Pure

Scotland's Rural College

A review of visual soil evaluation techniques for soil structure

Emmett-Booth, JP; Forristal, PD; Fenton, O; Ball, BC; Holden, NM

Published in: Soil Use and Management

DOI: 10.1111/sum.12300

First published: 04/10/2016

Document Version Peer reviewed version

Link to publication

Citation for pulished version (APA): Emmett-Booth, JP., Forristal, PD., Fenton, O., Ball, BC., & Holden, NM. (2016). A review of visual soil evaluation techniques for soil structure. *Soil Use and Management*, *32*(4), 623 - 634. https://doi.org/10.1111/sum.12300

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	A Review of Visual Soil Evaluation Techniques for Soil
2	Structure
3	
4	J.P. EMMET-BOOTH ^{1*} , P.D. FORRISTAL ² , O. FENTON ³ , B.C. BALL ⁴ & N.M. HOLDEN ¹
5	
6	¹ School of Biosystems Engineering, University College Dublin, Belfield, Dublin 4,
7	Ireland, ² Crop Science Department, Teagasc Oak Park, Co. Carlow, Ireland, ³
8	Teagasc Environment Research Centre, Johnstown Castle, Co. Wexford, Ireland,
9	⁴ SRUC Crop and Soil Systems Research Group, West Mains Road, Edinburgh, EH9
10	3JG, U.K.
11	
12	*Corresponding Author: J.P. Emmet-Booth (Email: jeremy.emmet-
13	booth@ucdconnect.ie)
14	
15	Running Title: Rev. of soil structure VSE Techniques
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

- 26 Summary

Soil structure forms a key component of soil quality and its assessment by semi-quantitative Visual Soil Evaluation (VSE) techniques can help scientists, advisors and farmers make decisions regarding sampling and soil management. VSE techniques require inexpensive equipment and generate immediate results that correlate well with quantitative measurements of physical and biochemical properties, highlighting their potential utility. We reviewed published VSE techniques and found that soils of certain textures present problems and a lack of research into the influence of soil moisture content on VSE criteria. Generally, profile methods evaluate process interactions at the point scale, exploring both intrinsic aspects and anthropic impacts. Spade methods focus on anthropogenic characteristics, providing rapid synopses of soil structure over wider areas. Despite a focus on structural form, some methods include criteria related to stability and resiliency. Further work is needed to improve existing methods regarding texture influences, on-farm sampling procedures and more holistic assessments of soil structure. Keywords: visual soil examination, soil quality, soil structure

Introduction

54	Soil structure is a key component of soil quality (Askari et al., 2015; Mueller et al.,
55	2013), influencing and influenced by soil chemical and biological properties (daSilva
56	et al., 2014; Askari et al., 2015). Current concerns over soil resource degradation
57	(Koch et al., 2013), emphasise the importance of assessing soil structure (Mueller et
58	al., 2013). Semi-quantitative procedures for structure evaluation using visual and
59	tactile assessment are receiving increased attention (Ball et al., 2013) notably
60	regarding impacts of current agricultural practices (Batey, 2009), reduced tillage
61	strategies (Giarola et al., 2013) and agri-environmental considerations (Newell-Price et
62	al., 2012). Soil has been visually assessed for millennia (Batey, 2000) and Visual Soil
63	Evaluation (VSE) techniques (Ball and Munkholm, 2015) offer repeatable procedures
64	for examining structural morphology for soil quality assessment (Mueller et al., 2013).
65	Correlations between VSE techniques and quantitative soil measurements have been
66	widely described (McKenzie, 2001; Mueller et al., 2009; Pulido Moncada et al.,
67	2014a) including indicators of soil physical quality (Guimarães et al., 2013; Pulido
68	Moncada et al., 2014b) and bio-chemical quality (Askari et al., 2015; daSilva et al.,
69	2014). Compared to quantitative measurements, VSE techniques provide rapid easily
70	interpreted results using inexpensive equipment, making them widely accessible
71	(Guimarães et al., 2013; Ball et al., 2007; Batey, 2000).
72	
73	Due to increased interest in VSE techniques and the numerous methods in use, this
74	review will outline the in-field procedures most widely described (according to

published, English language literature from 1940 onwards), discuss VSE methodology

and synthesise strengths, weaknesses and complimentary aspects between specificprocedures, thus identifying improvements.

78

79 An outline of in-field methods

80

VSE techniques can be categorised into spade (Tables 1 and 2) and profile methods (Boizard *et al.*, 2005; Mueller *et al.* 2009). The former require soil sample blocks to be examined after extraction by spade (Tables 1 and 2), evaluating structural state up to 50cm depth, over wide areas. The latter, founded on soil survey principles (McKeague *et al.*, 1986; Batey, 2000), require examination of soil profiles to \approx 1.5m in soil pits, generally excavated mechanically (Table 3), providing detailed information at point scale.

88

89 Spade methods

90 Görbing's (1947) Spade Diagnosis, the first published technique, focuses on anthropic 91 impacts on structure and crop growth, qualitatively assessing soil structure, rooting and 92 moisture content. The Peerlkamp (1959) method, the first semi-quantitative single-93 score procedure, together with Görbing's method, formed the foundation of more 94 recent procedures. The Peerlkamp method focuses on anthropic impacts on structure 95 (Boizard et al., 2005). A sample block extracted to 15cm is rapidly scored between 1 96 and 10 considering aggregate shape, size and porosity, particle cohesion and root 97 development. Layers can be assessed separately (Peerlkamp, 1967). The Werner 98 Method (Werner and Thämert 1989) examines soil physical state in terms of crop 99 growth, assessing individual layers up to 50cm. Properties including aggregate size, 100 shape, intra-aggregate fissures, aggregate face width and bio-pores each receive a score 101 (Mueller *et al.*, 2009). All three methods require the manual break-up of sample blocks
102 to expose aggregates, a key process in all spade methods.

103

104	Drop tests, which involve dropping sample blocks from a defined height onto a hard
105	surface to expose aggregates, are also used. The Diez method (see Mueller et al.,
106	2009), first described in the late 1990's, incorporates a drop test from ≈ 1 m. Exposed
107	aggregates are then assessed by hand. The method can assess anthropic impacts to
108	40cm (Diez et al., 2012). Soil surface condition, topsoil and subsoil structure along
109	with rooting, redox morphology, organic matter decomposition, macro-porosity and
110	the transition layer between topsoil and subsoil are assessed with reference to a
111	manual, with the option of generating a single summarising score (R. Brandhuber,
112	personal communication).
113	
114	Beste (1999) developed an extended version of Görbing's Spade Diagnosis, which
115	assesses structure for rooting and soil biota requiring the manual aggregate exposure. It
116	incorporates a scoring system while also assessing aggregate water stability and
117	includes quantitative measures. Layers are assessed with an emphasis on surface crust
118	formation, silting and presence of worm casts (0-1cm depth), aggregate shape and
119	quantity of granular or angular aggregates (0-15cm and 15-30cm depth) along with
120	aggregate shape and inter-aggregate porosity (30-40cm depth).
121	
122	Munkholm's (2000) Spade Diagnosis was founded on Preuschen's and Sobelius'
123	Spade Diagnosis, both modified versions of Görbing's (1947) method. Layers within a
124	sample block taken to 30cm are examined. Boundaries, texture, aggregate type, size

125 and grade, rupture resistance, porosity, rooting, soil fauna and organic matter

decomposition, are described in detail to support soil management. A drop test is
included to determine the degree of aggregation, but most of the assessment is by
manual manipulation (Table 2).

129

The Visual Soil Assessment (VSA) method (Shepherd 2000; 2009) captures intrinsic 130 131 quality factors and anthropic impacts on soil structure. Plant and soil indicators are 132 included and treated separately. For the main soil structure indicator, a drop test on an 133 8,000cm³ sample block, generally extracted from the topsoil. Exposed aggregates are 134 arranged by size on a flat surface for visual estimation of aggregate size distribution by 135 comparison with reference photographs included in a field manual. Additional visual 136 procedures are included for potential carbon sequestration and nutrient loss through 137 leaching, run-off and gaseous emissions (Shepherd 2010a). For soil quality the "VS 138 score" is the sum of individual weighted indicator scores for soil texture, structure, 139 colour and smell, mottling, macro-porosity, the presence of earthworms, potential 140 rooting depth, surface ponding, surface crusting and cover, and erosion. 141 142 The Soil Quality Scoring method (Ball and Douglas, 2003) is based on Munkholm's 143 (2000) diagnostic principles along with Beste's (1999) scoring criteria, assesses soil 144 physical fertility to 30cm through manual exposure of aggregates. Focusing on 145 anthropic impacts, surface condition, soil structure (by layer) and crop rooting are

146 assessed with reference to explanatory notes. The structure score is summed and

148

147

weighted by layer depth.

The FAL Method (Hasinger *et al.*, 2004) includes a drop test on individual layers from
the upper 45 cm (Boizard *et al.*, 2005). With an emphasis on anthropic impacts on

structure, aggregate size distribution is determined manually with smaller aggregates
sieved from 20mm to 0.2mm. With reference to images and a coding key, aggregates
are classified and the mean weight diameter and mean weight score are determined for
each soil layer (Boizard *et al.*, 2005).

155

156 In 2007, three spade methods were published. The Visual Soil Structure Quality

157 Assessment (VSSQA) described by Ball *et al.* (2007), was based on the Peerlkamp

158 method and subsequently renamed Visual Evaluation of Soil Structure (VESS)

159 following refinement (Guimarães *et al.*, 2011). VESS examines anthropic impacts on

160 structure and is accessible to non-experts. From the top 25cm depth, the size, shape

and visible porosity of aggregates are evaluated using an illustrated scoring key applied

162 to individual layers. The weighted average gives an overall "Sq" score, similar to the 163 system devised by Ball and Douglas (2003).

164

165 The 'Thinksoils' manual, developed by the United Kingdom's Environment Agency 166 (2007), includes instructions on conducting in-field assessment, emphasising erosion 167 and runoff risk. Soil surface, topsoil and subsoil structure, macro-porosity, aggregate 168 type and packing density along with plant and root growth are qualitatively examined. 169 (Environment Agency, 2010). The M-SQR method (Mueller et al., 2007) explores 170 intrinsic soil quality and anthropic impacts to assess long-term soil quality for cropping 171 or grazing. It is not exclusively an in-field procedure (therefore omitted from Tables 1 172 and 2), as regional climatic and soil survey date are incorporated (Mueller et al., 2013). 173 An overall "SQ score" of between 1 and 100 is generated from structural evaluation 174 along with assessment of inherent soil properties that limit productivity (e.g. stoniness) and identifying "hazard" factors that limit soil quality (e.g. salinization). 175

176 *Profile methods*

177 Le Profil Cultural, originally developed by Hénin *et al.* (1960) and described by 178 Manichon (1987), evaluates anthropic impacts (Roger-Estrade et al., 2004; Peigné et 179 al., 2013). A soil pit the width of a seed drill ($\approx 3m \ge 1.5m$) is excavated perpendicular 180 to tillage. Areas of different structure are identified in relation to horizontal layers 181 formed by successive cultivations and lateral variation from wheels. Structure is 182 described first by size and distribution of clods and from intra-clod porosity of clods 183 >2mm. Le Profil Cultural not only includes structural unit morphology, but also the 184 spatial variation of overall structure. Peigné et al. (2013) described further steps for 185 assessing a compact transition layer between topsoil and subsoil and biotic activity. 186 187 The Whole Profile Method developed by Batey (2000) offers a holistic procedure for 188 describing intrinsic soil quality and anthropic impacts on structure. The size and shape 189 of aggregates, presence of pans, structural stability, clay mineralogy and evidence of 190 compaction are evaluated (Batey, 2000). If required, Batey (2000) suggests the use of 191 scoring systems described by Peerlkamp (1967) or McKenzie (1998). Principles 192 developed by Batey form the basis of SOILpak, focused on structural characteristics 193 associated with compaction and cotton growth (McKenzie, 1998). A soil pit, 1.5m 194 deep and 4m long, perpendicular to tillage is recommended, from which five, 343cm³ 195 samples are extracted. Scores are assigned by firmness with clod size, shape, rupture 196 resistance, aggregation within clods and intra-clod porosity examined. If structural 197 scores are poor, overriding factors including interconnecting porosity, smeared layers 198 or textural changes are visually assessed. Visual assessment of aggregate stability in 199 water is scored from a dispersion test (Field et al., 1997). The SOILpak procedure has

200 been extended for a range of cropping systems and soils (Anderson *et al.*, 1998;

201 McMullen, 2000).

202

203	SubVESS is an adapted version of VESS for subsoil assessment (Ball et al., 2015)
204	with an emphasis on identifying anthropic impacts on transition layers or compacted
205	pans. Using a soil pit to 1.4m, soil layers are identified and assessed separately for
206	mottling, strength, porosity, rooting and aggregate characteristics. "Ssq scores" are
207	assigned for each layer using the SubVESS Flowchart, which provides a descriptive
208	key and reference images. An overall <i>Ssq</i> score for the profile is expressed as a
209	sequence of Ssq scores for individual layers from which any transition layer can be
210	identified.
211	
212	VSE Methodology
213	
214	Evaluation criteria
215	All methods examine anthropogenic impacts on structure with some, mainly profile
216	methods (Boizard et al., 2005) additionally exploring intrinsic aspects. Aggregation
217	(type, size and shape) and porosity form diagnostic criteria in almost all methods.
218	Classification of the former generally assumes increased incidences of large (>5cm -
219	>10cm), angular aggregates with higher rupture resistance, indicates poor structural
220	quality (McKenzie, 1998; Guimarães et al., 2011). Where desirable, differentiating
221	anthropic impacts from intrinsic influences may be problematic.
222	
223	Mueller et al. (2009) found that methods based on aggregation generated similar

results, with strong correlations with measures of soil physical quality including bulk

density (ρ_b) (Newell-Price *et al.*, 2013; Guimarães *et al.*, 2013; Mueller *et al.*, 2009),

penetration resistance (Newell-Price et al., 2013; Guimarães et al., 2013) and air

227 capacity (Mueller et al., 2009). Additionally, VESS, largely dependent on aggregation

diagnosis (Cui et al., 2014), was related to soil respiration and enzyme activity (Cui et

- *al.*, 2015) along with chemical properties including, total carbon, soil organic carbon
- and total nitrogen (Askari et al. 2015).
- 231

232 Regarding aggregate determination, drop tests offer standardised, reproducible 233 procedures of exposure. However, grass roots enmeshing aggregates (Pulido Moncada 234 et al., 2014a) and soils with high clay contents (Sonneveld et al., 2014) were found to 235 influence drop test results. Guimarães et al. (2011) found the manual exposure of 236 aggregates generated the same overall results as drop-tests, despite being suggested as 237 subjective (Ball et al., 2007). Unless preformed on individual layers as the FAL 238 method (Boizard et al., 2005), drop tests do not allow the examination of aggregation 239 within layers - a possible limitation (Giarola et al., 2010; Guimarães et al., 2011; 240 Newell-Price et al., 2013; Guimarães et al., 2013). The delimitation of layers not only 241 indicates potential soil functioning, but contextualises aggregation indicating anthropic 242 influences. The evaluation of *in-situ* spatial arrangement, as employed by Le Profil 243 Cultural, thoroughly indicates mechanisms or morphology of aggregation (Roger-244 Estrade et al., 2004). 245 246 Both visual inter- (Shepherd 2000, Werner and Thämert 1989) and intra- (Guimarães

et al., 2011) aggregate porosity are examined. Exploring profile faces with a knife

reveals macro-pores (Ball et al., 2015), which can be highlighted with diluted paint

249 (McKenzie, 1998). The quantification of earthworm burrows is also employed

250 (Munkholm, 2000; Peigné et al., 2013). Mueller et al. (2009) found the VSA inter-251 aggregate porosity classification, assessed by examining an exposed face of a spade 252 slice sample, correlated with dry ρ_b . VESS Sq scores, for which assessment of intra-253 aggregate porosity on exposed aggregate faces is required, corresponded with porosity 254 determined by CT imagery (Munkholm et al. 2013; Garbout et al. 2013). The 255 classification of clods described in Le Profil Cultural, based on intra-aggregate 256 porosity (Peigné et al., 2013), was justified with oedometer or consolidometer tests and 257 significant differences between void ratios were reported (Roger-Estrade et al., 2004). 258 Le Profil Cultural modified for tropical soils (Neves et al. 2003) was found to relate to 259 microbial biomass carbon (daSilva et al., 2014).

260

261 Other criteria used include colour, redox morphology, smell and biological properties. 262 However, techniques that include numerous, different criteria may generate the same 263 overall result (Newel-Price et al., 2013) suggesting that on certain soils, indicators 264 additional to those centred on aggregation and porosity may be redundant. Mueller et 265 al. (2009) suggested that where variation between structural states or evidence of 266 compaction is not pronounced, procedures incorporating more diverse criteria 267 (Shepherd et al., 2000; Werner and Thämert, 1989) are desirable to achieve usable 268 resolution. Relationships between diverse criteria and quantitative measurements were 269 found. Pulido Moncada et al. (2014a) found the SQSP rooting criteria (Ball and 270 Douglas 2003) correlated with $\rho_{\rm b}$, soil organic carbon (SOC) and saturated hydraulic 271 conductivity (K_{sat}), along with the VSA soil colour criteria (Shepherd, 2009) with SOC 272 and K_{sat}. However, the site-specific nature of such relationships is emphasised (Mueller 273 et al., 2009). Indeed VSE indicates overall structural state (Munkholm, 2000; Newel-

274 Price *et al.*, 2013). Universal correlation between particular quantitative measurements
275 and VSE criteria is not necessarily expected or desirable.

276

In addition to structural form, surface sealing (Shepherd, 2009; Ball and Douglas 2003)
or dispersion tests (Beste, 1999; McKenzie, 1998) can indicate stability, while organic
matter contents, soil texture, cracking, rooting and earthworm populations (Shepherd,
2009; McKenzie, 1998) indicate resiliency, thus holistically assessing structure (Kay,
1990).

Profile methods are efficient at distinguishing localised variation (Roger-Estrade et al.,

282

284

283 Spatial, textural and moisture variation

285 2004; McKenzie, 2001). Spade methods being quick, though less comprehensive 286 (Boizard et al., 2013), generate accuracy through replication over wide areas. At a field 287 scale, sampling strategies vary (Cui et al., 2014; Munkholm, 2000) and further 288 attention to on-farm procedures (Askari et al., 2013) regarding survey objectives is 289 required. Recommended minimum numbers of samples range from four for VSA 290 (Shepherd, 2010b) to ten for VESS (Ball et al., 2007) with the avoidance of damaged 291 areas, depending on objectives (Batey, 2000). Profile method soil pit excavation is 292 perpendicular to tillage and sufficiently long to capture damaged areas and micro-293 variation (McKenzie, 1998; Peigné et al., 2013). Additionally, pits can be located in 294 two contrasting areas, capturing extremes of spatial variation within a field (Ball et al., 295 2015; McKenzie, 1998). Sampling strategies at farm scale (Sonneveld et al., 2014) 296 have received limited attention.

297

298 Texture can influence diagnostic criteria, reducing precision. Batey and McKenzie 299 (2006) mentioned differences in cracking and rupture resistance associated with 300 cohesive, sandy and peaty soils. Texture can be dealt with by modifying the procedure 301 or within classification systems. A modified VSA dropt test requires sandy and loam 302 soil samples to be dropped from 0.5m instead of 1m (Shepherd 2009). Peerlkamp 303 (1959) described different classification systems, with the poorest class featuring 304 dense, smooth faced aggregates on clay and loam soils, and single-grain structure on 305 sandy soils. However, consideration must be given to agricultural management 306 capacity, as single-grain soils when irrigated, may be highly productive. Similar 307 classification differences were outlined by Diez et al. (2012), McKenzie (1998) and 308 Ball and Douglas (2003). The latter emphasised macro-porosity and soil colour 309 assessment in fine-textured soils, as opposed to solely aggregation. 310 311 Relationships between moisture content and VSA, SOILpak (Murphy et al., 2013) and 312 VESS (Cui et al. 2014) have been described. Techniques recommend deployment on 313 moist soils (Ball et al., 2007; Boizard et al., 2005; Ball and Douglas, 2003, Batey, 314 2000), with scientific studies conducted at near Field Capacity (Abdollahi et al., 2015; 315 Pulido Moncada et al., 2014b). Clearly criteria such as rupture resistance will be 316 affected by moisture content, Munkholm (2000) and McKenzie (1998) include 317 different diagnostic descriptions for wet and dry soils. Some older methods described 318 by de Boodt et al. (1967) also include procedures for dealing with moisture content. 319 Research on the impact of moisture content on VSE criteria and deployment is limited. 320 321

323 VSE output

340

324 Batey (2000) emphasised the importance of describing structure rather than measuring 325 it. Qualitative outputs, generally associated with profile methods (Peigné et al., 2013; 326 Batey, 2000) - reflecting their soil survey origin, provide detailed site-specific 327 descriptive information, potentially lost when applying numeric scores. Qualitative 328 descriptions may not be universally comparable (Batey, 2000) though this may not be 329 desirable. Le Profil Cultural explores point specific morphology and causes (Roger-330 Estrade *et al.*, 2004) not necessarily applicable elsewhere. When summarising 331 structural state, numeric scoring systems are regarded as important (Ball et al., 2015; 332 Ball et al., 2013) as they quantify structural condition, are universally comparable and 333 allow statistical analysis (Newell-Price et al., 2013; Munkholm, et al., 2013). Mueller 334 et al. (2009) differentiated between techniques involving the assessment of properties 335 either, concurrently or separately. The latter (Shepherd, 2000) might enhance 336 reliability and objectivity (Mueller et al., 2009) though may not to produce a 337 summarising score (Ball and Douglas, 2003; Munkholm, 2000; Beste, 1999; Werner 338 and Thämert 1989). 339

diagnosis as a complex multi-component system (Newell-Price *et al.*, 2013). However, its ten-point scoring system is criticised as being too broad, with a five-point index identified as optimal (Ball *et al.*, 2007). This can consist of three exclusive and two intermediate classifications (Beste, 1999), or five exclusive classifications, with noninteger intermediates possible (Guimarães *et al.*, 2011). In the case of VESS, the use of integer values can limit sensitivity and interpretation (Askari *et al.*, 2013), but decimetric scores, derived by calculation from integer values requires expert diagnosis.

The Peerlkamp method, a concurrent type system, generated the same overall

- 348 Additionally, integer values can be grouped into a simple "traffic-light" colour scheme
- 349 (Ball *et al.*, 2007; McKenzie, 2013), clearly indicating structural state and potential
 350 remediation requirements.
- 351

352 Strengths, Weaknesses and Complimentary Aspects

- 353 In this section, only the most widely utilised methods are discussed.
- 354

355 Strengths and weaknesses

356 VSA includes a range of intrinsic characteristics of soil quality and of structural

resiliency. The VSA drop test offers a clearly defined procedure for aggregate

358 exposure, useful for non-experts, the later modifications of which account for texture

359 variation (Shepherd 2009), originally found to be problematic (Newell-Price *et al.*,

360 2013; Giarola *et al.*, 2010). However, VSA does not delimit layers. VESS considers

361 layers and focuses on anthropic impacts, relying on the manual exposure of aggregates.

362 This requires some experience but still is suitable for non-expert use (Ball *et al.*, 2007).

363 Despite being reported as not dependent on texture (Cui et al., 2014; Guimarães et al.,

2013; Giarola et al., 2013; Guimarães et al., 2011), VESS was problematic with fine

textured soils (Askari et al., 2013), an issue that Ball et al. (2007) originally identified

366 (Askari et al., 2015). However, Pulido Moncada et al. (2014a) demonstrated that

367 VESS generated similar results to VSA while taking less time.

368

369 SOILpak examines intrinsic soil quality along with structural stability and resiliency -

370 notably vertical porosity highlighted with paint (McKenzie, 1998). Although possibly

- 371 problematic on sandier soils (Boizard *et al.*, 2005), SOILpak not only includes
- 372 different scoring procedures for different textures, but also descriptions of criteria at

different moisture contents (McKenzie, 1998) while being suitable for non-expert use. 373 374 In contrast, Le Profil Cultural, only applicable to arable soils, requires expertise 375 (Roger-Estrade et al., 2004) and is time consuming (Boizard et al., 2005). However, it 376 provides a comprehensive evaluation of structural morphology, notably impacts of 377 tillage. Later descriptions (Peigné et al., 2013) include criteria such as texture, 378 cracking, and earthworm activity exploring vertical porosity, intrinsic quality, 379 structural stability and resiliency. The analysis of clod morphology may indicate the 380 latter (Boizard et al., 2002). SubVESS, suitable for non-expert use, generates a 381 relatively rapid evaluation of management below tillage depth. Issues may arise when 382 differentiating anthropogenic from intrinsic features and when used on stony soils 383 (Ball et al., 2015).

384

385 *Complimentary aspects*

386 Profile methods examine point specific structural variation, assessing intrinsic quality 387 and anthropic impacts, thus process interactions. VSA and VESS allow wider spatial 388 evaluation and indicate structural state without thoroughly exploring mechanisms. 389 Both approaches can be used together. SubVESS examines from 30cm depth and so 390 should be used with VESS (Ball et al., 2015). Specific technique methodology differs 391 and can be complimentary. As Mueller et al. (2009) noted, where structural variation 392 over wide areas is minimal, multi-component systems such as VSA, may be preferable 393 over concurrent systems such as VESS. SubVESS, which places emphasis on 394 aggregation and anthropic impacts (Ball et al., 2015) worked well on a range of soil 395 types, apart from a stony fine soil that was classified as *Ssq* 1 (good structural quality) 396 despite being agronomically poor as indicated by Le Profil Cultural which considers 397 intrinsic properties (Peigné et al., 2013).

398 Conclusion

400	We show wide and growing evidence of the utility of VSE techniques. An
401	appropriate method can be selected for all situations whether research, monitoring
402	or management. Assessment objectives, the survey area and operators' level of
403	expertise will dictate method selection. Profile methods allow a more detailed
404	structural assessment than spade methods, but at the cost of coverage of within-
405	field variation due to time constraints. However, both approaches offer information
406	not attainable using quantitative measurements. Improvements required;
407	
408	• The interaction between moisture content and VSE criteria appears to have
409	received limited attention, while variation in soil texture presents problems for
410	some procedures. Modified procedures or classification systems according to
411	varying textures would be of benefit, notably to VESS. Nevertheless, research
412	shows methods are robust and valuable.
413	• As the utility of VSE techniques has been established, we recommended
414	exploration of sampling strategies and analysis of spatial variation. Minimum
415	sample replication per method should be determined.
416	
417	Further research is encouraged on new procedures and on less utilised existing
418	methods. The latter may offer useful approaches to improve more widely adopted
419	methods and to explore wider aspects of structure such as stability and resiliency,
420	important for an integrated and holistic assessment, notably of agricultural soils.
421	

423	Acknowledgements
424	
425	This work was mainly funded by the Irish Department of Agriculture, Food and the
426	Marine, Research Stimulus Fund grant number 13S/468.
427	
428	References
429	
430	Abdollahi, L., Hansen, E.M., Richardson, R.J. & Munkholm, L.J. 2015. Overall
431	assessment of soil quality on humid sandy loams: Effects of location, rotation
432	and tillage. Soil & Tillage Research, 145, 29-36.
433	
434	Anderson, A., McKenzie, D. & Friend, J.1998. SOILpak for dryland farmers on the
435	red soils of Central Western NSW, NSW Agriculture, Orange. Available at:
436	http://www.dpi.nsw.gov.au/data/assets/pdf_file/0007/167380/soilpak-dcw-
437	prelims.pdf; accessed 11/11/2015.
438	
439	Askari, M.S., Cui, J. & Holden, N.M. 2013. The visual evaluation of soil structure
440	under arable management. Soil & Tillage Research, 134, 1-10.
441	
442	Askari, M.S., Cui, J., O'Rourke, S.M. & Holden, N.M. 2015. Evaluating soil structural
443	quality using VIS-NIR spectrum. Soil & Tillage Research, 146, Part A, 108-117.
444	
445	Ball, B.C., Batey, T. & Munkholm, L.J. 2007. Field assessment of soil structural
446	quality - a development of the Peerlkamp test. Soil Use and Management, 23,

447 329-337.

449	Ball, B.C. & Douglas, J.T. 2003. A simple procedure for assessing soil structural,
450	rooting and surface conditions. Soil Use and Management, 19, 50-56.
451	
452	Ball, B.C., Batey, T., Munkholm L. J., Guimarães, R.M.L., Boizard, H., McKenzie, D.
453	C., Peigné, J., Tormena C. A. & Hargreaves P. 2015. The numeric visual
454	evaluation of subsoil structure (SubVESS) under agricultural production. Soil &
455	Tillage Research, 148, 85-96.
456	
457	Ball, B.C. & Munkholm, L.J. (eds). 2015. Visual soil evaluation, realizing potential
458	crop production with minimum environmental impact. CAB International, UK.
459	
460	Ball, B.C., Munkholm, L.J. & Batey, T. 2013. Applications of visual soil evaluations.
461	Soil & Tillage Research, 127, 1-2.
462	
463	Batey, T. 2000. Soil profile description and evaluation. In: Soil and environmental
464	analysis, physical methods, 2 nd Ed (eds Smith K. & Mullins C) Marcel Dekker,
465	New York, pp. 595-628.
466	
467	Batey, T. 2009. Soil compaction and soil management – a review. Soil Use and
468	Management, 25 , 335-345.
469	
470	Batey, T. & McKenzie, D.C. 2006. Soil compaction: identification directly in the field.
471	Soil Use and Management. 22, 123-131.
472	

473	Beste, A. 1999. An applicable field method for the evaluation of some ecologically
474	significant soil-function-parameters in science and agricultural consulting
475	practice, International Soil Conservation Organisation Conference 1999. West
476	Lafayette, Indiana USA, Institute for Soil Conservation and Sustainable
477	Agriculture. Available et: http://www.gesunde-erde.net/pdf-dateien/ISCO99.pdf;
478	accessed 11/11/2015.
479	
480	Boizard, H., Batey, T., McKenzie, D., Rihard, G., Roger-Estrade, J., Ball, B. C.,
481	Bradley, I., Cattle, S., Hasinger, G., Munkholm, L., Murphy, B. W., Nievergelt,
482	J., Peigné, J. & Shepherd, G. 2005. Field meeting "visual soil structure
483	assessment" held at the INRA Research Station, Estées Mons, France, 25-27
484	May 2005. Available at;
485	http://iworx5.webxtra.net/~istroorg/download/WG%20Visual%20Soil%20Struct
486	ure%20Assessment_Field%20meeting.pdf; accessed 11/11/2015.
487	
488	Boizard, H., Richard, G., Roger-Estrade, J., Dürr C. & Boiffin J. 2002. Cumulative
489	effects of cropping systems on the structure of the tilled layer in northern France,
490	Soil & Tillage Research, 64, 149-164
491	
492	Boizard, H., Yoon, S.W., Leonard, J., Lheureux, S., Cousin, I., Roger-Estrade, J. &
493	Richard, G. 2013. Using a morphological approach to evaluate the effects of
494	traffic and weather conditions on the structure of a loamy soil in reduced tillage.
495	Soil & Tillage Research, 127, 34-44.
496	

497	Cui, J., Askari, M.S. & Holden, H.M. 2014. Visual evaluation of soil structure under
498	grassland management. Soil Use and Management, 30, 129-138.
499	
500	Cui, J. & Holden, N.M. 2015. The relationship between soil microbial activity and
501	microbial biomass soil structure and grassland management. Soil & Tillage
502	<i>Research</i> , 146 , Part A: 32-38.
503	
504	da Silva, A.P., Babujia, L.C., Franchini, J.C., Ralisch, R., Hungria, M. & Guimarães,
505	M. de F. 2014. Soil structure and its influence on microbial biomass in different
506	soil and crop management systems. Soil & Tillage Research, 142, 42-53.
507	
508	de Boodt M., de Leenheer L., Frese H., Lou A. & Peerlkamp P. (eds.). 1967. West-
509	European methods for soil structure determination. Vol II. The State Faculty of
510	Agricultural Sciences, Ghent, Belgium.
511	
512	Diez, T., Weighlt, H. & Brandhuber, R. 2012. Bodenstruktur erkennen und beurteilen,
513	Anleitung zur bodenuntersuchung mit dem spaten. LfL Bayerische Landesanstalt
514	für Landwirtshaft, Freising-Weihenstephan. Available at:
515	http://www.lfl.bayern.de/publikationen/informationen/040146/; accessed
516	11/11/2015.
517	
518	Environment Agency. 2007. Thinksoils manual. Environment Agency, Bristol.
519	Available at:
520	http://adlib.everysite.co.uk/adlib/defra/content.aspx?id=2RRVTHNXTS.892WV
521	1TVH19TI ; accessed 11/11/2015.

522	
523	Environment Agency. 2010. Thinksoils, Examining soil structure, A practical guide to
524	digging a hole. Environment Agency, Bristol.
525	
526	Field, D.J., McKenzie, D.C. & Koppi, A.J. 1997. Development of an improved
527	Vertisol stability test for SOILpak. Australian Journal of Soil Research, 35, 843-
528	852.
529	
530	Garbout, A., Munkholm, L.J. & Hansen, S.B. 2013. Tillage effect on topsoil structural
531	quality assessed using X-ray CT soil cores and visual soil evaluation. Soil &
532	<i>Tillage Research</i> , 128 , 104-109.
533	
534	Giarola, N.F.B., da Silva, A.P., Tormena, C.A., Ball, B. & Rosa, J.A. 2010. Visual soil
535	structure quality assessment on Oxisols under no-tillage system. Scientia
536	<i>Agricola</i> , 64 , 479-482.
537	
538	Giarola, N.F.B., da Silva, A.P., Tormena, C.A., Guimarães, R.M.L. & Ball, B.C. 2013.
539	On the visual evaluation of soil structure: The Brazilian experience in Oxisols
540	under no-tillage. Soil & Tillage Research, 127, 60-64.
541	
542	Görbing, J. 1947. Die grundlagen der gare im praktischen ackerbau, Band II.
543	Landbuch- Verlang G.M.B.H., Hannover.
544	

545	Guimarães, R.M.L., Ball, B.C., Tormena, C.A., Giarola, N.F.B. & da Silva, A.P. 2013.
546	Relating visual evaluation of soil structure to other physical properties in soils of
547	contrasting texture and management. Soil & Tillage Research, 127, 92-99.
548	
549	Guimarães, R.M.L., Ball, B.C. & Tormena, C.A. 2011. Improvements in the visual
550	evaluation of soil structure. Soil Use and Management, 27, 395-403.
551	
552	Hasinger, G., Nievergelt, J., Petrasek, M. & Weisskopf, P. 2004. Observer et évaluer
553	la structure du sol. Les catiers de le FAL 50, Agroscope.
554	
555	Hénin et al. 1960. WAITING FOR INTER-LIBRARY LOAN
556	
557	Kay B.D. 1990. Rates of change of soil structure under different cropping systems. In:
558	Advances in soil science (ed Stewart B.A.), Springer, New York, 12, pp. 1-52.
559	
560	Koch, A., McBratney, A., Adams, M., Field, D., Hill, R., Crawford, J., Minasny, B.,
561	Lal, R., Abbott, L., O'Donnell, A., Angers, D., Baldock, J., Barbier, E., Binkly,
562	D., Parton, W., Wall, D.H., Bird, M., Bouma, J., Chenu, C., Flora, C.B.,
563	Grunwold, S., Hempel, J., Jastrow, J., Lehmann, J., Lorenz, K., Morgan, C.,
564	Rice, C., Whitehead, D., Yang, I. & Zimmermann, M. 2013. Soil security:
565	solving the global soil crisis. Global Policy, 4, 434-441.
566	
567	Manichon, H. 1987. Observation morphologique de l'état structural et mise en
568	évidence d'effets de compactage des horizons travaillés. In: Soil compaction and
569	regeneration, proceedings of the workshop on soil compaction: consequences

570	and structural regeneration processes, Avignon 17-18 September 1985 (eds.
571	Monnier, G. & Goss, M.J.), AA Balkema, Rotterdam, Boston, pp. 39-52
572	
573	McKeague, J.A., Wang, C. & Coen, G.M. 1986. Describing and interpreting the
574	macrostructure of mineral soils – a preliminary report. Land Resourse Research
575	Institute Ottawa, Ontario, LRRI Contribution No. 84-50.
576	
577	McKenzie, D. 1998. SOILpak for cotton growers, 3rd Ed. NSW Agriculture, Orange.
578	http://www.dpi.nsw.gov.au/agriculture/resources/soils/guides/soilpak/cotton;
579	accessed 11/11/2015.
580	
581	McKenzie, D.C. 2001. Rapid assessment of soil compaction damage II. Relationships
582	between the SOILpak score, strength and aeration measurements, clod shrinkage
583	parameters and image analysis data on a vertisol. Australian Journal of Soil
584	Research, 39 , 127-141.
585	
586	McKenzie, D.C. 2013. Visual soil examination techniques as part of a soil appraisal
587	framework for farm evaluations in Australia. Soil & Tillage Research, 127, 26-
588	33.
589	
590	McMullen, B. 2000. SOILpak for vegetable growers. NSW Agriculture, Orange.
591	Available at:
592	http://www.dpi.nsw.gov.au/data/assets/pdf_file/0020/127208/contents.pdf;
593	accessed 11/11/2015.
594	

595	Mueller, L., Kay, B.D., Hu, C., Li, Y., Schindler, U., Behrendt, A., Shepherd, T.G. &
596	Ball, B. C., 2009. Visual assessment of soil structure: Evaluation of
597	methodologies on sites in Canada, China and Germany, Part I: Comparing visual
598	methods and linking them with soil physical data and grain yield of cereals. Soil
599	& Tillage Research, 103 , 178-187.
600	
601	Mueller, L., Schindler, U., Behrendt, A., Eulenstein, F. & Dannowski, R. 2007. The
602	Muencheberg soil quality rating (SQR), Field manual for detecting and
603	assessing properties and limitations of soils for cropping and grazing, Leibniz-
604	Centre for Agriculture Landscape Research (ZALF) e. V. Muencheberg
605	Germany. Available at:
606	http://www.zalf.de/de/forschung/institute/lwh/mitarbeiter/lmueller/Documents/fi
607	eld_mueller.pdf; accessed 11/11/2015.
608	
609	Mueller, L., Shepherd, G., Schindler, V., Ball, B.C., Munkholm, L.J., Hennings, V.,
610	Smolentseve, E., Rukhovic, O., Lukin, S. & Hu, C. 2013. Evaluation of soil
611	structure in the framework of an overall soil quality rating. Soil & Tillage
612	Research, 127 , 74-84.
613	
614	Munkholm, L.J. 2000. The spade analysis – a modification of the qualitative spade
615	diagnosis for scientific use. DIAS Report April 2000 No. 28, Plant Production.
616	Danish Institute of Agricultural Sciences, Denmark.
617	
618	Munkholm, L.J., Heck, R.J. & Deen, B. 2013. Long-term rotation and tillage effects on
619	soil structure and crop yield. Soil & Tillage Research, 127, 85-91

621	Murphy, B.W., Crawford, M.H., Duncan, D.A., McKenzie, D.C. & Koen, T.B. 2013.
622	The use of visual soil assessment schemes to evaluate surface structure in a soil
623	monitoring program. Soil & Tillage Research, 127, 3-12.
624	
625	Neves, C.S.V.J., Feller, C., Guimarães, M.F., Medina, C.C., Tavares Filho, J. &
626	Fortier, M. 2003. Soil bulk density and porosity of homogeneous morphological
627	units identified by the Cropping Profile Method in clayey Oxisols in Brazil. Soil
628	& Tillage Research, 71 , 109-119
629	
630	Newell-Price, J.P., Chambers, B. & Whittingham, M. 2012. BD5001: Characterisation
631	of soil structural degradation under grassland and development measures to
632	ameliorate its impact on biodiversity and other soil functions. Grassland Soil
633	Compaction Assessment – Stages 1 and 2, May 2012. ADAS, U.K. Available at:
634	http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Locati
635	on=None&ProjectID=16827&FromSearch=Y&Publisher=1&SearchText=BD
636	5001&SortString=ProjectCode&SortOrder=Asc&Paging=10#Description;
637	accessed 08/03/2016.
638	
639	
640	Newell-Price, J.P., Whittingham, M.J., Chambers, B.J. & Peel, S. 2013. Visual soil
641	evaluation in relation to measured soil physical properties in a survey of
642	grassland soil compaction in England and Wales. Soil & Tillage Research, 127,
643	65-73.
644	

645	Peerlkamp, P. 1959. A visual method of soil structure evaluation. Meded. v.d.
646	Landbouwhogeschool en Opzoekingsstations van der Staat te Gent. XXIV No.
647	24, pp. 216-221
648	
649	Peigné, J., Vian, J-F, Cannavacciuola, M., Lefeure, V., Gautronneau, Y. & Boizard, H.
650	2013. Assessment of soil structure in the transition layer between topsoil and
651	subsoil using the profil cultural method. Soil & Tillage Research, 127, 13-25.
652	
653	Pulido Moncada, M., Gabriels, D., Lobo, D., Rey, J.C. & Cornelis, W.M. 2014a.
654	Visual field assessment of soil structural quality in tropical soils. Soil & Tillage
655	<i>Research</i> , 139 , 8-18.
656	
657	Pulido Moncada, M., Penning, L. H., Timm, L. C., Gabriels, D. & Cornelis, W. M.
658	2014b. Visual examination and soil physical and hydraulic properties for
659	assessing soil structural quality of soils with contrasting textures and land uses.
660	Soil & Tillage Research, 140, 20-28.
661	
662	Roger-Estrade, J., Richard, G., Caneill, J., Boizard, H., Defossez, P. & Manichon, H.
663	2004. Morphological characterisation of soil structure in tilled fields: from
664	diagnosis methods to modelling of structural changes over time. Soil & Tillage
665	Research, 79 , 33-49.
666	
667	Shepherd, T.G. 2000. Visual soil assessment. Volume 1. Field guide for cropping and
668	pastoral grazing on flat to rolling country. horizons.mw & Landcare Research,
669	Palmerston North, New Zealand. Available at:

670	http://www.landcareresearch.co.nz/data/assets/pdf_file/0011/28676/VSA_Vol
671	ume1_smaller.pdf; accessed 11/11/2015.
672	
673	Shepherd, T.G. 2009. Visual soil assessment, Field guide for pastoral grazing and
674	cropping on flat to rolling country. 2 nd Ed. Horizons Regional Council, New
675	Zealand.
676	
677	Shepherd, T.G. 2010a. Visual soil assessment, Pastures, Part 2, Visual indicators of
678	environmental performance under pastoral grazing. Food and Agriculture
679	Organisation, Rome. Available at:
680	http://www.fao.org/docrep/010/i0007e/i0007e00.htm; accessed 11/11/2015.
681	
682	Shepherd, T.G. 2010b. Visual soil assessment, Pastures Part 1. Food and Agricultural
683	Organisation, Rome. Available at:
684	http://www.fao.org/docrep/010/i0007e/i0007e00.htm; accessed 18/03/2016
685	
686	Sonneveld, M.P.W., Heuvelink, G.B.M. & Moolenaar, S.W., 2014. Application of
687	visual soil examination and evaluation technique at site and farm level. Soil Use
688	and Management, 30 , 263-271.
689	
690 691	Werner, D. & Thämert, W. 1989. Zur diagnose des physikalischen bodenzustandes auf produktionsflächen. Arch. Acker-Pflanzenbau Bodenkd, Berlin. 33 , 729-739.

Table 1 Outline of VSE Spade Methods (Drop Test Procedures)

Method*	Origin	Objective	Land	Characteristics	Criteria	Depth assessed	Scoring system	Intended users	Time
			assessed	assessed	employed		used		requirement
The Diez Method (Diez <i>et al.</i> , 2012)	Germany	To assess structure in relation to soil functioning, notably plant growth and water infiltration	Emphasis on arable	Anthropic impacts on structure	Aggregate type, size, shape, inter-aggregate porosity, rooting, redox morphology, transition layer	40 ^b cm	Score between 1 and 5 used (1 = best, 5 = worst)	Advisors and farmers ^b	
Visual Soil Assessment (VSA) (Shepherd, 2000, 2009, 2010)	New Zealand	To assess soil state, plant performance and the impact of farm management	Arable and grassland	Intrinsic soil quality and anthropic impacts on structure	Texture, aggregate size distribution, macro-porosity, redox morphology surface ponding and deformation, earthworms, smell, colour, potential rooting depth	Varying depths	<i>VS</i> score of between 0 and 50 (<20 = poor, 20-35 = moderate, >35 = good)	Advisors and farmers	40 minutes
FAL Method (Hasinger <i>et al.</i> , 2004)	Switzerland	To provide an accurate evaluation of structural state at a specific point ^a	Arable and grassland	Anthropic impacts on structure	Aggregate type, size, distribution and mean weight diameter ^a	45 cm	Score between 1 and 14 used for aggregate mean score ($1 = worst$, 14 = best). Aggregate mean weight diameter is described in mm	Researchers and advisors ^a	90 minutes ^a

 *Sources provided are not necessarily the original description of methods, ^a Sourced from: Boizard *et al.* (2005), ^b Points are of the authors' opinions

 Table 2 Outline of VSE Spade Methods (Manual Aggregate Exposure Procedures)

Method*	Origin	Objective	Land assessed	Characteristics assessed	Criteria employed	Depth assessed	Scoring system used	Intended users	Time requirement
Spade Diagnosis (Görbing 1947)	Germany	To assess structure in relation to plant growth	Emphasis on arable	Anthropic impacts on structure	Aggregate size, shape, porosity and rooting	30 cm	No numeric scores used	Advisors and farmers	
Peerlkamp Method (Peerlkamp, 1959)	The Netherlands	To assess structure in relation to fertility, summarised by a single score	Emphasis on arable	Anthropic impacts on structure	Aggregate size shape, rupture resistance, inter- and intra- porosity, rooting, surface soil dispersion	15 cm	<i>St</i> Score between 1 and 10 (<i>I</i> = <i>worst</i> , 10 = <i>best</i>)	Researchers, advisors and farmers ^a	30 minutes for 10 assessments ^a
The Werner Method (Werner and Thämert 1989)	Germany	To assess soil physical condition in relation to plant growth		Anthropic impacts on structure	Layers, aggregate size, width, shape, inter- aggregate porosity, bio- pores	50 cm	Scores between 1 and 4 or 1 and 5 used to describe individual properties, resulting in a five digit nominal value score for each layer	Researchers	
Extended Spade Diagnosis (Beste, 1999)	Germany	To assess structure with regard to rooting conditions	Emphasis on arable	Anthropic impacts on structure	Aggregate type, size, shape, along with aggregate	40 cm	Scores between 1 and 5 used for structure and between	Advisors and farmers	

		and habitats for soil biota			stability		0 and 2 for silting type. Three sample layers are assessed separately		
Spade Analysis (Munkholm, 2000)	Denmark	To describe and relate soil tilth to management while aiding and evaluating soil management decisions	Emphasis on arable	Intrinsic soil quality and anthropic impacts on structure	Texture, colour, layer boundaries, aggregate size, shape, grade, soil consistence, macro- porosity, pore distribution, connectivity, orientation and rooting, OM decomposition and soil fauna	30 cm	Different scoring systems used for different properties, though no summarising numeric scores used	Researchers and advisors ^a	1 – 3 hours ^a
Soil Quality Scoring Procedure (SQSP) (Ball and Douglas, 2003)	United Kingdom	To assess physical fertility in terms of structure, rooting and soil surface conditions	Arable and grassland	Anthropic impacts on structure	Soil surface, aggregate type, size, shape, rupture resistance and rooting	30 cm	Three separate scores are assigned, each between 1 and 5 (1 = worst, 5 = best)	Researchers and advisors ^a	1 hour ^a
Visual Soil Structure Quality Assessment (VSSQA) –	United Kingdom	To semi- quantitatively assess soil structural quality in a	Arable and grassland	Anthropic impacts on structure	Aggregate size, shape, intra- porosity, rupture	25 cm	Sq Score between 1 and 5 $(1 = best, 5 = worst)$	Advisors and farmers	15 minutes

Visual Evaluation of Soil Structure (VESS) (Guimarães <i>et al.</i> , 2011)		manner accessible to non-experts			resistance rooting, redox- morphology				
Thinksoils Manual (Environment Agency, 2007, 2010)	United Kingdom	To assess soil structure with regard to erosion and run-off potential	Arable and grassland	Anthropic impacts on structure	Fissures and porosity, aggregate size, shape, rupture resistance, redox morphology, rooting, crop growth	40 cm	No numeric scores used	Advisors and farmers	

*Sources provided are not necessarily the original description of methods, ^a Sourced from: Boizard *et al.* (2005)

Table 3 Outline of VSE Profile Methods

Method*	Origin	Objective	Land assessed	Characteristics assessed	Criteria employed	Depth assessed	Scoring system used	Intended users	Time requirement
Le Profil Cultural (Peigné <i>et</i> <i>al.</i> , 2013)	France	To examine the impact of tillage on soil structure features	Arable	Emphasis on anthropic impacts on structure	Soil layers, structural zones, macro- pores, aggregate/clod size, intra- porosity, redox morphology, rooting	1.5 m	No numeric score used	Researchers	1 – 3 hours ^a
Whole Profile Assessment (Batey, 2000)	United Kingdom	To assess the anthropic impact on intrinsic soil properties in relation to crop growth ^a	Arable and grassland	Intrinsic soil quality and anthropic impacts on structure	Soil layers, texture, aggregate size, shape, aggregate stability, compacted zones, soil bearing capacity, soil colour, redox morphology	1.2 - 1.5 m	No numeric score used	Researchers and consultants ^a	20 – 40 minutes ^a
SOILpak (McKenzie, 1998)	Australia	To identify and assess compaction in relation to crop growth	Emphasis on arable	Intrinsic soil quality and anthropic impacts on structure	Texture, soil surface, rooting, aggregate size, shape, rupture resistance, macro-pores, aggregate stability	1.5 m	Score between 0 and 2 used for structural (0 = worst, 2 = best) and ASWAT score	Land surveyors, advisors and farmers	25 – 90 minutes ^a

								between 0 and 16 used for aggregate stability (0 = negligible dispersion, 16 = serious dispersion)			
	SubVESS Flowchart (Ball <i>et al.</i> , 2015)	United Kingdom	To assesses any anthropogenic transition layer in terms of crop	Emphasis on arable	Anthropic impacts on structure	Redox morphology, porosity, rooting, aggregate size, shape	1.4 m	Ssq scores of between 1 and 5 (1 = best, 5 = worst)	Advisors	20 minutes	
732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749			growth *Sour	rces provide	d are not necess	arily the original	descriptio	n of methods,	^a Sourced f	rom: Boizard <i>et a</i>	<i>l.</i> (2005)