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Abstract

The presence of haze in the atmosphere degrades the quality of images captured by visible camera sensors. The

removal of haze, called dehazing, is typically performed under the physical degradation model, which necessitates a

solution of an ill-posed inverse problem. To relieve the difficulty of the inverse problem, a novel prior called dark

channel prior (DCP) was recently proposed and has received a great deal of attention. The DCP is derived from the

characteristic of natural outdoor images that the intensity value of at least one color channel within a local window

is close to zero. Based on the DCP, the dehazing is accomplished through four major steps: atmospheric light

estimation, transmission map estimation, transmission map refinement, and image reconstruction. This four-step

dehazing process makes it possible to provide a step-by-step approach to the complex solution of the ill-posed

inverse problem. This also enables us to shed light on the systematic contributions of recent researches related to

the DCP for each step of the dehazing process. Our detailed survey and experimental analysis on DCP-based

methods will help readers understand the effectiveness of the individual step of the dehazing process and will

facilitate development of advanced dehazing algorithms.
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1 Review

1.1 Introduction

Due to absorption and scattering by atmospheric particles

in haze, outdoor images have poor visibility under inclem-

ent weather. Poor visibility negatively impacts not only con-

sumer photography but also computer vision applications

for outdoor environments, such as object detection [1] and

video surveillance [2]. Haze removal, which is referred to as

dehazing, is considered an important process because

haze-free images are visually pleasing and can signifi-

cantly improve the performance of computer vision tasks.

Methods presented in earlier studies had required

multiple images to perform dehazing. For example,

polarization-based methods [3–5] use the polarization

property of scattered light to restore the scene depth infor-

mation from two or more images taken with different de-

grees of polarization. Similarly, in [6, 7], multiple images of

the same scene are captured under different weather condi-

tions to be used as reference images with clear weather

conditions. However, these methods with multiple refer-

ence images have limitation in online image dehazing appli-

cations [6, 7] and may need a special imaging sensor [1–3].

This leads the researchers to focus the dehazing method

with a single reference image. Single image based methods

rely on the typical characteristics of haze-free images. Tan

[8] proposed a method that takes into account the charac-

teristic that a haze-free image has a higher contrast than a

hazy image. By maximizing the local contrast of the input

hazy image, it enhances the visibility but introduces block-

ing artifacts around depth discontinuities. Fattal [9] pro-

posed a method that infers the medium transmission by

estimating the albedo of the scene. The underlying assump-

tion is that the transmission and surface shading are locally

uncorrected, which does not hold under a dense haze.

Observing the property of haze-free outdoor images, He

[10] proposed a novel prior—dark channel prior (DCP).

The DCP is based on the property of “dark pixels,” which

have a very low intensity in at least one color channel,

except for the sky region. Owing to its effectiveness in

dehazing, the majority of recent dehazing techniques

[10–36] have adopted the DCP. The DCP-based dehazing

techniques are composed of four major steps: atmospheric
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light estimation, transmission map estimation, transmis-

sion map refinement, and image reconstruction. In this

paper, we perform an in-depth analysis of the DCP-based

methods in the four-step point of view.

We note that there are several review papers on image

dehazing or defogging [37–42]. In [37], five physical

model-based dehazing algorithms are compared. In

[38, 39], several enhancement-based and restoration-

based defogging methods are investigated. In [40], fog

removal algorithms that use depth and prior information

are analyzed. In [41], a comparative study on the four rep-

resentative dehazing methods [4, 9, 10, 43] are performed.

In [42], many visibility enhancement techniques devel-

oped for homogeneous and heterogeneous fog are dis-

cussed. To the best of our knowledge, our paper is the

first one dedicated to DCP-based methods. This survey is

expected to ascertain researchers’ endeavors toward

improving the original DCP method.

The rest of the paper is organized as follows. In

Section 1.2, the original DCP-based dehazing method

is first reviewed. Section 1.3 provides an in-depth survey

of conventional DCP-based methods. Section 1.4 discusses

the performance evaluation methods for image dehazing,

and Section 1.5 concludes the paper.

1.2 Dark channel prior based image dehazing

1.2.1 Degradation model

A hazy image formed as shown in Fig. 1 can be mathem-

atically modeled as follows [44, 45]

I xð Þ ¼ J xð Þe−βd xð Þ þ A 1−e−βd xð Þ
� �

; ð1Þ

where x represents the image coordinates, I is the ob-

served hazy image, J is the haze-free image, A is the global

atmospheric light, β is the scattering coefficient of the at-

mosphere, and d is the scene depth. Here, e− βd is often

represented as the transmission map and is given by

t xð Þ ¼ e−βd xð Þ
: ð2Þ

In clear weather conditions, we have β ≈ 0, and thus

I ≈ J. However, β becomes non-negligible for hazy images.

The first term of Eq. (1), J(x)t(x) (the direct attenuation),
decreases as the scene depth increases. In contrast, the

second term of Eq. (1), A(1 − t(x)) (the airlight), increases
as the scene depth increases. Since the goal of image

dehazing is to recover J from I, once A and t are estimated

from I, J can be arithmetically obtained as

J xð Þ ¼
I xð Þ−A

t xð Þ
þ A: ð3Þ

However, the estimation of A and t is non-trivial. In

particular, since t varies spatially according to the scene

depth, the number of unknowns is equivalent to the num-

ber of image pixels. Thus, a direct estimation of t from I is
prohibitive without any prior knowledge or assumptions.

Fig. 1 Formation of a hazy image
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1.2.2 Dark channel prior (DCP)

He et al. [10] performed an empirical investigation of

the characteristic of haze-free outdoor images. They

found that there are dark pixels whose intensity values

are very close to zero for at least one color channel

within an image patch. Based on this observation, a dark

channel is defined as follows:

Jdark xð Þ ¼ min
y∈Ω xð Þ

min
c∈ r;g;bf g

J c yð Þ

� �

; ð4Þ

where Jc is an intensity for a color channel c ∈ {r, g, b} of
the RGB image and Ω(x) is a local patch centered at

pixel x. According to Eq. (4), the minimum value among

the three color channels and all pixels in Ω(x) is chosen
as the dark channel Jdark(x).

From 5000 dark channels of outdoor haze-free images,

it was demonstrated that about 75 percent of the pixels

in the dark channels have zero values and 90 percent of

the pixels have values below 35 when the pixels in the

sky region are excluded [10]. The low intensities in the

dark channel are due to the following three main features:

(i) shadows, e.g., shadows from cars and buildings in an

urban scene or shadows from trees, leaves, and rocks in a

landscape (Fig. 2a); (ii) colorful objects or surfaces, e.g., red

or yellow flowers and leaves (Fig. 2b); and (iii) dark objects

or surfaces, e.g., dark tree trunks and stones (Fig. 2c). Based

on the above observation, the pixel value at the dark chan-

nel can be approximated as follows:

Fig. 2 Dark channels of outdoor images [53], where the size of Ω is 15 × 15. The pixel values for the dark channels are close to zero at (a) the shadows

of buildings and rocks, (b) colorful flowers and scenes, and (c) tree trunks and stones

Jdark≈0: ð5Þ
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This approximation to zero for the pixel value of the dark

channel is called the DCP.

On the contrary, the dark channels from hazy images

produce pixels that have values far above zero as shown

in Fig. 3. Global atmospheric light tends to be achro-

matic and bright, and a mixture of airlight and direct

attenuation significantly increases the minimum value of

the three color channels in the local patch. This implies

that the pixel values of the dark channel can serve as an

important clue to estimate the haze density. Successful

dehazing results of various DCP-based dehazing algo-

rithms [10–28] support the effectiveness of the DCP in

image dehazing.

1.2.3 DCP-based image dehazing

In the DCP-based dehazing algorithm [10], the dark

channel is first constructed from the input image as in

Eq. (4). The atmospheric light and the transmission map

are then obtained from the dark channel. The trans-

mission map is further refined, and the haze-free image is

finally reconstructed as Eq. (3).

More specifically, given the degradation model of

I xð Þ ¼ J xð Þt xð Þ þ A 1−t xð Þð Þ; ð6Þ

the minimum intensity in the local patch of each color

channel is taken after dividing both sides of Eq. (6) by Ac

as follows:

min
y∈Ω xð Þ

Ic yð Þ

Ac ¼ ~t xð Þ min
y∈Ω xð Þ

J c xð Þ

Ac þ 1−~t xð Þð Þ: ð7Þ

Here the transmission in the local patch Ω(x) is as-

sumed to be constant and is represented as ~t xð Þ [10].

Then, the min operator of the three color channels can

be applied to Eq. (7) as follows:

min
y∈Ω xð Þ

min
c

Ic yð Þ

Ac

� �

¼ ~t xð Þ min
y∈Ω xð Þ

min
c

J c yð Þ

Ac

� �

þ 1−~t xð Þð Þ: ð8Þ

According to the DCP approximation of Eq. (5), ~t xð Þ
can be represented as

~t xð Þ ¼ 1− min
y∈Ω xð Þ

min
c

Ic yð Þ

Ac

� �

: ð9Þ

Here, the atmospheric light A needs to be estimated in

order to obtain the transmission map ~t . Most of the

previous single image based dehazing methods estimate

A from the most haze-opaque pixels. As discussed in

Section 1.2.2, the pixel value of the dark channel is

highly correlated with haze density. Therefore, the top

0.1 % of the brightest pixels in the dark channel is first se-

lected, and the color with the highest intensity value among

the selected pixels is then used as the value for A [10].

Figure 4 illustrates the process used to obtain A. If the
pixel with the highest intensity value is used to estimate

A, the pixels in the patches as shown in Fig. 4d, e would

be selected, yielding significant estimation errors. Instead,

by finding the candidate pixels from the dark channel as

shown in Fig. 4b, the pixel that accurately estimates A can

be found as shown in Fig. 4c.

It is noted in [10] that the DCP is not reliable in the

sky region. Fortunately, the color of the sky is close to A
in hazy images, and thus, we have

min
y∈Ω xð Þ

min
c

Ic yð Þ

Ac

� �

≈1 and ~t xð Þ≈0: ð10Þ

This corresponds to the definition of t(x) because d(x)
approaches infinity for the sky region. Therefore, the sky

does not need special treatment for estimating the

Fig. 3 Dark channel for a hazy image. a Hazy image. b Dark channel of (a)
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transmission map if we obtain ~t xð Þ as Eq. (9). Given

A, ~t , and I, the dehazed image is obtained as

J xð Þ ¼
I xð Þ−A

max ~t xð Þ; t0ð Þ
þ A; ð11Þ

where t0 is used as a lower bound for the transmission

map.

1.3 Analysis of DCP-based dehazing algorithms

In Section 1.2, we reviewed the original DCP-based

dehazing algorithm [10]. The follow-up methods are

based on the basic structure presented in [10] but differ

in each step of the dehazing procedure. Table 1 shows

the DCP-based dehazing algorithms from [10–24] that

are investigated in this paper. Instead of analyzing each

method individually, we classify all the methods in ac-

cordance with the four steps of image dehazing and then

perform a step-by-step analysis. Each of the following

subsections describes and compares the various methods

used for each step.

1.3.1 Dark channel construction

Most conventional DCP-based dehazing methods esti-

mate the dark channel from the input hazy image I. In
Eq. (4), the size of the local patch Ω(x) is the only par-

ameter that needs to be determined. Although the effect

of the size of the local patch is significant, most conven-

tional methods simply use a local patch with a fixed size

or do not specify the size of the local patch. Table 2

shows typical patch sizes used in the previous methods.

Figure 5a shows two hazy images. The top row in Fig. 5

corresponds to a remote aerial photograph with less

local texture and heavy haze. Therefore, a small local

Table 1 Comparison of DCP-based dehazing algorithms

Step Method Reference

Dark channel
construction

Min filter (Eq. (4)) [10–22, 24]

Median filter (Eq. (12)) [23]

Atmospheric
light estimation

Candidate DCP top 0.1 % [10–15, 17, 18, 21, 23]

DCP top 0.2 % [16]

DCP maximum [19, 20, 22]

DCP top 5 %
and edge

[24]

Selection
criterion

Intensity [10–20, 22–24]

Entropy [21]

Transmission
map construction

Eq. (17) [10–13, 15–20, 22–24]

Eq. (18) [14]

(i) [21]

Transmission
map refinement

Gaussian filter [17–19]

Bilateral filter [11, 14, 24]

Soft matting [10, 11]

Cross-bilateral filter [16, 20]

Guided filter [13, 18, 22]

(i) t xð Þ ¼ 1−w log minc∈ r;g;bf g
Ic xð Þ
Ac

� ��

Fig. 4 Estimation of the atmospheric light [10]. a Hazy image. b Dark channel, where the size of Ω is 15 × 15 and the region inside the red boundary

lines corresponds to the most haze-opaque region. c Patch used to determine the atmospheric light. d, e Patches that contain intensity values higher

than that of the atmospheric light
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patch is sufficient in order to estimate the dark channel,

resulting in a reduction in the DCP calculation time.

However, an image that has complicated local textures,

as shown in the second row of Fig. 5, needs a larger local

patch size to exclude false textures from the dark chan-

nel. Note that the block-min process of Eq. (4) inevitably

decreases the apparent resolution of the dark channel as

the size of the patch increases. Therefore, the minimum

possible patch size that does not produce false textures in

the dark channel needs to be found for every hazy image

by considering application-dependent image local details.

Apart from the aforementioned general method for

the dark channel estimation, Zhang [23] replaced the

minimum operator by the median operator as follows:

Idark xð Þ ¼ median
y∈Ω xð Þ

min
c∈ r;g;bf g

Ic yð Þ

� �

: ð12Þ

As a result of the median operation, the dark channels

become less blurry, as shown in Fig. 6. However, the

median operator is computationally more complex than

the minimum operator. Moreover, the median-based

method is less physically meaningful because the as-

sumption of the DCP becomes deteriorated. As shown

in the second row of Fig. 6, dense image textures remain

visible for the dark channel, even when a large patch size

of 15 × 15 is used. For the sake of the visibility enhance-

ment of hazy images, however, the median filter is some-

what effective because it does not require complicated

post-processing, which is necessary for smooth and

blurry dark channels that are obtained by the mini-

mum operator.

1.3.2 Atmospheric light estimation

The majority of conventional DCP-based dehazing

methods estimate A as described in Section 1.2.3. In

[19, 20], the pixel with the highest dark channel

value is used directly as follows:

A ¼ I argmaxx Idark xð Þ
� �� �

: ð13Þ

However, the above method can incorrectly select the

pixel when the scene contains bright objects. Instead,

pixels with a top p% dark channel values are selected as

the most haze-opaque pixels, and the one with the high-

est intensity is used to estimate A. This remains one par-

ameter p in the estimation of A, which is empirically set

as 0.1 [10–15] or 0.2 [16].

In [21], to explicitly exclude bright objects from the

estimation of A, the local entropy is measured as

E xð Þ ¼
XN

i¼0
px ið Þ � log2 px ið Þð Þ;ð ð14Þ

where px(i) represents the probability of a pixel value i
in the local patch centered at x, and N represents the

maximum pixel value. The local entropy value is low for

regions with smooth variations, which highly likely cor-

respond to haze-opaque regions. Therefore, the pixel

with the lowest entropy value is used to obtain A among

the highest p% pixels in the dark channel (p = 0.1 [21]).

Table 3 lists the conventional methods that are used to

estimate atmospheric light. To quantitatively evaluate at-

mospheric light estimation methods, we used the foggy

road image database (FRIDA) [38] which consists of

pairs of synthetic color and depth images. For a given

depth image and β, the ground-truth transmission map

can be constructed as t(x) = e− βd(x). The hazy image I is

Fig. 5 Dark channels of various patch size obtained by Eq. (4). a Hazy image. Dark channels obtained by Eq. (4) with the patch size of (b) 3 × 3,

(c) 7 × 7, (d) 11 × 11, and (e) 15 × 15

Table 2 Local patch sizes used for previous methods

Patch size Reference

3 × 3 [26]

11 × 11 [20]

15 × 15 [10, 21, 25]
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then obtained as Eq. (6) by using the atmospheric light

A. Therefore, a variety of hazy images can be generated

by changing β (haze density) and A (global lightness).

Figure 7 shows the average root-mean-square error

(RMSE) between the ground-truth and estimated atmos-

pheric lights for the 66 test images in the FRIDA. The

RMSE is obtained as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3
ÂR−A

�
R

� �2
þ ÂG−A

�
G

� �2
þ ÂB−A

�
B

� �2
� �

r

;

ð15Þ

where A� ¼ A�
R A�

G A�
B

� �

and Â = [ÂRÂGÂB] represent the

ground-truth and estimated atmospheric lights, respect-

ively. Since the candidate pixels for the atmospheric light

estimation are obtained from the dark channel, the local

patch size also plays an important role in the accuracy of

the estimation. When a small patch size is used, as

shown in Fig. 8b, the pixels for bright objects are consid-

ered as candidate pixels, yielding inaccurate A estimates.

The use of a large patch size can prevent selecting such

pixels, as shown in Fig. 8c. The quantitative evaluation

result as shown in Fig. 7a also supports our observation.

The accuracy is rather insensitive to p when a large

32 × 32 patch is used. Therefore, a large patch size

(e.g., 32 × 32) with p = 0~0.4 % is effective only when

the accuracy of the atmospheric light estimation is

considered. One practical solution that takes into

account the accuracy of both the dark channel and

the atmospheric light involves using different patch

sizes to estimate the dark channel estimation and atmos-

pheric light [26]. When the local entropy, as in Eq. (15), is

used to prevent pixels of small bright objects from being

selected, the estimation accuracy of the atmospheric light

improves, as shown in Fig. 7b [21]. The estimation accur-

acy is still best for the largest patch size of 32 × 32 and is

less sensitive to the p value due to the robustness of

candidate pixel selection.

1.3.3 Transmission map estimation

The transmission map ~t xð Þ fined in Eq. (9) is obtained

from the DCP. If the DCP is not exploited, Eq. (9) can

be rewritten as

~t xð Þ ¼ 1− min
y∈Ω xð Þ

min
c

Ic yð Þ

Ac

� �

þ ~t xð Þ⋅ min
y∈Ω xð Þ

min
c

J c yð Þ

Ac

� �

:

ð16Þ

As we observed in Section 1.2.2, the pixel value of the

dark channel, Jdark(x), is highly likely zero, and so is

(J/A)dark(x). However, if (J/A)dark(x) is not close to

zero, the transmission map obtained as Eq. (9) can be

under-estimated since the positive offset in Eq. (16) is

always neglected [28].

In the original DCP-based dehazing method, it is men-

tioned that the image may look unnatural if the haze is

removed thoroughly [10]. A constant ω (0 < ω < 1) is

thus used to retain a small amount of haze:

~t xð Þ ¼ 1−ω min
y∈Ω xð Þ

min
c

Ic yð Þ

Ac

� �

: ð17Þ

However, we consider that a better visibility in the

dehazed image can be achieved with Eq. (17) because we

inadvertently compensate for the under-estimation of
~t xð Þ by multiplying ω.

Fig. 6 Dark channels of various patch size obtained by Eq. (12). a Hazy images. Dark channels obtained by Eq. (12) with the patch size of (b)

3 × 3, (c) 7 × 7, (d) 11 × 11, and (e) 15 × 15

Table 3 Conventional methods used to estimate atmospheric light

Input Parameter Selection criterion Reference

Dark channel p = 0 Highest intensity [19, 20]

p = 0.1 Highest intensity [10–15]

p = 0.2 Highest intensity [16]

p = 0.1 Minimum entropy [21]
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Figure 9 shows that the transmission map is in-

deed under-estimated when ~t is obtained as Eq. (9).

The mean values of the ground-truth transmission

maps, as shown in Fig. 9b, are 0.5616 and 0.6365,

respectively. However, the mean values for the esti-

mated transmission maps, as shown in Fig. 9c, are

obtained as 0.5125 and 0.6086, respectively. When

the transmission map is obtained as Eq. (17) by

using ω = 0.9, the under-estimation of the transmission

map is considerably decreased, as shown in Fig. 10a, c,

where the mean values are obtained as 0.5225 and

0.6058, respectively.

Xu et al. [14] explicitly addressed the aforementioned

under-estimation problem of the transmission map and

Fig. 7 The average RMSE between the ground-truth (A* = [220,235,254]) and the estimated atmospheric light. The atmospheric light is estimated

from pixels with the highest p% dark channel values. Among the p% pixels, the pixel with (a) the highest intensity or (b) the lowest entropy value

is used to estimate the atmospheric light. Sixty-six test images from the FRIDA were used

Fig. 8 Atmospheric light estimation. a Hazy image. The pixels in the dark channel that are used to estimate the atmospheric light when the size

of Ω is (b) 3 × 3 and (c) 32 × 32
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simply added a positive value ρ ∈ [0.08, 0.25] to the

transmission map:

~t xð Þ ¼ 1− min
y∈Ω xð Þ

min
c

Ic yð Þ

Ac

� �

þ ρ: ð18Þ

Figure 10b, d shows the estimated transmission maps

when ρ = 0.08 is added, where the mean values are ob-

tained as 0.5494 and 0.6431, respectively. The addition

of ρ also plays a similar role of t0 in Eq. (11), making the

minimum value of the transmission map be ρ. The

under-estimation can be partly solved by using Eq. (17)

or (18); however, the values of ω and ρ need to be care-

fully chosen. To this end, we measured the RMSE values

between the ground-truth and estimated transmission

maps for different ω and ρ values by using 66 synthetic

test images from the FRIDA. Figure 11a, b indicates that

ω around 0.9 and ρ around 0.12 are effective. An

adaptive scheme also needs to be developed for a better

compensation of the under-estimation.

1.3.4 Transmission map refinement

Incorrect estimation for the transmission map can lead

to some problems such as false textures and blocking

artifacts. In particular, the block-min process of Eq. (4)

decreases the apparent resolution of the dark channel,

resulting in blurry transmission maps. For this reason,

many methods have been developed to further sharpen

the transmission map [10, 11, 13, 14, 16–20, 22, 24].

In [42], it is especially mentioned that many dehazing

methods differ in the way of smoothing the transmission

map. Table 4 lists post-filtering methods used to

Fig. 9 Hazy images and ground-truth and estimated transmission maps from the FRIDA [46]. a Hazy images. b Ground-truth transmission maps,

where A = [220,235,254] and β = 0.01. c Transmission maps obtained as Eq. (9). For visualization, transmission values are multiplied by 255

Fig. 10 Comparison of the estimated transmission maps using the FRIDA [46]. a, c Transmission maps obtained as Eq. (17) using ω = 0.9. b, d The

transmission map obtained as Eq. (18) using ρ = 0.08, where A = [220,235,254] and β = 0.01
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improve the accuracy of the transmission map. Some

filtering methods, such as the Gaussian and bilateral

filters, use only transmission maps, whereas the other

methods, such as soft matting, cross-bilateral filter,

and guided filter, exploit a hazy color image as a guidance

signal. Each method and its performance are analyzed

in the following subsections.

1.3.4.1 Gaussian filter Denoting the transmission map

to be refined as ~t , the Gaussian filtered transmission

map t̂ is given as

t̂ xð Þ ¼
1

X

y∈Ω xð Þ
Gσ s x−yk kð Þ

⋅

X

y∈Ω xð Þ
Gσs x−yk kð Þt̂ yð Þ;

ð19Þ

where Gσs is the 2-D Gaussian function with the stand-

ard deviation σs. The Gaussian filter is not very effective

in sharpening a blurry transmission map due to its low-

pass characteristic, but it is often useful in removing

color textures remaining in the transmission map [19].

As discussed in Section 1.3.1, transmission maps ob-

tained using a small local patch tend to have color tex-

tures, and thus, the Gaussian filter can improve the

accuracy of the transmission maps. Figure 12 shows

some examples before and after Gaussian filtering. As

can be seen in Figs. 12b, c, the Gaussian filter is effective

in removing false color textures in the transmission ma

However, the Gaussian filter can unnecessarily blur the

transmission map when there is no annoying false color

textures in the transmission map as shown in Fig. 12d, e.

Figure 13 shows the quantitative quality evaluation

results. Here, the transmission maps are obtained as

Eq. (17) with different sizes of the local patch. The

Gaussian filter is then applied and the filtered result

is compared with the ground-truth transmission map,

which can be reconstructed using the FRIDA [46]. As

can be seen in Fig. 13, the Gaussian filter is effective

when a proper size of the patch size is used, but the

RMSE starts increasing when the Gaussian blur becomes

excessive. Therefore, the refinement by the Gaussian filter

needs careful treatment with the consideration of the

color textures in the hazy image.

1.3.4.2 Bilateral filter The bilateral filter is a widely

used edge-preserving smoothing filter. It uses weighted

neighboring pixel values with the spatial and range dis-

tances as follows:

t̂ xð Þ ¼
1

X

y∈Ω xð Þ
Gσ s x−yk kð ÞGσr I xð Þ−I yð Þk kð Þ

⋅

X

y∈Ω xð Þ
Gσs x−yk kð ÞGσr I xð Þ−I yð Þk kð Þ~t yð Þ;

ð20Þ

where Gσs and Gσr represent the spatial and range ker-

nels with the standard deviations σs and σr, respectively.

Since the neighboring pixels that have the similar pixel

Fig. 11 The average RMSE between the ground-truth and estimated transmission maps. The transmission maps are estimated (a) using Eq. (17)

with various ω values and (b) using Eq. (18) with various ρ values, where A = [220,235,254] and β = 0.01

Table 4 Conventional methods used to refine the transmission

map

Input Method Reference

Transmission map Gaussian filter [17, 19]

Bilateral filter [14, 24]

Transmission map and hazy image Soft matting [10, 11]

Cross-bilateral filter [16, 20]

Guided filter [13, 18, 22]
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value with the center pixel are highly weighted, edges in
~t can be preserved while smoothing noisy regions in ~t .

The bilateral-filtered transmission maps as shown in

Fig. 14 tend to exhibit sharper details than the Gaussian

filtered transmission maps as shown in Fig. 12.

We also evaluated the quantitative performance of the

bilateral filter as shown in Fig. 15 using the same ex-

perimental condition of Fig. 14. σs is set as 15 and

the performance dependency on σr is only investigated.

The results illustrate that the bilateral filter is not very ef-

fective in terms of the quantitative performance and tends

to increase the RMSE when the standard deviation of the

range kernel increases.

1.3.4.3 Soft matting We found that the Gaussian and

bilateral filters are effective for removing false color

Fig. 12 The result of the Gaussian filter. a Hazy images. b Transmission map obtained using the local patch with the size 3 × 3. c Gaussian filtered

transmission map using σs= 5. d Transmission map obtained using the local patch with the size 15 × 15. e Gaussian filtered transmission map using σs= 5

Fig. 13 The average RMSE between ground-truth and Gaussian filtered transmission maps using the FRIDA [46]. The RMSE results with respect to

σs when the local patch size is (a) 3 × 3, (b) 11 × 11, and (c) 15 × 15
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textures in the transmission map. However, the trans-

mission map should have a similar level of sharpness

to the color image for dehazing, which is impossible if

the color image is not used in the transmission map

refinement. To this end, the original DCP-based

dehazing algorithm [10] adopted the soft matting to

refine the transmission map. From the observation

that the degradation model in Eq. (6) is similar to the

matting equation [47], the refined transmission map t̂ is

obtained by minimizing the following energy function:

t̂ ¼ arg min
t

tTLt þ λ t−~tð Þ
T
t−~tð Þ

n o

; ð21Þ

where ~t is the transmission map to be refined and a

weight λ controls the importance of the data term. It

Fig. 14 The result of the bilateral filter. a Hazy images. b Transmission maps obtained using the local patch with the size 3 × 3. c Bilateral filtered

transmission maps using σs = 15andσr = 0.3. d Transmission maps obtained using the local patch with the size 15 × 15. e Bilateral filtered transmission

maps using σs = 15 and σr = 0.1

Fig. 15 The average RMSE between ground-truth and bilateral-filtered transmission maps using the FRIDA [46]. The RMSE values with respect to

σr when the local patch size is (a) 3 × 3, (b) 11 × 11, and (c) 15 × 15, where σs = 15 and σr ∈ {0.01, 0.03, 0.06, 0.1, 0.15, 0.2, 0.25, 0.3}
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is demonstrated in [11] that the solution of Eq. (21)

is equivalent to that of the following sparse linear

equation:

Lþ λUð Þt̂ ¼ λ~t ; ð22Þ

where U represents an identity matrix. Note that in

order to exploit sharp details in the hazy image, the

Laplacian matrix L is determined from the hazy image.

We refer the readers for more details about image mat-

ting to [11, 47]. Figure 16 shows the refined transmission

maps obtained by the soft matting. As can be seen,

blurry edges in the transmission maps have been sharp-

ened due to the use of color images. It should be noted

here that the bilateral filter was also applied to the result

of the soft matting to further refine the transmission

map [10]. To evaluate the performance of the soft mat-

ting only, the bilateral filter is not applied.

Figure 17 shows the quantitative performance of the

soft matting. Different values of λ and patch sizes were

used to find out the dependency of the performance of

the soft matting on the parameters. A large value of

λ was preferred when a small local patch was used

because the transmission map before the refinement

tended to be inherently similar to the hazy image.

When the local patch of the size 15 × 15 was used, a

proper value of λ (=2 × 10− 4 in our experiment)

showed the best performance.

1.3.4.4 Cross-bilateral filter The cross-bilateral filter

(aka joint-bilateral filter) is a variant of the classic bilat-

eral filter. Unlike the bilateral filter, the cross-bilateral

filter computes the range kernel from a cross (guidance)

channel as follows:

t̂ xð Þ ¼
1

X

y∈Ω xð Þ
Gσ s x−yk kð ÞGσr I xð Þ−I yð Þk kð Þ

⋅

X

y∈Ω xð Þ
Gσs x−yk kð ÞGσr I xð Þ−I yð Þk kð Þ~t yð Þ;

ð23Þ

where the guidance channel I corresponds to the hazy

image as in Eq. (1). Therefore, the sharpness of I can be

inherited to the transmission map t̂ . Figure 18 shows the

result of the cross-bilateral filter, and Fig. 19 shows the

quantitative performance evaluation result using a fixed

value of σs = 15 and various σr values. Owing to the use

the cross channel, the resultant transmission map can

Fig. 16 The result of the soft matting using λ = 10− 4. a Hazy images. b Transmission maps obtained using the local patch with the size 3 × 3.

c Soft matting results of (b). d Transmission maps obtained using the local patch with the size 15 × 15. e Soft matting results of (d)
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exhibit sharper edges than those obtained by the

Gaussian and bilateral filters. The selection of σr was

also found to be important for the accuracy of the

transmission map, and the best value of σr was found

around 0.1 regardless of the size of the local patch.

Unlike the computationally expensive soft matting

method (which takes 10–20 s on average for images

with the size 600 × 400 [11]), it was shown in [20]

that the cross-bilateral filter can be implemented in

real-time using the GPU.

1.3.4.5 Guided filter To speed up the transmission

map refinement, the authors of the original DCP-

based dehazing method [10] replaced the soft

Fig. 18 The result of the cross-bilateral filter. a Hazy images. b Transmission map obtained using the local patch with the size 3 × 3. c Cross-bilateral

filtered transmission map using σs = 15 and σr = 0.1. d Transmission map obtained using the local patch with the size 15 × 15. e Cross-bilateral-filtered

transmission map using σr = 15 and σr = 0.1

Fig. 17 The average RMSE between ground-truth and soft matting filtered transmission maps using the FRIDA [46]. The RMSE values with respect

to σr when the local patch size is (a) 3 × 3, (b) 11 × 11, and (c) 15 × 15, where λ ∈ {10− 5, 10− 4, 2 × 10− 4, 10− 3}
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matting to the guided filter [13, 18, 22, 48]. The

guided filter also uses the hazy image I as a guidance, but
its novelty lies in adopting the linear model as follows:

t̂ : yð Þ ¼ axI yð Þ þ bx ; ∀y∈Ωx; ð24Þ

where the coefficients ax and bx are assumed to be con-

stant in Ωx and are derived by minimizing the fol-

lowing energy:

E ax; bxð Þ ¼
X

y∈Ω xð Þ

axI yð Þ þ bx−~t yð Þð Þ
2
þ εaxð Þ2

� �

; ð25Þ

where ε is a regularization parameter penalizing large ax.
The solution (ax, bx) can be obtained as

Fig. 19 The average RMSE between ground-truth and cross-bilateral-filtered transmission maps using the FRIDA [46]. The RMSE values with respect to

σr when the local patch size is (a) 3 × 3, (b) 11 × 11, and (c) 15 × 15, where σs = 15 and σr ∈ {0.01, 0.04, 0.1, 0.15, 0.2, 0.25, 0.3}

Fig. 20 The result of refined transmission map using the guided filter. a Hazy images. b Transmission maps obtained using the local patch with

the size 3 × 3. c Guided filtered transmission maps using ε = 0.01. d Transmission maps obtained using the local patch with the size 15 × 15.

e Guided filtered transmission maps using ε = 0.01

ax ¼

1
wj j

X

y∈Ωx
Iy~t yð Þ−μx�t xð Þ

σ2
x þ ε

; bx ¼ �t xð Þ−bxμx; ð26Þ
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where μx and σ2x re the mean and variance of the guid-

ance image I in window Ωx, respectively. |w| denotes the

number of pixels in Ωx and �t xð Þ ¼ 1
wj j

X

y∈Ω xð Þ
~t yð Þ

Considering the overlapping windows in calculating

ax and bx, the final refined transmission map t̂ xð Þ is

obtained as

t̂ xð Þ ¼ �ax~t xð Þ þ �bx; ð27Þ

where �ax ¼
1
wj j

X

y∈Ω xð Þ
ay and �bx ¼ 1

wj j

X

y∈Ω xð Þ
by denote

the average of all the coefficients obtained at pixel x.
Figure 20 shows the result of the guided filter. Since

the refined transmission map is fully obtained from the

hazy image, the resultant map contains the similar level

of sharpness of the hazy image without yielding signifi-

cant false color textures. Figure 21 shows the quantita-

tive performance of the guided filter with different ε

values. As ε increases, the transmission map becomes

smooth, and thus, a proper selection of ε is significant.

In our experiments using the FRIDA, ε of 0.01 produced

the smallest RMSE value regardless of the size of the

local patch.

1.3.4.6 Auxiliary methods for transmission map

enhancement Recent efforts are made to enhance the

transmission map [31, 32, 34–36], which can be catego-

rized into three different approaches. The first approach

is to use the transmission map obtained at low reso-

lution [34, 36]. In [34], the guided filter is performed at

low resolution and the filter coefficients at the original

resolution are obtained using bilinear interpolation, which

enables a speedup of the transmission map refinement. In

[36], non-overlapping patches with the size 10 × 10 are

used to obtain a very low resolution transmission map,

and then, it is combined with a very high-resolution

transmission map obtained using Ω(x) = x in Eq. (9).

This combination scheme can make the transmission

map refinement unnecessary.

In the second approach, the transmission map en-

hancement can be achieved by applying a preprocessing

filter to the hazy image. In [32], the total variation based

image restoration and morphological filtering are applied

to the hazy image, which can prevent producing unneces-

sary texture details from the estimated transmission map.

In [34], an edge-enhanced hazy image is used as a guid-

ance image at the guided filtering step to reconstruct the

transmission map with sharp edges.

The third approach is to estimate the transmission

map not from rectangular patches but from segments.

In [31], the watershed segmentation is performed to ex-

tract regions that the transmission can be reliably esti-

mated. In [35], a gray-level thresholding is performed to

divide an image into sky and non-sky regions and trans-

mission maps are then separately estimated for the two

regions. Since blurry transmission maps are originated

from rectangular patch-wise processing in Eq. (9), these

segmentation-based methods tend to produce sharp

transmission maps without further refinement.

1.3.4.7 Comparisons In the above subsections, the trans-

mission map refinement schemes were described individu-

ally. The parameter sensitivity of each method was also

discussed in detail. We then empirically tuned the best pa-

rameter(s) for each method as shown in Table 5 and com-

pared the performance of the methods. Figure 22 shows

some refinement results of the five methods for the same

transmission maps. As can be seen, the methods that use

Fig. 21 The average RMSE between ground-truth and guided filtered transmission map using the FRIDA [46]. The RMSE values with respect to ε

when the local patch size is (a) 3 × 3, (b) 11 × 11, and (c) 15 × 15, where ε ∈ {0.001, 0.005, 0.01, 0.015, 0.02}

Table 5 Parameters used for the performance comparison

Common Transmission map refinement

Patch size 15 × 15 Gaussian σs = 5

p% 0.1 Bilateral σs = 15 , σr = 0.1

Selection
criterion of A

Highest intensity Soft matting λ = 10− 4

W0 0.9 Cross-bilateral σs = 15 , σr = 0.1

t0 0.1 Guided filter ε = 0.01
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the hazy image as a cross channel (i.e., soft matting, cross-

bilateral filter, and guided filter) provide sharper transmis-

sion maps than the methods that do not use the hazy image

(i.e., Gaussian and bilateral filters).

Quantitative quality evaluation is also possible because

the ground-truth transmission map of the FRIDA can be

used as the common reference frame. Table 6 compares the

RMSE values obtained by the five methods. The soft mat-

ting performed the best, and the cross-bilateral and guided

filters showed comparable second-best performance.

In addition, we measured the processing time required

for transmission map refinement methods as shown in

Table 7. A PC with Windows 8, 3.60 GHz CPU, 8 RAM,

and MATLAB 2014(a) was used for the evaluation. The

memory requirement was also measured using the peak

and total memory [49]. The results indicate that the

filter-based methods such as bilateral and cross-bilateral

filters are memory-efficient. The guided filter is the

most memory-inefficient, but its time complexity is

low compared to other methods.

1.3.5 Dehazed image construction

After estimating the atmospheric light Â and transmis-

sion map t̂ , the dehazed image J can be readily obtained

from the degradation model as Eq. (6). Specifically, J
is given as

J xð Þ ¼
I xð Þ−Â

max t̂ xð Þ; t0
� �þ Â; ð28Þ

where t0 is a typical value for avoiding a low value of the

denominator. Most DCP-based dehazing methods used

t0 as 0.1 [11–14, 20, 21, 25–27]. Figure 23 shows the

dehazed images obtained using the top three transmis-

sion map refinement methods. As can be seen, the re-

construction of J by Eq. (28) can yield visually pleasant

dehazed images.

When the hazy image contains significant color distor-

tion by abnormal climate such as sandstorm [12], the esti-

mated atmospheric light Â becomes far from achromatic,

and thus, color correction is required at the dehazed

Fig. 22 The result of refined transmission map using five major methods with the patch 15 × 15. a Gaussian filter. b Bilateral filter. c Soft matting.

d Cross-bilateral filter. e Guided filter

Table 6 Comparison of the RMSE values obtained by the five

transmission map refinement methods. The patch sizes set to

15 × 15

RMSE of transmission map

Gaussian Bilateral Soft matting Cross-bilateral Guided filter

0.2109 0.2057 0.1826 0.1971 0.1969
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image reconstruction. In such a case, J is obtained as

follows:

J c xð Þ ¼
Ic xð Þ− Âc

−dc
� �

max t̂ xð Þ; t0
� � þ Âc

−dc
� �

; ð29Þ

where the upper-script c represents the color channel,

c ∈ {r, g, b}, and dc denotes the difference between the

average values of the red and c channels of I. In other

words, the offset in the red channel caused by sandstorm

is subtracted before the construction of the dehazed

image. Figure 24b, c shows the dehazed images obtained

by using the same refined transmission map as shown in

Fig. 22e but with Eqs. (28) and (29), respectively. The ex-

perimental results demonstrate the necessity of the color

correction at the dehazed image construction stage.

Equation (29) can also be easily extended to the images

that appeared greenish or bluish due to other abnormal

weather conditions or improper camera parameter

settings. There are also several works considering the

noise amplification problem during dehazed image

construction [29, 35]. In addition, to obtain high contrast

dehazed images, some image processing techniques can

be applied including as linear stretching [30], gamma cor-

rection [32], and histogram specification [33].

Finally, Fig. 25 shows the time consumption of each

dehazing step. Specifically, using the same experimental

condition mentioned in Section 1.3.4, the average pro-

cessing time of the 30 FRIDA test images was measured.

The transmission map refinement step required the

longest time when the bilateral and cross-bilateral fil-

ters were used, and the dark channel construction

and transmission map estimation steps also required

non-negligible time due to the block-min process in

Eqs. (4) and (9).

1.4 Performance evaluation methods

In Section 1.3, we reviewed the conventional DCP-based

dehazing algorithms by dividing them into subcompo-

nents and discussing various methods used in each sub-

component. Finally, we need to objectively evaluate the

quality of the dehazed images. In this section, we first

Table 7 Comparison of transmission map refinement methods with respect to the time complexity and memory requirements

Image Resolution
Time (s) Total/peak memory(Mb)

Ga Bi Cr Gu Ga Bi Cr Gu

Fig. 24 (1) 600 × 400 4.358 9.900 20.257 2.706 74.713/36.703 76.594/38.619 76.684/38.649 625.209/70.992

Fig. 24 (2) 600 × 525 5.444 12.643 25.737 3.244 94.8314/48.225 97.440/50.761 97.407/50.761 797.781/85.364

Fig. 24 (3) 800 × 457 6.431 14.274 29.088 3.758 132.413/64.056 135.362/67.004 135.495/67.004 963.107/107.111

Fig. 24 (4) 450 × 600 4.715 11.558 22.825 2.908 82.739/42.672 84.963/44.859 85.796/45.286 687.942/74.707

FRIDA 640 × 480 5.167 11.833 24.308 3.142 92.797/47.289 95.290/49.768 95.290/49.767 780.075/83.565

Ga Gaussian, Bi bilateral filter, Cr cross-bilateral filter, Gu guided filter

Fig. 23 Comparison of time consumption for each dehazing step with different transmission map refinement methods
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study the existing metrics developed for evaluating the

quality of dehazed images.

Table 8 lists the metrics used for evaluating the quality

of dehazed images. The most widely used metric is the

ratio of visible edges between dehazed and hazy images

(denoted as Qe) [23, 42, 50, 51]. Since the dehazed image

tends to have sharper details than the hazy image, it is

considered that the higher the Qe value the better the

dehazed image. In order to more precisely measure the

local image sharpness, the ratio of visible edges’ gradi-

ents between the dehazed and hazy images (denoted as

Qg) is also evaluated [23, 42, 50, 51]. In a similar manner,

the higher the Qg value, the better the dehazed image. In

[38, 50, 51], the percentage of pixels which becomes

completely black or completely white after dehazing

(denoted as Qo) is measured. As Qo accounts for the

over-enhancement, the smaller the Qo value, the better

the dehazed image. Other quality metrics developed for

general image restoration problems such as image entropy

[23] and Q-metric [27] are often directly used to evaluate

the quality of dehazed images, which are not discussed in

this section.

One problem is that the reliability of the aforementioned

metrics has not been verified yet. As the quality of the

dehazed image is strongly dependent on the accuracy of

the transmission map, we relate the RMSE (between the

ground-truth and estimated transmission maps) and the

quality metrics of image dehazing. Figure 26 compares the

Fig. 24 The image dehazing results when the transmission maps as shown in Fig. 22 are used. a Hazy images. b Dehazed image using Fig. 22d.

c Dehazed image using Fig. 22c. d Dehazed image using Fig. 22e
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RMSE and quality metrics, where the red curves denote

the fitted functions. Each point indicates the result

for various haze density (β∈) ≤ [0.005, 0.015]. As can

be seen, a general tendency of the quality metrics is

consistent with their definitions (i.e., the RMSE value

tends to decrease as Qe and Qg increases and vice

versa with respect to Qo).

Figure 27 shows the case when Qe and Qg are not

trustworthy. As can be seen in Fig. 27b, d, some false

positive edges are detected and they tend to unnecessar-

ily increase Qe and Qg values. Therefore, the dehazed

images obtained using the Gaussian filter have even

higher Qe and Qg values than those obtained using the

soft matting (in Fig. 26, Gaussian filter: Qe = 1.7311,

Qg = 1.1073; soft matting: Qe = 1.1675, Qg = 0.8774).

Therefore, Qe and Qg should be used considering the

characteristics of the dehazed algorithms. More dedicated

quality evaluation methods need to be developed for

image dehazing.

Lastly, an application-specific quality metric of

image dehazing is also presented [52]. When image

dehazing is developed for computer vision applica-

tions, it is expected that the dehazed image results in

the performance enhancement of computer vision

tasks such as object detection and recognition. Since

detection and matching of feature points play an im-

portant role for such computer vision tasks, the num-

bers of matched feature points are compared between

hazy and dehazed image pairs [52]. It is then assumed

that the more the matched feature points, the better

the image dehazing algorithm. We believe that other

application-specific quality metrics can be devised in

a similar manner.

1.5 Summary

In this paper, we performed an in-depth survey on DCP-

based image dehazing methods. Especially, we classified

relevant research articles related to the DCP according

to the four steps and performed a step-by-step analysis.

Our findings can be summarized as follows.

� Dark channel construction: the local patch size is a

very important parameter for dark channel

construction. Color textures are transferred to the

dark channel when a small local patch is used,

whereas blurry dark channels are obtained when a

large local patch is used. In addition, a physically

Fig. 25 Image dehazing result for the image captured under abnormal weather condition. a Hazy images. b Dehazed image using Eq. (28). c

Dehazed image using Eq. (29)

Table 8 Quality metrics developed for evaluating the quality of

dehazed images

Reference Metric

[23, 42, 50, 51] The ratio of visible edges between input and output
images (Qe), the ratio of visible edges’ gradients between
input and output images (Qg)

[38, 50, 51] Qe, Qg, percentage of pixels which becomes completely
black or completely white after dehazing (Qo)
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less meaningful median filter is found to be not very

effective in dark channel construction.

� Atmospheric light estimation: the atmospheric light

is reliably estimated from the dark channel,

especially when the dark channel is obtained using a

large local patch. Therefore, if the local patch size

used in dark channel construction is not large

enough, it is recommended to use an additional dark

channel with a larger local patch size only for

atmospheric light estimation. The use of local

entropy is also found to be effective in enhancing

the estimation accuracy because atmospheric light

estimation from bright objects can be prevented.

� Transmission map estimation: the under-estimation

problem of the transmission map is addressed. The

conventional gain and offset control methods are

examined, but an adaptive correction scheme is

found to be necessary for precise estimation of the

transmission map, which is missing in the current

literature.

� Transmission map refinement: the performance of

transmission map refinement is improved when a

hazy image is used as a guidance image. The soft

matting method shows the best transmission map

estimation accuracy, and the guided and cross-bilateral

filters show the second-best accuracy. The Gaussian

and guided filters perform best in terms of the

computational complexity, but the guided filter is

most memory-inefficient among the five investigated

refinement schemes.

� Quality metric for image dehazing: the performance

of the image dehazing can be indirectly measured

by comparing the ground-truth and estimated

transmission maps. The conventional quantitative

quality metrics using only the dehazed image are

investigated, but they are found to be not trustworthy

Fig. 26 Comparison of the RMSE (between the ground-truth and estimated transmission maps) and Q-metrics. a Qg. b Qe. c Qo. Estimated transmission

maps are obtained by (top) soft matting, (middle) cross-bilateral filter, and (bottom) guided filter
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enough. An advanced or application-specific quality

metric needs to be developed.

2 Conclusions

In this paper, we performed an in-depth study on one of

the most successful dehazing algorithms: the DCP-based

image dehazing algorithm. Considering the four major

steps of the DCP-based image dehazing, which are atmos-

pheric light estimation, transmission map estimation,

transmission map refinement, and image reconstruction,

we classified recent research articles related to the DCP

according to these four steps and performed a step-by-

step analysis of conventional methods. Moreover, the

conventional methods developed for evaluating the per-

formance of image dehazing were also summarized and

discussed. We believe that our detailed survey and experi-

mental analysis will help readers understand the DCP-

based dehazing methods and will facilitate development of

advanced dehazing algorithms.
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DCP: dark channel prior; FRIDA: foggy road image database; RMSE: root-

mean-square error.
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