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Abstract 

Use of silver and silver salts is as old as human civilization but the fabrication of silver nanoparticles (Ag NPs) has only 

recently been recognized. They have been specifically used in agriculture and medicine as antibacterial, antifungal 

and antioxidants. It has been demonstrated that Ag NPs arrest the growth and multiplication of many bacteria such 

as Bacillus cereus, Staphylococcus aureus, Citrobacter koseri, Salmonella typhii, Pseudomonas aeruginosa, Escherichia coli, 

Klebsiella pneumonia, Vibrio parahaemolyticus and fungus Candida albicans by binding Ag/Ag+ with the biomolecules 

present in the microbial cells. It has been suggested that Ag NPs produce reactive oxygen species and free radicals 

which cause apoptosis leading to cell death preventing their replication. Since Ag NPs are smaller than the micro-

organisms, they diffuse into cell and rupture the cell wall which has been shown from SEM and TEM images of the 

suspension containing nanoparticles and pathogens. It has also been shown that smaller nanoparticles are more 

toxic than the bigger ones. Ag NPs are also used in packaging to prevent damage of food products by pathogens. The 

toxicity of Ag NPs is dependent on the size, concentration, pH of the medium and exposure time to pathogens.
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Introduction
Nanoparticles exhibit novel properties which depend on 

their size, shape and morphology which enable them to 

interact with plants, animals and microbes [1–7]. Silver 

nanoparticles (Ag NPs) have shown excellent bactericidal 

properties against a wide range of microorganisms [8–

11]. �ey are prepared from different perspectives, often 

to study their morphology or physical characteristics. 

Some authors have used chemical method [12] and mis-

taken it with green synthesis, although they have done it 

inadvertently. �e Ag NPs and their application in elec-

tronics, catalysis, drugs and in controlling microorgan-

ism development in biological system have made them 

eco-friendly [1, 8, 9, 13]. Biogenic synthesis of Ag NPs 

involves bacteria, fungi, yeast, actinomycetes and plant 

extracts [1, 10, 11, 13–15]. Recently, a number of parts 

of plants such as flowers, leaves and fruits [1], besides 

enzymes, have been used for the synthesis of gold and 

silver nanoparticles. �e size, morphology and stability 

of nanoparticles depend on the method of preparation, 

nature of solvent, concentration, strength of reducing 

agent and temperature [1, 6, 10, 11].

Of all the nanoparticles developed and characterized 

thus far, Ag NPs assume a significant position owing to 

their inherent characteristic of acting as an antimicrobial 

agent even in solid state. Although, its significance was 

recognized much earlier, it was not well exploited except 

for its use in oriental medicine and in coins. It is esti-

mated that nearly 320 tons of Ag NPs are manufactured 

every year and used in nanomedical imaging, biosensing 

and food products [16, 17].

�ere is a continuous increase in the number of multi-

drug resistant bacterial and viral strains due to muta-

tion, pollution and changing environmental conditions. 

To circumvent this predicament scientists are trying to 

develop drugs for the treatment of such microbial infec-

tions. Many metal salts and metal nanoparticles have 

been found to be effective in inhibiting the growth of 

many infectious bacteria. Silver and Ag NPs occupy a 

prominent place in the series of such metals which are 

used as antimicrobial agents from time immemorial [18, 

Open Access

Journal of Nanobiotechnology

*Correspondence:  adroot92@yahoo.co.in 
2 Department of Biology, College of Natural and Computational Sciences, 

University of Gondar, P.O. Box # 196, Gondar, Ethiopia

Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-018-0334-5&domain=pdf


Page 2 of 28Siddiqi et al. J Nanobiotechnol  (2018) 16:14 

19]. Silver salts are used to inhibit the growth of a vari-

ety of bacteria in human system. �ey are used in cath-

eters, cuts, burns and wounds to protect them against 

infection [20, 21]. Das et al. [22] have reported that small 

sized Ag NPs are excellent growth inhibitors of certain 

bacteria. Ag NPs synthesized from silk sericin (SS), a 

water-soluble protein extracted from silk worms at pH 

11, contain hydrophilic proteins with highly polar groups 

like hydroxyl, carboxyl and amino functional groups. 

Molecules containing the above functional groups act 

as reducing agents for  AgNO3 to produce elemental sil-

ver. Aramwit et al. [23] have suggested that the hydroxyl 

groups of SS are supposed to form complex with silver 

ions and prevent their aggregation or precipitation [24, 

25]. Ag NPs in elemental state may be segregated due 

to large molecules present in the solvent but may not be 

complexed as both of them are neutral. �e antibacterial 

activity of SS-capped Ag NPs against gram positive and 

gram negative bacteria has been screened. It was found 

that MIC falls between 0.001 and 0.008  mM for both 

types of microorganisms namely Staphylococcus aureus, 

Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter 

baumannii and Escherichia coli.

Although, several reviews have been published on the 

fabrication and characterization of silver nanoparticles, 

very limited reports are available on their green synthe-

sis, biocidal properties and mechanism of action [8, 9, 13, 

16, 23]. �us, in this review, we have attempted to give 

a comprehensive detail of the biosynthesis of Ag NPs 

from herbal extracts, fungi and bacteria. �eir potential 

as antimicrobial agent and the mechanism of their action 

has also been discussed.

Synthesis and characterization of silver 
nanoparticles
In general, metallic nanoparticles are produced by two 

methods, i.e. “bottom-up” (buildup of a material from the 

bottom: atom by atom, molecule by molecule or cluster 

by cluster) and “top-down” (slicing or successive cutting 

of a bulk material to get nano-sized particle) [1]. �e 

“bottom-up” approach is usually a superior choice for the 

nanoparticles preparation involving a homogeneous sys-

tem wherein catalysts (for instance, reducing agent and 

enzymes) synthesize nanostructures that are controlled 

by the catalyst itself. However, the “top-down” approach 

generally works with the material in its bulk form, and 

the size reduction to nanoscale is achieved by specialized 

ablations, for instance thermal decomposition, mechani-

cal grinding, etching, cutting, and sputtering. �e main 

demerit of the top-down approach is the surface struc-

tural defects. Such defects have significant impact on 

the physical features and surface chemistry of metallic 

nanoparticles. Several methodologies are available for the 

synthesis of Ag NPs namely, chemical methods [26–29]; 

physical methods [30–32] and biological methods [1, 10, 

11]. Chemical method of synthesis can be subdivided 

into chemical reduction, electrochemical, irradiation-

assisted chemical and pyrolysis methods [33]. Ag NPs 

synthesis in solution requires metal precursor, reducing 

agents and stabilizing or capping agent. Commonly used 

reducing agents are ascorbic acid, alcohol, borohydride, 

sodium citrate and hydrazine compounds. Sotiriou and 

Pratsinis [28] have shown that the Ag NPs supported 

on nanostructured  SiO2 were obtained by flame aerosol 

technology, which allows close control of silver content 

and size. Also, silver/silica nanoparticles with relatively 

narrow size distribution were obtained by flame spray 

pyrolysis [29]. However, physical methods do not require 

lethal and highly reactive chemicals and generally have 

a fast processing time. �ese methods include arc-dis-

charge [31], physical vapor condensation [30], energy ball 

milling method [34] and direct current magnetron sput-

tering [32]. Physical methods have another advantage 

over chemical methods in that the Ag NPs have a narrow 

size distribution [32], while the main demerits are con-

sumption of high energy [32]. �us, biological synthesis 

of Ag NPs from herbal extract and/or microorganisms 

has appeared as an alternative approach as these routes 

have several advantages over the chemical and physi-

cal methods of synthesis. It is also a well-established fact 

that these routes are simple, cost-effective, eco-friendly 

and easily scaled up for high yields and or production 

[1–3]. Biosynthesis of metal and metal oxide nanoparti-

cles using biological agents such as bacteria, fungi, yeast, 

plant and algal extracts has gained popularity in the area 

of nanotechnology [1–3, 5, 6, 10, 11].

Plants and their parts contain carbohydrates, fats, 

proteins, nucleic acids, pigments and several types of 

secondary metabolites which act as reducing agents to 

produce nanoparticles from metal salts without produc-

ing any toxic by-product. �e details have been provided 

in Table  1. Similarly, biomolecules such as enzymes, 

proteins and bio-surfactants present in microorganisms 

serve as reducing agents. For instance, in many bacterial 

strains, bio-surfactants are used as capping and/or stabi-

lizing agents (Table 2).

Extracellular synthesis of Ag NPs comprises of the trap-

ping of metal ions on the outer surface of the cells and 

reducing them in the presence of enzymes or biomolecules, 

while intracellular synthesis occurs inside the microbial 

cells. It has been suggested that the extracellular synthesis 

of nanoparticles is cheap, favors large-scale production and 

requires simpler downstream processing. �us, the extra-

cellular method for the synthesis of nanoparticles is pref-

erable [164] in comparison to the intracellular method. 

Ganesh Babu and Gunasekaran [165] and Kalimuthu et al. 
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[166] have demonstrated that the intracellular synthesis 

requires additional steps for instance, ultrasound treatment 

or reactions with suitable detergents to release the synthe-

sized silver nanoparticles. Further, the rate of biosynthesis 

of Ag NPs and their stability is a significant part in indus-

trial production. �erefore, a proper monitoring of reac-

tion conditions is also important (Fig. 1).

From bacteria

In recent years, the potential of biosynthesis of Ag NPs 

using bacteria has been realized [15, 153, 156–159]. For 

instance, Pseudomonas stutzeri AG259—isolated from 

silver mine was used to produce Ag NPs inside the cells 

[167]. In addition, several bacterial strains (gram nega-

tive as well as gram positive) namely A. calcoaceticus, B. 

amyloliquefaciens, B. flexus, B. megaterium and S. aureus 

have been used for both extra- and intracellular biosyn-

thesis of Ag NPs [168–174]. �ese Ag NPs are spherical, 

disk, cuboidal, hexagonal and triangular in shape. �ey 

have been fabricated using culture supernatant, aque-

ous cell-free extract or cells (Table 3). Saifuddin et al. [14] 

have demonstrated an extracellular biosynthesis of Ag 

NPs (∼ 5–50 nm) using a combination of culture super-

natant of B. subtilis and microwave irradiation in water. 

Shahverdi et al. [15] have reported rapid biosynthesis of 

Ag NPs (within 5  min) using the culture supernatants 

of K. pneumonia, E. coli and Enterobacter cloacae. Sara-

vanan et  al. [172] have also reported an extracellular 

synthesis of Ag NPs using B. megaterium cultured super-

natant, within minutes in presence of aqueous solutions 

of  Ag+ ions.

Rapid synthesis of Ag NPs has been achieved by the 

interaction of a bacterial strain S-27, belonging to Bacil-

lus flexus group and 1 mM  AgNO3 in aqueous medium 

[173]. �e colourless supernatant solution turned yellow 

and finally brown. Its UV–vis spectrum exhibited a sharp 

peak at 420  nm due to the surface plasmon resonance 

(SPR) of silver nanoparticles. Anisotropic nanoparticles 

of 12 and 65 nm size were stable in the dark for 5 months 

at room temperature although their slow degradation 

cannot be prevented. �ey were crystalline with a face 

centered cubic structure. �ese nanoparticles were found 

to be effective against multidrug resistant gram positive 

and gram negative bacteria. �e colour intensity and rate 

of interaction depend on the concentration of the react-

ing components.

Das et al. [174] have reported extracellular biosynthesis 

of Ag NPs from the Bacillus strain (CS11). �e interac-

tion of 1 mM  AgNO3 with the bacteria at room tempera-

ture yielded nanoparticles within 24  h which showed 

a peak at 450  nm in UV–vis spectrum. �eir size from 

TEM analysis was found to range between 42 and 92 nm 

(Table 3).

From fungi

Biosynthesis of Ag NPs from both pathogenic and non-

pathogenic fungi has been investigated extensively [10, 

164, 213–215] (Table 4). It has been reported that silver 

ions are reduced extracellularly in the presence of fungi 

to generate stable Ag NPs in water [214, 216].

Syed et  al. [224] have also reported the extracellular 

synthesis of Ag NPs from thermophilic fungus Humicola 

Table 2 Bio-surfactants and or stabilizing agents used during synthesis of silver nanoparticles from various bacterial 

stains

Bacteria Size and shape Biosurfactants and or stabilizing 
agent

Key references

Pseudomonas aeruginosa BS-161R 15.1 ± 5.8 nm; spherical Rhamnolipids Kumar et al. [150]

Brevibacterium casei MSA19 – Biosurfactant Kiran et al. [151]

Bacillus cereus NK1 50–80 nm; spherical URAK (a fibrinolytic enzyme) Deepak et al. [152]

Gluconacetobacter xylinum 5–40 nm Cellulose Liu et al. [153]

Streptomyces coelicolor 28–50 nm; irregular Actinorhodin pigment Manikprabhu and Lingappa [154]

Bacillus subtilis MSBN 17 60; spherical Bioflocculant Sathiyanarayanan et al. [155]

Salmonella typhimurium 3–11 nm Flagellin Gopinathan et al. [156]

Bacillus athrophaeus 5–30 nm; polydispersed Spores Hosseini-Abari et al. [157]

Lactobacillus rhamnosus GG ATCC 
53103

2–15 nm; spherical, triangular, rod-
shaped and hexagonal

Exopolysaccharide Kanmani and Lim [158]

Nostoc commune 15–54 nm; spherical Extracellular polysaccharide/matrix Morsy et al. [159]

Pseudomonas aeruginosa 1.13 nm; spherical Biosurfactant Farias et al. [160]

Ochrobactrum rhizosphaerae 10 nm; spherical Glycolipoprotein Gahlawat et al. [161]

Gordonia amicalis HS-11 5–25 nm; spherical Glycolipid Sowani et al. [162]

Bacillus subtilis – Surfactin Mendrek et al. [163]
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sp. All manipulations were done in aqueous medium at 

room temperature. Mycelia were suspended in 100  mL 

of 1  mM  AgNO3 solution in an Erlenmeyer flask at 

50 °C and the mixture was left in a shaker for 96 h at pH 

9 and monitored for any change in colour. �e solution 

showed a change in colour from yellow to brown due to 

the formation of Ag NPs [222]. It is a simple process for 

the extracellular synthesis of Ag NPs from Humicola sp. 

TEM micrograph showed nicely dispersed nanoparticles 

mainly of spherical shape ranging between 5 and 25 nm. 

�ey are crystalline with a face centered cubic structure 

[236]. IR spectrum of Ag NPs in the suspension showed 

peaks at 1644 and 1523  cm−1 assigned to amide I and 

amide II bands of protein corresponding to –C=O and 

N–H stretches. Owaid et al. [237] have reported the bio-

synthesis of Ag NPs from yellow exotic oysters mush-

room, Pleurotus cornucopiae var. citrinopileatus. �e 

dried basidiocarps were powdered, boiled in water and 

the supernatant was freeze dried. Different concentra-

tions of hot water extract of this lyophilized powder were 

mixed with 1 mM  AgNO3 at 25 °C and incubated for 24, 

48 and 72 h. Change in colour from yellow to yellowish 

Fig. 1 Biosynthesis of silver nanoparticles and their optimization techniques
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brown exhibited an absorption peak at 420 and 450 nm in 

UV–vis region which is the characteristic of spherical sil-

ver nanoparticles. �e width of the absorption peak sug-

gests the polydispersed nature of nanoparticles [221]. IR 

spectrum of Ag NPs exhibited absorption peaks at 3304, 

2200, 2066, 1969, 1636, 1261, 1094 and 611 cm−1 for dif-

ferent groups. Although, authors have indicated the pres-

ence of polysaccharide and protein in the mushroom they 

Table 3 Bacteria-mediated synthesis of silver nanoparticles

Bacteria Size and shape Location Key references

Acinetobacter calcoaceticus 8–12 nm; spherical Extracellular Singh et al. [175]

A. haemolyticus MMC8 4–40 nm Extracellular Gaidhani et al. [176]

Aeromonas sp. SH10 6.4 nm Extracellular and intracellular Mouxing et al. [177]
Wang et al. [178]

Bordetella sp. 63–90 nm Extracellular Thomas et al. [179]

Enterobacter aerogenes 25–35 nm; spherical Extracellular Karthik and Radha [180]

Escherichia coli 42.2–89.6 nm; spherical Extracellular Gurunathan et al. [181]

Geobacter sulfurreducens Extracellular Law et al. [182]

Gluconobacter roseus 10 nm Extracellular Krishnaraj and Berchmans [183]

Idiomarina sp. 25 nm Intracellular Seshadri et al. [184]

Klebsiella pneumoniae 15–37 nm; spherical Extracellular Duraisamy and Yang [185]

5–32 nm Extracellular Shahverdi et al. [15]

Morganella sp. 10–40 nm; quasispherical Extracellular Parikh et al. [186]

Proteus mirabilis 10–20 nm; spherical Extracellular and intracellular Samadi et al. [187]

Pseudomonas aeruginosa SM1 6.3 ± 4.9 nm; spherical, disk-shaped Extracellular Srivastava and Constanti [188]

8–24 nm; spherical Extracellular Kumar and Mamidyala [189]

5–25 nm; quasispherical Intracellular Otaqsara [190]

Rhodobacter sphaeroides Spherical 3–15 Extracellular Bai et al. [191]

Rhodopseudomonas palustris Spherical 5–20 Extracellular Chun-Jing and Hong-Juan [192]

Shewanella oneidensis MR-1 2–16 nm; spherical (Ag2S) Extracellular Debabov et al. [193]

Stenotrophomonas maltophilia 93 nm; cuboidal Extracellular Oves et al. [194]

Vibrio alginolyticus 50–100 nm; Spherical Extracellular and intracellular Rajeshkumar et al. [195]

Xanthomonas oryzae 14.86 nm; spherical, triangular,
rod-shaped

Extracellular Narayanan and Sakthivel [196]

Yersinia enterocolitica 10–80 nm Extracellular Pourali et al. [197]

Bacillus sp. 5–15 nm Extracellular and periplasmic space Pugazhenthiran et al. [198]

B. cereus 4–5 nm; spherical Intracellular Ganesh Babu and Gunasekaran [165]

B. flexus 12 and 65 nm; spherical and triangular Extracellular Priyadarshini et al. [173]

B. licheniformis Dahb1 18.69–63.42 nm; spherical Cell free extract Shanthi et al. [199]

B. safensis LAU 13 5–30 nm; spherical Extracellular Lateef et al. [200]

B. methylotrophicus DC3 10–30 nm; spherical – Wang et al. [201]

B. subtilis Triangular, hexagonal Extracellular Kannan et al. [202]

B. subtilis MTCC 3053 20–60 nm; polydispersed(AgCl) – Paulkumar et al. [203]

B. thuringiensis 43.52–142.97 nm Extracellular Banu et al. [204]

Brevibacterium casei 10–50 nm; spherical Intracellular Kalishwaralal et al. [205]

Corynebacterium SH09 10–15 nm Extracellular Zhang et al. [206]

Enterococcus faecalis 10–80 nm Extracellular Pourali et al. [197]

Exiguobacterium sp. 5–50 nm; spherical Extracellular Tamboli and Lee [207]

Geobacillus stearothermophilus 5–35 nm; spherical Extracellular Fayaz et al. [208]

Lactobacillus mindensis 2–20 nm; spherical  (Ag2O) Extracellular Dhoondia and Chakraborty [209]

Rhodococcus sp. 10–15 nm; spherical Extracellular Otari et al. [210]

Staphylococcus epidermidis 10–80 nm Extracellular Pourali et al. [197]

Thermoactinomyces sp. 20–40 nm; spherical Extracellular Deepa et al. [211]

Ureibacillus thermosphaericus 10–100 nm; spherical Extracellular Juibari et al. [212]
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have ignored their stretching frequencies in the IR spec-

trum. However, the peak at 3304 has been assigned to υ 

(OH) of carboxylic acid and those at 2200 and 1969 cm−1 

have been attributed to unsaturated aldehydes. �e other 

peaks below 1500 cm−1 are due to unsaturated alkaloids. 

�e field emission scanning electron and high-resolution 

transmission electron micrograph suggested that the Ag 

NPs are spherical with average size ranging between 20 

and 30 nm.

Very recently, Al-Bahrani et  al. [230] reported bio-

genic synthesis of Ag NPs from tree oyster mushroom 

Pleurotus ostreatus. Dried aqueous extract of mushroom 

(1–6  mg/mL) and 1  mM  AgNO3 were mixed and incu-

bated in the dark for 6–40 h. �e colour change from pale 

yellow to dark brownish yellow indicated the formation 

of silver nanoparticles. �e UV–vis spectrum showed a 

sharp and broad absorption band at 420  nm. �ey are 

polydispersed nanoparticles of 10–40 nm with an average 

size of 28  nm. Several fungi namely, Aspergillus flavus, 

A. fumigates, Fusarium oxysporum, Fusarium acumi-

natum, F. culmorum, F. solani, Metarhizium anisopliae, 

Phoma glomerate, Phytophthora infestans, Trichoderma 

viride, Verticillium sp. have been used for both extra- and 

intracellular biosynthesis of Ag NPs [10, 164, 216–219, 

222]. �ese nanoparticles are of various sizes and shapes 

(Table 4).

From plants

Plant related parts such as leaves, stems, roots, shoots, 

flowers, barks, seeds and their metabolites have been 

successfully used for the efficient biosynthesis [1, 238] 

of nanoparticles (Fig.  1). Very recently, Beg et  al. [128] 

have reported green synthesis of Ag NPs from seed 

extract of Pongamia pinnata. �e formation of nanopar-

ticles was confirmed by an absorption max at 439  nm. 

�e well dispersed nanoparticles with an average size of 

16.4  nm had zeta potential equal to −  23.7  mV which 

supports dispersion and stability. Interaction of Ag NPs 

with human serum albumin was investigated and showed 

negligible change in α helics. In a very recent publication 

Karatoprak et al. [137] have reported green synthesis of 

Ag NPs from the medicinal plant extract Pelargonium 

endlicherianum. �e plant containing gallic acid, apo-

cyanin and quercetin act as reducing agents to produce 

silver nanoparticles. Phytomediated synthesis of spheri-

cal Ag NPs from Sambucus nigra fruit extract has been 

reported by Moldovan et al. [144]. XRD analysis showed 

them to be crystalline. �e in  vivo antioxidant activity 

Table 4 Fungus-mediated synthesis of silver nanoparticles

Fungus Size and shape Location Key references

Aspergillu flavus 8.92 nm; spherical Cell wall Vigneshwaran et al. [217]

A. fumigatus – Extracellular Bhainsa and D’Souza [218]

A. terreus 1–20 nm; spherical Extracellular Li et al. [219]

Cladosporium cladosporioides 10–100 nm – Balaji et al. [220]

Coriolus versicolor 25–75, 444–491 nm; spherical Extracellular and intracellular Sanghi and Verma [221]

Fusarium oxysporum – Extracellular Ahmad et al. [222]

20–50 nm; spherical Extracellular Durán et al. [164]

5–50 nm – Senapati et al. [223]

Humicola sp. 5–25 nm; spherical Extracellular Syed et al. [224]

Macrophomina phaseolina 5–40 nm; spherical Cell-free filtrate Chowdhury et al. [225]

Pediococcus pentosaceus – Extracellular Shahverdi et al. [15]

Penicillium brevicompactum 58.35 ± 17.88 nm – Shaligram et al. [226]

P. fellutanum 5–25 nm; spherical Extracellular Kathiresan et al. [215]

P. nalgiovense AJ12 25 ± 2.8 nm; spherical Cell-free filtrate Maliszewska et al. [227]

Phaenerochaete chrysosporium 5–200 nm; pyramidal – Vigneshwaran et al. [228]

Phoma glomerata 60–80 nm; spherical – Birla et al. [229]

Pleurotus ostreatus < 40 nm; spherical – Al-Bahrani et al. [230]

P. sajor-caju 30.5 ± 4.0 nm; spherical Extracellular Vigneshwaran et al. [231]

Trichoderma asperellum 13–18 nm; nanocrystalline Extracellular Mukherjee et al. [232]

T. reesei 5–50 nm Extracellular Vahabi et al. [233]

T. viride 5–40 nm; spherical Extracellular Fayaz et al. [234]

T. viride 2–5 nm; spherical
40–65 nm; rectangular
50–100 nm; penta/hexagonal (Obtained at varying pH, 

reaction time and temperature of the reaction mixture)

Cell free extract Kumari et al. [235]
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was investigated against Wistar rats which showed prom-

ising activity. It suggests that functionalization of Ag 

NPs with natural phytochemicals may protect the cell 

proteins from ROS production. Ag NPs have also been 

synthesized from aqueous leaf extract of Artocapus alti-

lis. �ey were moderately antimicrobial and antioxidant. 

�alictrum foliolosum root extract mediated Ag NPs syn-

thesis has been confirmed on the basis of the appearance 

of a sharp peak at 420 nm in UV–vis region of the spec-

trum [239]. �e monodispersed spherical nanoparticle 

of 15–30  nm had face centered cubic geometry. Shape 

and size dependent controlled synthesis of Ag NPs from 

Aloe vera plant extract and their antimicrobial efficiency 

has been reported by Logaranjan et al. [35]. �e UV–vis 

peak at 420 nm confirmed the formation of silver nano-

particles. After microwave irradiation of the sample, Ag 

NPs of 5–50 nm with octahedral geometry was obtained. 

Nearly two to fourfold antibacterial activity of Ag NPs 

was observed compared to commonly available antibiotic 

drugs. Biosynthesis of Ag NPs from the aqueous extract 

of Piper longum fruit extract has been also achieved 

[240]. �e nanoparticles were spherical in shape with an 

average particle size of 46  nm determined by SEM and 

dynamic light scattering (DLS) analyser. �e polyphenols 

present in the extract are believed to act as a stabilizer of 

silver nanoparticles. �e fruit extract and the stabilized 

nanoparticles showed antioxidant properties in vitro. �e 

nanoparticles were found to be more potent against path-

ogenic bacteria than the flower extract of P. longum. Ag 

NPs have been fabricated from leaf extract of Ceropegia 

thwaitesii and formation was confirmed from absorption 

of SPR at 430  nm. �e nanoparticles of nearly 100  nm 

diameter were crystalline in nature [139]. Plant extract 

of Ocimum tenuiflorum, Solanum tricobatum, Syzygium 

cumini, Centella asiatica and Citrus sinensis have been 

used to synthesize Ag NPs of different sizes in colloidal 

form [249]. �e size of all nanoparticles was found to 

be 22–65 nm. �ey were all stable and well dispersed in 

solution. Niraimathi and co-workers [140] have reported 

biosynthesis of Ag NPs from aqueous extract of Alter-

nanthera sessilis and showed that the extract contains 

alkaloids, tannins, ascorbic acid, carbohydrates and pro-

teins which serve as reducing as well as capping agents. 

Biomolecules in the extract also acted as stabilizers for 

silver nanoparticles. Ag NPs from seed powder extract 

of Artocarpus heterophyllus have been synthesized [138]. 

�e morphology and crystalline phase of the nanoparti-

cles were determined by SEM, TEM and SAED, EDAX 

and IR spectroscopy. �ey were found to be irregular 

in shape. �e extract was found to contain amino acids, 

amides etc. which acted as reducing agents for  AgNO3 

to produce silver nanoparticles. �e quantity of phenols, 

anthocyanins and benzoic acid were determined in the 

berry juices and were responsible for the transforma-

tion of silver ions to Ag NPs [241]. UV–vis spectra dis-

played an absorbance peak at 486 nm for lingonberry and 

520  nm for cranberry containing silver nanoparticles. 

Since the two absorption peaks are different they can-

not be assigned only to Ag NPs but also partly to differ-

ent quantities of the reducing chemicals present in the 

juices. However, the spectra indicated the presence of 

polydispersed silver nanoparticles. Puiso et al. [241] have 

proposed that due to irradiation of water by UV rays, 

strong oxidants and reductants as photolysis products 

are formed. �ey reduce silver ions to Ag NPs or silver 

oxide. �e photolysis products may produce oxidant and 

reductant but it depends upon the quantum of radiation 

and exposure time which may not be enough to produce 

a sufficient quantity of redox chemicals to reduce  Ag+ to 

Ag NPs or  Ag2O. �is hypothesis is conceptually incor-

rect because  Ag2O cannot be formed as it requires a very 

strong oxidizing agent. On the other hand,  AgNO3 itself 

is slowly reduced in water, but in the presence of reduc-

ing agents the reaction proceeds at a rapid rate. �e SPR 

is dependent on the size, shape and agglomeration of Ag 

NPs which is reflected from the UV–vis spectra [242]. 

Mock et  al. [243] have found different scattered colors 

in hyperspectral microscopic images which are mainly 

due to the different shape and size of silver nanoparti-

cle in the colloidal solution. �e blue, green, yellow and 

red colors have been attributed to spherical, pentagonal, 

round-triangle and triangle shapes, respectively.

Zaheer and Rafiuddin [12] have reported the synthe-

sis of Ag NPs using oxalic acid as reducing agent and 

mistook it as green synthesis. Formation of nanoparti-

cles was confirmed by a change in color of the solution 

which showed an absorption peak at 425 nm (Fig. 2a) in 

the UV–visible region. It was also noted that a scattered 

silver film was formed on the wall of the container that 

shines and reflects light (Fig. 2b) which is the character-

istic of monodispersed spherical Ag NPs [244, 245]. Since 

the size of nanoparticles varies between 7 and 19 nm the 

silver film is not uniform. It is different from regular silver 

mirror due to irregular shape and size of nanoparticles 

(Fig.  2c). Actually, very small size nanoparticles can be 

obtained when  AgNO3 is exposed to a reducing agent for 

a longer duration of time [246]. �e kinetics and mecha-

nism proposed for the formation of Ag NPs by oxalic 

acid is not convincing [12] because oxalic acid in no case 

can produce  CO2 unless it reacts with any carbonate salt 

or heated at a very high temperature. �e authors [12] 

have proposed following reactions to prove that the col-

our of Ag NPs in solution is due to Ag4
2+ formation that 

absorbs at 425 nm (Scheme 1). �e formation of Ag4
2+ is 

highly improbable even if the above reaction is kinetically 

very fast. Also, the stabilization of Ag4
2+ is questionable 
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(Scheme 1). �is hypothesis of Ag4
2+ formation is beyond 

imagination and does not carry any experimental evi-

dence in its support. Absorbance of Ag NPs in solu-

tion varies between 400 and 445  nm depending on the 

nature of reducing agent used for their fabrication. �e 

SPR band in UV–vis spectrum is due to electron oscilla-

tion around the surface of nanoparticles. �e reduction 

process is instantaneous and no further spectral change 

occurs after 60 min. Indicating the completion of redox 

process. Ag NPs are circular, triangular, hexagonal and 

polydispersed at 70 °C. �e EDAX and XRD spectra sup-

port each other.

Synthesis of Ag NPs from aqueous extract of Cleistan-

thus collinus and their characterization by UV–vis, FTIR, 

SEM, TEM and XRD has been reported by Kanipandian 

et al. [247]. �e crystalline Ag NPs of 20–40 nm showed 

significant free radical scavenging capacity. Tippayawat 

et al. [27] have reported a green and facile synthesis of Ag 

Fig. 2 a UV–visible spectra of yellow color silver solution. b and c SEM images of the self-assembled silver nanoparticle mirror like illumination on 

the walls of the glass. Reaction conditions:  [Ag+] = 20.0 × 10−4 mol dm−3; [oxalic acid] = 4.0 × 10−4 mol dm−3; [CTAB] = 10.0 × 10−4 mol dm−3; 

temperature = 30 °C [12]

Scheme 1 Reduction of  Ag+ ions by oxalic acid [12]
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NPs from Aloe vera plant extract. �ey were character-

ized by UV–vis, SEM, TEM and XRD. Fabrication of Ag 

NPs was confirmed on the basis of the appearance of a 

sharp peak at 420 nm in UV–vis region of the spectrum. 

In addition, they have reported that the reaction time and 

temperature markedly influence the fabrication of sil-

ver nanostructures. Ag NPs were spherical in shape and 

particle size ranged from 70.70 ± 22 to 192.02 ± 53 nm. 

�eir size changes with time and temperature of the reac-

tion mixture used during fabrication (Fig. 3).

Green synthesis of Ag NPs from Boerhaavia diffusa 

plant extract has been reported by Vijay Kumar et  al. 

[136] where the extract acted as both the reducing as 

well as capping agent. �e colloidal solution of Ag NPs 

showed an absorption maximum at 418 nm in the UV–

vis spectrum. �e XRD and TEM analyses revealed a face 

centered cubic structure with an average particle size of 

25 nm. Ag NPs of 5–60 nm have been synthesized from 

Dryopteris crassirhizoma rhizome extract in presence of 

sunlight/LED in 30 min [235]. XRD studies showed face 

centered cubic structure of silver nanoparticles.

Green synthesis of Ag NPs using 1  mM aqueous 

 AgNO3 and the leaf extract of Musa balbisiana (banana), 

Azadirachta indica (neem) and Ocimum tenuiflorum 

Fig. 3 SEM images of silver nanoparticles were obtained at a 100 °C for 6 h, b 150 °C for 6 h, c 200 °C for 6 h, d 100 °C for 12 h, e 150 °C for 12 h and 

f 200 °C for 12 h [36]
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(black tulsi) has been done [248]. �ey were character-

ized by UV–vis, SEM, TEM, DLS, EDS and FTIR spec-

troscopy. �ey were found to accelerate the germination 

rate of Vigna radiata (Moong Bean) and Cicer arieti-

num (Chickpea). It is therefore, believed that Ag NPs are 

not toxic to such crops at germination level. Stable and 

capped Ag NPs from aqueous fruit extract of Syzygium 

alternifolium of 5–68  nm have been synthesized [92]. 

Nearly 12.7% of silver was detected from EDAX. �e 

polydispersed spherical nanoparticles were capped and 

stabilized by the phenols and proteins present in the 

fruit extract. Biosynthesis of Ag NPs from methanolic 

leaf extract of Leptadenia reticulate has been done [142]. 

�ey were crystalline, face centred and spherical particles 

of 50–70  nm. �ey exhibited antibacterial activity and 

radical scavenging activity. Purple sweet potato (Ipomoea 

batatas L.) root extract has been exploited to synthesize 

Ag NPs [143]. Organic components in the extract acted 

both as reducing and capping agents. Ag NPs have shown 

remarkable antibacterial activity against four clinical 

and four aquatic pathogens. Sweet potato root extract is 

known to contain glycoalkaloids, mucin, dioscin, choline, 

polyphenols and anthocyanins which function as anti-

oxidant, free radical scavenger, antibacterial agent and 

reducing agents. In presence of Ag NPs these functions 

are further enhanced.

Cytotoxicity of silver nanoparticles
Cytotoxicity of nanomaterials depends on their size, 

shape, coating/capping agent and the type of pathogens 

against which their toxicity is investigated. Nanoparti-

cles synthesized from green method are generally more 

toxic than those obtained from the non-green method. 

Some pathogens are more prone to nanomaterials, espe-

cially Ag NPs than others due to the presence of both 

the Ag ions released and Ag NPs. �ey slowly envelop 

the microbes and enter into the cell inhibiting their vital 

functions. It is clear that the fabrication and applica-

tion of nanoparticles has resulted in public awareness 

of their toxicity and impact on the environment [249, 

250]. Nanoparticles are relatively more toxic than bulk 

materials. �ey are toxic at cellular, subcellular and bio-

molecular levels [251]. Oxidative stress and severe lipid 

peroxidation have been noticed in fish brain tissue on 

exposure to nanomaterials [252]. �e cytotoxicity by Ag 

NPs is believed to be produced through reactive oxygen 

species (ROS) as a consequence of which a reduction 

in glutathione level and an increase in ROS level occur. 

From in vitro studies on animal tissue and cultured cells, 

Kim and Ryu [253] have observed an increase in oxida-

tive stress, apoptosis and genotoxicity when exposed to 

silver nanoparticles. Since such studies have been made 

with varying sizes of Ag NPs and coatings under different 

conditions a direct correlation cannot be made. Hacken-

berg and coworkers [254] reported reduced viability at a 

dose of 10 µg/mL of Ag NPs of over 50 nm size in human 

mesenchymal cells whereas some people reported no 

toxicity [255] even at a higher dose (100 µg/mL). Besides, 

stability and aging of the sample are also important fac-

tors as an increase in toxicity has been reported by aged 

Ag NPs stored in water for 6 months which is related to 

the release of silver ions [256]. It seems that the toxicity 

is a cumulative effect of Ag NPs and silver ions. Some 

workers have shown that the toxicity of Ag NPs is due to 

released Ag ions [257] while others have attributed the 

toxicity to Ag NPs [258].

Vijay Kumar et al. [136] obtained Ag NPs from B. dif-

fusa plant extract and tested them against three fish bac-

terial pathogens. It was found that Ag NPs were most 

effective against Flavobacterium branchiophilum. Ag 

NPs fabricated from P. longum fruit extract exhibited 

cytotoxic effect against MCF-7 breast cancer cell lines 

with an  IC50 of 67 μg/mL/24 h [240]. �ey also exhibited 

antioxidant and antimicrobial effects. Ag NPs were pro-

duced by using P. endlicherianum plant extract; and have 

shown that the inhibitory activity was increased against 

gram positive and gram negative bacteria when they were 

exposed to Ag NPs at a very low dose of 7.81 to 6.25 ppm 

[137]. Latha et al. [89] have fabricated Ag NPs from leaf 

extract of Adathoda vasica and studied their antimi-

crobial activity against Vibrio parahaemolyticus in agar 

medium. �e nanoparticles were found to be significantly 

active against V. parahaemolyticus but were nontoxic to 

Artemia nauplii. V. parahaemolyticus is a prevalent sea 

food borne enteropathogen which is closely associated 

with mortality in Siberian tooth carps, milk fish [259], 

abalone [260] and shrimps [251]. Vibrio infection in cul-

tured fish and shrimps causes large scale mortality. Quite 

often, the whole population perishes. �e use of antibi-

otic has made them resistant. Under such conditions, 

Ag NPs have appeared as an effective remedy which 

saves shrimps from perishing. Ag NPs from seed powder 

extract of A. heterophyllus have also exhibited antibacte-

rial activity against gram positive and gram negative bac-

teria [138].

Ag NPs fabricated from leaf extract of C. thwaitesii 

have shown antibacterial efficacy against Salmonella 

typhi, Shigella flexneri and Klbsiella pneumoniae indicat-

ing them to be significant. Niraimathi and co-workers 

[140] have also fabricated Ag NPs from aqueous extract 

of A. sessilis and showed significant antibacterial and 

antioxidant activities. Ag NPs from Ocimum tenuiflorum, 

Solanum tricobatum, Syzygium cumini, Centella asiatica 

and Citrus sinensis have also shown antibacterial activity 

against S. aureus, P. aeruginosa, E. coli and K. pneumo-

niae. �e highest activity of nanoparticles was observed 
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against S. aureus and E. coli [261]. Antimicrobial activity 

of colloidal Ag NPs was found to be higher than the plant 

extract alone. Lee et  al. [141] synthesized Ag NPs from 

Dryopteris crassirhizoma and found them to be highly 

effective against B. cereus and P. aeruginosa. Similarly, 

Ag NPs obtained from leaf extract of banana, neem and 

black tulsi were also active against E. coli and Bacillus sp. 

[248]. Hazarika et al. [239] have performed antimicrobial 

screening of Ag NPs obtained from T. foliolosum root 

extract against six bacteria and three fungi which showed 

morphological changes in the bacterial cells. Fabricated 

of Ag NPs from Millettia pinnata flower extract and their 

characterization together with anti-cholinesterase, anti-

bacterial and cytotoxic activities have been reported by 

Rajakumar et  al. [145]. Spherical shaped Ag NPs rang-

ing from 16 to 38  nm exhibited excellent inhibitory 

efficacy against acetyl cholinesterase and butyl cholinest-

erase. �ey also exhibited cytotoxic effects against brine 

shrimp.

Ag NPs obtained from S. alternifolium have also exhib-

ited high toxicity towards bacterial and fungal isolates 

[92]. Ag NPs fabricated from L. reticulate [142] were 

found to be toxic to HCT15 cancer cell line. Kanipandian 

et al. [247] have reported that Ag NPs obtained from C. 

collinus aqueous extract exhibit dose dependent effects 

against human lung cancer cell (A549) and normal cell 

(HBL-100). �e  IC50 for cancer cells was very low (30 µg/

mL) but since Ag NPs synthesized from C. collinus were 

toxic to normal cells they cannot be used in vivo. How-

ever, if the plant extract contains some antioxidants, the 

whole mixture may exhibit this property but the nano-

particles alone are incapable to do so. Ag NPs from Aloe 

vera plant extract have shown varying degrees of antibac-

tericidal effects [36]. Ag NPs obtained at 100  °C for 6 h 

and 200  °C for 12  h (varying temperature and reaction 

time) exhibited change in bacterial cell membrane when 

contacted with the nanoparticles (Fig.  4). �ey were 

more effective for gram negative bacteria (P. aeruginosa, 

ATCC27803). In addition, they have also shown minimal 

cytotoxicity to human peripheral blood mononuclear 

cells.

�e particle size, agglomeration and sedimentation are 

related to the cytotoxicity of silver nanoparticles. It has 

been demonstrated from Alamar Blue (AB) and Lactate 

dehydrogenase test (LDH) that Ag NPs of 10 nm coated 

with citrate and PVP separately, are toxic to human lung 

Fig. 4 SEM images of the bacterial strains. a Staphylococcus epidermidis, Gram-positive, b Pseudomonas aeruginosa, Gram-negative, c S. epidermidis 

treated with 100-6 h silver nanoparticles (0.04 mg/mL), d P. aeruginosa treated with 100–6 h silver nanoparticles (0.04 mg/mL) [36]
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cells [262] when exposed for 24 h. AB test is a measure 

of cell proliferation and mitochondrial activity. However, 

the LDH measures the cytotoxicity of Ag NPs in terms of 

membrane damage from the cytoplasm. Both the citrate 

and PVP coated nanoparticles of 10 nm exhibited signifi-

cant toxicity after 24 h at the highest dose of 50 µg/mL. 

Ag NPs of larger dimensions did not alter cell viability 

[263, 264]. Cytotoxicity is related to enzyme inhibition 

which is correlated to the release of Ag ions because they 

inhibit the catalytic activity of LDH.

It has been observed that Ag NPs damaged DNA but 

they did not increase ROS when cells were exposed to 

them for 24  h at a dose of 20  µg/mL [263]. Gliga et  al. 

[262] have suggested that silver ions from AgCl are 

released in the biological fluid and complexed. �e for-

mation of AgCl is possible only if the fluid is contami-

nated with  Cl− ions, nevertheless it cannot ionize to 

 Ag+ and  Cl− ions since AgCl is almost insoluble in aque-

ous medium [265]. �e experiment with extracellularly 

released silver ions in cell medium did not exhibit toxic-

ity, perhaps it would have reacted with  Cl− ions to yield 

insoluble AgCl.

Cytotoxicity is related to the size of Ag NPs irrespec-

tive of the coating agent. Carlson et al. [266] have shown 

an increase in ROS production for 15  nm hydrocarbon 

coated Ag NPs relative to 55  nm. It has been reported 

by Liu et al. [267] that 5 nm Ag-nanoparticles were more 

toxic than 20 and 50 nm nanoparticles to four cell lines, 

namely, A549, HePG2, MCF-7 and SGC-7901. Wang 

et al. [268] have also reported that smaller nanoparticles 

(10–20  nm) induce greater cytotoxicity than the larger 

ones (110  nm), and citrate coated 20  nm Ag NPs pro-

duced acute neutrophilic inflammation in the lungs of 

mice compared to those with larger ones. �e cell via-

bility and DNA damage may be explained by ROS gen-

eration [269] which may be contradictory to findings by 

others in in vitro studies [253].

It is hypothesized that irreparable DNA damage is due 

to the interaction of Ag NPs with repair pathways. Since 

this work has been done in  vitro, the DNA once dam-

aged may not have the ability to repair. However, in living 

systems the cells have the ability to undergo repair and 

multiply but such experiments have seldom been done. 

It is however, unanimously agreed that both Ag NPs and 

silver ions are present at the subcellular level. �e trans-

formation of Ag to  Ag+ ions occurs due to their interac-

tion with biomolecules in the cell membrane. �e release 

of elemental silver is directly proportional to the size 

of nanoparticles in a non-linear fashion [270]. �e size 

dependent toxicity is related to the intracellular release 

of silver ions. Although, agglomeration of nanoparticles 

reduces their release, the antibacterial effect was hin-

dered under anaerobic condition, because in absence 

of oxygen, the oxidation process Ag  →  Ag+ ceases to 

continue. Ag NPs exhibited excellent activity against Y. 

enterocolitica, P. vulgaris, E. coli, S. aureus and S. faecalis. 

Since the nanoparticles are smaller than the bacterial cell 

they may stick to their cell walls disallowing permeation 

of essential nutrients leading to the death of microorgan-

isms [236]. Smaller size is related to greater surface area 

of nanoparticles and their agglomeration around the cell 

wall inhibits the cell division of microbes.

Besides their application in diverse areas, Ag NPs are 

extensively used as antioxidant and antimicrobial agents 

regardless of the process of their synthesis [271, 272]. 

�ey are more toxic to microorganisms than human 

beings. Antibacterial and antifungal activities of Ag NPs 

were tested against B. cereus, S. aureus, C. koseri, P. aer-

uginosa bacteria and C. albicans fungus respectively. It 

has been proposed that Ag NPs penetrate into the bacte-

rial cell and interact with the thiol, hydroxyl and carboxyl 

groups of the biomolecules present in them, eventually 

deactivating the vital functions by releasing  Ag+ ions. 

�e authors have, however, not explained how the  Ag+ 

ions were produced. We firmly believe that silver ions 

must have been produced through a redox mechanism 

and subsequently complexed with electron donating thiol 

and phosphate groups inhibiting the cell replication of 

pathogens. It is well known that silver ions strongly bind 

with sulfur and oxygen containing electron donor groups 

in living system and arrest the functioning of vital organs 

that lead to the death of animal.

Ag NPs synthesized from lingonberry and cranberry 

juices [241] were tested for their activity against microbes 

commonly found in food and food products namely, S. 

aureus, S. typhi, L. monocytogenes, B. cereus, E. coli, B. 

subtillis and C. albicans. �ey observed that Ag NPs were 

more effective towards S. aureus, B. subtillis and B. cereus. 

Antibacterial activity was screened against B. cereus and 

S. aureus which produce toxins in food products [243]. 

A similar study has also been reported by Nanda and 

Saravanan [168] on other pathogens such as S. aureus, 

S. epidermidies and S. pyogens. �e decrease in antimi-

crobial effect of Ag NPs against food borne bacteria has 

been ascribed to low pH or high NaCl content in food. 

�e high concentration of NaCl may increase the toxicity 

towards bacteria because they may kill them. However, it 

is concluded that Ag NPs may be used in packaging to 

prevent infection in food products by microbes.

Zhao and Stevens [273] have studied antimicrobial 

effects of Ag salts on 12 species of bacteria and showed 

that they are highly effective against them. It has also 

been shown [274] that Ag NPs with amphiphilic hyper-

branched macro molecules act as antimicrobial coating 

agents. Kim et  al. [275] have thoroughly screened the 

antimicrobial effect of Ag NPs prepared from  AgNO3 
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and  NaBH4 as reducing agent. �ey examined the effi-

cacy of a wide range of concentrations of Ag NPs start-

ing from 0.2 to 33  nM. At a concentration of 33  nM of 

Ag NPs the growth inhibition of E. coli and E. aureus was 

almost comparable with the positive control, although at 

13.2 nM concentration a significant effect was observed. 

However, the inhibitory effect of 1.6–6.6 nM of Ag NPs 

is nearly the same (~  55% relative to control). It was 

observed that silver nanoparticle is most effective against 

E. coli and has a mild inhibitory effect on S. aureus. 

However, gold nanoparticles of the same concentration 

were ineffective against these microbes, although it also 

belongs to the same group of elements.

Ag NPs synthesized from fungus Humicola sp. were 

investigated for their cytotoxicity on NIH3T3 mouse 

embryonic fibroblast cell line and MDA-MB-231 human 

breast carcinoma cell line [224]. In both cell lines, the 

cell viability declined in a dose-dependent manner. Cyto-

toxicity of Ag NPs was recorded at a concentration of 

250  µg/mL; the cell viability declined by 20 83% in the 

case of NIH3T3 and 42 18% for MDA-MB-231 cell line 

at 1000 µg/mL concentration. Very recently [269], it has 

been investigated that Ag NPs in conjugation with other 

metals such as  TiO2@Ag nanoparticles act against leish-

maniasis. �ese nanoparticles along with other drugs 

for leishmania, like neglumine antimoniate at nontoxic 

concentrations increase the efficacy of both drugs. �is 

combination of drug led to the inhibition of L. trop-

ica amastigotes at a very high rate of 80–95%. Also, it 

increased the metabolic activities 7–20-fold.

Owaid et al. [237] have produced Ag NPs from aqueous 

extract of P. cornucopiae var. citrinopileatus which served 

both as reducing and stabilizing agent. �eir antimicro-

bial activity was investigated against four pathogenic 

Candida sp. namely C. albicans, C. glabrate, C. krusei 

and C. pseudotropicalis. Ag NPs at 60  µg/well showed 

a significant increase in inhibition of candida sp. How-

ever, pure extract was ineffective against all microbes at 

20–40 µg/well. Mechanism of action has been ascribed to 

the interaction between the positive charge on silver ion 

and the negative charge on the cell membrane of micro-

organism [25, 35]. Due to electrostatic attraction between 

the two the silver ions penetrate into the microbial cell 

via diffusion leading to their death. Ag NPs synthesized 

using fungus Trichoderma viride were examined for their 

antimicrobial activity in combination with various antibi-

otics (ampicillin, kanamycin, erythromycin and chloram-

phenicol) against both gram positive and gram negative 

bacteria [234]. Antibacterial activities of antibiotics were 

increased in the presence of Ag NPs against the tested 

strains and P. aeruginosa. �e original aqueous extract of 

P. ostreatus was found to be ineffective against all bacte-

rial strains at 25–75 µg/mL.

Allahverdiyev et al. [276] have reported that the com-

bination of Ag NPs with antibiotics decreases the toxic-

ity toward human cells by reducing the required dosage. 

Furthermore, these combinations restore the ability of 

the drug to kill bacteria that have acquired resistance to 

them [175]. Hence, a separate approach of using Ag NPs 

synthesized from bacterial strains alone and in combina-

tion can act as effective novel antimicrobials to sensitize 

resistant pathogens. Nevertheless, a study with E. coli 

has demonstrated that the bacteria could become resist-

ant to Ag NPs on its regular exposure for 225 generations 

through genetic mutations [277]. �us, a precaution 

should be taken to avoid the constant exposure of micro-

organisms against such types of nanoparticles. In addi-

tion, treatment with bacterial Ag NPs has shown the cell 

viability reduction in a dose-dependent manner in HeLa 

cervical cancer [278, 279], MDA-MB-231breast cancer 

[280], A549 adenocarcinoma lung cancer [281] and HEP2 

[282] cell lines. Ag NPs produced from bacterial strains 

exhibited cytotoxicity to cancer cells but their impact on 

normal healthy cells cannot be ignored.

Mechanism of antibacterial activity
As discussed previously, several reports are available 

which have shown that Ag NPs are effective against path-

ogenic organisms namely B. subtilis, Vibrio cholerae, E. 

coli, P. aeruginosa, S. aureus, Syphilis typhus etc. [10, 11, 

109, 145]. Ag NPs with larger surface area provide a bet-

ter contact with microorganisms [283]. �us, these parti-

cles are capable to penetrate the cell membrane or attach 

to the bacterial surface based on their size. In addition, 

they were reported to be highly toxic to the bacterial 

strains and their antibacterial efficiency is increased by 

lowering the particle size [284]. Many arguments have 

been given to explain the mechanism of growth inhibi-

tion of microbes by Ag NPs but most convincing is the 

formation of free radical which has also been supported 

by the appearance of a peak at 336.33 in the electron spin 

resonance (ESR) spectrum of Ag NPs [275]. �e free rad-

ical generation is quite obvious because in a living system 

they can attack membrane lipids followed by their dis-

sociation, damage and eventually inhibiting the growth 

of these microbes [285]. It is worth noting that the equal 

mass of silver Ag NPs and that of Ag ions exhibit identi-

cal growth inhibition of E. coli and S. aureus. In a study, 

the highly antibacterial activity has been ascribed to the 

release of silver cation from Ag NPs [173]. �e Ag+ per-

meated into bacteria through the cell wall [286, 287] as 

a consequence of which the cell wall ruptures leading 

to denaturation of protein and death. Since Ag ions are 

positively charged and much smaller than neutral Ag NPs 

they can easily interact with electron rich biomolecules 

in the bacterial cell wall containing S or P and N. Some 
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researchers have reported that interaction between the 

positive charge on Ag NPs and negative charge on the cell 

membrane of the microorganisms is the key to growth 

inhibition of the microbes [286, 287]. On the other hand, 

Sondi et  al. [288] have reported that antibacterial activ-

ity of Ag NPs toward gram negative bacteria depends on 

its concentration. �e nanoparticles form pits in the cell 

wall of microbes, get accumulated, and permeate into the 

bacterial cell leading to their death. It has been reported 

[289, 290] that Ag free radical formation and antimicro-

bial property are inter related which has been confirmed 

by ESR [275]. �ey claim that such an antimicrobial study 

included both the positively charged silver ions and nega-

tively charged silver nanoparticles.

�e absorption of Ag NPs at 391  nm is the signature 

of spherical nanoparticles due to their surface plas-

mon resonance [291]. �is absorption spectrum does 

not undergo any change even when the suspension of 

Ag NPs is diluted ten times indicating that they are not 

agglomerated. Besides Ag NPs and silver compounds, 

there are other inorganic ions which also possess anti-

bacterial properties [241, 287, 292]. It is known that silver 

ions bind to the protein of the microorganisms prevent-

ing their further replication but the organisms also avoid 

interacting with these ions and produce cysts to become 

resistant.

Ag NPs may be oxidized to  Ag+ but cannot be reduced 

[287, 289]. Silver is known to have 4d10, 5s1 outermost 

electronic configuration and it cannot hold an extra elec-

tron to become  Ag− anion. Silver salt of sulphathiazine is 

used in burn therapy to protect the skin from infection by 

pseudomonas species. Silver is released slowly from the 

salt which is sufficiently toxic to microorganisms. Since 

the salt is sparingly soluble the silver acts on the external 

cell structure. Silver salt and Ag NPs exhibit cytotoxicity 

against a broad range of microorganisms, although the 

toxicity depends on the quantum of silver ions released 

[275].

�e monodispersed nanoparticles of uniform size are 

produced. Graphene oxide exhibits antibacterial activ-

ity against E. coli [293, 294] but Ag NPs functionalized 

graphene based material show enhanced antibacterial 

activity [295, 296]. Graphene oxide is nicely dispersed 

in polar solvents like water which allows the deposition 

of nanoparticle for its use in various fields. Antibacterial 

activity of both Ag NPs and Ag-graphene oxide com-

posite has been tested in a wide range of concentration 

between 6.25 and 100 µg/mL against both gram positive 

and gram negative bacteria. It was noticed that both Ag 

NPs and Ag-graphene oxide composite were more effec-

tive against gram positive than gram negative bacterial 

strains. Ag-graphene oxide is a better growth inhibitor of 

S. Typhi, even at a very low concentration of 6.25 µg/mL, 

than Ag NPs of the same concentration. However, Ag 

NPs and Ag-graphene oxide do not show any inhibitory 

effect against gram positive bacteria, S. aureus and S. epi-

dermis below 50 µg/mL. It was also noted that graphene 

oxide alone is ineffective against these bacteria even at a 

higher concentration of 100 µg/mL [293, 296].

Silver ions released from Ag NPs may penetrate into 

bacterial cell components such as peptidoglycan, DNA 

and protein preventing them from further replication 

[297, 298]. Release of  Ag+ ions means the oxidation of 

elemental silver which requires an oxidizing agent.

�e organic groups like carbonyl and protein in the 

bacterial cell wall are electron donors rather than elec-

tron acceptors and hence they cannot produce  Ag+ ions 

from Ag atoms, nevertheless the  Ag+ ions are produced 

which confirms the presence of an oxidizing agent [296, 

299].  Ag+ ions are thus bonded to the proteins of bacteria 

and inhibit their vital functions.

�o et  al. [300] have shown that spherical Ag NPs of 

2.76–16.62  nm size fabricated from Nelumbo nucifera 

seed extract are highly toxic to Gram negative bacte-

ria. �e antibacterial property has been ascribed to the 

attachment of Ag NPs to the surface of cell membrane 

disallowing permeation and respiration of the cells.

�e outer layer of gram negative bacteria is made 

up of a lipopolysaccharide layer and the inner layer is 

composed of a linear polysaccharide chain forming a 

three-dimensional network with peptides. Ag NPs get 

accumulated due to attraction between the negative 

charge on the polysaccharides and weak positive charge 

on the silver nanoparticles. It stops the cell replication of 

the microbes.

Toxicity by nanoparticles is generally triggered by the 

formation of free radicals, such as ROS [301, 302]. If the 

ROS is produced it may cause membrane disruption 

and disturb the permeability. �e mechanism of growth 

inhibition follows electrostatic interaction, adsorp-

tion and penetration of nanoparticles into the bacte-

rial cell wall. Toxicity of nanoparticles also depends on 

composition, surface modification, intrinsic properties 

and type of microorganisms [9, 303–306]. For instance, 

 TiO2-nanoparticles can increase peroxidation of the 

lipid membrane disrupting the cell respiration [307]. �e 

biogenic Ag NPs in combination with antibiotics like 

erythromycin, chloramphenicol, ampicilin and kana-

mycin enhance the toxicity against gram positive and 

gram negative bacteria [308, 309]. A possible mechanism 

is presented in Fig.  5. Besides, Ag NPs are also toxic to 

nitrifying bacteria [310]. �e ROS include superoxide 

 (O2
−), hydroxyl (·OH), peroxy (RCOO·) and hydrogen 

peroxide  (H2O2). RNS includes nitric oxide (NO·) and 

Silver nanoparticle → Ag+
+ e−



Page 20 of 28Siddiqi et al. J Nanobiotechnol  (2018) 16:14 

nitrogen dioxide  (NO2
−) [311, 312]. �e cell replica-

tion and development of microbes in ROS containing 

atmosphere will cease to continue. However, this process 

may be delayed in presence of an antioxidant such as an 

enzyme or a non-enzymatic component which scavenges 

the free radicals [313].

Conclusion
Regardless of the method of fabrication, Ag NPs are used 

as an antimicrobial agent, electrochemical sensors, bio-

sensors, in medicine, health care, agriculture and bio-

technology. �ey have great bactericidal potential against 

both gram positive and gram negative pathogens. Since 

Ag NPs coupled with antibiotics are active against many 

drug resistant bacteria they can be used as easily acces-

sible medicine for the treatment of several infections. Ag 

NPs in the drug delivery system, quite often increase the 

solubility, stability and bio-distribution enhancing their 

efficiency. In presence of nanoparticles the absorption of 

medicine increases several times therefore, Ag NPs may 

be used as a drug delivery system.

Although, the long-term effect of nanoparticles on 

human health and crops is not clear. A large number 

of nanoparticles are being explored in many areas of 

industry technology, biotechnology and agriculture. It is 

known that various forms of silver from laundry, paints, 

clothes etc. and biosolids reach the sewage and sludge. 

It has been reported that nano sized  Ag2S are formed 

in the activated sludge as a consequence of the reaction 

between silver nanoparticles/Ag+ ions and the sulfide 

produced in sewage. It is not possible for Ag NPs in the 

elemental form to react with evolved  H2S. Only  Ag+ ions 

may react with  H2S to yield  Ag2S according to the reac-

tion given below.

Ag2S or  AgNO3 may be ionized to give free  Ag+ ions 

which inhibit the bacterial growth. Besides many advan-

tages of Ag NPs there are some disadvantages too. �ey 

inhibit the growth of nitrifying bacteria, thereby inhibit-

ing the biological nitrogen removal. As little as 1–20 ppm 

Ag NPs have been reported to be effective against 

microbes. It is anticipated that Ag NPs may be used as an 

inexpensive broad spectrum antimicrobial agent to pro-

tect plant crops and infections in human beings.
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