[50] [51]. HMMs represent different phases of a gait as 
hidden states. They assume that the current state is only 
influenced by the previous state and is independent of the 
history state. Observation probabilities and transition 
probabilities are calculated via training input data. The 
subject corresponding to the highest posterior probability is 
chosen as the recognized result. The HMM-based 
approaches are generally preferable to other methodologies 
because they make use of both the similarity of shapes 
between test and reference sequences and the probabilities 
of shapes appearing and succeeding in a walking period [2]. 

Sundaresan et al. [13] construct a generic HMM based 
framework for individual gait recognition. The postures of 
subjects are regarded as the states of HMMs, and the HMM 
parameters are trained by binarized silhouette feature 
vectors. Kale et al. [31] use lower dimensional vector 
sequence extracted from key frames of a walk cycle to train 
a continuous HMM, while He and Debrunner [52] employ 
HMMs to recognize individuals from Hu moment feature 
vector sequence. The experimental recognition result 
demonstrates that the HMM has overall robustness due to 
its statistical nature.  

More recently, Yin et al. [53] focus on the problem of 
extracting most discriminative feature for HMM. They 
proposed a new Segmentally Boosted HMM (SBHMM) to 
nonlinearly project original data to a new feature space, 
making the distribution of data more Gaussian. Chen et al. 
[15] take into account the problem of multiple gait feature 
fusion and extend HMM to construct a framework of 
factorial hidden Markov model (FHMM) and parallel 
HMM (PHMM). The FHMM and PHMM both have a 
multiple-layer structure. During the process of training, the 
FHMM and PHMM that get model parameters features are 
fused. 

Several authors have used HMMs in combination with 
manifold learning. Wang and Suter [54] present a HMM to 
analyze  learned motion manifolds by locality preserving 
projections (LPP), while Cheng et al. [14] [55] apply 
Gaussian process latent variable model (GP-LVM) to 
nonlinearly transform silhouette sequences into 
low-dimensional embedding and extract temporal dynamic 
information by a HMM. 

Instead of employing HMM for recognition, Liu et al. 
[16] [56] [57] use a population HMM to model a set of 

persons. Gait stances over one gait cycle form the state 
space of the population HMM and the silhouettes of gait 
stances are the observations of the population HMM. After 
alignment of the silhouette sequences, the population 
HMM is trained on a group of manually specified 
silhouettes. 

5. Public Gait Datasets 
Standard publically available gait datasets are needed to 

fairly compare and evaluate the performance of gait 
recognition algorithms. Some popular publically available 
gait datasets are described below. 

5.1. USF Dataset 
The USF dataset was collected at the University of South 

Florida and contains 1870 sequences from 122 subjects. 
Each person walked around an ellipse in front of cameras. 
There are up to 5 covariates for each person: two different 
shoes types; with or without a briefcase; grass surface or 
concrete surface; left viewpoint and right viewpoint; and 
two different time instants [11]. An example frame from the 
USF gait dataset is shown in Fig. 5. 

 
Fig. 5. An example frame from the USF gait dataset [11]. 

5.2. CMU Mobo Dataset 
The CMU Mobo dataset was constructed by the Robotics 

Institute, Carnegie Mellon University. The dataset contains 
25 individuals walking on a treadmill in a 3D room. There 
are four different walking patterns for each individual: slow 
walk, fast walk, incline walk and walking with a ball. Six 
high resolution color cameras, distributed evenly around 
the treadmill, were used to capture all the subjects [32]. 

5.3. Southampton Dataset 
There are two groups of datasets in the Southampton gait 

dataset, namely the small database and the large database. 
The small database consists of 12 subjects walking around 
an inside track at a different speed. Each person was 
captured wearing different shoes, clothes and without or 
within various bags. Subjects of the large database were 
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filmed not only walking outside, inside track and inside 
treadmill, but also from six different views [3].  

5.4. CASIA Gait Dataset 
CASIA Gait Database is provided by The Institute of 

Automation Chinese Academy of Sciences. There are three 
datasets in the CASIA Gait Dataset (i.e., dataset A, dataset 
B, and dataset C). Dataset B is a large multi-view dataset 
containing 124 subjects from 11 views. 153 subjects 
walked in four different conditions: normal walking, slow 
walking, fast walking and normal walking with a bag [10].  

6. Conclusions and Future work 

6.1. Conclusions 
This paper has presented a comprehensive review of the 

strategies in key stages and recent developments in gait 
recognition and identification. Three major issues of gait 
recognition including gait image representation, feature 
dimensionality reduction and gait classification are 
discussed. Features used to characterize gaits can be 
categorized into two major groups: model-based features 
and model-free features. Model-based features are 
extracted via modeling or tracking components of human 
bodies, while model-free approaches place more emphasis 
on shapes of silhouettes or the whole motion of human 
bodies.  Inherently, the model-based features are more 
view-invariant and scale-independent comparing to the 
model-free features. However, model-based approaches 
require high quality of gait sequences to be captured and 
more computing time. In contrast, the model-free 
approaches are less sensitive to the quality of silhouettes 
and more efficient in computing. Reduction of feature 
dimensionality is essential to make classification more 
efficient and save precious computing time to satisfy the 
requirement of real-time applications. Linear and 
non-linear dimensionality reduction methods are 
prominently used in gait recognition. It is evident that linear 
dimensionality reduction methods such as PCA may be not 
optimal for classification of gaits and non-linear methods 
would be superior in this case [39] [42].  

With regard to gait classifier design, direct classification 
methods and those methods based on measuring the 
similarity of temporal sequences are commonly seen in the 
literatures. The direct gait classification methods either lose 
the temporal variation of gait sequences or ignore the 
temporal order of gait sequences, though they normally 
have high computational efficiency. In contrast, the 
similarity-based methods take advantages of the temporal 
and dynamic information over sequences of images, thus, 
would be more suitable for gait classification. Unlike the 
direct classification methods and the methods of measuring 
the similarity of temporal sequences are based on a distance 

metric, the HMM-based methods model phases of a gait as 
hidden states. The HMM-based methods are generally 
preferable to the other methodologies because they utilize 
both the similarity information and the probability of 
shapes appearance [2].  

6.2. Future Work 
Although a considerable amount of research has been 

developed, gait recognition for individual identification is 
still far from practical applications. Promising directions 
for future research are outlined as follows. 

1) Although the current state-of-the-art algorithms have 
achieved comparatively high recognition accuracies, 
the performances of these algorithms are affected in 
certain degree by covariates, especially by walking 
surface and capturing at different time [11]. Existing 
research has revealed that infrared images are robust to 
some covariates such as holding a ball and loading a 
package [30]. 

2) Most of gait recognition algorithms are restricted to 
fixed viewpoints and are sensitive to the view of 
sequences, which limited their applications. 
View-invariant methods are of importance to improve 
the performance of gait recognition algorithms. 
Combining different view sequences as training data 
may provide an effective way to solve this problem [58] 
[59]. 

3) Most of the existing gait recognition methods either 
assume silhouettes have already been segmented from 
videos or they can be estimated in simple background 
videos. However, in practice, humans may walk in a 
complex background, which means that the detection is 
a challenge for online gait recognition. 

4) Combination of gait and other biometrics such as face 
and foot pressure may be more effective than only using 
single biometrics [2]. It is shown that fusion of gait and 
face achieves improved recognition performances 
comparing with only single biometric traits [60]. 
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