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Abstract: A World Health Organization (WHO) Feb 2018 report has recently shown that mortality

rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of

critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer

grading is an important aspect for targeted therapy. As cancer diagnosis is highly invasive, time

consuming and expensive, there is an immediate requirement to develop a non-invasive, cost-effective

and efficient tools for brain cancer characterization and grade estimation. Brain scans using magnetic

resonance imaging (MRI), computed tomography (CT), as well as other imaging modalities, are fast

and safer methods for tumor detection. In this paper, we tried to summarize the pathophysiology

of brain cancer, imaging modalities of brain cancer and automatic computer assisted methods for

brain cancer characterization in a machine and deep learning paradigm. Another objective of this

paper is to find the current issues in existing engineering methods and also project a future paradigm.

Further, we have highlighted the relationship between brain cancer and other brain disorders like

stroke, Alzheimer’s, Parkinson’s, and Wilson’s disease, leukoriaosis, and other neurological disorders

in the context of machine learning and the deep learning paradigm.

Keywords: cancer; brain; pathophysiology; imaging; machine learning; extreme learning; deep learning;

neurological disorders

1. Introduction

The fatality rate due to brain cancer is the highest in Asia [1]. Brain cancer develops in the brain or

spinal cord [2]. The various symptoms of brain cancer include coordination issues, frequent headaches,
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mood swings, changes in speech, difficulty in concentration, seizures and memory loss. Brain cancer is

a form of tumor which stays in the brain or central nervous system [2]. Brain tumors are categorized

into various types based on their nature, origin, rate of growth and progression stage [3,4]. Brain

tumors can be either benign or malignant. Benign brain tumor cells rarely invade neighboring healthy

cells, have distinct borders and a slow progression rate (e.g., meningiomas, pituitary tumors and

astrocytomas (WHO Grade-I)). Malignant brain tumor cells (e.g., oligodendrogliomas, high-grade

astrocytomas, etc) readily attack neighboring cells in the brain or spinal cord, have fuzzy borders

and rapid progression rates. Brain tumors can be further classified into two types based on their

origin: primary brain tumors and secondary brain tumors. A primary tumor originates directly in

the brain. If the tumor emerges in the brain due to cancer existing in some other body organ such

as lungs, stomach etc., then it is known as a secondary brain tumor or metastasis. Further, grading

of brain tumors is done as per the rate of growth of cancerous cells, i.e., from low to high grade.

WHO categorizes brain tumors into four grades (I, II, III and IV) as per the rate of growth [2,5–9]

(discussed later). Brain tumors are also characterized by their progression stages (Stage-0, 1, 2, 3 and 4).

Stage-0 refers to cancerous tumor cells which are abnormal, but do not spread to nearby cells. Stages-1,

2 and 3 denote cells which are cancerous and spreading rapidly. Finally in Stage-4 the cancer spreads

throughout the body. It is for sure that many lives could be saved if cancer were detected at an early

stage through fast and cost-effective diagnosis techniques. However, it is very difficult to treat cancer

at higher stages where survival rates are low.

Brain cancer diagnosis can be either invasive or non-invasive. Biopsy is the invasive approach

where an incision is done to collect a tumor sample for examination. It is considered the gold standard

for cancer diagnosis where the pathologists observe various features of cells of the tumor sample

under a microscope to confirm malignancy. The physical examination of the body and brain scanning

using imaging modalities constitute non-invasive approaches. The various imaging modalities such

as computed tomography (CT), or magnetic resonance imaging (MRI) of brain are faster and safer

techniques than biopsy. These imaging modalities help radiologists locate brain disorders, observe

disease progression and in surgical planning [10]. Brain scans or brain image reading to rectify

disorders is however subject to inter-reader variability and accuracy which depends on the proficiency

of the medical practitioner [11].

The advent of powerful computing machines and decreased hardware costs has led to the

development of many computer-assisted tools (CAT) for cancer diagnosis by the research community.

It is projected that CAT may help radiologists in improving the precision and consistency of the

diagnostic results. In this study, various CAT-based intelligent learning methods i.e., machine learning

(ML) and deep learning (DL) for automatic tissue characterization and tumor segmentation has been

discussed. The basic objective of this paper is to highlight state-of-the-art of brain tumor classification

methods, current achievements, challenges, and find the future scope.

The paper is organized as follows: Section 2 provides an overview of the pathophysiology of brain

cancer. Sections 3–6 discuss various imaging modalities, the WHO guidelines on brain cancer grading,

brain cancer tests and characterization methodologies, respectively. Section 7 briefly introduces

different brain diseases and finally, Section 8 provides an overall discussion.

2. Pathophysiology of Brain Cancer

The pathophysiology of brain cancer is discussed here. The reasons of occurrence of brain cancer

are given from the perspective of cellular architecture and its functioning within the human body.

2.1. Cellular Level Architecture

The cell is the basic building block of the human body. It also defines the function of each

organ within the body such as oxygen flow, blood flow and waste materials management. Each

cell has a central control system known as the nucleus which contains 23 pairs of chromosomes

consisting of millions of genes. The instructions for these genes are contained within deoxyribonucleic
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acid (DNA) [12], which is like a blueprint for genes and defines their behavior. The protein of the

gene is like a messenger that communicates between the cells or between the genes themselves.

The message conveyed is defined by its 3D structure [13]. Genes control the continuous process of

the death of unhealthy or unwanted cells besides reproduction of healthy cells. The main cause of

a cancer is uncontrolled growth of cells. A mutation alters this DNA sequence, which is the root

cause of malfunctioning of the genes. There are many factors involved in DNA mutations such as

environmental, lifestyle, and eating habits.

The genes responsible for cancer are divided into three categories. We introduce and define each

category in detail:

(i) The first category is known as tumor suppressors that controls the cell death cycle (apoptosis) [14].

This process has two signaling pathways. In the first pathway, the signal is generated by a cell to

kill itself while in the second, the cell receives the death signal from nearby cells. This process

of cell death is slowed down by a mutation in one of the pathways. It stops completely if this

mutation happens in both pathways, leading to unstoppable cell growth [14,15]. Some examples

of cell suppressor genes are RB1, PTEN, which are responsible for cell death [16].

(ii) The second category of genes is responsible for the repair of the DNA. Example of DNA repair

genes are MGMT and p53 protein. Any malfunctioning in them may trigger cancer.

(iii) The third group known as proto-oncogenes, are in opposition to the function of the tumor

suppressor genes and are responsible for the production of the protein fostering the division

process and inhibiting the normal cell death [17,18]. In healthy cells, the cell division cycle

is controlled by proto-oncogenes via protein signals which are generated by the cell itself or

the connected cells. Once the signal is generated, it goes through a series of different steps,

which is called signal transduction cascade or pathway as shown in Figure 1. This signal may

be generated by the cell itself or from the nearby cells that are directly connected to it. In this

pathway, many proteins are involved to carry the signal from the cell membrane to nucleus

through the cytoplasm. In this process the cell membrane receptor accepts the signal and carries

the message to nucleolus through various intermediate factors. Once, the signal reaches to the

nucleus, the responsible genes for transcription is activated and performs the cell division task.

One of the known proto-oncogenes responsible for the transcription is RAS which acts as a switch

to turn ‘on’ or ‘off’ the cell division process [19]. Mutation alters its functionality which leads to

transform this gene into an oncogene. In this situation the gene is unable to switch off the cell

division signal and unstoppable growth of the cells may begin.

If cancer starts in the body due to any of the above-mentioned reasons, it is known as a primary

tumor which invades other organs directly. If the cancer starts through blood vessels then it known

as secondary tumor or metastasis [20]. Even though the secondary tumor is formed, it needs oxygen,

nutrients and a blood supply to survive. Many genes exist in the body to detect these needs and start

establishing a vascular network for them to satisfy their needs. This process is known as angiogenesis

and is another cause of cancer explosion [21]. The genes discussed above as well as their expended

form has given in Table 1.

About 15 percent of cancers worldwide are caused by viruses [22]. The viruses infect cells

by altering DNA in the chromosomes which are responsible for converting proto-oncogenes into

oncogenes. Only a few cancer causing viruses have been identified i.e., DNA virus and retroviruses or

oncorna viruses (an RNA virus). The four basic DNA viruses responsible for human cancers are human

papillomavirus, Epstein-Barr, Hepatitis B and human herpes virus. The RNA viruses which cause

cancer are Human T lymphotropic type1 and hepatitis C. Several environmental factors also affect

the cells. X-rays, UV light, viruses, tobacco products, pollution and many other daily use chemicals

carry carcinogenic agents. Sunlight may also alter tumor suppressor genes in skin cells leading to skin

cancer. Further, the carcinogenic compounds in smoke alters the lung cells causing lung cancer [23].
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Many studies have shown that tumor cells have unique molecular signatures and

characteristics [24]. Hyperplasia, metaplasia, anaplasia, dysplasia, and neoplasia are the various

stages of the cells that define the cellular abnormality during microscopic analysis. Hyperplasia is the

stage, where abnormal growth of the cell starts but the cell continues to appear normal. The cell first

begins to appear abnormal in metaplasia. In the anaplasia state, cells lose their morphological features

and are difficult to discriminate. The cell appears to be abnormal and little aggressive in dysplasia.

Anaplasia is the most aggressive stage of this abnormal cell growth, where they seem quite abnormal

and invade the surrounding tissues or start flowing through the bloodstream, which is one of the

leading causes of metastasis [25]. The physical changes in cells due to cancer can be captured using

high resolution imaging such as MRI or CT imaging, which are the focus of the next section.
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Table 1. Genomics relevance with Brain Tumor, RKT: Receptor Tyrosine Kinase, TP53 (p53):

Tumor Protein53, RB1: Retino Blastoma1, EGFR: Epidermal Growth Factor Receptor, PTEN:

Phosphatase and Tensin Homolog, IDH1/DH2: Isocitrate Dehydrogenase 1/2, 1p and 19

co-deletion, MGMT: O6-methylguanine DNA methyltransferase, BRAF: B-Raf proto-oncogene,

ATRX: The α-thalassemia-mental retardation syndrome X-linked, HGG: High-Grade Gliomas,

GBM: Glioblastoma.

Gene Type Function Mutation Effect
Relevancy Between Brain Tumor
and Genes [Degree of Mutation]

TP53(p53)
[26]

DNA repair
Initiating Apoptosis

• Genetic Instability

• Reduced Apoptosis

• Angiogenesis

• More relevant to HGG

• Brain Tumor (80%)
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Table 1. Cont.

Gene Type Function Mutation Effect
Relevancy Between Brain Tumor
and Genes [Degree of Mutation]

RB1
[26]

Tumor Suppressor

• Blocks cell
cycle progression

• Unchecked cell
cycle progression

• More relevant to GBM

• Brain Tumor (75%)

EGFR
[27]

Trans-Membrane
Receptor In (RTK)

• Increased Proliferation

• Increased Tumor
Cell Survival

• Primary GBM (Approx. 40%)

PTEN
[27]

Tumor Suppressor
• Increased Cell Proliferation

• Reduced Cell Death

• Primary GBM (15–40%)

• GBM (up to 80%)

IDH1 and DH2
[28]

Control citric acid cycle
• Inhibits the function

of enzymes

IDH1

• Primary GBM (5%)

• GBM Grade II-III (70–80%)

• IDH1 longer survival.

IDH2

• Relevant to
oligodendroglial tumors

1p and 19q
[29]

Prognosis of the disease
or treatment assessment

• Poor prognosis

• Oligodendrogliomas (80%)

• Anaplastic
Oligodendrogliomas (60%)

• Oligoastrocytomas (30–50%)

• Anaplastic Oligoastrocytomas
(20–30%)

MGMT
[30]

DNA repair
predict patient survival

• Cell proliferation • GBM (35–75%)

BRAF
[26]

Proto-oncogene
• Cell Proliferation

• Apoptosis

• Pilocyticastrocytomas
(65–80%)

• Pleomorphic
Xanthoastrocytomas and
Gangliogliomas (25%)

ATRX
[26]

Deposition of
Genomic Repeats.

• Genital Anomalies,

• Hypotonia,

• Intellectual Disability

• Mild-To-Moderate Anemia

• Secondary To α-Thalassemi

• Relevent to oligodendroglial

2.2. Relevancy between Brain Tumor and Genes

As discussed in the last section, mutations in certain types of genes define the cancer. In various

studies, some connection is found between degree of mutation in genes and type of brain tumor,

which we have summarized in Table 1. Tumor protein-53 (TP53) is involved in DNA repair and

initiating apoptosis. Tp53 level is found to be quite abnormal in high-grade gliomas and mutations

have been found in more than 80% of tumors [26]. The retinoblastoma (RB1) gene is a tumor

suppression gene. RB1 mutation is found in approximately 75% of brain tumors and it is more

relevant to glioblastoma [26]. EGFR is a trans-membrane receptor in the receptor tyrosine kinase

(RTK) family. Mutation in EGFR will lead to increased cell cycle proliferation and increased tumor

cell survival. It is generally associated with primary glioblastomas and approximately 40% of the

mutations that caused them are found within it [27]. PTEN is a tumor suppressor gene and are

responsible for about 15–40% of mutations found in primary glioblastomas. The degree of mutation

may be up to 80%, indifferent glioblastoma [27]. IDH1 and IDH2 are enzymes that control the citric

acid cycle. Mutations in them inhibit enzyme activity. Generally, IDH1 mutation is found less in

primary glioblastoma patients (5%), but more in high grade glioblastomas (70–80%). IDH2 mutations

are generally seen in oligodendroglial tumors [28]. Co-deletion of chromosomes 1p and 19q is
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indicative of oligodendroglial lineage and mainly seen in anaplastic oligoastrocytomas (20–30%),

oligoastrocytomas (30–50%), anaplastic oligodendrogliomas (60%) and oligodendrogliomas (80%).

1p/19q helps in prognosis and treatment assessment [29]. MGMT protein is another DNA repair gene,

for which 35–75% abnormality is found in glioblastomas [30]. BRAF is a proto-oncogene encoded

as BRAF protein, which is involved in the cell proliferation cycle, apoptosis process and treatment

assessment. BRAF mutations are generally found in pilocyticastrocytomas (65–80%), pleomorphic

xanthoastrocytomas (about 80%) and gangliogliomas (25%) [26]. A-Thalassemia-mental retardation

syndrome X-linked (ATRX) is a gene that encodes a protein and is associated with TP53 and IDH1

mutations. It is use as a prognostic indicator when tumors have anIDH1 mutation and it distinguishes

between the tumors of oligodendroglial origin [26].

3. Imaging Modality

Medical imaging techniques help doctors, medical practitioners and researchers view inside the

human body and analyze internal activities without incisions. Cancer diagnosis, grade estimation,

treatment response assessment, patient prognosis and surgery planning are the main steps and

challenges in cancer treatment. There are a number of medical imaging techniques used by hospitals

across the world for different treatments. The brain imaging techniques can be categorized into two

types: i.e., structural and functional imaging [31,32]. Structural imaging consists of different measures

related to brain structure, tumor location, injuries and other brain disorders. The functional imaging

techniques detect metabolic changes, lesions on a finer scale and visualize brain activities. This activity

visualization is possible due to metabolic changes in a certain part of the brain which are reflected in

the scans. CT and MRI are used for brain tumor analysis and are able to capture different cross-sections

of the body without surgery [33,34].

3.1. Computed Tomography Imaging

In a CT scan, an X-ray beam circulates around specific part of the body and a series of images

captured from various angles. The computer uses this information to create a series of two-dimensional

(2D) cross-sectional image of the organ and combines them to make a three-dimensional (3D) image,

which provides a better view of the organs. Positron emission tomography (PET) is a variant of CT

where a contrast agents is injected into the body in order to highlight abnormal regions. CT scans are

recommended by doctors in many conditions such as hemorrhages, blood clots or cancer. However,

CT scans use X-rays which emit ionizing radiation and have the potential to affect living tissues,

thereby increasing the risk of cancer. In one study, it is shown that the risk of radiation in CT is

100 times higher than in a normal X-ray diagnosis [35].

3.2. Magnetic Resonance Imaging

MRI is a radiation free and therefore a safer imaging technique than CT and provides finer details

of the brain, spinal cord and vascular anatomy due to its good contrast. Axial, sagittal, and coronal are

the basic planes of MRI to visualize the brain’s anatomy as shown in Figure 2. The most commonly

used MRI sequences for brain analysis are Tl-weighted, T2-weighted, and FLAIR [36]. Tl-weighted

scan provides gray and white matter contrast. T2-weighted is sensitive to water content and therefore

well suited to diseases where the water accumulates inside brain tissues. T1- and T2-weighted

images are also used to differentiate cerebrospinal fluid (CSF). The CSF is colorless and found in the

brain and spinal cord. It looks dark in T1-weighted imaging and bright on T2-weighted imaging.

The third sequence is fluid attenuated inversion recovery (FLAIR) which is similar to T2-weighted

image except for its acquisition protocol. FLAIR is used in pathology to distinguish between CSF and

brain abnormalities. FLAIR can locate an edema region from CSF by suppressing free water signals,

and hence periventricular hyperintense lesions are clearly visible in the images.
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The comparison between the above three sequences is shown in Figure 2. Diffusion-weighted

imaging (DWI) [37] is another MRI sequence that helps to detect the random movements of

water particles inside the brain. As the water movement becomes restricted, an extremely bright

signal on the DWI is reflected, thus the DWI technique is mostly used for acute stroke detection.

Perfusion-weighted MRI (PWI) highlights the specific part of the brain where the blood flow has been

altered. Diffusion-tensor MRI (DTMRI) detects water motion in tissues through a microscopic image

which helps during surgical removal of the brain tumor. Functional magnetic resonance imaging

(fMRI) [38] is another variant of MRI that is used for measuring the changes in blood oxygenation

in order to interpret the neural activity. When a certain part of the brain is more active, it starts

consuming more oxygen and blood. Consequently, an fMRI maps the ongoing activity of the brain by

correlating the mental process and location. Although MRI is very useful for brain image analysis,

it has some limitations compared to CT. The motion artifact effect is inferior in MRI which helps in

acute hemorrhage and brain injury detection, but also causes it to require a greater acquisition time

than many other imaging techniques.

3.3. Biopsy

Biopsies are the gold standard for all cancer diagnosis and grade estimation. In a biopsy, the color,

shape, and size of the cell nuclei of tumor sample are observed. This brings complexity in manual

microscopic biopsy image analysis. The accuracy depends on the experience and expertise of the

pathologist and therefore, computer assisted tools can help pathologist in Digital Pathological Image

(DPI) analysis and may provide better results than manual approach [39]. Hematoxylin & Eosin

(H&E) staining is the most commonly used method for a biopsy sample analysis. Cytopathology is

used to know the cell structure, function and their chemistry. Tissue proteins are assessed by using

immuno-fluorescence imaging.
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3.4. Hyperstereoscopy Imaging

High-grade tumors invade the surrounding normal tissues, which makes them extremely difficult

to differentiate from each other through the naked eyes of surgeon (especially glioma). Incorrect

resection leads to reduced survival rate of the brain cancer patients [40,41]. In this case, hyperspectral

imaging (HSI) can be used. HSI is a minimally invasive, non-ionizing sensing technique. HSI uses a

wider range of the electromagnetic spectrum compared to normal three channel Red, Green and Blue

(RGB) image type [41], which provides detailed information about tissues in the captured scene [42].

Recently, scientists have proposed a novel visualization system based on HSI, which can assist

surgeons to detect the brain tumor boundaries during neurosurgical procedures [40]. This model

uses both supervised (SVM and KNN) and unsupervised (K-Means) machine learning techniques

to differentiate cell classes such as normal, cancerous, blood vessels/hyper-vascularized tissue and

background in the spectral image. The brain cancer detection algorithm is divided into off-line (training

process) and in situ (online) process. In the off-line process, the samples are labeled by experts and

in the in situ process, the HSI are directly acquired from the patient for real-time image analysis in

the operation theater. SVM is adapted for classification during the in situ process to get a supervised

classification map, while the kNN algorithm is used to find the spatial-spectral classification map.

To get the final definitive classification map, image fusion is performed between spatial-spectral

classification map (derived from KNN-supervised) and hierarchical K-means map (unsupervised

strategy). Finally, a majority voting (MV) method is used to fuse both images for superior results.

For dimensionality reduction, a principal component analysis (PCA) algorithm is adapted in the

above settings.

Another study utilizing the hyperspectral paradigm is [43], where, head and neck cancer

classification was done using a deep learning (DL) technique. In this study, the authors demonstrated

that DL techniques have the potential to be used as a real-time tissue classifier (tissue labeling process)

using HS images to identify boundaries of the cancerous and non-cancerous tissues during surgery.

A CNN network was proposed consisting of six convolution layers and three fully connected layers to

classify three types of classes such as head and neck tissue, squamous-cell carcinoma and thyroid cancer.

The database consisted of 50 subjects. The network was trained for 25,000 iterations using a batch size

of 250. Performance was evaluated using leave-one-out cross-validation protocol while computing the

performance parameters giving the accuracy, sensitivity, specificity as 80%, 81% and 78%, respectively.

The CNN strategy was benchmarked against conventional ML methods such as SVM, kNN, logistic

regression (LR), decision tree (DT), linear discriminant analysis (LDA) demonstrating its superiority.

3.5. MR Spectroscopy

MRI is able to visualize the anatomical structure of the brain, whereas, Magnetic Resonance

spectroscopy (MRS) is able to detect small biochemical changes in the brain. This property is useful

for the brain tissue classification in brain tumor, stroke and epilepsy. Here, several metabolites and

their products such as amino acids, lactate, lipids, alanine, etc., where, the frequency can be measured

in parts per million (ppm). There are unique metabolic signatures associated with each tumor type

and their grades [44], therefore, the neurologist measures the changes between normal and cancerous

tissues by the frequency map of ppm of each metabolite. In [45], the authors had proposed a deep

learning-based model for brain tumor diagnosis using MRS imaging techniques. The authors proposed

three deep models for brain tumor classification into healthy, low or high grade tissue types. In another

study [46], the authors proposed a brain tumor grading method using MR spectroscopy. The proposed

method showed that metabolite values/ratios could provide better classification/grading of brain

tumors using, short and long echo times (TEs). A machine learning method was proposed by authors

in [47] for glioma classification into benign and malignant types. Features were extracted from MR

spectroscopy and then classified using popular ML methods such as SVM, random forest, multilayer

perceptron, and locally weighted learning (LWL). The best performance was achieved by random

forest, giving an AUC of 0.91, while a sensitivity of 86.1% was achieved using the LWL-based method.
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Each imaging modality has its own merits and demerits. Occasionally we need to combine the

merits of more than one imaging modality for accurate diagnosis and assessment of various severe

diseases. Combining multiple image modalities is called image fusion which helps in better diagnosis

than when using a single imaging technique. Image fusion improves the image quality and may reduce

randomness and redundancy of the medical images. Some of the popular methods of image fusions

are [48] based on morphology, knowledge, wavelets and fuzzy logic methods.

4. World Health Organization Guidelines for Tumor Grading

Cancer identification and correct grade estimation are crucial part of the diagnosis process. It helps

doctors decide on a personalized treatment plan which may increase the survival expectancy of the

patients. Medical practitioners or histopathologists use WHO guidelines for brain tumor grading.

The WHO proposed five amendments or editions since 1979 for tumor classification, presented in

Table 2. In 1979, the WHO first proposed miotic activity, necrosis and infiltration for the tumor

classification. In 1993, the WHO came up with another amendment, where immune histochemistry

was considered for tumor assessment. After that, a genetic profile was included in the year of 2000.

In the 4th amendment, a genetic profile and histological variation were combined for the tumor

analysis in the year of 2007.Recently, on May 9, 2016 the WHO published an official fifth amendment

to the central nervous system (CNS) tumor classification, which may precisely define the tumor cells

and helps in better tumor classification [49]. All the studies have shown that tumor cells have unique

molecular signatures and characteristics which define their grade and group [50]. The WHO classifies

brain tumors using four basic features such as mitoses, necrosis, nuclear atypia, and microvascular

proliferation [51]. The assigned grades from the least aggressive to the most aggressive (malignant)

tumors are in the range of I to IV [49–52]. Grade-I cells look nearly normal and spread slowly.

Grade-II cells look slightly abnormal and grow slowly and may invade nearby tissues. These are more

life-threatening than Grade-I but can be cured by a suitable treatment. In Grade-III, tumor cells seem

abnormal and invade the nearby healthy brain tissues. These tumors may be treated. Grade-IV cells

look completely abnormal and grow and very rapidly. Eventually, it is very difficult to sub-grade

tumor due to the fuzzy difference in cell structure microscopically. Therefore, grade estimation of

tumor is challenging for a pathologist.

Table 2. WHO recommendations for tumor assessment in different editions.

Edition Year Recommended Parameters for Tumor Assessment

I 1979 Miotic Activity, Necrosis and Infiltration
II 1993 Immunohistochemistry (IHC)
III 2000 Genetic Profile
IV 2007 Genetic Profile and Histological Variation
V 2016 Molecular Features and Histology

5. Brain Tumor Tests

In neurological examination, the doctor asks about the patient’s health and checks vision, hearing,

alertness, muscle strength and reflexes. The doctor may also examine the eyes of a patient to see any

swelling. Brain scans, tumor biopsy and biomarkers are major tests to confirm cancer and its grade.

If the doctor finds any symptoms of brain cancer then they may suggest any one of them depending

on the patient condition to confirm the malignancy of the brain tumor. Some of the tests are given in

the following subsections.

5.1. Biomarker Test

Mutation in the genes is the root cause of cancer and the degree of this mutation in specific genes

can be measured through biomarker tests. Some of the genes responsible for specific brain cancers



Cancers 2019, 11, 111 10 of 32

are given in Table 1. This test diagnoses tumors, helps to find its type and may help in tumor growth

measurement, treatment response and personalized treatment therapy [53].

5.2. Biopsy

Biopsy is the primary test for diagnosis and stage conformation [54] for all types of cancer. This is

an invasive cancer diagnosis approach. In this test, a sample of the brain tumor is taken out through

surgery and the procedure may take several hours. The collected biopsy samples go through a

laboratory test where the histopathologists look for the cellular patterns and characteristics to estimate

the grade of the brain tumor. The low and high-grades of tumor are difficult to differentiate as their

cellular structures are similar. Accurate diagnosis is an important step to analyze the behavior of

the tumor and make the correct treatment plan. The estimation of the grade of the tumor is subject

to inter-reader variability and correct analysis of the DPI depends on the training and experience

of the histopathologists [55]. Image features that grade tumors are not always clear or difficult to

determine by different observers. The computerized image analysis can partially overcome these

shortcomings [56]. Complexity in clinical features representation, large size single histopathology

image and insufficient images for training are the major barriers in the automatics classification

techniques development [56]. Computerized image analysis include image registration, preprocessing,

feature selection, the region of interest (ROI) identification, segmentation and image classification

which are discussed later.

For many years, The Medical Image Computing and Computer Assisted Intervention (MICCAI)

Society has been organizing many conferences and open challenges that foster to develop computer

assisted tools or medical inventions in medical image analysis. Recently, many digital histopathology

image analysis challenges were organized worldwide to boost the tumor histopathology among

researchers community. We have summarized some of the MICCA challenges in Table 3.

Table 3. Overview of some open challenges in digital pathology images analysis worldwide.

Year Challenges Reference

2012 ICPR Mitosis Detection Competition [57]

2012
EM segmentation challenge 2012

2D segmentation of neuronal processes
[58]

2013 MICCAI Grand Challenge on Mitosis Detection

[59]2014
MICCAI Brain Tumor Digital Pathology

Challenge

2014
MICCAI Brain Tumor Digital Pathology

Challenge
2015 MICCAI Gland Segmentation Challenge Contest

2016 Tumor Proliferation Assessment Challenge 2016 [60]

2017 CAMELYON17 challenge [61]

2018
Medical Imaging with Deep Learning

(MIDL-2018)
[62]

5.3. Imaging Test

Imaging modalities such as CT, MRI, PET, and SPECT are popular brain imaging techniques

to confirm the presence of tumors without using surgery. Amongst them, MRI is the most popular

diagnostic imaging modality. MRI is mainly used for neural disorder or abnormality detection

because of its good contrast resolution for different tissues and lack of radiation. Automatic brain

tumor detection and classification is a challenging task due to overlapping intensities, anatomical

inconsistency in shape, size and orientation, noise perturbations and low contrast of images [63].

Some of the open challenges proposed worldwide for brain image analysis have been summarized

in Table 4. Our main focus of this review is to highlight the challenges involved and find the future
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scope in a non-invasive procedure of brain tumor detection and classification using the ML and

DL approaches. In the next section, we have discussed various ML and DL methods for the brain

image segmentation, tumor detection, and classification and point out limitations and future scope for

the enhancements.

Table 4. Overview open challenges of brain image analysis worldwide.

Challenge Objective Modality Reference

BraTS 2012 Brain Tumor Segmentation MRI [64]
BraTS 2013 Brain Tumor Segmentation MRI [65]
BraTS 2014 Brain Tumor Segmentation MRI [66]
BraTS 2015 Brain Tumor Segmentation MRI [67]

BraTS 2016
Quantifying longitudinal changes: evaluate the accuracies of the

volumetric changes between any two time points.
MRI [68]

BraTS 2017
Segmentation of gliomas in pre-operative scans.

Prediction of patient overall survival (OS) from pre-operative scans.
MRI [69]

BraTS 2018
Segmentation of gliomas in pre-operative MRI scans.

Prediction of patient overall survival (OS) from pre-operative scans.
MRI [70]

MICCAI 2018
The segmentation ofgray matter, white matter, cerebrospinal fluid,

andother structureson multi-sequence brain MR images with and without
(large) pathologies. (large) pathologies on segmentation and volumetry.

MRI [71]

HC-18
To design an algorithm that can automatically measure the fetal head

circumference given a 2D ultrasound image.
Ultrasound Image [72]

6. Classification Methods

Machine learning can be defined as a situation where a machine is given a task in which the

machine performance improves with experience [73]. ML algorithms are divided into two types:

supervised learning and unsupervised learning [74,75]. In supervised learning, ML algorithms learn

from already labeled data. In unsupervised learning, the ML algorithms try to understand the

inter-data relationship from unlabeled data. In the case of brain image analysis, ML has been used

in characterizing brain tumors [75,76]. The inner workings of ML algorithms consist of two stages:

feature extraction and application of ML algorithm for characterization. The process model is shown

in Figure 3.Cancers 2019, 11, x 12 of 32 
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The feature extraction algorithms are generally mathematical models based on various image

properties such as texture, brightness, contrast. Sometimes, several features from different extraction

models are fused together to increase the discrimination power of ML algorithms [77]. Some of the

most common algorithms for classification and segmentation of brain images are: K-Nearest Neighbors

(KNN) [78], Support Vector Machines (SVM) [79], Artificial Neural Networks (ANN) [80] etc. The KNN

classification is based on the premise that features of the same class cluster together. The KNN assigns
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an unknown instance the most common label amongst its K nearest neighbors. The SVM applies two

approaches for characterization: at first it tries to find the largest separating hyper-plane between two

classes. In the second approach, if the features are not separable in one dimension, they are mapped

to higher dimension where they are linearly separable, by using the kernel approach. ANN forms

hierarchical network of computing nodes capable of learning from features. ANNs are classified into

many types depending on their architecture, number of hidden layers, connection weight updating

algorithms, etc. The most common ANN models are extreme learning machines (ELMs) [81], recurrent

neural networks (RNN) [82], restricted Boltzmann machine (RBN) [83] etc. ELM is single-layer

feed-forward neural network (SLFFNN), RNNs apply feedback mechanism in the network connections

and RBN is a stochastic neural network.

The advent of high performance computers, as well as lower hardware costs have led to the

emergence of models with multiple layers of abstraction and millions of computing nodes which has

enabled characterization/segmentation with a high degree of accuracy. These models are collectively

called DL methodologies [84]. The most common DL models for brain image characterization are

convolution neural networks (CNN) [85], auto encoders [86] and deep belief networks (DBNs) [87].

DL-based tools for brain images are rapidly finding interest amongst the research community.

6.1. Machine Learning

KNN, SVM, DT, the naive Bayes (NB) classifier, expectation maximization (EM), random forest

(RF) etc. are the most popular ML techniques for medical image analysis. Many of them were

used alone or in combination by various researchers for brain image analysis. Some of them are

discussed in Table 4. We provide different brain cancer classification techniques using ML in the

following subsections.

6.1.1. ANN-Based MRI Brain Tumor Classification Using Genetic Features

The artificial neural network (ANN)-based approach for brain tumor classification using MRI

was proposed in [63]. The method is able to characterize normal (N), benign (B) and malignant (M)

tumor. The N, B and image example is shown in Figure 4.Cancers 2019, 11, x 13 of 32 
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Figure 4. Brain MR images: (a) normal brain, (b) benign tumor (7 O’ clock arrow) and (c) malignant

tumor (7 O’ clock arrow) (reproduced from [63] with permission).

For the purpose of characterization, 100 brain MR images (N = 35, B = 35, M = 30) were collected.

A semi-automatic method was applied to extract the region-of-interest (ROI). A wavelet-based feature

selection was performed to extract the features. A genetic-based feature selection algorithm along

with principal component analysis (PCA) and classical sequential algorithm was applied for feature

selection. Finally, all the features are input into the ANN. The ANN classifier is a three-layer feed

forward neural network with a single hidden layer. The process model of the approach is shown in

Figure 5. It’s found that the genetic approach using only four of the available 29 features attained a
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classification accuracy of 98%. Similar approaches such as PCA and other classical algorithms required

a large feature set to achieve a similar accuracy level.
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6.1.2. A Hybrid Characterization System for Brain Cancer Tumors

In [88], a hybrid system consisting of two ML algorithms has been proposed for brain cancer

tumor characterization. A total of 70 brain MRI images (abnormal: 60, normal: 10) were considered

for this purpose. The features were extracted from the images using DWT [89]. The total numbers of

features were reduced using PCA [90]. After feature extraction, two classifiers were used separately on

the reduced features (i.e., feed forward back propagation based artificial neural network (FP-ANN)

and KNN). FP-ANN applies to the back-propagation learning algorithm for weight updating [91].

KNN is discussed earlier. This method achieves 97% and 98% accuracy using FP-ANN and KNN,

respectively. The process model of the proposed method is shown in Figure 6.
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6.1.3. A Characterization System for Grading Brain Cancer Tumors

A fully automated brain tumor classification scheme using conventional MRI and rCBV maps

calculated from perfusion MRI was proposed in [92]. The method classifies meningioma, glioma

grades (II, III, IV), and metastasis brain images as shown in Figure 7. Earlier, researchers used linear

discriminant analysis (LDA) as a model based on principle component regression (PCR) [93]. In this

method, a linear SVM model is used for characterization. A total of 102 MRI brain scans were used for

the purpose of characterization. The images were pre-processed and ROIs were extracted. Several

features were extracted such as tumor shape characteristics, image intensity characteristics and Gabor

features. In order to reduce the features, selection algorithms were applied (i.e., Ranking-based

and SVM-recursive feature elimination (SVM-RFE)). Finally, SVM is applied. A process model of

the methodology is shown in Figure 8. The highest classification accuracy obtained for metastasis

was 91.7%, while for low-grade gliomas it was 90.9%. The highest accuracy of 97.8% was achieved

when distinguishing grade II gliomas from metastasis. The lowest accuracy of 75% is obtained when

distinguishing grade II from grade III gliomas. This showed that grade II and III gliomas are difficult

to distinguish.Cancers 2019, 11, x 15 of 32 
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images and its corresponding texture images, respectively. The images are pointed to by arrow are

as follows: a1 (T1ce) and a2 (Texture): meningioma; b1 (T1ce) and b2 (Texture): Grade-II; c1 (T1ce),

c2 (Texture): Grade-III; d1 (T1ce) and d2 (Texture): Grade-IV; e1 (T1ce) and e2 (Texture): metastasis

(reproduced from [92] with permission).
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6.1.4. A Multi-Parametric Tissue Characterization System for Brain Neoplasm

A characterization system was developed for identifying neoplastic tissue from healthy tissue,

as well as the classification of different tumor components and edema-like areas [94]. Data was

collected from 14 patients recently diagnosed with brain cancer. The images were pre-processed and

voxel-wise intensity feature vectors were collected. Bayesian [95–97] and SVM were used to distinguish

neoplastic tissue from healthy tissue, as well as the classification of different tumor components and

edema-like areas. The results show that the Bayesian classifier obtains higher accuracy for classifying

edema, enhancing neoplasm and non-enhancing neoplasm at 97.03%, 96.39% and 93.05%, respectively.

SVM obtained highest accuracy for cerebrospinal fluid at 91.34%. The process model is shown in

Figure 9.
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6.1.5. Extreme Learning Machine

Extreme learning machine (ELM) is another emerging area which is less computationally

expensive compared to neural networks. It is based on the single-layer feed-forward neural network

(SLFFNN) which is used for real-time classification or regression. ELM chooses randomly initialized

weights in the input-to-hidden layer, whereas, hidden-to-output layer weights are trained using

Moore-Penrose inverse form [97] to generate least square solution. This feature minimizes network

complexity, training time, learning speed, and improves classification accuracy. Moreover, the weights

in the hidden layer give a multi-tasking capability to the network as in other ML methods like SVM,

KNN and Bayesian network. The ELM network consists of three layers as shown in Figure 10 and all

the layers are fully connected. The weight between input and hidden layer are fixed at random initially

and unchanged throughout the training process and weights between hidden and output are only

allowed to change. Therefore it learns the weights in a single pass and reaches a global optimum [98].

There is a claim of researchers [98,99] that due to its simpler architecture and one shot training makes

this network better and faster as compared to SVM.
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6.2. Deep Learning

DL is most extensively used for the brain image analysis in several applications such as normal

or abnormal brain tumor classification, segmentation (edema, enhancing and non-enhancing tumor

region), stroke lesion segmentation, Alzheimer diagnosis, etc. A convolution neural network (CNN)

is the most popular DL model used widely for classification and segmentation of medical images.

The CNN learns the spatial relationship between pixels in a hierarchical manner. This is done by using

convolving the images using learned filters to build a hierarchy of feature maps. This convolution

function is done in several layers such that the features obtained are translation and distortion invariant

resulting in high degree of accuracy. The basic layers of CNN network are described below.

6.2.1. Input Image Format

The input image is considered as an array of pixel values which depends on the resolution and

size of the image. For example, a sample colored input image is represented by a 3 × m × n array of

numbers (the 3refers to red, green and blue color values in case of color image with the pixel value for

each color ranging from 0–255; m and n are the dimensions of the image). In the case of a grayscale

image, the image size is defined by 2D array (m × n), where the intensity of the pixels also ranges

from 0–255.
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6.2.2. Convolution Layer

The first layer of CNN architecture is the convolution layer, which extracts features from the given

input image using the convolution filters. The filter is a square array of numbers which are weights or

parameters. These filters can loosely be thought of as the neurons of an ANN or the kernel. The first

position of the filter corresponds to the top left corner of the image in the convolution operation.

This operation is described in Equation (1), which shows an example of an image (R) being convolved

with the kernel (S), where ⊗ denotes the convolution operation. Essentially operation can be thought

of as a series of multiplications of the image pixel matrix and the filter matrix and then a summing

of these multiplications. Important to note in Equation (1) is that the kernel is size of m × m and

the operation is performed at the center pixel (x, y), and nearby, where the p and q are the dummy

variables. This process repeated by sliding filter to the right. The number of cell shifts to the right in

each step defines the stride (number of cells sliding right in each step). The CNN architecture is shown

in Figure 11. CNN learns and updates filters or kernel values during the training.

f (x, y) = R(x, y)⊗ S(p, q) =
m/2

∑
p=−m/2

m/2

∑
q=−m/2

R(x + p, y + q)× S(p, q) (1)
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Figure 11. CNN architecture (image courtesy: AtheroPointTM).

6.2.3. Activation Function

In ANNs, the training progress is measured by gradient-based methods where the gradient is

considered as a learning parameter, which reflects the changes in the training process. Since the

changes in gradient are very small during training then learning is not effective and this phenomenon

is known as vanishing gradient problem. This problem is more severe in DL because of large number

of layers. It can be avoided by using suitable activation function which, don’t have this property of

suppressing the input space into a small region. ReLu is very simple and computationally inexpensive

activation function which performs the non-linear operation and replaces all negative values in the

feature map by zero using a simple formula [max (0, x)], whereas, x is an input parameter [100].

6.2.4. Pooling Layer

To make the method computational inexpensive, a pooling layer is introduced between

convolution layers to reduce the dimensionality of each feature maps but retain the most important

feature information. Average pooling and max-pooling are the two popular pooling operations.
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In average pooling; selected patch features are replaced by the single average value of patch in next

layer, whereas, for max pooling only maximum value of patch features move further.

6.2.5. Fully Connected Layer

The first three operations i.e., convolution, ReLu, and pooling are used for extracting high-level

image features. For features classification, a fully connected network appended at the end of the CNN,

which convert last 2D layers into a one-dimensional feature vector. The output of the FC layer defines

by N-dimensional vector which refers to the number of output classes. Only one of the output class

chosen from the vector by using probabilistic methods such as softmax.

6.3. Brain Image Analysis Using Deep Learning

As discussed earlier, DL algorithms are used in brain image analysis in different application

domains like Alzheimer’s disease identification, segmentation of lesion (e.g., tumors, white matter

lesions, lacunes, micro-bleeds) and brain tissue classification [101]. Much of the ongoing research is

limited to brain segmentation and only little work has been done for the tumor grading. Hence,

there are a lot of potentials to explore the grade estimation for brain tumor using ML and DL

approaches. In this section, we have discussed some recently existing DL based brain image

segmentation methods.

6.3.1. DL-Based Inter-Institutional Brain Tumor Segmentation

A CNN-based brain tumor segmentation method was proposed in [102]. In the experiment,

three CNNs were used for training on multi-institutional data. Each CNN consisted of four convolution

layers followed by two fully connected layers. Data of 68 patients were collected from two institutes.

Patching-based segmentation was used. The equal sized patches extracted from images were annotated

into three classes: tumor patches, healthy patches surrounding the tumor and other healthy patches.

The tumor images were further divided into five classes based on patient data i.e, class-0: normal,

class-2: enhancing region, class-3: necrotic region, class-4: T1-abnormality, class-5: FLAIR abnormality,

class-1: ground truth region based on combination of classes 2–5. The various classes of tumor are

shown in Figure 12.Cancers 2019, 11, x 19 of 32 
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region): green; Class 3 (necrotic region): yellow, Class 4 (T1abnormality-hypointensity region on T1,

excluding enhancing and necrotic regions): red, and Class 5 (FLAIR abnormality excluding classes 2-4):

blue (reproduced from [102] with permission).
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The first CNN was trained for the institution-1 data set, second for the institute-2 dataset and

third CNN was trained for patients from both institutions. Dice similarity coefficients and Hausdorff

distance were used for the assessment between the ground truth and automatic segmentation. Ten-fold

cross-validation scheme was applied to compare the performance between different approaches.

They observed that performance of the model decreased when network is trained and tested on

different institutional data (dice coefficients: 0.68 ± 0.19 and 0.59 ± 0.19) in comparison with same

institutional data (dice coefficients: 0.72 ± 0.17 and 0.76 ± 0.12) and concluded that the reasons behind

this effect require extra comprehensive investigation. The process model is shown in Figure 13.
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6.3.2. Brain Tumor Segmentation Using Two-Pathway CNN

Two-pathway based fully automated segmentation method was proposed for brain tumors [103].

The method segments glioblastomas (low grade glioma/LGG and high grade glioma/HGG) from MR

images. The two pathways are executed using a small convolution filter for local segmentation and

large filter for global segmentation. At last the feature maps from both pathways are concatenated

to give us the segmented image. Based on this approach three cascaded networks were developed:

Input Cascade CNN, MF Cascade CNN and Local Cascade CNN. The Input Cascade CNN obtained

the highest Dice similarity of 0.89. The segmented results are shown in Figure 14. The architecture of

the model is shown in Figure 15.
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6.4. Plausible Solution for Brain Cancer Classification

Gliomas are the most common brain tumor in adults, and are generally divided into two categories:

HGG and LGG. The WHO further divides LGG into I-II grade tumors and HGG into III-IV grade.

Features such as shape and size of cell and its nuclei and cellular distribution are used to measure

the degree of malignancy of the tumor microscopically. Differentiating HGG and LGG is somewhat

easier than further sub-classification between LGG grade-I and II or HGG grade-III and IV, due to their

uneven structure of the cell in this state. Grade estimation of the cancer is a very important parameter

to decide targeted therapy and assessment of prognosis. Although biopsy is the gold standard, it is

inherently invasive, along with its sampling errors and variability in interpretation, therefore, most

doctors prefer MRI (T1, T2, and FLAIR) test in case surgical resection is difficult due to the location of

tumor or patient condition, because of its good contrast and radiation-free nature from brain scans

(MRI, CT, etc.). Most of the medical practitioners manually measure the degree of aggressiveness

(grade) of the tumor. The accuracy of grade estimation depends on the proficiency of the practitioners

and subjected to inter-reader variability studies. In this case, computer-assisted tools may help for

better accuracy.
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There are some automatic brain tumor grading methods which were proposed by researchers

based on texture analysis using ML techniques [92,104,105]. Most of them use MRI (T1, T2, FLAIR, etc.).

Recently many DL architectures (especially CNN) have shown remarkable performance in medical

image analysis such as brain tumor segmentation and tissue classification on brain MRI. However,

tumor grading utilizing DL methods is unexplored so far and there is a lot of research scope to explore

further. We have provided a plausible solution for the tumor grading as shown in Figure 16. The model

is described vividly in the discussion section.
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7. Brain Cancer and Other Brain Disorders

7.1. Stroke

There are two major classes of stroke: ischemic and hemorrhagic stroke [106]. Ischemic strokes

happen when blood supply is interrupted in the brain, while hemorrhagic strokes results from blood

vessel damage or abnormal vascular structure. Although stroke and brain cancer are two different

diseases, the relationships between them have been examined by some researchers. A study was done

on longitudinal risk of developing brain cancer in stroke patients [107]. For this study, they have

selected 35 cases of malignant gliomas with or without stroke cases using brain MRI. They observed

that the stroke patients have a higher risk of developing brain cancer than other forms of cancers with a

hazard ratio of 3.09 (95% Confidence Interval (CI): 1.80–5.30). Another interesting finding of the study

is that the old stroke patients and females between 40–60 age groups have more risk of developing

brain cancer.

7.2. Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurodegenerative disease, where the short term memory

loss is an initial symptom which may become worse over the time as disease advances i.e., language

problem, behavioral issues, and the inability of self-care, etc [107]. Although, AD and cancer are two

different diseases there is relationship between them in some studies. It is found that there is an inverse

relationship between cancer and Alzheimer’s disease in their study. Over a mean follow-up of 10 years
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of patients, they found that the cancer survivors have a 33% decreased risk of Alzheimer’s disease as

compared to the people without cancer. Another interesting outcome came out of the study is that the

patients who have AD had risk of cancer decreased by 61%.

7.3. Parkinson’s Disease

Parkinson’s disease (PD) mainly affects the motor system of the brain resulting in tremors, rigidity,

and slowness in movement and difficulty in walking. Sometimes thought process and behavioral

changes are also observed [108]. A meta-analysis for demonstrating the relationship between PD and

brain found a positive connection between them. Eight groups were involved in the study where

329,276 patients had participated. The study revealed that occurrence of brain tumor was relatively

higher after the diagnosis of PD (odds ratio 1.55, 95% CI 1.18 ± 2.05), but not statistically significant

before PD diagnosis (odds ratio 1.21, 95% CI 0.93 ± 1.58).

7.4. Leukoaraiosis

Leukoaraiosis is an abnormal change in the appearance of white matter near the lateral ventricles.

It is often seen in old age, but sometimes also found in young adults. Leukoaraiosis may be the initial

stage of Binswanger’s disease but this may not always happen [109]. We cannot find any direct relation

between brain cancer and Leukoaraiosis.

7.5. Multiple Sclerosis

Multiple sclerosis (MS) is a brain and spinal cord disease. In this disease, the immune system

attacks the protective sheath (myelin) that covers nerve fibers which hampers communication system

from the brain to rest of the body. The severity of the disease is measured by the quantity of nerve

damage. Signs and symptoms of the disease may differ person to person. The symptoms are partial or

complete loss of vision, double vision, speech slur, tingling in different parts of the body and losing

walking ability at a higher stage. There is no permanent cure available for MS. In a recent study, it was

shown that the MS patients have an increased risk of brain cancer [110,111].

7.6. Wilson’s Disease

Wilson’s Disease (WD) is caused by genetic disorder which is inherited from the parents. In this

disease, copper builds up in the body and generally affects the brain and liver. Vomiting, weakness,

fluid buildup in the abdomen, swelling of the legs, yellowish skin, and itchiness are some common

liver related symptoms. Brain-related symptoms are tremors, muscle stiffness, trouble in speaking,

personality changes, anxiety and seeing or hearing things [112]. A comparison of the differences in

brain diseases is shown in Figure 17.
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Figure 17. Comparison of brain tumor with other brain disorders (image permission

requested from sources). (a) Normal Brain [AtheroPointTM]; (b) Multiple Sclerosis [113];

(c) Stroke [114]; (d) Leukoaraiosis [115]; (e) Alzheimer’s Disease [116]; (f) Parkinson’s Disease [117];

(g) Wilson’sDisease [118]; (h) Brain Tumor [119].

8. Discussion

Brain tumor analysis using medical imaging is a complicated and challenging task, which can

be broadly categorized into pre-processing, classification and post-processing steps. There are many

challenges associated with the aforementioned steps, which make this task complicated. No ideal

computer assisted tools available so far to conform, tumor malignancy and its degree of aggressiveness.

Thus doctors rely on the biopsy test [54,55] only for all types of cancer. The manual microscopic

biopsy image analysis is done by pathologists and medical practitioners by observing cell or tissue

structure under the microscope. The analysis is a challenging issue for them and subject to inter-reader

variability tests. Therefore, DPI analysis is a growing area of research. In DPI, some common features

include the shape and size of cells, shape and size of cell nuclei and distribution of the cells which are

used to measure the degree of malignancy of the tumor. Characterizing benign and malignant cells is

easier than sub-classifying malignant tumor due to uneven structure of the cell in this state. Staining

variations, usage of different scanners and colors variations of the tissues may appear in DPI which

may lead to wrong interpretation. Another challenge with DPI is that most of the whole slide image

(WSI) scanner generates only 2D image, whereas the depth information is unavailable in 2D image,

which is an important parameter for pathologists to confirm certain tissue class. It is anticipated that

the design of 3D WSI scanners may be available soon [120]. Since biopsies are time-consuming and

more risk-prone in the case of the brain tumor, therefore, various brain scans such as CT, MRI, etc. are

used to confirm tumors and the degree of malignancy. Again, this analysis depends on the proficiency

of the medical practitioners and is subject to inter-reader variability.

As discussed above, many automatic brain image analysis methods were proposed by various

researchers for brain segmentation and tissue classification. Most of them use MRI (T1, T2, and FLAIR),

due to its good contrast and radiation-free nature. As discussed earlier, brain image analysis consists

of image registration, image enhancement, features reduction, feature extraction and classification.

The image registration is the first and most important step in medical imaging. Image acquisition
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is not always consistent because of the effects of noise and blurring due to organ movements.

The performance of the medical image analysis highly depends on several parameters such as modality,

similarity measures, transformation, image contents, optimization of algorithm and implementation

mechanism. Generally medical images suffer from low contrast which leads to deterioration of image

quality. Gaussian (high-pass, low-pass) filter, histogram equalization, contrast starching are most

commonly used image enhancement techniques for medical images. Large numbers of features are

computationally expensive and make classification complex. Therefore, principal component analysis

(PCA), linear discriminant analysis (LDA), and genetic algorithm (GA) are the most popular methods

for feature reduction. SVM, DT, naive Bayes classifier, Bayesian classifier, KNN, ANNs etc. are

the most commonly used ML methods for brain image classification and have achieved high-level

accuracy in classification. In ML, features are first extracted by using hand-made techniques and then

input to the ML-based characterization system. The difficulty of image classification using ML-based

algorithms is that there lies continuous variability within image classes. Further, the contemporary

distance measures used by feature extraction methods are unable to compute similarity between

images. Nowadays, DL methods (CNN’s, ResNets) are gaining more popularity than ML techniques

for the brain image classification. In DL, the images are directly input to the system. DL models such

as CNN produce features from images which are translation invariant and stable to deformations

leading to more accurate characterization/segmentation. In addition to characterization/segmentation

of brain, it is suggested to utilize DL models for grading of brain tumor. A proposed DL-based model

is already shown in Figure 16. There are four CNNs (CNN-1, 2, 3 and 4) employed for brain cancer

characterization and grading. Brain MR Images are first pre-processed and tumor part is segregated.

The tumor part is characterized as normal, benign or malignant. If the tumor is malignant CNN2 is

employed to characterize it as LGG or HGG. LGG is further characterized as tumor grade-I or grade-II

using CNN3. Similarly, HGG is classified as tumor grade-III and grade-IV by CNN4. This model can

effectively diagnose brain cancer and do its grading.

Although DL methods are widely popular among the research community, there are many

challenges involved with DL architectures. DL models are quite computationally expensive because of

additional hardware (GPUs) requirements to run the models. The memory and processing requirement

of DL models are huge. It is also not necessary that increasing the number of layers in DL architecture

will improve the performance of the architecture.

8.1. A Note on Biomarkers for Cancer Detection

Various tests have been suggested for diagnosing brain cancer: (a) including the one stated

earlier in the section of imaging modalities, such as MRI, MRS, CT, etc., and (b) laboratory sampling

of brain tumor i.e., biopsy. The inclusion of intelligence-based techniques such as ML or DL for

imaging modalities are very likely to increase the effectiveness of the diagnosis and enhance the

radiologists’ capability towards accurate diagnosis for brain cancer in a timely manner. In addition to

the computer-aided diagnosis using imaging modalities and biopsy methodologies, spread of cancer

in the nervous system can be detected using a sample of cerebrospinal fluid from the spinal cord.

This technique is called lumbar puncture or spinal tap [121]. In this methodology, several biomarkers

related to brain tumor were detected [122]. In addition, molecular tests on brain tumor sample can be

carried out to identify specific genes, proteins, and cells related to the particular tumor. Doctors can

look into these biomarkers to assess the grade, type of tumor and decide treatment options. Further,

examining these biomarkers can help in early treatment before the symptoms begin. Inclusion of ML

and DL techniques in assessing these biomarkers can lead to accurate diagnosis that can save both

time and cost, proving to be more economical.

8.2. Benchmarking

The benchmarking of several ML-based brain cancer classification system has been provided in

Table 5. Sasikal et al. (Row #1) applied ANN-based classifier on featured extracted using DWT from
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100 T2W MRI images. The accuracy obtained is 98%. In 2008, Verma et al. (Row #2) applied Bayesian

and SVM on 14 DWI, B), FLAIR, T1 and GAD images and achieved sensitivity of 91.84% and specificity

of 99.57% for SVM. Zacharaki et al. achieved 97.8% accuracy using NL-SVM on SVM-RFE features

from 102 T1,2 FLAIR, rCBV images (Row #3). EL Dahashanet al. (Row #4) in 2009, applied FP-ANN

and KNN on features extracted using DWT from 70 MR images and obtained highest accuracy of 98.0%.

Similarly, Ryu et al. (Row #5) applied entropy histogram techniques on GLCM features extracted

from 42 DWI, ADC images and achieved accuracy of 84.4%. Further, Skogen et al. (Row #6) applied

standard deviation on 95 patients from 95 T1W, T2 and FLAIR images and also achieved an accuracy

of 84.4%.
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Table 5. Overview of Brain Tumor Classification Methods.

Sno Reference Tissue Classes MRI Subtype Data Size
Feature

Processing
Feature

Reduction
Architecture for

Classification
Highest

Performance

1
Sasikala et al.

2008
[63]

N, ABN, B, M T2W
100,

(N = 35, B = 35, M = 30)
DWT GA ANN

ACC = 98%; SEN = NA;
SPC = NA; AUC = NA

2
Verma et al.

2008
[94]

Neoplasms,
edema, and

healthy tissue

DWI, B0, FLAIR,
T1, and GAD

14
(G-3 = 8, G-4 = 7)

Bayesian, and SVM
ACC = NA; SEN = 91.84;
SPC = 99.57; AUC = NA

3
Zacharaki et al.

2009 [92]

Metastasis,
meningiomas

gliomas (G-2-3)
GBM

T1W, T2W,
FLAIR, rCBV

102
(Metastasis (24), meningiomas (4),
gliomas (G-2) (22), gliomas (G-3)

(18), GBM (34))

SVM, RFE Feature Ranking
LDA, KNN,

NL-SVM
ACC = 97.8%; SEN = 100%;
SPC = 95%; AUC = 98.6%

4
El-Dahshan et al.

2010 [88]
N, ABN T2W

60,
(N = 60, ABN = 10)

DWT PCA FP-ANN, KNN
ACC = 98.6%; SEN = 100;

SPC = 90; AUC = NA

5
Ryu et al. 2014

[123]
Glioma

(G-2,3,4)
DWI, ADC

42
Glioma (G2(N = 8)), G-3 (N = 10)

and G-4 (N = 22))
GLCM Entropy, Histogram

ACC = 84.4%; SEN = 81.8%;
SPC = 90%; AUC = 94.1%

6
Skogenet al.
2016 [105]

LGG (G-2),
HGG (G-3-4)

T1W, T2W,
FLAIR

95
(LGG = 27 (G-2I)

HGG = 68 (G-3 = 34 and G-4 = 34)

Statistical
Analysis

Standard Deviation
ACC = 84.4%; SEN = 93%;
SPC = 81%; AUC = 91%

GLCM: Gray Level Co-Occurrence Matrix, NL-SVM: Nonlinear SVM, MDF: Most Discriminent Factor, LDA: Linear Discriminant Analysis, ADC: Apparent Diffusion Coefficient, GLCM:
Gray Level Co Occurrence Matrix, GA: Genetic Algorithm, DWT: Discrete Wavelet Transform, SVM: Support Vector Machines, RFE: Recursive Feature Elimination, N: Normal, ABN:
Abnormal, GBM: Glioblastomas, LGG: Low grade Glioma, HGG: High Grade Glioma, B: Benign, M: Malignant, T1W: T1-Weighted, T2W: T2 Weighted, FLAIR: Fluid-attenuated inversion
recovery, rCBV: Relative cerebral blood volume, G: Grade, ANN: Artificial Neural Network, DWT: Discrete Wavelet Transform, FP-ANN: Feedforward, Back Propagation-ANN, ACC:
Accuracy, SEN: Sensitivity, SPC: Specificity, AUC: Area Under Curve,. ROC: Receiver Operating Characteristic.
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9. Conclusions

Our main focus of the review is to provide state of art in brain cancer area that includes

pathophysiology of cancer, imaging modality, WHO guidelines for tumor classification, primary

diagnosis methods, and existing computer-assisted algorithms for brain cancer classifications using

the machine and deep learning techniques. Finally, we have compared brain tumor with other brain

disorders. We have concluded that due to automatic feature extraction capability of DL based methods,

recently it is getting more attention and accuracy compared to conventional classification techniques

for medical imaging. It is for sure that many lives can be saved if cancer detected and suitable grade

estimated through fast and cost-effective diagnosis techniques. Therefore, there is dare need to develop

fast, non-invasive and cost effective diagnosis techniques. Here, DL methods can play a major role for

the same. In best of our knowledge, very less work has done for the automatic tumor grading using

DL techniques and their full potential, yet to be explored.
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