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The rapid development in data science and the increasing availability of building

operational data have provided great opportunities for developing data-driven solutions

for intelligent building energy management. Data preprocessing serves as the foundation

for valid data analyses. It is an indispensable step in building operational data analysis

considering the intrinsic complexity of building operations and deficiencies in data quality.

Data preprocessing refers to a set of techniques for enhancing the quality of the raw data,

such as outlier removal and missing value imputation. This article serves as a

comprehensive review of data preprocessing techniques for analysing massive building

operational data. A wide variety of data preprocessing techniques are summarised in terms

of their applications in missing value imputation, outlier detection, data reduction, data

scaling, data transformation, and data partitioning. In addition, three state-of-the-art data

science techniques are proposed to tackle practical data challenges in the building field,

i.e., data augmentation, transfer learning, and semi-supervised learning. In-depth

discussions have been presented to describe the pros and cons of existing

preprocessing methods, possible directions for future research and potential

applications in smart building energy management. The research outcomes are helpful

for the development of data-driven research in the building field.

Keywords: data preprocessing, building operational data analysis, data science, knowledge discovery, building

energy management

INTRODUCTION

As highlighted by the International Energy Agency (IEA), the building sector has become the largest

energy consumer in the world, and now accounts for more than a third of global energy consumption
(IEA, 2019). The potential gains from increasing the energy efficiency of buildings are considerable,
since the operation of a building accounts for 80–90% of the total energy consumption over the whole
life cycle, and almost all types of defects appear at the building operation stage (Ramesh et al., 2010;
Fan et al., 2019b). Thanks to the development in data mining technology and the wide availability of
operational data on buildings, exploring the energy saving possibilities has become easier through
data-driven approaches (Fan et al., 2021b). The knowledge discovered from massive building
operational data can be very helpful in a variety of tasks related to building energy management, such
as predictive modelling, fault detection and diagnosis, and control optimisation (Ramesh et al., 2010).
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Building operational data are typically of poor quality and hence,
data preprocessing is often needed to ensure the reliability of data
analysis using various techniques. It has been widely
acknowledged as a non-trivial task in data analysis and may

account for 80% of the total data mining effort (Cui et al., 2018).
In the building context, data preprocessing can be very

challenging considering the relatively poor data quality and
the intrinsic complexity of building operations. Data
preprocessing is often needed to ensure the validity and
reliability of data analysis results. For example, building
operational data typically have many missing values and
outliers due to faults in data collection, transmission and
storage (Xiao and Fan, 2014; Cui et al., 2018). A data
preprocessing step can be applied to remove outliers and fill
in missing values for more reliable data analysis. In addition, most

data mining algorithms have certain requirements for input data.
For instance, building operational data mainly consist of
numerical data, such as power, temperature, humidity, flow
rates and pressures. However, conventional association rule
algorithms (e.g., A-priori) can only handle categorical data
such as high, medium, and low (Fan et al., 2015b). In this
case, conventional data preprocessing should be conducted to
ensure the compatibility between data and algorithms.

Besides conventional data preprocessing techniques, more
advanced methods are often needed to address the challenges in
buildingmanagement tasks. Taking the fault detection and diagnosis

task for example, the training data for classification model
development should be sufficiently large and properly labelled to
ensure the model performance. In practice, individual buildings may
suffer fromdata shortage problems, i.e., individual buildingsmay not
have sufficient data due to the lack of data accumulation time and
automated data collection systems. More importantly, the
availability of labelled data can be quite scarce considering the
time and costs in manual labelling. In such a case, it may not be
feasible to apply advanced classification algorithms due to the
overfitting and non-convergence problems (Goodfellow et al.,
2016; Fan et al., 2020; Gao et al., 2020). Possible data

preprocessing solutions can be developed based on concepts of
transfer learning, data augmentation and semi-supervised learning.
At present, there is a knowledge gap between advanced data
preprocessing techniques and building data analysis as limited
studies have been conducted in relevant contexts.

This paper serves as a critical review on data preprocessing
techniques for building operational data analysis. It aims to
provide a clear picture of data preprocessing methods for data-
driven building energy management. The remainder of the paper
is organised as follows. The General Framework for Building
Operational Data Preprocessing introduces the general data

preprocessing framework for building operational data analysis.
Data Cleaning Methods for Building Operational Data Analysis,
Data Reduction, Data Scaling, Data Transformation, Data
Partitioning describe representative techniques for typical data
preprocessing tasks. Data Augmentation, Transfer Learning, Semi-
Supervised Learning introduces advanced data preprocessing
techniques developed based on data augmentation, transfer
learning, and semi-supervised learning methods. Conclusions are
drawn as the last section.

THE GENERAL FRAMEWORK FOR
BUILDING OPERATIONAL DATA
PREPROCESSING

Figure 1 summarises typical data preprocessing tasks for building
operational data analysis. In general, building operational data
preprocessing consists of five major tasks, i.e., data cleaning,
reduction, scaling, transformation and partitioning (Xiao and
Fan, 2014; Fan et al., 2015a; Fan et al., 2015b). Data cleaning aims
to enhance the quality of the data by missing value imputations

and outlier removals. Building operational data are typically
stored in two-dimensional data tables, where each row
represents an observation collected at a specific time step and
each column represents a building variable (Fan et al., 2015b). In
such a case, data reduction can be conducted in two directions,
i.e., row-wise for data sample reduction and column-wise for data
variable reduction. Data reduction is applied to reduce data
dimensions and therefore, reducing the computational costs
associated. Data scaling aims to transform the original data
into similar ranges for predictive modelling. As shown in
Figure 1, it can be achieved in three main approaches,

i.e., data range-, distribution-, and structure-based methods.
The aim of data transformation is to arrange the original data
into suitable formats for various data mining algorithms. It
typically includes two tasks, i.e., numerical data transformation
which transforms numerical data to categorical data, and
categorical data transformation which transforms categorical
data into numerical data. Data partitioning aims to divide the
whole data set into different groups based on building operating
characteristics. It is expected to enhance the sensitivity and
reliability of the follow-up analysis (Cheng et al., 2016; Fan
and Xiao, 2018; Fan et al., 2019c).

DATA CLEANING METHODS FOR
BUILDING OPERATIONAL DATA ANALYSIS

Missing Value Imputation
There are two general ways to handle missing values in building
operational data. The first is to simply discard data samples with
missing values as most data mining algorithms cannot handle
data with missing values. Such method is only applicable when
the proportion of missing values are insignificant. The second is
to apply missing value imputation methods to replace missing

data with inferenced values.
As shown in Figure 2, common missing value imputation

methods can be divided into two groups, i.e., univariate and
multivariate methods. The first includes mean imputation,
forward or backward imputation, and moving average
methods. In such a case, missing values are inferenced based
on data characteristics of that variable alone and therefore, are
called univariate methods. The mean or median imputation
method will replace missing values (i.e., white circles in
Figure 2) with the mean or median of that variable. The
forward or backward method simply replaces the missing

value with the previous or next data measurement. These two
methods are straightforward for implementation, yet do not
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consider temporal correlations along time steps and may not
produce reasonable data replacements. Considering that building
operational data are in essence time series, Fan et al. used a simple
moving average method to fill in missing values in a building
operational dataset with a missing value ratio of 1.28% (Fan et al.,
2015b). Yu et al. used the moving average method to handle a

building operational dataset with a missing value ratio of 4%. The
results indicate that the moving average method is effective in
capturing temporal fluctuations in building system operations
when the missing data ratio is small (Fan et al., 2015a; Yu et al.,
2019). To summarize, univariate imputation methods may not
capture cross-sectional and temporal correlations in building
operational data and are only applicable when the missing
data ratios are low (i.e., 1–5%). Previous studies have shown
that when the missing data ratios become higher (i.e., 5–15%),

more sophisticated imputationmethods should be used (Jenghara
et al., 2018).

Multivariate imputation methods can be applied for more
accurate results. Examples of such methods include k-nearest
neighbour (KNN) and regressionmodel-basedmethods. Cui et al.
applied the KNN algorithm for the missing value imputation of

building energy data and missing values are replaced using the
means of k most similar data samples (Cui et al., 2018). Previous
research has shown that the KNN method can achieve
satisfactory performance even with relatively large missing
data ratios (i.e., 5–15%) (Kang, 2013). Regression-based
imputation methods typically adopt machine learning
algorithms to capture cross-sectional or temporal data
dependencies for missing value imputation (Jenghara et al.,
2018). Popular modelling methods include multiple linear

FIGURE 1 | Typical data preprocessing tasks for building operational data analysis.
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regression (MLR), support vector machines (SVM), decision trees
(DT) and artificial neural networks (ANN). Previous studies have
suggested the use of regression-based imputation methods for
handlingmissing values over long time periods (Fan et al., 2015a).
It should be mentioned that there is no universal solution for
replacing missing values in different building operational
datasets. The users should make their decisions considering
the trade-off between accuracy and computation costs.

Outlier Detection
As shown in Table 1, the building field mainly adopts two
methods for outlier detection, i.e., statistical and clustering-
based methods. Most statistical methods are suitable for
detecting outliers in numerical data, such as indoor
temperatures and building power consumptions (Li et al.,
2010). Seem et al. developed a generalised extreme studentised
deviate (GESD) method for identifying outliers in average daily
consumptions and peak power demands (Seem, 2007). The GESD
method is a statistical method which uses conventional statistics

such as standard deviations and means to quantify the boundary
and amount of data outliers. Li et al. adopted the GESDmethod to
identify outliers in building electricity data (Li et al., 2020b). The
GESD method has proved to be computationally efficient in
detecting outliers in building energy data (Fan et al., 2014).
However, it assumes that the data follow a normal
distribution, which may not be the case for actual building
variables. Another popular choice is order-based methods,
which rely on data quantiles for decision-makings (Li et al.,
2010; Yu et al., 2012; Xiao and Fan, 2014; Ashouri et al., 2018;

Yu et al., 2019; Ashouri et al., 2020). For example, data outliers
can be identified if the data fall beyond the range between Q1 −

1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1), where Q1 and Q3 represent
the first and third data quartiles respectively (Yu et al., 2012). Xiao
et al. applied this method to detect 3,012 outliers out of 22,974
building energy measurements (Xiao and Fan, 2014). Similarly,
Ashouri et al. used such method to remove outliers in building
energy data, based on which regression models were developed
for data replacements (Ashouri et al., 2018; Ashouri et al., 2020).

FIGURE 2 | Missing value imputation methods for building operational data.
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Clustering-based methods can be used to detect outliers in two
ways. Firstly, it can be used as a preliminary step to identify data
clusters, based on which statistical methods (e.g., GESD) are then
applied for outlier detection (Khan et al., 2013; Capozzoli et al.,
2015). Secondly, it can be directly used for outlier identification.
The density-based spatial clustering of applications with noise
(DBSCAN) algorithm has been widely used for this purpose
(Capozzoli et al., 2015). Liu et al. developed an efficient
framework to diagnose the energy performance of variable
refrigerant flow systems (Liu et al., 2018). The DBSCAN

algorithm was used to identify transient operation data in
system operations. Previous studies have shown that the
DBSCAN is also effective in identifying outliers in building
energy operational data, e.g., daily energy consumptions (Jalori
and Reddy, 2015a; Jalori and Reddy, 2015b). The DBSCAN
method do not require prior knowledge on cluster numbers.
However, it is sensitive to parameter settings and may require
extensive trial-and-errors for practical applications.

DATA REDUCTION

Data reduction is typically conducted in two directions, i.e., row-
wise for data sample reduction and column-wise for data variable
reduction. Various data sampling techniques can be applied for
row-wise data reduction, such as random and stratified sampling
(Fan et al., 2015b). Random sampling is typically used to simulate
a random process in data sample selection. By contrast, stratified
sampling is performed to maintain the proportions of data
samples corresponding to different categories. For instance,

assuming there are 100 and 50 data samples in the original
data set for category A and B respectively, a stratified
sampling process with a selection rate of 0.7 will randomly
select 70 out of 100, and 35 out of 50 data samples in
category A and B for further analysis. Such techniques can be
applied for sampling time series data as well. In such a case, it is
recommended to transform the original sequence data into
shorter subsequences before data sampling, since direct
sampling may lead to temporal information loss.

There are three main methods of column-wise data variable

reduction. The first is to use domain knowledge to directly select
variables of interests. The second is to use statistical feature
selection methods to select important variables for further
analysis. The third is to adopt feature extraction methods to
construct useful features for data analysis. The details of the latter
two methods are shown in Feature Selection Techniques, Feature
Extraction Techniques.

Feature Selection Techniques
As shown in Table 2, feature selection methods can be broadly
divided into three categories, i.e., the filter, wrapper and

embedded methods. The filter method is a simple, fast feature
selection method, in which the principle is to rank and select
variables according to certain univariate metrics. Note that the
selection of these metrics is critical in the filter method.
Commonly used metrics include the correlation coefficient,
mutual information (MI) and information gain. Pearson’s
correlation coefficient is one of the most popular filter
methods and can measure the direction and strength of the
linear relationship between two variables (Liu et al., 2018).

TABLE 1 | A summary on outlier detection methods for building operational data.

Category Year Method Building

type

Spatial

scale

Temporal

scale

Data

source

Time

span

Ref

Statistical analysis 2007 GESD Not specified Building Daily Building BMS data Not specified Seem (2007)

Statistical analysis 2010 GESD Commercial Building 30 min Building BMS data One year Li et al. (2010)

Statistical analysis 2012 Interquartile range rule Offices and

chemical labs

System 15 min Building BMS data Two years and

five months

Yu et al. (2012)

Statistical analysis 2014 GESD Commercial Building 15 min Building BMS data One year Fan et al. (2014)

Statistical analysis 2014 Interquartile range rule Commercial Building 15 min Building BMS data Eight months Xiao and Fan

(2014)

Statistical analysis 2018 Lower and upper quantiles Residential Equipment Daily, hourly Building EUI survey

database

Two years Ashouri et al.

(2018)

Statistical analysis 2019 Standard deviation Office and

research facility

Equipment Minutely,

hourly

Building BMS data Three years,

two years

Yu et al. (2019)

Statistical analysis 2020 GESD Educational Building Hourly Building BMS data Two years Li et al. (2020b)

Statistical analysis 2020 Lower and upper quantiles Residential Building Daily, hourly Building EUI survey

database

Two years Ashouri et al.

(2020)

Clustering analysis 2015 DBSCAN Office Building Daily, hourly Building BMS data Several months

to years

Jalori and

Reddy (2015a)

Clustering analysis 2015 DBSCAN Office Building Daily; hourly Building BMS data Several months

to years

Jalori and

Reddy (2015b)

Clustering analysis 2018 DBSCAN Testing room System Not specified Experimental data Several months

to years

Liu et al. (2018)

Statistical and

clustering analysis

2013 Boxplot and k-means;

GESD and k-means;

DBSCAN

Office Building Hourly Building BMS data Two months Khan et al.

(2013)

Statistical and

clustering analysis

2015 GESD and k-means;

DBSCAN

Office Building 15 min Building BMS data Winter and

summer data

Capozzoli et al.

(2015)
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Chou et al. adopted six data mining algorithms to predict the
coefficient of performance for refrigeration equipment for
varying amounts of refrigerant. In this process, Pearson’s
correlation coefficient was used to find the critical variables
associated with the refrigeration performance and finally
obtain 10 feature sets (Chou et al., 2014). The MI-based

feature selection is also a frequently used method. Wang et al.
proposed a feature selection method based on MI and grey
clustering analysis (GCA) for chiller fault detection and
diagnosis, which was evaluated on a public database
(i.e., ASHARE RP-1043). The research results indicated that
the proposed method could select useful features for better
classification performance (Wang et al., 2019). Note that the
MI-based method can handle data with both categorical and
numerical variables, while Pearson’s correlation coefficient is
typically applied for numeric variables.

A wrapper method can be used to evaluate the usefulness of

data variables given a certain learning algorithm. Heuristic search
methods are often used, such as stepwise forward and backward
selection methods. Fan et al. adopted the recursive feature
elimination (RFE) method to select input variables for various
algorithms, e.g., MLR, support vector regression (SVR), random
forests (RF), multi-layer perceptron (MLP), boosting tree (BT),
multivariate adaptive regression splines (MARS). The results
showed that the RFE method was able to automatically and
objectively choose the optimal input combination for different

predictive algorithms from different datasets, resulting in more
flexibility in real applications (Fan et al., 2014). Kolter et al.
adopted a simple greedy stepwise forward selection method to
select nine of 35 variables for building energy predictions (Kolter
and Ferreira, 2011). Compared with the filter method, the
wrapper method can take into account the correlations among

data variables and interactions with learning algorithms.
However, it is typically conducted using exhaustive search and
hence, the computation costs associated can be much higher
(Kusiak et al., 2010; Han et al., 2011; Fan et al., 2014).

To reduce the computation cost, the embedded method has
been proposed to optimize the feature selection result through the
model training process. Two popular embedded methods are the
L1 regularisation (based on the least absolute shrinkage and
selection operator, LASSO) and L2 regularisation (based on
ridge regression). These two methods rely on multiple linear
regression for predictive modelling and the feature selection is

achieved by adding a L1 or L2 regularisation terms to the
objective function (Guyon and Elisseeff, 2003; Fan et al.,
2014). Additionally, decision tree is often used as the base
learner for regularisation-based embedded methods, e.g., RF
and C5.0 (Chae et al., 2016; Noh et al., 2017). Chae et al.
employed RF algorithm for feature selection. In such a case,
the importance of a variable can be evaluated based on the
reduction of prediction performance if it is absent in the input
data (Chae et al., 2016).

TABLE 2 | A summary of feature selection techniques for building operational data.

Category Year Method Building

type

Spatial

scale

Temporal

scale

Data

source

Time

span

Data dimensions Ref

Original Processed

Filter 2014 Pearson’s correlation

coefficient

Commercial System Minutely Experimental

data

528 min;

217 min

27 10 Chou et al.

(2014)27

Filter 2018 Pearson’s correlation

coefficient

Testing room System Not

specified

Experimental

data

Several

months to

years

14 4 Liu et al.

(2018)

Filter 2019 MI and GCA-based

method

Not specified System 15 min ASHRAE

database

One year 64 6 Wang

et al.

(2019)

Wrapper 2010 C&RT, CHAID, boosting

tree, RF, MARSplines,

MLP, MLP

ensemble, SVM

Commercial System Minutely Experimental

data

17 days More

than 500

9 Kusiak

et al.

(2010)

Wrapper 2011 Forward selection

method

Multiple Building Monthly Public database Several

years

35 9 Kolter and

Ferreira

(2011)

Wrapper 2014 RFE Commercial Building 15 min Building BMS

data

One year 96 7 sets Fan et al.

(2014)

Embedded 2016 Random forest algorithm Commercial Building Minutely;

15 min

Building BMS

data

One year 20 6 Chae et al.

(2016

Embedded 2017 C5.0 algorithm Commercial Building Not

specified

Building EUI

survey

database

Not

specified

28 10 Noh et al.

(2017)

Filter and

wrapper

2016 Autocorrelation

coefficient, simple

genetic and ANN

methods

Office Equipment 15 min BMS data 151 days 96 13 Le Cam

et al.

(2016)

Filter and

embedded

2019 Pearson’s correlation

coefficient and XGBoost

Office and

research

facility

System Minutely;

hourly

BMS data Three

years; two

years

40; 35 12, 19,

26; 15

Yu et al.

(2019)
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Considering that each of the three methods has its pros and
cons, researchers have tried to combine these methods for more
reliable and accurate results. For instance, Cam et al. applied a
hybrid filtering-wrapping method to select input variables for a
fan power prediction model (Le Cam et al., 2016). Yu et al.
developed a novel feature selection process using a combination
of the filter and embedded methods. A filter method based on
Pearson’s correlation coefficient was used to remove highly
correlated features, and then the Shapley Additive Explanation
(SHAP) values were calculated to obtain the feature set using the
eXtreme Gradient Boosting (XGBoost) algorithm (Yu et al.,

2019).

Feature Extraction Techniques
Unlike feature selection which only selects useful features from
existing variables, feature extraction aims to construct new
features based on linear or nonlinear combinations of existing
variables. Table 3 summarises the main feature extraction
techniques used in the building field. Representative linear
feature extraction techniques include principal component
analysis (PCA) and statistical methods (Li et al., 2010; Wang,
2015; Wahid et al., 2017; Cui et al., 2018; Zhang et al., 2018). As

shown in Figure 3, statistical methods typically calculate
summarising statistics (e.g., the mean, peak, and standard
deviation) for data measurements over a particular time span
as features. Wahid et al. proposed a statistical feature-based
approach to derive features as inputs for building energy
predictions. Four statistical features, i.e., the mean, variance,
skewness, and kurtosis, were extracted from hourly building
power consumption data (Wahid et al., 2017). It should be
mentioned that such methods may result in high information

loss, especially when the time span considered is too large or the
time series are highly fluctuated (Fan et al., 2019a). Zhang et al.
applied PCA to extract linear features to reduce data dimensions
of building energy data. The results validated the usefulness of
such method in constructing meaningful features from data with
sparse distributions (Zhang et al., 2018). The features extracted
are in essence linear combinations of the original data variables.
The PCA-based method can be very useful when there presents
data multicollinearity problem. Note that all the data variables
should be normalized or standardized before PCA to ensure the
result validity. In practice, the number of principal components

or features extracted is determined based on the proportion of
total data variance explained, e.g., the principal components
should be capable of explaining at least 80 or 90% of the total
data variance (Fan et al., 2019a).

To minimize the potential information loss, nonlinear feature
extraction methods have been used for building operational data
analysis (Liu et al., 2019). Fan et al. investigated the value of
unsupervised autoencoders in extracting useful features for short-
term building energy predictions (Fan et al., 2017). The results
showed that the nonlinear features extracted could improve the
accuracy of building energy prediction models, while the other

conventional feature extraction methods (i.e., engineering
knowledge-based, summarising statistics, and structural
information-based methods) may not be able to enhance the
prediction performance given different supervised learning
algorithms. As a more in-depth analysis, Fan et al. further
investigated the power of unsupervised and generative deep
learning in building feature extraction (Fan et al., 2019a). The
results indicated that fully connected autoencoders (AE), one-
dimensional convolutional autoencoders (CAE) and generative

TABLE 3 | A summary of feature extraction techniques for building operational data.

Category Year Method Building

type

Spatial

scale

Temporal

scale

Data

source

Time

span

Data dimensions Ref

Original Processed

Linear 2010 Statistical method Commercial Building 30 min BMS data One year 48 2 Li et al.

(2010)

Linear 2015 PCA Residential Household Yearly Building EUI

survey

database

One year 7 3 Wang

(2015)

Linear 2017 Statistical method Residential Building Hourly Not specified More than

a year

24 4 Wahid

et al.

(2017)

Linear 2018 PCA Not

specified

System Not

specified

BMS data Not

specified

6 4 Cui et al.

(2018)

Linear 2018 PCA Residential Household Hourly Building EUI

survey

database

One year 124 19 Zhang

et al.

(2018)

Nonlinear 2019 AE-based method Office System 5 min;

hourly

Building EUI

survey

database

More than

a month

16 14 Liu et al.

(2019)

Linear and

nonlinear

2017 Deep autoencoder, engineering

knowledge-based, statistical and

structural information-based

methods

Educational System 30 min BMS data One year 151 4 Fan et al.

(2017)

Linear and

nonlinear

2019 AE-based, GAN-based, CAE-

based, PCA and statistical

methods

Educational Building 30 min BMS data One year 48 6 Fan et al.

(2019a)
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adversarial networks (GAN) were valuable for constructing
meaningful features for building system modelling. Compared

with linear feature extraction methods, nonlinear methods can
better capture complicated data interactions in building
operations and thereby, leading to more accurate results in
building system prediction tasks (Fan et al., 2017; Liu et al., 2019).

DATA SCALING

Data scaling is often needed to ensure the validity of predictive

modelling, especially when the input variables have different
scales. The max-min normalisation
(i.e., x′ � x − xmin/xmax − xmin) and z-score standardization
(i.e., x′ � x − μ/σ) are two of the most widely used methods in
the building field, where min(x) and max(x) refer to the
minimum and maximum of variable x, values of the variable,
μ is the mean and σ is the standard deviation.

Ashouri et al. usedmax-min normalisation to transform building
variables into a range between zero and one (Ashouri et al., 2020).
Such method is sensitive to data outliers as their presence may
dramatically change the data range. By contrast, the z-score

standardisation method is less affected by outliers. It is typically
used to reform the variable to be normally distributed with amean of

zero and a standard deviation of one. Yu et al. applied the z-score
standardisation method to normalise operational parameters of an
air handling unit with different scales, e.g., the fan speed ranges from
0 to 1,300 revolution per minute, the static air pressure ranges
between −3.5 to 2 in. (Yu et al., 2019). Theoretically, z-score
standardisation works the best when the data are normally
distributed. The max-min normalisation is recommended when
the building operational data do not conform to a normal
distribution and are free of obvious outliers (Ribeiro et al., 2018).
Another type of data scalingmethodmay change the data structures.
For instance, the original data can bemapped into a new space using

certainmathematical functions, such as the logarithmic, sigmoidal or
arctan functions. Such methods are often used to minimize the
differentials in data variables.

DATA TRANSFORMATION

In the building field, data transformation is mainly used to
transform numerical data into categorical data to ensure the

FIGURE 3 | Linear and nonlinear feature extraction techniques for building operational data.
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compatibility with data mining algorithms. The equal-width and
equal-frequency methods have been widely used due to their
simplicity (Fan et al., 2015b). The equal-width method divides the

range of a variable into several equally sized intervals. The
number of intervals is typically predefined by the user based
on domain knowledge. To ensure the compatibility with
conventional association rule mining algorithms, Xiao et al.
adopted the equal-width method to transform numerical
building variables into categorical ones (Xiao and Fan, 2014).
The equal-frequency method divides the data into several
intervals, each with approximately the same data amounts. For
instance, Li et al. used the equal frequency method to categorise
five numerical variables of a variable refrigerant flow system into
three classes, i.e., low, medium and high (Li et al., 2017).

Compared with the equal-width method, the equal-frequency
method is less sensitive to outliers.

Data transformation can also be applied to transform categorical
variables into numerical ones to facilitate the development of
prediction models. The one-hot encoding method has been
widely applied for this purpose, in which a matrix of L − 1
columns is generated for a categorical variable with L levels (Fan
et al., 2019a). One potential drawback is that it may result in high-
dimensional data when the categorical variables have many levels.

To tackle this issue, deep learning algorithms, such as embedding
networks, can be applied to represent categorical variables using
dense representations. Such method is particular useful for text data,

where individual words are represented as vectors for further
analysis (Goodfellow et al., 2016; Fan et al., 2020).

In addition, data transformation can be applied to reduce
computation costs associated with analysing large-scale time
series data. The symbolic aggregate approximation (SAX)
method has been adopted to transform numerical time series
in building data into meaningful sequences of symbols (Fan et al.,
2015a; Piscitelli et al., 2020; Piscitelli et al., 2021). Such method
could reduce the size of the original data while restricting the
information loss in data transformation. Similarly, dictionary-
based and difference-based methods can also transform time

series data into symbols for subsequent data analysis, e.g., energy
usage pattern recognition and prediction (Kwac et al., 2014;
Gulbinas et al., 2015).

DATA PARTITIONING

Data partitioning aims to divide the whole data into several
groups for in-depth analysis. As shown in Table 4, clustering

TABLE 4 | A summary of data partitioning techniques for building operational data.

Category Year Method Building

type

Spatial

scale

Temporal

scale

Data

source

Time

span

Inputs

(data

or variables)

Ref

Clustering

analysis

2015 EAC Commercial Building 15 min BMS data One year SAX representations of daily

subsequences

Fan et al.

(2015a)

Clustering

analysis

2016 Fuzzy a-means

clustering algorithm

Office Equipment 15 min BMS data 151 days Fan modulation daily

electricity demand profiles

(eight features)

Le Cam

et al. (2016)

Clustering

analysis

2017 k-means, EWKM, PAM,

fuzzy c-means

Not

specified

System 5 s; 3 s Experimental

data

Several

days

Wt, Wout, Win, Qc, COP Li et al.

(2017)

Clustering

analysis

2018 k-means, k-medoids,

hierarchical clustering

analysis

Residential Equipment Daily;

hourly

Building EUI

survey

database

Two years 24 h outdoor temperature

data

Ashouri

et al. (2018)

Clustering

analysis

2020 PAM, ST and AHC Educational Building Hourly BMS data Two years Building daily electricity

usage profiles (24 features)

and symbolic

representations of 20

buildings

Li et al.

(2020b)

Clustering

analysis

2020 EAC & ST & AHC Educational Building Hourly BMS data One year Building daily energy usage

profiles & symbolic

representations of the 40

buildings

Li et al.

(2020a)

Decision tree 2015 CART Office Building 15 min BMS data Several

months

People presence, Outdoor

temperature, Global solar

radiation

Capozzoli

et al. (2015)

Decision tree 2017 Not specified Educational System 30 min BMS data One year Hour, Day type, Month Xiao et al.

(2017)

Decision tree 2018 Not specified Educational System 30 min BMS data One year Hour, Day type, Month Fan and

Xiao (2018)

Decision tree 2019 Unconditional inference

tree algorithm

Public Building Hourly BMS data One year Hour, Day type, Month Fan et al.

(2019c)

Clustering

analysis;

decision tree

2015 k-means, PAM,

hierarchical clustering,

EWKM, fuzzy c-means

clustering; CART

Commercial Building 15 min BMS data One year 24 variables, Month, Day

type, Hour; Month, Day

type, Hour

Fan et al.

(2015b)
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analysis and the decision tree methods have been widely used in
the building field for this purpose. A number of clustering
algorithms have been applied for data partitioning, such as
k-means, hierarchical clustering, entropy weighting k-means

(EWKM), and fuzzy c-means clustering. Cam et al. adopted a
fuzzy c-means clustering algorithm to group daily fan powers into
several clusters, based on which atypical daily profiles were
identified under different working conditions. The results
showed that data partitioning could help to improve the
performance of the electricity forecasting model (Le Cam
et al., 2016). Ashouri et al. applied the k-means clustering
algorithm to group building energy consumption data based
on weather conditions. The results indicated that such
approach could reduce the potential negative impact of
weather conditions on energy data analysis and thereby,

facilitating the effective extraction of meaningful association
rules (Ashouri et al., 2018). In practice, it can be very difficult
to determine the optimal cluster number. One solution is to apply
the concept of ensemble learning to clustering analysis, e.g.,
evidence accumulation clustering (EAC). Fan et al. adopted
the EAC method to partition daily energy profiles into
different groups (Fan et al., 2015a). Although it is more
complex than conventional clustering algorithms, ensemble
clustering can discover clusters with various sizes and shapes
and can automatically determine the optimal cluster number. In
addition, previous researchers have applied partitioning around

medoids (PAM) as the base algorithm for the EAC method, since
it is more robust to outliers and noise, and can accept more
diverse matrices as data inputs (Li et al., 2020a).

Since there is no one clustering method that is universally the
best, another solution is to use multiple clustering methods for
data partitioning. Fan et al. adopted five clustering methods to
partition building operational data and the clustering
performance were evaluated using both internal (e.g., the
Dunn or silhouette indices) and external validation methods
(e.g., the F-measure and normalised mutual information) (Fan
et al., 2015b). Li et al. used the Dunn index to compare the

partitioning results from four chosen clustering methods,
i.e., k-means, EWKM, PAM and fuzzy c-means clustering (Li
et al., 2017). The results indicated that k-means has performance
over the other three for energy pattern identification (Li et al.,
2017). In order to obtain reasonable partitioning results, it is also
recommended to use multiple validation methods to find the
optimal clustering number. Li a et al. adopted five commonly
used metrics (i.e., the Calinski-Harabasz, Davies-Bouldin, Dunn,
silhouette and C-index) to determine the optimal cluster number.
Considering that external validation methods typically require
high level of domain knowledge, internal validation methods can

be more flexible and easier for practical applications.
Decision tree is another popular method for data partitioning.

In general, high-level variables, such as the total building energy
consumptions or cooling loads, are used as outputs, whereas time
variables (e.g.,Month, Day type, andHour) can be used as inputs.
Fan et al. used the classification and regression tree (CART)
algorithm to explore the underlying relationships between time
variables and the power consumption of primary air-handling
units (PAU) and the rules derived from the decision tree were

used for data partitioning (Fan et al., 2015b). Compared with
clustering-based methods, decision tree-based methods are much
easier for user interpretations (Fan and Xiao, 2018; Fan et al.,
2019c). Xiao et al. used the decision tree method for data

partitioning and applied the QuantMiner algorithm to
separately discover the underlying association rules in each
data group (Xiao et al., 2017). Capozzoli et al. applied the
CART algorithm for data partitioning and anomalous building
energy data within each data group were successfully identified
using statistical methods (Capozzoli et al., 2015).

To summarize, decision tree-based methods are more suitable
for partitioning building operational data given a certain high-
level variable (e.g., the total building energy consumptions). By
contrast, clustering analysis-based methods can perform data
partitioning based on multiple data variables. Nevertheless,

post-mining efforts are typically required to understand the
characteristics of each data clusters.

DATA AUGMENTATION

Despite the wide adoption of advanced building automation
systems, individual buildings may still encounter the problem

of data shortage in practice. For instance, the building operational
data may be scarce due to the lack of data accumulation time for
new buildings. Similar data shortage problem may exist for
existing buildings due to the lack of automated data collection
systems. In practice, the amount and quality of training data
should be sufficient to ensure the reliability and generalization
performance of complicated data-driven models. Data
augmentation techniques can be applied as a lightweight
solution to tackle the potential data shortage problem. As
shown in Figure 4, the main idea of data augmentation is to
generate synthetic data that have similar data distributions to the

real data. The synthetic data can then be integrated with actual
data to enhance the generalisation performance of data-driven
prediction models. Data augmentation techniques have been
widely used in the field of computer visions while seldom
explored in the building field (Rashid and Louis, 2019). In
recent year, increasing research efforts have been made to
address the potential of data augmentation in building data
analysis, such as unbalanced fault classification and building
energy prediction tasks.

Affine transformation-based methods, such as rotation, time-
warping, scaling and jittering, are conventional data
augmentation techniques for time series data. Such methods

can create new data samples by introducing additional
variability into existing time series data. As shown in
Figure 5, rotation operations can be applied to create
synthetic sequences by inverting data signs without changing
data magnitudes (Wen et al., 2020). The time-warping method
creates synthetic data by stretching or shortening the original
time series with different warping ratios. The jittering method will
add random noises drawn from normal distributions to each
value in the time series, while the scaling method applies a
random scalar to change data magnitudes. Previous studies
have shown that affine transformation-based methods could
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be used to improve the generalisability of data-driven models.
Rashid et al. adopted four affine-based methods to address the
data imbalance problem in classifying operation states of
construction equipment (Rashid and Louis, 2019). The results
showed that data augmentation methods were capable of

enriching the training data for reliable model development.
The application of such augmentation methods is strongly

dependent on prior knowledge. In other words, researchers
need to determine the conversion function and correctly
define relevant parameters to ensure the validity of synthetic
data (Zhang and Wu, 2019). For example, the jittering method
can generate new data samples by adding Gaussian noise and the

main challenge is to determine a suitable standard deviation to
avoid the introduction of unreasonable data. More importantly,

FIGURE 4 | The main idea of data augmentation for building operational data analysis.

FIGURE 5 | Affine transformation-based data augmentation methods.
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the data diversity introduced by conventional affine-based
methods are rather limited (Um et al., 2017).

To overcome the above limitation, advanced data
augmentation techniques based on generative models have
been proposed. Compared with conventional augmentation
techniques, generative models can produce synthetic data with
broader variations and higher quality. The generative adversarial
networks (i.e., GANs) and variational autoencoders (i.e., VAEs)
are two powerful generative modelling methods based on

artificial neural networks. As shown in Figure 6A, VAEs are
developed in three steps. Firstly, an encoder model is developed to
map the original data into a number of latent normal
distributions represented by a set of means and variances.
Secondly, a latent vector is drawn from latent normal
distributions using random sampling. Thirdly, a decoder
model is developed to transform the latent vector into
synthetic data samples (Chollet and Allaire, 2018; Kornish
et al., 2018). As shown in Figures 6B GAN models are trained
in an adversarial way, i.e., the generator model is trained to create
high-quality synthetic data to fool the discriminator, while the

discriminator is trained to correctly differentiate between actual
and synthetic data. Once converged, the generator of a GAN
model, which typically takes random data drawn from certain
distributions as inputs, can be used to create synthetic data (Frid-
Adar et al., 2018).

Tian et al. proposed a parallel prediction scheme using GANs
to solve the insufficient data problem in building energy
predictions (Tian et al., 2019). The proposed method involved
two stages, i.e., the first was to use a GAN model to generate
synthetic data as supplements to the original data, and the second
was to utilise data mining algorithms to develop prediction

models based on the joint use of synthetic and original data.
The results verified that the synthetic data generated by GANs
indeed had a similar distribution to the original data, and the
prediction models trained on the mixed data could achieve higher
accuracy (Tian et al., 2019). Besides the vanilla version of GAN
and VAE, advanced models can be developed to generate
synthetic data under certain conditions, e.g., conditional
variational autoencoder (CVAE) and conditional generative
adversarial network (CGAN). Such methods can be very useful

in analysing imbalanced data. In such a case, the conditional
generative models can be applied to generate more synthetic data
for minority classes and thereby, enhance the reliability of data-
driven classification models. In practice, GANs can be very
difficult to train and often suffer from the problems of non-
convergence, vanishing gradients and unbalanced learning
between the generator and discriminator. By contrast, VAEs
are much easier to train with an explicitly defined objective
function of minimizing the data reconstruction and

regularisation losses (Kingma and Welling, 2014). More
research efforts should be made to investigate the potentials of
data augmentation in building data analysis, especially in
imbalanced fault classification tasks.

TRANSFER LEARNING

Transfer learning is another promising concept to tackle the
potential data shortage problem in the building field. As shown
in Figure 7, the main idea of transfer learning is to leverage the
knowledge learnt from well-measured buildings (or source
buildings) to facilitate the modelling task in poorly measured
buildings (or target buildings). In principle, there are four
strategies for knowledge transfer, i.e., the data instance-based,
model parameter-based, feature representation-based or relational
knowledge-based strategies (Pan and Yang, 2010). The data
instance-based strategy will select and reweight data in the source
domain to facilitate the data-driven task in the target domain. It is
typically used when the data variables are the same across different

domains. The model parameter-based strategy typically develops a
complicated data-driven model using source domain data, based on
whichmodel parameters are fine-tuned using the target domain data
for problem adaptation. The feature representation-based strategy
can be used when the data variables are different between source and
target domains. In such a case, the common feature subspace is
explored for data integration and problem adaptation. The relational
knowledge-based strategy is generally used to analyse multi-
relational datasets between source and target domains.

In the building field, previous studies mainly investigated the
value of model parameter-based strategy for knowledge transfer.

FIGURE 6 | The main idea of generative model-based data augmentation methods.
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Fan et al. investigated the value of neural network-based transfer
learning for short-term building energy predictions (Fan et al.,
2020). As shown in Figure 8, there are two approaches for
parameter sharing, i.e., using the pretrained model for feature
extraction (Sermanet et al., 2014) or weight initialization (Li et al.,
2020). The authors have designed a set of data experiments to
quantify the transfer learning performance in different data
shortage scenarios and using different knowledge transfer
approaches. The results showed that the proposed transfer
learning method could enhance prediction accuracy by

approximately 15–78%, while the second approach could lead
to more stabilized performance. Ribeiro et al. used the
Hephaestus method to integrate building data with different
distributions and seasonalities (Ribeiro et al., 2018). It is in
essence a model parameter- and data instance-based transfer
learning strategy. The case study results showed that suchmethod
could improve the building energy prediction accuracy by 11.2%.

Transfer learning has great potentials in integrating and
utilising existing building data resources. However, it has not
been comprehensively investigated in the building field. Existing
studies mainly adopted the parameter-based approach for

knowledge transfer. To ensure the validity of knowledge
transferred, the source building used for pertained model
development should be optimized. At present, limited studies
have been performed to address suitable methods and possible
outcomes of source building selection. One possible solution is to
measure similarities between source and target buildings, where
similarity metrics can be developed considering the building type,
total floor area, year of construction, geographical location and
outdoor environment. In addition, other transfer learning

approaches, such as data instance-based and subspace feature
representation-based approaches, may be useful and applicable in
different building data scenarios. For instance, the instance-based
approach seems to be the only choice when the target building
does not have any measurements at all. In such a case, the key
challenge is how to correctly quantify the similarities between
source and target buildings as data weights for source data
utilization. The subspace feature representation-based
approach is applicable when the data variables collected in
source and target buildings are different. In such a case, there

is no way to directly implement the data instance-based or model
parameter-based approaches for knowledge transfer. Suitable
methods should be developed to find meaningful data
subspaces, based on which the data resources between source
and target buildings are integrated for further analysis.

SEMI-SUPERVISED LEARNING

In practice, buildings may have collected large amounts of
operational data, yet only a small subset is properly labelled
for direct supervised learning. In this study, semi-supervised
learning is reviewed as a data preprocessing technique as it
can be used to fully realize the value of unlabelled data.
Taking the fault detection and diagnosis task as examples, the
amount of labelled data is typically limited due to the costs
associated with manual labelling. Consequently, the
classification model developed is of low complexity to avoid to
the overfitting problem. As shown in Figure 9, the main idea of
semi-supervised learning is to effectively utilize the large amounts

FIGURE 7 | The main idea of transfer learning for building operational data analysis.
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of unlabelled data for updating the decision boundary. There are four
main methods of semi-supervised classification: generative model-
based, low-density separation-based, graph-based and self-labelled
methods (Chapelle et al., 2006; Triguero et al., 2015). The generative
model-basedmethod assumes that the unlabelled data follow certain

distributions, e.g., normal distributions (Vandewalle et al., 2013).
The low-density separation-based method assumes that the
underlying decision boundary only lies in low-density regions
(Tian et al., 2012). The graph-based method adopts graphs to
represent original data and the labelling information is
propagated across similar nodes for semi-supervised learning
(Talukdar and Pereira, 2010). Compared with the above-
mentioned methods, the self-labelled method is more convenient
to use, as it imposes less stringent assumptions on data distributions
and does not require extensive modifications to supervised learning
algorithms (Triguero et al., 2015).

Previous studies have explored the advantage of semi-supervised
learning in building data analysis. Dey et al. used semi-supervised
support vector machines to classify faulty and normal patterns of an
HVAC terminal unit (Dey et al., 2018). It is in essence a low-density
separation method and the results validated the use of semi-
supervised learning in building system fault detection. Yan et al.
proposed a semi-supervised learning framework to detect and
diagnose faults in air handling units (AHU), where only a few
labelled training samples were available for supervised learning (Yan

et al., 2018). Fan et al. developed a semi-supervised neural network-
based method for identifying faults in AHU operations (Fan et al.,
2021a). A self-labelling scheme was adopted for semi-supervised
neural network development. A set of data experiments have been
designed to quantify the value of semi-supervised learning. It was

reported that up to 30% performance improvement could be
achieved given limited labelled data. Semi-supervised learning is a
less explored topic in the building. It is of great potential considering
the wide existence of unlabelled building operational data. Further
in-depth studies are suggested to investigate methods and impacts of
semi-supervised learning on typical building operational data
analysis tasks.

CONCLUSION

Data preprocessing is an indispensable step in the knowledge
discovery from massive building operational data. This paper
provides a comprehensive review of both conventional and
advanced data preprocessing techniques in existing literatures.
Conventional data preprocessing tasks, including missing value
imputation, outlier detection, data scaling, data reduction, data
transformation and data partitioning, have been reviewed with
the most widely used methods discussed. Existing studies
indicated that the data preprocessing for building operational

FIGURE 8 | Two common strategies for network-based transfer learning.
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data cannot be fully automated due to significant variations in
building operating characteristics and data quality. At present, it
is more like a trail-and-error process which relies heavily on domain
expertise and practical tasks at hand.More research efforts should be
made towards the automation of building operational data
preprocessing tasks for data analysis efficiency enhancement.

This study also summarizes three advanced data preprocessing
techniques, i.e., data augmentation, transfer learning and semi-
supervised learning for building operational data analysis. The
data augmentation and transfer learning methods can be used to

tackle the potential data shortage problem in individual buildings.
These methods can bring significant values to enhance the reliability
and generalisation performance of data-driven models. Meanwhile,
semi-supervised learning can be used to fully exploit the hidden
value in massive amounts of unlabelled data. It is especially useful in
developing classification models for building systems, as it can be
very expensive and labour-intensive to determine labels for building
operational data, e.g., whether a data sample corresponds to normal
or faulty operations. Such research topics are relatively new in the

building field. Possible in-depth analyses are suggested for the
efficient integration and utilisation of building data resources.
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