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A REVIEW OF WHAT NUMERICAL SIMULATIONS TELL US ABOUT
THE INTERNAL ROTATION OF THE SUN

Gary A. Glatzmaier
ESS-5 MS F665
Los Alamos National Laboratoq
hS Akrnos, NM 87545
USA

ABSTRACT. The simulated solar differential rotation from two independent numerical
modeling efforts agree with each other and with present solar observations. The models
solve the nonlinear, three-dimensional, time-dependen~ anclastic equations of motion for
thermal convection in a stratified, rotating, spherical shell. The simulated angular velocity
in the convection zone is constant on cylinders coaxial with the rotation axis, maximum at
the quator and decreasing with depth. The latitudinal variation of this angular velocity at
the surface is in agreement with Doppler measurements of the solar surface rotation rate,
The radial variation through the convection zone it consistent with the analysis of the
rotational frquency splitting of solar oscillations.

1, INTRODUCTION

Two numerical models of global convection in the sun will be discussed. One was
developed by Peter Gilman (Gilman & Miller l~J86)based on an earlier Boussinesq model
(Gilman 1977); the other was dcvelo~ by the author (Glatzmak 1984), Except for
construction of the anelastic quations in spherical coordinates (Gilrnan & Glatzmaier
1981), these models have been developed completely independently. TIM represent an

Japproach to the theoretical investigation of the internal dynamics of the sun at maximizes
the role of physics and minimizes the rok of parametrization. This a~proach, although
expensive in terms of both comupter resources and code development, 1sbecoming more
feasible with the continued improvement and availabili~ of supercomputers,

After briefly describing the two models, I w1lI discuss some properties of the
numerical soluthm and com are them to solar observations, Particular emphasis will be

/’placed on me simulated d.if erential rotation, 1 will finish with a discussion of model
validation,

2. DESCRIPTION OF MODkUf5

These two models are very similar in many ways and very different in many others, Both
models solve the nonli~ear, three-dimensional, time-dependent, anelastic equations of
motion for thermal convection of a density-stratified perfect gas in a rotating, spherical
shell. These models also serve as self-consistent dynamo modeki when the
magnctohydrodynamic equations are solved (Gilman & Miller 1981; Gilmw 1983;
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Glatzmaier 1984, 1985a,b).
The anelastic approximation (Gough 1969; Gilrnan and Glatzrna.ier 1981) is based

on the assumption that the convective velocities are small compared to the local sound
speed and that the resulting thermodynamic perturbations are small compared to the
respective thermodynamic variables, These are good approximations for the deep solar
convection zone. The anelastic gas is compressible on a convective time scale, but not on
an acoustic time scale. In other words, the sound speed is assumed to be infinite, The
anelastic approximation has the advantage of being able to account for large stratifications
in the thermodynamic variables, which is not accounted for in the Boussinesq
approximation, while not requiring a very small time step which is needed in fully
compressible calculations to resolve sound waves.

Both models have been designed as numerical analogs of global convection in the
sun by constraining the mass, luminosity, average rotation rate, and radius to solar values.
In practice, only the solar convection zone is simulated and only out to 90% of the solar
radius (93% in Glatzmaier’s model) due to large numerical resolution requirements near the
solar surface resulting from the small pressure scale-heights there. Stress-free,
impermeable, constant heat flux boundary conditions are applied at the inner and outer
spherical boundaries.

The basic reference states of the two models differ somewhat. Gilman’s model
convection zone spans five pressure scale-heights and is superadiabatic everywhere,
Glatzma.ier’s model spans seven pressure scale-heights and is superadiabatic in the upper
two thirds (in radius) of the shell and subadiabatic in the lower third. This latter case is
designed to simulate convective penetration into a stable region below. However, due to
the large additional numerical resolution that would be required to simulate a stratification
like that in a standard solar model, the modeled stable re$ion is only slightly subadiabatic,

The prwcnt supercomputers have rrmde time-chmensicmal numerical simulations
possible today; however, the affordable numerical resolution in space and time is still very
far from what ~~ouldbe required to resolve the many ortlers of magnitude in scale that exist
in solar convection. Consequently, these global models resolve as many of the large scales
as possible and parametrize, via eddy diffusion, the transport of momentum and heat by
all the smaller unresolved scales, This parametrization is the weakest part of the models,
However, the more modes that are resolved, i.e., the higher the numencal resolution, the
less significant the unresolved modes should be in determining th~ structure and
time-de dencc of the resolved modes.

r e parametrized viscous and thermal diffusivities in these models are usually
specifi~ time-independent functions of radius (either constant in radius or increasing with
radius). Glatzmaier has also employed a time-dependent wldy diffusivity that depends on
the local shear of the large-scale resolved velocity. In addition, the ratio of the viscous to
thermal diffusivity is specified Gilman typically sets this ratio to one; Glatzmaier usually
makes it somewhat less thsm one. The effects of different eddy diffusivity
parameterizations will be discussed in section 4,2.

The most significant difference between the two models is the numericaj solution
techni ue, In Clilman’s model, Fourier expansions describe the longitudinal dependence

7of the unctions while a finite difference scheme on a staggered grid is used in radius and
latitude, The spatial resolution is 90 grid points in latitude times 20 grid points in radius
times 24 longitudinal wave numbers, The equations are integrated in time via an explicit
leapfrog scheme with 1.36 hour time steps,

In GIatzmaier’s model, the longitudinal arid latitudinal dependence of the functions
is descnbcd by spherical harmonic expansions while the radial de ndence is described b

rChebyshev Iynomhl expansions, A s ectral transform met od is employed whit
r a?

{
computes al spatial derivatives analytic Iy in spectral space and all nonlmcar terms in
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physical space each time step. The spatial resolution is 32 grid points in latitude times 33
grid points in radius times 64 grid points in longitude. Semi-implicit time-integration treats
the nonlinear terms with an explicit Adams-Bashfoxth scheme and the linear terms with an
implicit Crank-Nicolson scheme, A three hour time step is used,

3. NUMERICAL RESULTS

Although the numerical techniques employed in
numerical solutions are qualitatively the same.
solutions fmm both models will now be described.

3.1. Time and wave number dependence

these models are quite different, the
Several properties of the numerical

The initial conditions, for both models, are small random entropy perturbations with zero
velocity relative to the rotating frame of reference. Due to buoyancy forces resulting from
the entropy perturbations in the superadiabatic environment, convective velocities quickly
develop and organize into large scale cellular convection, The amplitude of this motion
grows exponentially in time, due to the supercritical linear terms in the equations of
motion, until the nonlinear terms become large enough to terminate the growth. Kinetic
energy increases at the expense of the entropy stratification which becomes less
superadiabatic.

A time trace of kinetic energy is displayed in Figure 1 for one of Gilman’s
solutions. (Glatzmaier’s model produces very similar kinetic energy traces.) The energy
in the differential rotation (the axisymmetric part of the longitudinal component of velocity
relative to the rotating frame of reference) 1splotted separatel~. The nonaxisymrnetric
convective structure organizes within about two rotation ~rmds (-1000 time steps);
however, the differential rotation amplitude and structure, whtch is maintained primarily by
the nonlinear interaction of the nonamisymrnetricconvective modes, requires about 30 to 40
rotation periods to lwomc fully established,
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Figure1, Kinetic energy of convection and differential rotation m a function of time (one time step -
1,36 hours; oilmm & Milier1986), A dimensionlessenergy scale is wed,
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Energy spectra illustrate the large number of degrees of freedom associated with
these three-dimensional simulations. The kinetic energy and thermal energy (entropy
variance) integrated in radius and latitude are plotted as functions of longitudinal wave
number (m) in Figure 2 for one of Glatzmaier’s fully developed solutions at on instant in
time. (A kinetic energy spectra, averaged in time, is illustrated in Figure 2 of Gilman &
Miller 1986.) The peak in the axisymmetric (m=()) velocity mode is mainly due to the
induced differential rotation; whereas, the peak in the axisyrnmctric entropy perturbation
mode represer,is the tendency for convection to decrease the entropy stratification, In
addition, broad peaks exist around m=10 reflecting the most unstable, nonaxiwnmetric,
convective modi%.
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Figure 2, Thermal energy (variance of entropy perturbation) and kinetic energy integrated in radius and
latitude and plowed as functions of longitudinal wave number (Olatzmakr 1985a), A dimensionless
energy :cde is used

3.2. 3D convective structwe

Some properties of t!!e nonaxisymmetric components of velocity, which are responsible
via nonlinear interactions for the maintenance of differential rotation, will now be
examined, Simulated global convection in a rotating spherical shell tends to take the form
of north-south (banana) rolls, Banana rolls develop because motions pe

T
ndicular to the

axis of rotation are favored, especially at low latitude, due to the near ba ancc that can be
achieved among the remure gradient, buoyancy, and Cono!is forces, all of which tend to

ibe perpendicular to le axis of rotation at low latitude. The resulting small accelerations
mean that this banana-roll structure is relativel stable compared to other possible

iconvective structures, Figure 3U portra s these anana rolls with a plot of the radial
J’component of velocity in a spherical su ace just below the top boundary, Similar plots

(exte,~ding 180° in longitude) from Gilman’s model are illustrated in Figure 7 of Gilman &
Miller (1986), This banana-roll structure has also been seen in a recent space-lab
experiment of thermal convution in a rotating hemis herical shell with radial grawty (Hart,

!et al, 1986; Ha@ Glatzmaier, & Toomrc 1986; and oomre, these proceedings),
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Figure 3. (Lb) Radial cmponent of the simulated velocity and magnetic field at a Bivei, time step in a
spherical surface just beluw the outer boundary (Cilatzmaier 1984), Solid (broken) contours represent
outward (inward)directedfields. (c)A K.ittPeak synopdcmap of the large-scalemagnetic flux at the sot;w
surfau (Carrin@on rotation 1705, Feb. 1981; courtesy of Dr. J, W, Harvey], Black (white) represents
positive (negadve) magnetic polarity,



However, there has been no direct evidence of the existence of banana rolls in the
sun. if they do exist, as the numericrd simulations predic$ they would be very difficult to
detect because the global pattern is constantly changing. Different modes propagate in
longitude with different phase velocities; and these phase velocities themselves depend on
latitude. This time dependence of the global pattern is easily appreciated when viewir,g
mo ~ies of both the space-lab experiment and the numerical simulations of the experiment
(Toomre, these proceedings). It can also be seen in Figure 7 of Gilman & Miller (1986)
which illustrates the change during one rotation period. If long time averages are made on
Doppler measurements of the solar surface velocity in order to filter out granulation and
super granulation, the global convective pattern may also be faltered out. In addition, the
breakup of large-scale convection into smaller horizontal scales near the surface, where the
density scale-height becomes very small (Chan, these proceedings), may be responsible
for the non-observance of banana rolls at the solar surface.

This later reason may also explain why a recent analysis of the movement of young
sunspots (R&s et al. 1985) suggests the existence of axisymmetric east-west rolls, not
north-south banana rolls. It is possible that this is evidence of shallow meridional
circulation just below the surface of the sun, above a deep banana-roll structure. It is
certainly also possible that global-scale banana rolls do not exist in the sun and that the
models are unsuccessful because they lack some important physical process or just do not
have enough numerical resolution. These concerns will be discussed further in section 4,

However, there may be indirect evidence of banana rolls based on the measurement
of large-scale solar magnetic fields. Figure 3b shows the simulated radial component of
the magnetic field (in the same surface and at the same time step as in Figure 3a) generated
with Glatzmaier’s model rurming as a dynamo (Glatzrnaier 1984), Notice how both
polarities of the simulated magnetic field (Figure 3b) tend to be concentrated in the
downdrafts of the lar?e-scale convection (Figure 3a) where the horizontal velocity
converges. This numencal simulation of the large-scale magnetic field can be compared to
a Kitt Peak synoptic map of the large-scale magnef: flux at the solar surface (Figure 3c).
Notice the “chevron-shaped” structure that is prominent in both the simulation and the
observation. It is tempting to consider this similarity as indirect evi&nce of banana rolls in
the deep solar convection zone.

Banana rolls are also seen in plots of the horizontal components of simulated
velocity (Figure 9 of Gilman & Miller 1986). Fluid moving (relative to the rotating frame)
in the direction of rotation tends to drift toward the c uator and vice versa. This is due to

1the spherical geometry and rotation (Glatzmaier 19 5a), Coriolis forces acting on the
circulating fluid tend to increase or decrease the cross section of a banana roll depending on
the sense of the circulation, Since the cross sections of the rolls decrease as latitude
increases due to the spherical geometry, the circulating fluid drifts away from the quatorial

lane if the Coriolis forces are wing to decrease the cross section of the roll, Likewise,
8~uid drifts toward the e uatomal plane if it has the opposite sense of circulation,

%Therefore, as illustrated in igure 1 of Glatzmaier (1985a), there is a net latitudinal flux of
angular momentum toward the equator in both hemispheres, In addition, due to mass
conservation and the density stratf]cation, this latitudinal flux is greatest in the outer part of
the convection zone where velocities are large because density is small,

As a resuli, angular velocity also decreases with depth. In addition, this radial
differential rotation shears ~e nonaxisy~etric convective rolls (GiLman& Miller 1986)
Producing c~lls til*d ~ radius ~d longltude in such a way that rising fluid tends to move
m the chrection of rotation and smkmg fhd m the opposite direction. This is illustrated in
Figure 8 of Gilman & Miller ( 1986) and in Figure 3 of Glatzmaier ( 1984), Consequently,
there is a net u ward radial flux of angular momentum, However, this feedback precess

fcan only go so ar before it finds a nonlinear quilibrium because the larger the ti14 the less



efficient the convection and therefore the smaller the convective velocities which help
maintain the radial differential rotation which produces the tilt.

3.3. Meridional circulation and differential rotation

The axisymmetric part of the velocity field is divided between differential rotation, i.e., the
axisyrnmetric longitudinal velocity relative to the rotating frame of reference, and the
meridional circulation, i.e., the radial and latitudinal components of the axisyrnmetric
velocity. The total kinetic energy in the meridional circulation is usually two orders of
magnitude less than that in the differential rotation.

A typical profile of the simulated meridional circulation appears in Figure 4a.
Streamlines of the mass flux illustrate how the axisymmetric flow in the equatorial region
is outward in the outer part of the zone and inward in the inner part. This is mainly due to
the Conolis forces resulting from the differential rotation (Figure 5a). Note that there are
also inward flows around tiOO latitude.

The outward flow at the quator causes the surface temperature to be slightly higher
there; while the inward flows at fiOO latitude produce slightly lower surface temperatures
(Glatzmaier 1985a). The corresponding axisyrnmetric part of the simulated surface
temperature rturbation is illustrated in Figure 4b showing a 2K maximum at the equator,

rrelative to e reference state surface temperature of 4x 105K, and minimums at fiOO
latitude. A similar profde has been obtained for the latitudinal temperature variation on the
sun using the Princeton solar distortion telescope (Kuhn et al. 1985; Kuhn, these
proceedings). They see temperature minimums at fi3° latitude. The absolute temperature
difference simulated is larger than that observed because the model surface is well below
the photosplmre. However, the ratio of the maximum temperature difference to the average
temperature in that surface is somewhat less than that observed.

Finally the differential rotation, which is of major interest in these proceedings, will
be discussed. In these simulations, differential rotation in latitude and radius is found to be
maintained, against Coriolis and viscous forces, by the angular momentum flux which
converges in the outer part of the convection zone and in the equatorial region. As
described above, the angular momentum flux is a nonlinear product of nonaxisyrnmetric
velocities which are in the form of banana rolls due to the effects of thes hencal geometry,
rotation, and density stratification. A

P
rical profde of the simulated dif erential rotation is

plotted in Figure 5a with contours o angular velocity relative to the rotating frame of
reference. A similar profile, but of linear velocity, is illustrated in Figure 10 (step 18000,
deep layer) of Gilman & Miller (1986). These profiles illustrate how angular velocity
tends to be constant on cylinders coaxial with the rotation axis. Also plotted (Figure 5b)
are tk simulated latitudinal differential rotatton velocities at the surface for both Gilman’s
and Glatzmaier’s models and the solar profile obtained from Mt. Wilson Doppler
measurements (Howard et al. 1983). Both models produce profiles that are in fair
a$re~ment with the observed surface differential rotation, In addition, the simulated radial
dtiferential rotation rate in the equatorial plane from Figure 5a is plotted in Figure SC(solid
curve) and compared to the rotation profile obtained from the analysis of the rotational
frquency splitting of solar oscillations (dots in Figure SC; Duvall et al, 1984; see more
recent results in these proceedings), These profiles demonstrate how the simulated radial
differential rotation is consistent with current observational estimates.

One point that should be emphasi=d is that, although the observational results
show only a slight decrease (15%) in rotation rate with depth through the solar convection
zone, that is all the numerical simulations have been predicting, Since the simulated profile
(Figu~ 5a) has angular velocity constant on cylinders, th. decrease of the rotation rate at
the surface fhm the quator to about 45° latitude is essentially the same as the decrease of



the rotation rate in the equatorial plane from the sutiace to the base of the convection zone.
The differential rotation portrayed in Figure 5a appears very substantial because it plotted
relative to the rotating frame of reference, However, the absolute variation in radius
simulated by the models and plotted in Figure 5Cis actually only about 15$Z0of the surface
rotation rw.e.

MERIDIONAL CIRCULATION

(a)

ZONALLY AVERAGED
TEMPERATURE PERTURBATION
AT OUTER BOUNDARY

N

s’

Figure 4. (a) Streamlines of the axisymmetric massflux plotted in a meridian plane. (b) The latitudinal
variation of the axisymmetric temperatureperturbationat the outer boundary (93% of solar radius) relative

4to thereferencestateboundary temperatureof4x10 K (Glatzmaier1985a).
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solar oscillations (dots, Duvall et al. 1984).



4. DISCUSSION OF VALIDITY

Having briefly described the three-dimensional models and compared their solutions to
solar observations, an important question arises, How well do these numerical solutions
represent the actual physical processes in the sun? Actually, this question should be
broken into tWO. Do the codes accurately solve the model equations and do the model
equations adequately describe the solar physics?

4.1. Do the codes accurately solve the model equations?

Although there will always be some degree of error in these numerical solutions due to
numerical truncation and limited numerical resolution in space and time, it is hoped that
enough accuracy is achieved that certainly the qualitative features and, to a good extent, the
quantitative features do not depend on the particular details of the numerical solution
technique. Fortunately, this has been the case for the two models described here. These
models, being developed completely independently and employing vexy nifferent
numerical techniques, have produced essentially the same numerical solutions. Solutions
to a nonlinear system of equations that describe how the three components of velocity and
three themmdynamic variables are updated every time step on well over 50,000 grid points
for tens of thousands of time steps. The probability is quite small that both of these two
very different numerical codes are generating erroneous solutions that agree so well with
each other. This is indirect evidence that the codes are accurately solving the model
equations.

Direct evidence now also exists. VW good qualitative agreement has been found
between a recent space-lab experiment of thermal convection in a rotating hemispherical
shell and the three-dimensional numerical simulations of it done with a modifkd version of
Glatzrnaier’s code (Hart et al. 1986; Hart, Glat.zmaier, & Toornre 1986; Toornre, these
proceedings), Different scenarios, defined by the temperature boundary conditions, the
strength of the central gravity, and the rotation rate, produced quite different convective
structures including banana rolls, spirals, “soccer ball” patterns, and triangular waves. In
all cases that could adquately be resolved numerically, the model produced numerical
solutions in agreement with the experiment without any tuning or model adjustments
whatsoever. However, one must realize that the convecting fluid in this experiment was a
liquid, not a stratified gas like the sun. Also, the actual molecular diffusivities of the liquid
wem use in the model, not parametrized eddy diffusivities as are mquircd for simulations
of the sun. Yet this demonstrated agreement is direct evidence that the computer code is
accurately solving the three-dimensional nonlinear system of quations that describes this
thermal convection experiment.

4.2. Do the model equations ●dequately describe the solar physics?

The answer to this question is not so obvious, There are several concerns stemming from
the limitations of three-dimensional numerical simulations.

There is concern about the inner and outer impermeable spherical boundaries that
are imposed in both models. The inner boundary could be removed by solving the
quations everywhere in a full sphere. This poses additional numerical complications, but
not difficult ones. This would also allow the three-dimensional simulation of gravity
waves in the radiative solar interior and the theoretical investigation of differential rotation
in the center of the sun. The outer boundary, as mentioned above, is not placed at the
photosphem, but rather 5% to 10% of the solar radius below the photosphere in order of
avoid the large additional number of grid points that would be rquired to adequately
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resolve this region of smaii scale-heights. Consequently, it is possible that the models
neglect some very important physical processes near the solar surface.

Another concern is the depth of the convection zone which is specified in these
models. Both models have demonstrated that the deeper the convection zone, the better the
resulting surface differential rotation profile matches the observed solar profile and the less
tendency for a polar vortex which has not been observed. On the other hand, the solar
abundances of lithium and beryllium place a limit on the depth of the solar convection
zone.

However, the major concern about these models is the parametrized eddy
diffusivities which are treatd as scalar quantities. As mentioned above, these diffusivities
are either specifkd time-indepen&nt functions of radius or time-dependent functions of the
local shear of the large-scale resolved velocity fields. Several more sophisticated
pararneterizations ~hould be tested. For example, diffusion in the radial direction probably
should be a function of the local Richardson number which accounts for both local stability
(radial entropy gradient) and local wind shear. Also, accounting for Coriolis forces on the
subgrid-scale eddies via a tensor formulation like that suggested by Dumey (these
proceedings) may introduce new effects.

The effects of different speci.fkd scalar diffusivities have been investigated to some
extent with the three-dimensional models. Both models have demonstrated that the more
the diffxivities vary in radius the less solar-like the surface differential rotation. Also, as
the viscous and thermal diffusivities decrease, for a given spatial resolution, differential
rotation kinetic energy increases faster than convection kinetic energy. If the ratio of
viscous to thermal diffusivity decreases, the ratio of differential rotation kinetic energy to
meridional kinetic energy increases. However, it should be pointed out tha~ although the
models can ~oduce an angular velocity increasing with depth (with a special combination
of eddy diffusivities and convection zone depth), the latitudinal differmtial rotation at the
surface in these cases looks nothing like the sun’s. Whenever a solar-like surface
differential rotation is obtained, the simulated angular velocity decreases with depth as
illustrated in Figure 5,

one way to deal with the problem of ad hoc eddy diffusivity parameterizations is to
increase the spatial and temporal resolution of the model in order to reso!ve more scales
and decrease the amplitude, effect, and significance of the eddy diffusivities which
parametrize the effects of the unresolved scales. That is, increase the role of physics in
the numerical simulation while decreasing the role of parameterization. Of course the
limitations of compvtem will always limit numerical resolution.

On the other hand, as seen in Figure 14 of Gilrnan & Miller (1986), most of the
nonlinear work to maintain the simulated differential rotation is done by resolved modes
with longitudinal wave numbers between 8 and 20. Therefore, whereas an increase in
spatial resolution would provide better information about the small scales, it probably
would not significantly change the large-scale structure of the simulated differential
rotation,

Although a banana-roll structure has not been observed at the solar surface, the fact
that the numerical simulations from, both models are in fair agreement with several other
solar observations provides some confidence that the physics pertaining to deep global
convection is adequately described by the equations, As discussed above, the surface
structure of the large-scale magnetic flux simulated by the model when in a dynamo mode
is quite similar to that seen in Kitt Peak magnetic synoptic maps, (However, problems still
exist with magnetic cycle simulations (Gilman 1983; Glatzmaier 1985a,b),) The surface
temperatm variation with latitude is in fair agreement with obsewations made with the
Princeton solar distortion telescope. The latitudinal differential rotation at the m-face is
also in fair agreement with Mt. Wilson Doppler measurements. The radial differential



rotation through the cor,vcction zone is consistent with the analysis of the rotational
frquency splitting of solar oscillations. These observations have been explained with
relatively simple physical arguments once the numerical mdels demonstrated, within the
limitations described above, that these arguments are consistent with the global,
three-dimensional, nonlinear equations that describe mass, momentum, and energy
conservation.
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