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The uncertain and volatile nature of wind energy have brought huge challenges to power
system planning and operation. Therefore, it is necessary to model the wind power output.
In this paper simulation models of wind energy output for new power system planning are
reviewed. We begin by discussing the characteristics of wind power output, and then
introduce the wind power output simulationmodel based on different application scenarios
that are based on probability and time series. Finally, the directions for further research in
the future are anticipated.
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1 INTRODUCTION

The energy business is experiencing unprecedented profound changes as a result of the economic
development of society and the advancement of science and technology. The operations and
planning of power systems are becoming increasingly complicated as new types of energy
sources become available (Shortt et al., 2013). In response to the global energy and
environmental crisis, governments all over the world have stated that they want to establish a
system that uses a large amount of renewable energy (Kroposki et al., 2017). As a result of the
revolution in power systems, power system planning studies face new challenges. Increased
penetration of renewable energy in power systems, in particular, has resulted in significant
uncertainty and fluctuation in power systems (Conejo et al., 2017).

Electricity generated by wind energy differs significantly from that generated by traditional
sources. The main distinction is that wind power is uncertain and intermittent (Han et al., 2021). The
operation of the power system is made more uncertain by intermittent renewable energy sources.
New energy production’s growing effect in the power system puts new demands on planning and
operation.

Wind energy and other new energy products now play a significant role in the modern power
system. Despite the fact that the new energy power generation sector is rapidly expanding, it is
difficult to address the issue of new energy power generation planning in the short term due to lack of
planning, unstable development, and inadequate associated legislation. Therefore, it is critical to
accurately evaluate new energy production efficiency, account for the rational allocation of new
energy and conventional energy, increase unified planning and operation scheduling, and promote
the industry’s overall harmonious growth.

The output of wind farms is an uncontrollable source of energy, and its contribution to the
capacity of the power system when it is connected to the grid differs significantly from that of
conventional units. As a result, objective evaluation of the wind farm capacity credit is critical
for long-term planning, optimal system operation, reliability assessment and other associated
concerns.
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Because of the scarcity of primary energy, wind power have
significant seasonal, random, and fluctuating characteristics,
necessitating greater use of flexible resources over a variety of
time scales, such as cross-seasonal distribution, cross-day
adjustment, intraday adjustment, and real-time power and
electricity balance. Renewable energy power is increasingly
converting the power system into a multi-energy
complementary power system (Zhou et al., 2018).

The modeling and processing of stochastic power supply is a
key problem in the simulation of renewable energy-led power
system production. Wind power output simulation is widely used
in power system planning, operation, and reliability assessment.
Effective wind energy simulation can boost wind power’s grid-
connected potential while lowering wind farm operating costs
(Zhang et al., 2022).

Figure 1 shows the role of wind power simulation in the
expansion planning of the new power system. There are three
levels as a whole. The first is to input the basic data required to
build the power optimization model, mainly including load data
(electricity demand, typical load curve, etc.), power plant data
(power plant type, fuel price, average coal consumption, etc.),
primary energy data (hydrological information, incoming wind
conditions, etc.) and market and policy factors (discount rates,
fuel prices, new energy subsidies, etc.). The second layer is the
core processing layer of the program, which is responsible for the
calculation of power optimization planning. The last layer is the
input and output information layer, which includes global
information of power supply planning results such as power
installation progress, annual investment, annual operating costs,
power and electricity balance, and new energy simulation and
modeling, stochastic production simulation, typical daily
operation simulation, etc. Important results of the module
during the iterative computation process.

However, many previous studies on wind power output have
focused solely on wind speed forecasting, with little attention paid
to wind power simulation.

To focus on addressing the long-term variability and
uncertainties of renewables, we particularly limit our
discussions to the following areas: 1) Modeling of wind power

output without considering time series, primarily based on the
long-term characteristics of wind power to carry out modeling
based on probability statistics, which is used for power balance,
reliability assessment, etc.; 2) Time series modeling of wind power
output, mainly used to arrange the operation mode of units under
sequential production simulation; 3) Time series and probability
modeling, which overcomes the shortcomings of the previous two
categories and incorporates both uncertainty and volatility into
the model.

The contributions of the paper are listed as follows. First, the
characteristics of wind power output are summarized including
the uncertainties, peak shaving and correlation. Second, various
wind power models based on probability distributions and
stochastic scenarios are introduced. Third, wind power output
time series modeling, primarily used to arrange the operation
mode of units under sequential production simulation, is
discussed in this paper.

The remainder of this paper is organized as follows. In Section
2 the output characteristics of wind power are summarized,
including uncertainty, volatility, correlation, peak shaving
characteristics. In Section 3, the probability-based wind power
modeling is summarized, including probability distribution
model, capacity confidence, and Copula multi-wind farm
correlation. In Section 4, time series-based wind power
modeling is explained. Section 5 is about the current concerns
and challenges of renewable energy production modeling. Finally,
Section 6 adds a brief summary of the content of the article and a
brief outlook. And the structure of this paper is shown in
Figure 2.

2 WIND POWER OUTPUT
CHARACTERISTICS

In this section, the output characteristics of wind power are
discussed.

2.1 Uncertainty, Volatility and Ramping
Characteristics
The power generation capacity and power generation of wind farms
have a strong dependence on wind energy. Unlike fuel and water
storage, wind energy cannot be stored on a large scale. The features of
wind energy largely impact the output characteristics of wind power.
The random and fluctuating characteristics of wind energy result in
high unpredictability and volatility in the output and power
generation of wind farms. Daily wind power production
variations, monthly average power changes, and variances in
output characteristics in different seasons all represent the
unpredictability and volatility of wind power output.

Uncertainty and volatility are the essential characteristics of
new energy power generation such as wind power. Uncertainty
makes short-term production arrangements and long-term
system planning a certain risk, while volatility has a significant
impact on the short-term operation of the power system,
requiring the system to be equipped with more many flexible
resources.

FIGURE 1 | Structure of the new power system planning.
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Ramps events are a significant source of uncertainty in wind
power generation. Wind power ramps are defined as large
variations in wind power production that must adhere to a set
of rules, such as a minimum power swing or duration (Sevlian
and Rajagopal, 2012; Sevlian and Rajagopal, 2013; Ganger et al.,
2014). Extreme wind ramp events need to be closely examined
since such a ramp can cause power system security concerns.

2.2 Peak Shaving Characteristics
Wind power’s peak shaving characteristics refer to the
relationship between wind power and load over the course of
a day. Whether wind power can be connected to the grid for
power generation mainly depends on whether the system has
sufficient peak shaving capacity.

The impact of wind power output power on system peak
regulation can be divided into three situations based on the
different effects of wind power on the peak-to-valley difference
of the system equivalent load: negative peak regulation, positive
peak regulation, and over peak regulation. Wind power has
obvious anti-peak characteristics, according to statistical
analysis (Yang et al., 2014).

2.3 Correlation
2.3.1 Autocorrelation
Autocorrelation is the correlation of a series with itself after
applying a given lag (Feijoo and Villanueva, 2016).
Autocorrelation can be induced in a series of data by means
of autoregressive models, i.e., AR, MA, ARMA, ARIMA
(Kashyap, 1982; Zhang, 2003).

2.3.2 Cross-Correlation
Wind resources differ greatly for wind turbines that are far apart
in a wind farm or wind farms that are farther apart in different
regions, according to studies. Wind resources in different parts of
the region show obvious differences due to spatial dispersion. The
decoupling or offsetting of each other’s fluctuations through the

synergistic decoupling effect of each part in the region, thus
alleviating the adverse effects on the whole. Grid operation has
intermittent fluctuation characteristics. The correlation between
multiple output series is used to mathematically express the
smoothing effect of wind farm group output.

The following formula can be used to calculate the correlation
coefficient between two wind farms:

ρij �
∑T
t�1
(pit − �pi)(pjt − �pj)����������∑T

t�1
(pit − �pi)√ ����������∑T

t�1
(pjt − �pj)√ (1)

Among them, pi,t , pj,t are the sampling values of output in
wind farm i, j , and �pi , �pj are the sampling mean output of wind
farm i, j.

If the two output series have a positive correlation, the effect of
the volatility superposition will cause the overall output curve to
show a trend of large fluctuations, exacerbating the fluctuation of
the wind farm group’s output. The smoothing effect is influenced
by the negative correlation between outputs. The output
fluctuations cancel and complement each other, “cutting peaks
and filling valleys,” as it were. A smooth effect can be seen in the
overall output curve and output volatility.

2.4 Extreme Output Scenario
The wind power extreme scenario relates to the situation in which
the average net load (load minus renewable energy power) varies
the greatest over time. When the downhill event of wind power
and the load rise occur at the same time, for example, wind
desertion and load shedding may occur, compromising the power
system’s safety and stability.

In extreme circumstances of wind power production, robust
optimization may be employed to discover the best dispatching
system. The uncertainty set is primarily utilized to represent the
variation range of wind power fluctuations, and even in the

FIGURE 2 | Structure of this paper.
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worst-case circumstances, a solution with high performance
may be found.

3 WIND POWER MODELING BASED ON
PROBABILITY

In this section, the probability-based wind power modeling is
summarized, including probability distribution model, capacity
confidence, and Copula multi-wind farm correlation.

3.1 Probability Distribution Model
Wind power has a range of outputs from 0 to its installed
capacity. Therefore, typical two-state models of conventional
units cannot be used to establish wind power output models.
The long-term characteristics of wind power obey the Weibull
distribution, according to research and analysis dating back to the
1980s, and a multi-state unit model was developed as a result
(Wang et al., 1984).

From the perspective of probability theory and statistics,
Weibull Distribution is a continuous probability distribution,
as shown in Figure 3, and its probability density is:

f(x; λ, k) �
⎧⎪⎨⎪⎩ k

λ
(x
λ
)k−1

e−(x/λ)
k

x≥ 0

0 x< 0
(2)

The PDF of the Weibull distribution, f, has been widely
described in the literature, and can be expressed as a function
of three parameters, i.e. random variable (x), scale (λ) and
shape (k).

The multi-state unit model works by dividing the range of
wind power production (output) into numerous periods and
calculating the probability that the wind power output falls
within each interval (Kim et al., 2012). Wind power is
regarded as a multi-state unit whose output may take values at
these discrete points, with each interval corresponding to a
discrete output value (typically the middle of the period).

⎧⎪⎨⎪⎩ p(xi � ci,j) � pi,j∑
j

pi,j � 1 (3)

where the available capacity and probability of the unit in state j
are denoted by ci,j and pi,j respectively.

As can be seen, the continuous output curve of wind power is
the basis for the multi-state unit model. The form of the model is
consistent with the two-state model of conventional units. On a
longer time scale, it can properly capture the randomness of wind
power output and reflect the characteristics of wind power
replacing traditional power generation. The system reliability
of wind farms is directly calculated and considered in the case
of reliability calculation models and methods, which is widely
used in the research of wind power credit capacity. Also, it is
convenient to combine with the stochastic production simulation
calculation method based on equivalent continuous load curve
and electricity function.

Although the multi-state unit model is introduced in this
section on wind farm output modeling, the methods connected
with it may be applied to other units as well. Conventional units
may have local failures or individual auxiliary equipment failures,
but they are not always out of service. Instead, the generator
output may not achieve its rated output. The multi-state unit
model may also be used to model in this circumstance.

The probability distribution model can depict the long-term
power characteristics and power distribution range of renewable
energy, but short-term output fluctuation characteristics are difficult
to describe (Shao et al., 2021; Feng et al., 2022). The demand for peak
shaving and ramping of wind power has also been neglected.

3.2 Wind Power Capacity Credit
Due to the intermittency of wind power output, wind power units of
the same capacity have different load-carrying capabilities from
conventional thermal power or hydro-power units. Therefore, in
the power system sufficiency analysis, wind power capacity cannot be
treated the same as conventional units, which is not conducive to the
power planning.

FIGURE 3 | PDF of the Weibull distribution.
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The concept of power generation capacity credit was first
proposed by Garver (Garver, 1966) in 1966, to measure the load
carrying capability of units with different random outage rates in
the sense of reliability. And then in the late 1970s, Edward Kahn
(Kahn, 1979) and Haslett John (Haslett and Diesendorf, 1981)
first applied the concept of capacity credibility to the analysis of
wind power, making it possible for uncontrollable, fluctuating
and random wind power to participate in traditional power
planning analysis and calculation.

The credible capacity of wind power assesses how many
conventional units the wind farm can replace in the power
balance, or how much creditable capacity the wind farm can
produce with a reasonable or acceptable probability of confidence
(Voorspools and D’Haeseleer, 2006). Wind power capacity credit
is defined as the ratio of capacity that is equivalent to
conventional generation to supply the load with the same level
of reliability (Zhang et al., 2015).

The concept of wind power capacity credit is usually separated
into the following four categories in present research (Amelin,
2009; Graham and Cooper, 2013; Zhang et al., 2015): 1)
Equivalent Firm Capacity, EFC; 2) Equivalent Conventional
Generation Capacity, ECGC; 3) Equivalent Load-carrying
Capability, ELCC; 4) Guaranteed Capacity, GC. From the
standpoint of uncertainty analysis, these four categories all
specify the fraction of wind power that should be examined
under the dimension of conventional unit capacity.

The above four definitions can be grouped into two categories,
from the power supply side and the load side, respectively, under
the premise of maintaining the reliability unchanged, the
conventional unit capacity or additional payload that
renewable energy can replace.

These two types of understanding each have their own
practical significance: on the power side, how much wind
power should be installed to replace conventional units that
are about to be retired in order to achieve energy savings and
emission reduction targets; on the load side, how much wind
power should be planned to meet future load demand increases.

3.3 Copula Multi-Wind Farm Correlation
Multiple wind farms with identical geographical locations in the
same wind region are common in places with abundant and
concentrated wind energy resources. The output of each wind
farm will be highly correlated due to the continuity of wind speed.
The impact of integrating wind power into the electricity system
will not be correctly evaluated if the correlation between the
production of multiple wind farms in the same wind region is
overlooked, which would raise the insecurity of system
functioning.

Copula function, as a linking function between multiple
random variables, is based on Sklar’s theorem (Kole et al.,
2007). According to Sklar’s theorem, when the marginal
distribution of multivariate random variables and the
appropriate Copula function are determined, the joint
probability distribution of these random variables can be
obtained, which is the advantage of the Copula function in
practical applications.

Copula function connects the marginal distributions of
numerous random variables to a joint probability distribution.
This function can capture nonlinearity, asymmetry, and tail
correlation between variables and theoretically and does not
limit the choice of marginal distribution. In (Hong et al.,
2010), researchers assess the influence of wind farm
connection system reliability when wind speeds are entirely
related vs. completely independent. The Copula theory was
added into the output modeling of several wind farms in (Li
et al., 2013), which described the correlation characteristics across
wind farms. In (Cai et al., 2013), Copula function is introduced to
systematically model the dependent structure between wind
speed and output power of wind farms, and a joint
distribution function of wind speed and power of multiple
wind farms is established. Scientists utilized the Copula
function to model the dependent wind speed and wind power
production of several wind farms in (Zhang et al., 2013).
Researchers employed the Copula function to characterize the
output correlation between neighboring wind farms in space and
built a combined probability distribution model for the output of
many wind farms in (Wu et al., 2015). On this foundation, a
method for assessing multi-wind farm capacity reliability based
on output is proposed.

The use of the Copula function can more correctly depict the
nonlinear correlation of wind power output (Li et al., 2013; Wang
et al., 2013; Ji et al., 2014; Xie et al., 2016), according to (Li et al.,
2019). But the modeling approach is difficult, and adaptability is
poor when there are a large number of wind farms (Xu et al.,
2016). Furthermore (Yang et al., 2018), describes the correlation
of the output of several wind farms using an adaptive
multivariable nonparametric kernel density function, which
can effectively improve the local adaptability problem of the
Copula function method.

In (Xu et al., 2021), Wind farms in adjacent locations are
affected by similar meteorological factors, and their output shows
strong spatial and temporal correlation. Copula function can
describe the dependencies between non-normal random variables
in detail, and it has become a common method for modeling the
joint probability distribution of random variables.

4 WIND POWER OUTPUT SIMULATION
BASED ON TIME SERIES

In this section, the time series-based wind power output
simulation is summarized, including model based on historical
statistics, model based on simulated time series, and model
considering both stochastics and variability.

4.1 Model Based on Historical Statistics
In addition to multi-state modeling, the load correction
approach, in which the new energy curve is subtracted from
the system sequential load curve, is also a widely used method for
modeling wind power production. In this way, the system could
be spared the effects of random fluctuations in new energy
output.
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From historical meteorological statistical data, the output
curve can be calculated (Hasche et al., 2011). The historical
statistics can well reflect the seasonal, diurnal, and
autocorrelation characteristics of wind speed, but it is difficult
to depict the stochastic characteristics. Especially when the
measurement conditions are limited or the wind speed data is
scarce, the data may not reflect the annual variation
characteristics of wind speed.

In some previous studies, historical meteorological data
reanalysis and downscaling techniques have been used to
calculate the historical output curve of wind power by
restoring the historical wind speed (Hawkins et al., 2011),
which solves the data quality problem.

4.2 Simulation Model Based on Time Series
Previous studies have proposed a variety of statistical methods to
simulate the sequential output of wind power to compensate for
the difficulty of obtaining actual wind power output, with the goal
of restoring the stochastic characteristics of wind power output
through stochastic simulation.

Auto-Regressive and Moving Average (ARMA) model is the
most widely used model in wind power output simulation. First,
the autoregressive and moving average model parameters of each
order are identified from the historical wind speed data. Then the
identified ARMA model is sampled to obtain the time series of
wind speed. Finally the wind speed time series is converted into
wind power output through the wind output characteristic curve
(Billinton et al., 2009; Gao and Billinton, 2009; Chen et al., 2010;
Kloeckl and Papaefthymiou, 2010; Qu et al., 2013). ARMAmodel
can accurately describe the volatility of wind speed. However, the
wind speed simulated by the ARMA model is frequently normal
rather than Weibull distributed, and dealing with the spatial
correlation of the output of multiple wind farms is more difficult
with the ARMA model. To reflect the spatiotemporal correlation
(Lucheroni et al., 2019), employs a multi-dimensional ARMA
model. In addition, the ST-ARMA model is used in (Zou et al.,
2019) to statistically model the spatiotemporal coupling
correlation of multidimensional sequences in a relatively
concise form. The ST-ARMA model can generate a large
amount of simulated data with the same statistical properties
as actual wind output.

The Markov chain model is based on the wind power multi-
state unit model, assuming that the state transition of wind power
output is only related to the position of the previous state. The
state transition matrix of wind power output is established based
on historical data, and it is sequentially sampled to obtain the
wind power output time series (Leite et al., 2006; Dobakhshari
and Fotuhi-Firuzabad, 2009; Salehi-Dobakhshari and Fotuhi-
Firuzabad, 2011; Luo et al., 2014). The probability distribution
curve of wind power output has no shape constraints. The actual
sampling frequency of each state, however, is difficult to stably
converge to the expected probability due to the strong
autocorrelation of wind power output (Billinton and Huang,
2011).

Furthermore, In (Li et al., 2019) a new method on modeling
correlated power time series of multiple wind farms was proposed
based on hidden Markov model (HMM). A Markov chain was

adopted to model the state of time-varying correlations between
wind farms, and wind power outputs at two adjacent moments
were set as observations of HMM, which established the
mathematical mapping model between wind power
correlations and power outputs at two adjacent moments.

(Ning et al., 2010; Olsson et al., 2010) have used the stochastic
differential equation model to simulate the wind power output
considering the wind speed fluctuation characteristics and the
spatial correlation of the output of multiple wind farms.

In general, the time series model of wind power can take into
account the time series characteristics of wind power output, but
it requires more information on these time series characteristics.
In the time series simulation of wind power, it is technically
difficult to consider the fluctuation of wind power output, daily
characteristics, seasonality, and output correlation of multiple
wind farms at the same time.

4.3 Stochastic Consideration
For stochastic factors in power systems, there are two main
optimization methods: stochastic optimization and robust
optimization. Stochastic optimization requires the use of a
random variable probability distribution model, which is
incapable of adequately describing the complex variations in
real-world uncertainty variables. While robust optimization
uses an uncertainty set to determine the changes in an
uncertain factor. It is not necessary to assume a probability
distribution model in advance, but when considering the
optimal solution in the worst-case scenario, the optimal
scheduling results may be conservative.

Therefore, stochastic multi-scenario models are described first
in this section, followed by robust uncertainty sets. A time series
multi-state model based on the Markov chain is further created,
and the randomness, volatility, and ramping features are
extensively addressed.

4.3.1 Multi-Scenario Model
Researchers suggest a stochastic multi-scenario model for optimal
scheduling (Wang et al., 2008). The basic idea of the multi-
scenario method is to select and determine multiple typical daily
output curves of new energy sources, and then describe the
randomness of new energy output using different typical daily
curves and their corresponding probabilities.

The data of multiple scenes is generated by sampling based on
the input typical new energy data and the normal distribution
probability model. The researchers used Monte Carlo sampling
(Wang X. et al., 2016) to form the basic scene, and used Latin
hypercube sampling to generate the wind power scenario (Li and
Zhu, 2016). They may also start with the probability density
function of output at a single moment and discretize it using the
Wasserstein distance (Wang Q. et al., 2015), with the time series
connection generating the basic scene set. The precise probability
distribution of wind power production can be established by
sampling typical scenarios to represent a large number of
complex scenes.

This model is a useful attempt to simultaneously describe the
randomness and volatility of energy output. However, it should
be noted that the process of creating this type of model is
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relatively difficult, and the complexity of related calculations will
skyrocket as the number of scenes grows. This makes deciding on
the number of scenes difficult. If the number of selected scenes is
small, it will be difficult to fully describe the randomness of the
output distribution. But if the number of scenes is large, analysis
and calculation will be difficult.

4.3.2 Robust Uncertainty Set
Researchers built a robust model (Bertsimas et al., 2013) using an
uncertainty set (Dvorkin et al., 2016) to characterize the power
prediction error of renewable energy.

Robust optimization (RO) (Zeng and Zhao, 2013) is an
common optimization approach to deal with data uncertainty.
It is derived to hedge against any perturbation in the input data.
Due to the improved modeling capability, two-stage RO has
become a popular decision making tool.

Robust optimization is able to cope with any changes in
random variables. Traditional robust optimization replaces the
probability distribution information of stochastic variables with
uncertain sets and determines the best solution that meets all of
the requirements. Its solution speed is fast, and its decision-
making outcomes are still viable even when numerous unknown
parameters are perturbed at the same time.

The budget of the uncertain set was introduced to balance the
conservatism and economy of robust optimization. At the same
time, the method of reducing the cost of robustness was explored,
and a robust optimization model with adjustable conservatism
was proposed. Flexible uncertainty sets were first proposed (Zhao
et al., 2015), whose upper and lower bounds are optimization
variables rather than given values. Flexible uncertainty sets can be
applied to economic scheduling, reserve optimization, and unit
combination problems (Wang C. et al., 2016; Doostizadeh et al.,
2016; Shao et al., 2017).

In (Xu et al., 2020), The suggested method uses kernel density
estimation to create an ambiguous set of continuous multivariate
probability distributions, and the integrated dispatch
optimization model is composed of stochastic and resilient
optimization problems.

Furthermore, in (Xu et al., 2022), the researchers propose a
data-driven distributed robust optimization method for power
system scheduling to deal with the power system operation
problem considering wind power uncertainty. The distributed
robust optimization method constructed is a combination of
stochastic optimization and robust optimization, which can
ensure the reliability of the optimization results while making
full use of the statistical information of random variables.

4.3.3 Temporal Multi-State Model
Several output curves can retain the fluctuation characteristics of
renewable energy output, but cannot fully describe its randomness.
Multiple different output states and corresponding probabilities can
describe the random characteristics of renewable energy output, but it
is difficult to describe its volatility. Simultaneously, the ramping rate
and the ramping features of the probability distribution of the
ramping rate, as an essential part of the output characteristics of
renewable energy, have not been adequately addressed or explained
in the aforementioned two kinds of modeling methodologies.

Researchers have proposed a temporal multi-state unit model
(Zhaohong et al., 2009), which involves using different multi-state
unit models to describe the output characteristics of renewable
energy over time in order to account for its randomness and
volatility.

In addition, a sequential multi-state unit formation method
based onMarkov process (王锡凡 et al., 2015) has been proposed
to describe the relationship between renewable energy output in
adjacent periods while taking into account its ramping
characteristics. The multi-state unit model reflects the
randomness renewable energy output. The multi-state model
of time series further contains the time series fluctuation
characteristics of the output of renewable energy. And the
Markov state transition matrix intuitively reflects the
transition of renewable energy output from a certain state to
another state. Compared with the existing methods, the method
can more comprehensively describe the output characteristics of
renewable energy.

5 ISSUES, CHALLENGES AND FUTURE
WORK

Issues and challenges in wind power output modeling research
are as follows:

1) Simulation model of wind power output in different seasons:
Existing wind power output simulation models frequently use
wind power and load data for a whole year, with the
calculation results representing wind power’s contribution
to system reliability throughout the year. However, wind
power in some areas has distinct seasonal and daily
characteristics. At the same time, in power planning, the
calculation of power balance is carried out on a monthly
basis, and the peak load on a typical day of each month is used
for calculation.

2) Changes in wind power with various weather conditions: Part
of the cause for the 2021 Texas blackout was that wind
turbines were unable to produce energy owing to
equipment freezing, resulting in an inadequate power
supply on the power supply side. Under a variety of
meteorological conditions, the output power of wind power
is unstable and intermittent. Only a scientific power dispatch
mode can ensure the stable output of wind power.

3) Synergy of various forms of energy: Compared to traditional
power systems, which are primarily based on a single form of
energy source and utilization, new power systems realize the
transition fromone energy source tomultiple energy forms on the
energy source side. The output modeling of a new energy system
must take into account not just a single energy form as the
modeling object, but also the coupling and complimentary
interactions between the various energy forms. Further
research is required in order to realize the complementary
coordination of multiple energy sources at various time and
space scales.

4) Coupling of the energy supply side and the energy demand side:
The new energy power system realizes not only the
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transformation from a single energy source to a variety of energy
forms on the energy supply side, but also the change from
traditional electrical loads to multi-type loads on the energy
demand side (such as energy storage, electric vehicles, etc.). As
a result, the output modeling of the new energy power system
must take into account the information interaction between
supply and demand. And a new energy power system output
modeling that complements supply and demand must be
established.

So for these issues, future work for new power system planning
considering variable wind power output will be as follows:

1) It is necessary to research on the simulation model of wind
power output in different seasons to better support the power
balance.

2) It is an important measure to improve the security of the
power system to study the relationship between wind power
and meteorological conditions, correctly simulate the wind
power output, and improve the emergency support capability.

3) To increase the power system’s ability to absorb new energy, it
is necessary to investigate the coordinated and
complementary properties of numerous energy sources at
various time and space scales.

4) To support the overall coordinated control and performance
optimization of the system, it is vital to consider the
information interaction between the supply side and the
demand side as a whole, and to develop a new energy
power system model with coupling linkage and
complementary supply and demand.

6 CONCLUSION

Simulation models of wind energy output for new power
system planning have been reviewed. This paper focuses on

addressing the long-term variability and uncertainties of
renewables, thus discussing the following parts: 1)
Modeling of wind power output without considering time
series, primarily based on the long-term characteristics of
wind power to carry out modeling based on probability
statistics, which is used for power balance, reliability
assessment, etc.; 2) Time series modeling of wind power
output, mainly used to arrange the operation mode of units
under sequential production simulation; 3) Time series and
probability modeling, which overcomes the shortcomings of
the previous two categories and incorporates both uncertainty
and volatility into the model. Finally, this paper highlights
issues and challenges in wind power output modeling
research, such as considering wind power output in
different seasons, wind power output change under various
meteorological conditions, coordinating multiple energy
sources, and coupling energy supply and demand. And
some future work for new power
system planning considering variable wind power output is
proposed.
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