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A Review on Deep-Learning Algorithms for Fetal
Ultrasound-Image Analysis

Maria Chiara Fiorentino, Francesca Pia Villani, Mariachiara Di Cosmo, Emanuele Frontoni, and Sara Moccia

Abstract—Deep-learning (DL) algorithms are becoming the
standard for processing ultrasound (US) fetal images. Despite
the large number of survey papers already present in this
field, most of them are focusing on a broader area of medical-
image analysis or not covering all fetal US DL applications.
This paper surveys the most recent work in the field, with a
total of 145 research papers published after 2017. Each paper
is analyzed and commented from both the methodology and
application perspective. We categorized the papers in (i) fetal
standard-plane detection, (ii) anatomical-structure analysis and
(iii) biometry parameter estimation. For each category, main
limitations and open issues are presented. Summary tables
are included to facilitate the comparison among the different
approaches. Publicly-available datasets and performance metrics
commonly used to assess algorithm performance are summarized,
too. This paper ends with a critical summary of the current
state of the art on DL algorithms for fetal US image analysis
and a discussion on current challenges that have to be tackled
by researchers working in the field to translate the research
methodology into the actual clinical practice.

Index Terms—Fetal ultrasound processing, deep learning, sur-
vey, biometry estimation, plan detection, anatomical-structure
analysis

I. INTRODUCTION

ULTRASOUND (US) imaging is an imaging modality
widely used for the diagnosis, screening and treatment

of a large number of diseases, due to its portability, low
cost and non-invasive nature [1]. In the years, US imaging
has turned out to be the preferred checkup method during
pregnancy [2], [3]. It is commonly used to evaluate fetus’s
growth and development, as well as to monitor pregnancy and
assess clinical suspicion [4].

From the clinician perspective, analysing US images may
be challenging due to the presence of artifacts, such as
acoustic shadows, speckle noise, motion blurring and missing
boundaries, which are produced as the result of the complex
interaction between US waves and mother and fetal biological
tissues [5].

During the last decades, deep learning (DL), and in partic-
ular convolutional neural networks (CNNs), have undergone
an increasing role in fetal US image analysis to offer decision
support to clinicians, and today an extensive literature exists.
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Università Politecnica delle Marche and the Department of Political Sciences,
Communication and International Relations, Università degli Studi di Macer-
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Survey papers in the field have been published in the last
years, even if a number of them focuses on the broader area
of medical-image analysis [6] or surveys also DL algorithms
for US image analysis outside the fetal field [7], [8], [9], [10],
[1]. Survey papers specifically dealing with US fetal images
include: [11], [12], [13], where segmentation and classification
algorithms are covered; [14], [15] that survey methods for
fetal cardiology images; [16], [17] that briefly summarize DL
methods for fetal abnormality detection, and [18] that analyzes
research papers from a clinical perspective.

An updated review that surveys the most recent work in the
field of fetal US image analysis with DL could be a valuable
and compact source of information for young researchers, and
a reference overview document for those already working in
the field. With this aim, our review starts describing publicly-
available datasets in the field, as well as commonly used
metrics for algorithm performance assessment (Sec. II). As
shown in Fig. 1, research papers ranging from fetal standard-
plane detection (Sec. III) to anatomical-structure analysis
(Sec. IV) and fetal-biometry estimation (Sec. V) are surveyed.
These sections mirror the steps of what is currently done in
clinical practice to evaluate fetus well-being. A miscellaneous
section (Sec. VI) is also included, collecting papers on emerg-
ing tasks, from less common fetus evaluation applications
to probe movement control. For each section, methods are
described highlighting pros and cons. Limitations and open
issues are further discussed. Summary tables are included to
report information on training and testing datasets, as well
as achieved performance. A discussion on future directions
and open challenges in the field of fetal US analysis with DL
concludes this review (Sec. VII).

A. Survey strategy

Our survey strategy started with the following research
questions:

• Which are the most investigated tasks addressed using
DL in the field of fetal US image analysis?

• Which are the main challenges in regard to fetal exami-
nation that are currently tackled by using DL?

• Are the commonly-used datasets sufficient enough for
robust DL algorithm development and testing?

• Which are open issues that still have to be addressed by
DL in the field?

With these questions in mind, we outlined a set of keywords
for our survey, including: classification, detection, segmenta-
tion, fetal, ultrasound, deep learning combined together with
terms related to fetal examination and organs. The research
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Fig. 1. Summary of the tasks surveyed in this paper.

TABLE I
CONTINGENCY TABLE.

Gold Standard
Yes No

Algorithm Yes TP FP
result No FN TN

databases were IEEEXplore, Scopus, SpringerLink, Sciencedi-
rect and Pubmed. For each resulting paper, an extensive review
of its reference list was performed. To better focus on the most
recent and interesting trends and to not overlap with previous
review work, we analysed indexed journal and conference
papers published from 2017.

A summary of the characteristics of the papers analyzed in
this review is shown in Fig. 2.

II. PERFORMANCE METRICS AND PUBLICLY-AVAILABLE
DATASETS

This section presents the quantitative metrics used to as-
sess DL algorithm performance as well as publicly-available
datasets for algorithm development and testing.

A. Performance metrics

Fetal US DL algorithms are evaluated using different met-
rics according to the addressed task. For classification tasks,
performance is assessed by means of the contingency table
(Table I), with True Positives (TP ), True Negatives (TN ),
False Negatives (FN ) and False Positives (FP ). Popular
classification metrics computed from the contingency table
are: (1) Accuracy (Acc) = number of correct predictions
(TP + TN ) divided by the total number of predictions (N );
(2) Recall (Rec) = fraction of actual positives which are
correctly identified; (3) Specificity (Spec) = fraction of actual
negatives which are correctly identified; (4) Precision (Prec)
= proportion of positives which are identified. The F1-score
(F1) metric, which is equal to the harmonic mean of Prec and
Rec, is also often adopted, especially for imbalanced datasets.
These metrics can be computed at patch, image or patient
level.

Other popular metrics are top-1 and top-3 error rates. For
top-1 error rate, only the top class (i.e., the one with the highest
output probability) is compared with the target label. In the
case of top-3 error rate, the target label is compared with the

TABLE II
PERFORMANCE METRICS.

Index Description

Accuracy (Acc) TP+TN
N

Recall (Rec) TP
TP+FN

Specificity (Spec) TN
TN+FP

Precision (Prec) TP
TP+FP

F1-score (F1) 2∗Prec∗Spec
Prec+Spec

top-1 error rate / top-3 error rate Top-1 and top-3 errors

AUC Area Under the Receiver Operating
Characteristic curve

AUC by Judd AUC variant from Judd et al. [19]

Dice similarity coefficient (DSC) Eq. 1

Intersection Over Union (IoU ) Eq. 2

Hausdorff distance (HD) Eq. 3

mean Average precision (mAP ) Eq. 5

Mean absolute error (MAE) Eq. 7

Difference (DF ) Eq. 8

Mean squared error (MSE) Eq. 6

Euclidean distance (ED) Eq. 9

Kullback-Leiber divergence (DKL) Eq. 10

Normalized Scanpath Saliency
(NSS)

Eq. 11

top 3 predictions (i.e., the 3 with the highest probability). In
both cases, the top score is computed as the number of times
the predicted label matched the target label, divided by N .

The receiver operating characteristic (ROC) curve, which
shows the performance of a binary classifier as function
of its cut-off threshold, is often reported. The area (AUC)
under the ROC is used as metric and is interpreted as the
probability that the DL model ranks a random positive
example more highly than a random negative example. The
higher the AUC (close to 1), the better the model performance.

As regard segmentation tasks, model performance is com-
monly evaluated by means of the Dice similarity coefficient
(DSC) and Intersection over Union (IoU ). DSC is equivalent
to F1 and can be defined as:

DSC =
2|X ∩ Z|
|X|+ |Z|

=
2TP

FP + FN + 2TP
= F1 (1)



3

(a) (b)

(c) (d)

Fig. 2. Summary of the papers included in this paper considering: (a) addressed task, (b) year of publication, (c) contribution (journal/ conference), (d)
percentile according to CiteScore rank 2020 (only for journal papers). SPD = standard-plane detection, ASA = anatomical-structure analysis, BPM = biometry
parameter estimation

TABLE III
PUBLICLY AVAILABLE DATASETS FOR THE DEVELOPMENT AND TESTING OF DEEP-LEARNING ALGORITHMS FOR FETAL-ULTRASOUND IMAGE ANALYSIS.

FOR PERFORMANCE METRICS REFER TO TABLE II. *: FOR THE HC18 CHALLENGE DATASET, ONLY THE TOTAL NUMBER OF SUBJECTS (551) IS
REPORTED. MVP: MAXIMUM VERTICAL POCKET.

Name
Task(s) Training set size Testing set size Annotator(s) Performance metrics

(images/ patients) (images/ patients)

HC18 challenge dataset
(2018)

Head-circumference es-
timation

999 2D/ * 335 2D/ * 2 ADF [mm], DF [mm],
DSC [%], HD [mm]

A-AFMA ultrasound
challenge dataset (2021)

1) Amniotic fluid and
maternal bladder detec-
tion 2) MVP detection

- - - mAP [0-1]

Burgos et al., [20] (2020) Standard plane detection
of abdomen, brain, heart,
femur, maternal cervix
and other

7129 2D/ 896 5271 2D/ 896 1 top-1 error rate [%], top-
3 error rate [%], Acc [%]

where X and Z are the predicted and the labeled masks,
respectively. The IoU is defined as:

IoU =
|X ∩ Z|
|X ∪ Z|

(2)

The two metrics are positively correlated, however IoU tends
to penalize single instances of bad segmentation more than
DSC, which tends to measure something closer to average
performance.

The Hausdorff distance (HD), which measures how far the
labeled segmentation mask is from the predicted segmentation,
can be used, too:

HD(X,Z) = max(h(X,Z), h(X,Z)) (3)

where

h(X,Z) = max
x∈X

max
z∈Z
||x− z|| (4)

For localization tasks, performance is assessed by means
of the average precision (AP ), which is the Prec averaged
across all Rec values between 0 and 1. AP may be seen as
the area under the precision-recall curve. The Prec and Rec
are commonly computed at various thresholds of IoU between
the predicted and labeled bounding box. For detection tasks,
where multiple structures have to be detected in the image,
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mean AP (mAP ) is used:

mAP =

∑K
i=1APi
K

(5)

where K is the number of classes.
For regression tasks, where a numerical value has to be

predicted (e.g., for biometry estimation), popular metrics are:
• Mean squared error (MSE), which computes the average

squared error between the predicted (yi) and actual values
(ŷi):

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (6)

Due to its differentiable nature, it is often used as loss
function during training.

• Mean absolute error (MAE), sometimes referred to as
mean absolute deviation, defined as the average of the
absolute distance between yi and ŷi:

MAE =
1

N

N∑
i=1

|yi − ŷi| (7)

MAE is reported along with MSE because it is more
robust to outliers.

• Difference error (DF ):

DF =
1

N

N∑
i=1

(yi − ŷi) (8)

• Euclidean distance (ED):

ED =
1

N

N∑
i=1

√
(yi − ŷi)2 (9)

Regression metrics can be also used to evaluate mask
contours obtained with segmentation algorithms.

Recently, researchers are focusing on visual saliency predic-
tion (i.e., predicting human eye fixations on images in the form
of a saliency maps). Models for saliency prediction can be
evaluated using a variety of performance metrics, as described
in [21]. Among these, in the field of US fetal image analysis
the Kullback-Leiber divergence (DKL) is often used, which is
defined as:

DKL(S||FD) =
T∑
i=1

FDi log(ε+
FDi
ε+ Si

) (10)

where S and FD are the (predicted) saliency map and (ground
truth) continuous fixation map distribution, respectively, ε is
a regularization constant and T is the total number of fixated
pixels.

The Normalized Scanpath Saliency (NSS) [22] is used, too.
The NSS is computed as:

NSS(S, FB) =
1

T

T∑
i=1

SiF
B
i (11)

where FB is the ground truth (binary) fixation location map
and

S =
S − µ(S)
σ(S)

(12)

Fig. 3. Visual samples of the most common fetal standard planes.

An AUC variant from Judd et al. [19] is also used. Here
the AUC is built considering TP and FP rates defined as
follows. For a given threshold, the TP rate is the ratio of true
positives to the total number of fixations, where true positives
are saliency map values above threshold at fixated pixels. The
FP rate is the ratio of false positives to the total number of
saliency map pixels at a given threshold, where false positives
are saliency map values above threshold at unfixated pixels.

Table II summarizes the performance metrics described in
this section.

B. Publicly-available datasets

Collecting and sharing high-quality annotated fetal US
datasets is not trivial. Labeling large datasets can take a
significant amount of time, which may vary according to the
task (e.g., pixel-level labeling for segmentation is way more
time-consuming than image-level labeling for classification).
Data privacy and protection concerns further constitute a
barrier to data sharing. To attenuate these issues, international
scientific organizations are working to collect and share pub-
licly available databases to encourage algorithm development
and fair comparison among algorithms. In the framework of
the IEEE International Symposium on Biomedical Imaging
(ISBI) and the International Conference on Medical Image
Computing and Computer Assisted Intervention (MICCAI),
three annotated datasets have been released in the form of a
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Grand Challenge1.
The first challenge in time was the Challenge US: Biometric

Measurements from Fetal Ultrasound Images [23], held in
conjunction and with the support of ISBI in 2012. The goal
of the challenge was to automatically segment fetal abdomen,
head and femur for measuring standard biometric parameters.
Despite the recognized value of the dataset, its size (270
images) does not allow researchers to develop generalizable
DL algorithms.

In 2018, with the release of the HC18 challenge
dataset2 [24], the potential of DL for biomerty parameter
estimation has been unlocked. The challenge was to develop
algorithms to automatically measure fetal head circumference
(HC), with 999 and 335 2D US images for training and
testing, respectively. Images were annotated by an experienced
sonographer and a medical researcher.

During ISBI 2021, the A-AFMA ultrasound challenge3 was
organized. The goals were to: 1) detect amniotic fluid and
maternal bladder, 2) identify the appropriate landmarks for
maximum vertical pocket (MVP) measurement, as to assess
amniotic fluid volume.

Recently, a large dataset4 of routinely acquired maternal-
fetal screening US images was made publicly available in [20].
It consists of 7129 2D training images from 896 patients,
categorized into 6 classes: abdomen, brain, femur, thorax,
maternal cervix and other. Images were manually labeled by
an expert fetal clinician. A test set, which consists of 5271
2D images from 896 patients, was provided. The goal was to
boost the research in the field of fetal standard-plane detection.

The publicly-available datasets for the development of DL
algorithms for fetal US are summarized in Table III

III. FETAL STANDARD-PLANE DETECTION

According to the International Society of Ultrasound in Ob-
stetrics and Gynecology (ISUOG) guidelines [53], the use of
standardized planes of acquisition improves the reproducibility
of (i) fetal biometry assessment and (ii) fetus evaluation. The
planes that are typically acquired to extrapolate biometric
measurements are fetal abdomen (FASP), brain (FBSP) and fe-
mur (FFESP) standard planes. FBSP involves trans-ventricular
(FVSP) and trans-thalamic (FTSP) standard planes. Fetus
evaluation further requires the acquisition of maternal cervix,
fetal heart (including 4 chamber view (4CH), left ventricular
outflow tract (LVOT), right ventricular outflow tract (RVOT),
three-vessel trachea (3VT), three-vessel view (3VV)), fetal
trans-cerebellum standard plane (FCSP), fetal facial standard
plane (FFSP) and lumbosacral spine plane (FLVSP). FFSP
includes axial (FFASP), coronal and sagittal planes. Visual
samples of the most common standard planes are shown in
Fig. 3.

In the clinical practice, the acquisition of a standard plane is
performed manually by clinicians, which move the US probe
across the mother’s body until specific anatomical landmarks

1https://grand-challenge.org/challenges/
2https://saras-mesad.grand-challenge.org/
3https://a-afma.grand-challenge.org/
4https://zenodo.org/record/3904280

(a) Classification

(b) Classification + attention

(c) Detection

(d) Deep reinforcement learning (DRL)

Fig. 4. Most common deep-learning strategies to fetal standard-plane
detection. FASP = fetal abdomen standard plane, FBSP = fetal brain standard
plane, FFSP = fetal facial standard plane, FFESP = fetal femur standard plane.

are visible in the image. Clinical expertise is required to
face the high intra-class variability of US standard planes,
which is due to, among the others, different gestational weeks,
equipment vendors and US-probe angle [34]. Moreover, the
anatomical structures that characterize a specific plane could
be common to other planes. DL algorithms may be a valuable
tool to tackle these challenges. Table IV summarizes the DL
algorithms for standard-plane detection that are surveyed in
this section. An overview of the most common strategies
adopted in the literature is shown in Fig. 4.

One of the first DL algorithms for scan plane detection was
proposed by [25], where the goal was to detect FASP. The
algorithm consists of a first CNN that localizes fetal abdomen
and a second one that detects the presence in the localized
abdomen of stomach bubble and umbilical vein. The algorithm
is tested on 2606 fetal abdominal images from 219 US videos,



6

TABLE IV
SUMMARY OF DEEP-LEARNING ALGORITHMS FOR FETAL STANDARD-PLANE DETECTION (FOR PERFORMANCE METRICS REFER TO TABLE II). FASP =

FETAL ABDOMEN STANDARD PLANE, FFSP = FETAL FACIAL STANDARD PLANE, FFASP = FETAL FACE AXIAL STANDARD PLANE, 4CH = FOUR
CHAMBER VIEW, FBSP = FETAL BRAIN STANDARD PLANE, LVOT = LEFT VENTRICULAR OUTFLOW TRACT, 3VV = THREE-VESSEL VIEW, RVOT =
RIGHT VENTRICULAR OUTFLOW TRACT, FFESP = FETAL FEMUR STANDARD PLANE, FTSP = FETAL TRANS-THALAMIC STANDARD PLANE, FCSP =
FETAL TRANS-CEREBELLUM STANDARD PLANE, FLVSP= FETAL LUMBOSACRAL SPINE STANDARD PLANE, FVSP = FETAL TRANS-VENTRICULAR

STANDARD PLANE. PERFORMANCE METRICS ARE EXPRESSED AS THE AVERAGE VALUE OVER THE CLASSES. *: ONLY THE TOTAL NUMBER OF SUBJECTS
IS REPORTED.

Paper (Year) Plane Training set size Test set size Annotators Performance metrics

Wu et al., [25] (2017) FASP 8072 2D (492 videos) (-) 2606 2D (219 videos) (66
subjects)

3 AUC=0.99, Acc=0.98,
Rec=0.96, Spec=0.97

Yu et al., [26] (2017) FFSP 4849 2D 2418 2D Few AUC=0.99, Acc=0.96,
Prec=0.96, Rec=0.97,
F1=0.97

Qu et al., [27] (2020) FBSPs 15314 2D (155 subjects*) 3828 2D (155 subjects*) Few Acc=0.93, Prec=0.93,
Rec=0.92, F1=0.93

Burgos-Artizzu et al., [20]
(2020)

Multiple 7129 2D (896 subjects*) 5271 2D (896 subjects*) 1 6.2% top-1 error, 0.27% top-
3 error, Acc = 0.94

Kong et al., [28] (2018) 4CH, FASP, FBSP, FFSPs 17036 2D 5678 2D 1 Prec = 0.98, Rec = 0.98,
F1 = 0.98

Liang et al., [29] (2019) 4CH, FASP, FBSP, FFASP,
coronal FFSP

17840 2D 4455 2D - Acc = 0.99, Rec = 0.96,
Spec = 0.99, F1 = 0.95

Sundaresan et al., [30]
(2017)

4CH, LVOT, 3VV 10000 2D (10 subjects) 2178 2D (2 subjects) 1 error rate = 0.23

Meng et al., [31] (2020) 4CH, FASP, LVOT, RVOT,
FFESP, Lips

12000 2D 5500 2D Few F1=0.77, Rec=0.77,
Prec= 0.78

Montero et al., [32] (2021) FBSP 6498 2D 2249 2D Few Acc = 0.81, AUC = 0.86,
F1 = 0.80

Chen et al., [33] (2017) FASP, FFASP, 4CH 37376 2D (900 subjects) 13248 2D (331 subjects) 1 Acc=0.87, Prec=0.71,
Rec=0.64, F1=0.64

Pu et al., [34] (2021) FASP, FTSP, FCSP, FLVSP 68296 2D (1199 videos) 16740 2D (244 videos) Few Acc = 0.85, Prec = 0.85,
Rec = 0.85, F1 = 0.85

Schlemper et al., [35] (2019) Multiple 122233 2D 38243 2D Few Acc = 0.98, Rec = 0.93,
Prec = 0.93, F1 = 0.93

Cai et al., [36] (2018) FASP 1292 2D (25 subjects) 324 2D (8 subjects) Few Prec = 0.96, Rec = 0.96,
F1 = 0.96

Cai et al., [37] (2020) FASP, FBSP, FFESP 5-fold cross validation on
280 videos

5-fold cross validation on
280 videos

1 Prec = 0.98, Rec = 0.85,
F1 = 0.87

Lee et al., [38] (2021) Multiple 1504 2D 752 2D - Prec = 0.75, Rec = 0.73,
F1 = 0.74

Dong et al., [39] (2019) 4CH 5626 2D 1406 2D Few mAP = 0.81

Lin et al., [40] (2018) FBSP 4800 2D 1153 2D 1 AP=0.79, Rec=
0.85,Prec= 0.87

Lin et al., [41] (2019) FBSP 1451 2D 320 2D Few mAP= 0.93

Zhang et al., [42] (2021) FASP, FBSP, 4CH 2460 2D 820 2D 2 mAP=0.95, Acc=0.95,
Prec= 0.95, Rec=0.93

Baumgartner et al., [43]
(2017)

Multiple 140827 2D and 2438 videos
(2694 subjects*)

109165 2D and 200 videos
(2694 subjects*)

45 Prec = 0.77, Rec = 0.90
F1 = 0.80 and IoU = 0.62

Yaqub et al., [44] (2017) FVSP 15870 2D 3968 2D Few Acc=0.95

Gao et al., [45] (2020) FTSP, FCSP 34586 2D from 441 videos
(147 subjects)

60 videos (20 subjects) 2 mAP=0.87

Chen et al., [46] (2019) Multiple 140827 2D and 2438 videos
(2694 subjects*)

109165 2D and 200 videos
(2694 subjects*)

45 Prec=0.89, Rec=0.90,
F1=0.89

Tan et al., [47] (2019) Multiple 22757 2D (2000 subjects*) 5737 2D (2000 subjects*) - Acc=0.70

Dou et al., [48] (2019) FBSPs 330 3D (330 subjects) 100 3D (100 subjects) 1 DF=3.03 mm, θ=9.36◦

Yang et al., [49] (2021) Multiple 1281 3D 354 3D 4 DF=2.31 mm, θ=10.36◦

Yang et al., [50] (2021) Uterine standard planes 539 3D (476 subjects*) 144 3D (476 subjects*) 4 DF=1.82 mm, θ=7.20◦

Li et al., [51] (2018) FVSP, FCSP 50 3D (50 subjects) 22 3D (22 subjects) 1 mean plane centre difference
= 3.44 mm, rotation angle =
11.05◦

Tsai et al., [52] (2021) Middle sagittal plane 112 3D 28 3D - ED = 0.05
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reaching a mean AUC of 0.99, along with mean Acc, Rec,
Spec of 0.98, 0.96 and 0.97, respectively. Despite the promis-
ing results, two separate CNNs are needed for localization and
classification, respectively, inevitably increasing training and
deployment time.

A number of algorithms tackles the problem of fetal stan-
dard plane detection as a mere classification problem. In [26],
FFSP is detected by fine tuning a shallow classification CNN
pre-trained on ImageNet5. The approach is tested on 2418
images reaching a mean AUC = 0.99 and Acc, Prec, Rec
and F1 of 0.96, 0.96, 0.97, 0.97, respectively. A shallow
classification CNN is also used in [27] to automatically
identify FBSPs. The dataset consists of 19142 images, which
are augmented and split in 5 folds to test the algorithm. The
CNN reaches Acc, Prec, Rec and F1 of 0.93, 0.93, 0.92,
0.93, respectively. In [20], state-of-the-art CNNs are compared
to classify 6 planes (FASP, FTSP, FCSP, FVSP, and thorax
standard planes). Testing is performed on a dataset of 5271
images (896 patients). The authors made the dataset available
to foster research in the field (Sec. II, Table III). The best
performing CNN results to be DenseNet-169, with top-1 error,
top-3 error and average class Acc of 6.20%, 0.27% and 0.94,
respectively. A dense network is also used in [28] to detect
4CH, FASP, FBSP, FFSPs. A total of 5678 US images are
used as testing set, reaching Prec, Rec and F1 of 0.98, 0.98
and 0.98, respectively. Similarly, the work in [29] proposes
an automatic fetal standard plane classification of 4CH, FASP,
FBSP, FFASP, and coronal FFSP, based on DenseNet. The
network is trained in conjunction with a placenta transferring
dataset in order to discover and learn potential relationship
between the dataset and possibly avoid overfitting. A test set
of 4455 images is used, reaching Acc, Rec, Spec and F1 of
0.99, 0.96, 0.99 and 0.95, respectively. In [30], the detection of
heart fetal standard planes (4CH, LVOT, 3VV and not heart)
is addressed with a Fully Convolutional Network (FCN), that
aims at segmenting the center of fetal heart and classifying
the cardiac views in a single step. A total of 2178 frames is
used as test set, reaching an error rate of 0.23. A generative
adversarial network (GAN) is used in [32] to improve FBSP
classification by means of ResNet. A total of 2249 images is
used to validate the approach, reaching an AUC of 0.86, along
with Acc and F1 of 0.81 and 0.80, respectively. Cross-device
classification of 6 anatomical standard planes (4CH, FASP,
LVOT, RVOT, FFESP, Lips) is performed in [31]. An improved
feature alignment is used to extract discriminative and domain-
invariant features across domains. The performance obtained
in the target domain results in average in F1, Rec and Prec
of 0.77, 0.77 and 0.78, respectively.

All these approaches work with 2D images. A couple of
research papers extends the classification of standard planes to
US video clips. A DL framework is proposed in [33] to detect
FASP, FFASP and 4CH. To process the temporal information
encoded in the US videos, the framework makes use of a long
short-term memory (LSTM). For performance evaluation, 331
videos (13247 images in total), one from a different subject,
are used. The mean Acc, Prec, Rec and F1 in detecting the

5https://www.image-net.org/

planes are 0.87, 0.71, 0.64, 0.64 respectively. Similarly, in [34],
a classification CNN and a recurrent neural network (RNN)
are used to detect FASP, FTSP, FCSP, and FLVSP. A total
of 224 videos consisting of 16740 frames in total is used to
evaluated the method: mean Acc, Prec, Rec and F1 of 0.85,
0.85, 0.85, 0.85 are obtained, respectively.

To improve standard-plane detection performance and in-
crease the interpretability of the DL results, attention mech-
anisms, which endow CNNs to better focus on the most
discriminating regions in the US image, have been exploited.
The work in [35] is among the firsts to add a self-gated soft-
attention mechanism to a CNN for the detection of 13 US
standard planes. The framework is tested on 38243 images,
reaching mean Acc, Rec, Prec and F1 of 0.98, 0.93, 0.93
and 0.93, respectively. Another popular solution in the field
is to include sonographer gaze attention mechanism. In [36],
a multi-task framework relying on SonoNet is proposed for
FASP detection. The framework is trained to predict both stan-
dard plane and sonographer visual saliency prediction. To test
the algorithm, 8 videos (324 frames in total), acquired from
a different subject, are used. The inclusion of sonographer
visual saliency prediction helps improving the standard-plane
detection performance, achieving Prec, Rec and F1 equal to
0.96, 0.96 and 0.96, respectively. In [37], a similar approach
is proposed, which further processes US temporal clips via
a temporal attention module. The considered planes are the
FASP, FBSP and FFESP. A total of 280 videos, lasting from
3s to 7s, is split following five-fold cross-validation, reaching
a mean Prec, Rec and F1 of 0.89, 0.85 and 0.87, respectively.

Multiple data augmentation methods are exploited in [38]
to improve standard plane classification. A three-fold cross-
validation on 1129 standard plane frames (14 categories) and
1127 background images is used to verify the approach. A
Prec = 0.75, Rec = 0.73 and F1 = 0.74 are obtained.

Using classification CNNs may lead to inaccurate detection
of standard planes since it does not involve the detection of any
specific anatomical landmarks. This, in fact, does not reflect
the way clinicians detect standard planes. A different ap-
proach investigated in the literature is to accomplish standard-
plane detection through anatomical-structure detection. This
approach is followed in [39], where a classification CNN
identifies images of the 4CH and a multi-task SSD detects
the key anatomical structures of the plane as well as the
US gain parameter and zoom of the image. The algorithm
is validated by means of a five-fold cross-validation on 7032
images. The authors obtain a mAP of 0.81. A Faster R-
CNN is used to assess the presence of fetal head US images’
specific anatomical structures in [40]. A total of 1153 images
is used for testing, achieving AP , Rec and Prec of 0.79,
0.85, 0.87, respectively in detecting the structures of interest. A
similar approach is followed in [41]. A multi-task framework,
consisting of a Faster R-CNN with an additional classification
branch, is used to detect 6 key anatomical structures and
evaluate if the head is centered in the image. A mAP of 0.93
is obtained on 320 test images. A multi-task framework is
also used in [42], in which a CNN inspired by Faster R-CNN
is used to both predict the presence of specific anatomical
structures in abdomen, brain and heart images and classify
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TABLE V
SUMMARY OF DEEP-LEARNING ALGORITHMS FOR ANATOMICAL-STRUCTURE ANALYSIS (FOR PERFORMANCE METRICS REFER TO TABLE II). *: ONLY

THE TOTAL NUMBER OF SUBJECTS IS REPORTED.

Paper (Year) Organ Training set size Test set size Annotators Performance metrics

Dong et al., [54] (2019) Heart - 1991 2D Few mAP=0.93

Patra et al., [55] (2019) Heart - (10 subjects) - (2 subjects) Few Acc=0.82

Huang et al., [56] (2017) Heart 90 videos (12 subjects*) 1 video (12 subjects*) Few -

Petra et al., [57] (2017) Heart 89 videos (10 subjects) 2 videos (2 subjects) Few Acc=0.79

Gao et al., [58] (2017) Heart 350 videos (412 sub-
jects*)

62 videos (412 subjects*) 1 ACC=0.90, Prec=0.85,
Rec=0.89

Nurmaini et al., [59]
(2020)

Heart 624 2D 69 2D 1 Mean DSC=0.83

Rachmatullah et al., [60]
(2021)

Heart 413 2D (3 subjects*) 106 2D (3 subjects*) Few IoU=0.94, Acc=0.96

Xu et al., [61] (2020) Heart 716 2D (895 subjects*) 179 2D (895 subjects*) Few DSC=0.83, Acc=0.93,
AUC=0.99

Xu et al., [62] (2020) Heart 1284 2D 428 2D Few DSC=0.85, HD=3.33,
Acc=0.93

Yu et al., [63] (2017) Heart 41 videos (40 frames
each)

10 videos (40 frames
each)

1 HD=1.26, AD=0.20,
DSC=0.94

An et al., [64] (2021) Heart 512 2D (319 subjects*) 126 2D (319 subject*) 10 DSC = 0.78, AP = 0.45

Nurmaini et al., [65]
(2021)

Heart 1033 2D (50 subjects*) 116 2D (50 subjects*) 1 mAP=0.96, IoU=0.79,
DSC=0.90

Tan et al., [66] (2020) Heart - (100 subjects*) - (100 subjects*) Few Prec=0.85, Rec=0.86,
F1=0.86, AUC=0.93

Dozen et al., [67] (2020) Heart 410 2D (211 subjects*) 205 2D (211 subjects*) Few IoU=0.55, DSC=0.68

Komatsu et al., [68]
(2021)

Heart 213 videos (363 sub-
jects*)

34 videos (363 subjects*) Few mAP=0.70, AUC=0.83

Arnaout et al., [69]
(2021)

Heart 107823 2D (1326 sub-
jects)

4867591 2D (4666 sub-
jects)

Few AUC=0.94, Rec=0.95,
Spec=0.96

Qiao et al., [70] (2022) Heart 2000 2D (2000 subjects) 100 2D (100 subjects) 2 Prec=0.93, Rec=0.93

Gong et al., [71] (2019) Heart 3596 2D 400 2D Few Acc = 0.85

Pu et al., [72] (2021) Heart 586 videos (minimum
80 and maximum 373
frames) (350 subjects*)

151 videos (minimum
80 and maximum 373
frames) (350 subjects*)

Few Acc=0.95, Rec=0.93,
Spec=0.94, F1=0.95

Patra et al., [73] (2020) Heart 89 videos (39556 2D)
(12 subjects)

2 videos (12 subjects) Few -

Wang et al., [74] (2018) Brain - 4005 2D (1783 subjects) Few DSC=0.77, IoU=0.63,
HD=26.40 pixel

Wu et al., [75] (2020) Brain - 448 2D (224 subjects) 3 Prec=0.79, Rec=0.74,
DSC=0.77, HD=0.78

Singh et al., [76] (2021) Brain 588 2D 146 2D Few DSC=0.87, HD=28.15,
Rec=0.86, Prec=0.90

Zhang et al., [77] (2020) Brain 718 2D (HC18) 70 2D (HC18) 2 DSC=0.97, Prec=0.97,
Rec=0.98, HD=10.92
mm

Huang et al., [78] (2018) Brain 200 3D 45 3D Few IoU=0.63

Wyburd et al., [79]
(2020)

Brain 271 3D 36 3D Few DSC=0.82, BCE=0.09
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Paper (Year) Organ Training set size Test set size Annotators Performance metrics

Venturini et al., [80]
(2020)

Brain 480 3D 48 3D Few DSC=0.83, ED=2.24
mm, HD=4.51 mm

Hesse et al., [81] (2020) Brain 138 3D 15 3D Few Surface Dice=0.92,
Average Surface
Distance=0.23 mm

Yang et al., [82] (2020) Brain 50 3D (100 subjects*) 50 3D (100 subjects*) 2 DSC=0.96, IoU=0.92,
HD=0.46 mm

Namburete et al., [83]
(2018)

Brain Not specified 2D (from
599 3D)

Not specified 2D (from
140 3D)

Few Acc=0.99, ED=6.9 mm,
IoU=0.82, HD=9.3 mm

Moser et al., [84] (2020) Brain 885 3D 300 3D Few ED=1.36 mm,
HD=9.05 mm,
DSC=0.94

Xie et al., [85] (2020) Brain 29419 2D (12780 sub-
jects*)

4739 2D (12780 sub-
jects*)

15 mAP=0.98, Rec=0.94,
DSC=0.94, Acc=0.96,
Spec=0.96, AUC=0.99

Lee et al., [86] (2020) Brain 8369 2D 869 2D Few RMSE=13.85,
MAE=16.05

Namburete et al., [87]
(2017)

Brain 326 3D 121 3D Few Prediction error=6.9

Wyburd et al., [88]
(2021)

Brain 689 3D 122 3D Few MAE=4.1, for Sylvian
fissure; MAE=5.1,
for Parieto-occipital
fissure; MAE=4.9, for
Calcarine fissure

Hu et al., [89] (2019) Placenta 1363 2D (247 subjects*) 205 2D (247 subjects*) 3 DSC=0.92, Acc=0.93

Hu et al., [90] (2021) Placenta 10707 2D (321 sub-
jects*)

2677 2D images (321
subjects*)

- Acc=0.81, Rec=0.88,
Spec=0.65

Zimmer et al., [91]
(2020)

Placenta 27081 2D (67 subjects*) 5149 2D (67 subjects*) 1 DSC=0.82, HD=31.84
mm

Oguz et al., [92] (2018) Placenta - (47 subjects*) - (47 subjects*) 2 DSC=0.86

Looney et al., [93]
(2018)

Placenta 1196 3D (3104 subjects) 1197 3D (3104 subjects) 3 DSC=0.84, HD=14.6
mm

Looney et al., [94]
(2017)

Placenta 280 3D (3064 subjects*) 20 3D (3064 subjects*) Few DSC=0.73, HD=27
mm

Zimmer et al., [95]
(2019)

Placenta 30 3D (30 subjects*) 12 3D (30 subjects*) - DSC=0.80

Yang et al., [96] (2017) Placenta 60 3D (104 subjects*) 44 3D (104 subjects*) 10 DSC=0.64, HD=24.54
mm

Li et al., [97] (2017) Amniotic Fluid 400 2D 900 2D Few Acc=0.78, IoU=0.54

Cho et al., [98] (2021) Amniotic Fluid 310 2D (100 subjects*) 125 2D (155 subjects*) 1 DSC=0.87, Prec=0.89,
Rec=0.87, Spec=0.99

Sun et al., [99] (2021) Amniotic Fluid 2200 2D (1190 sub-
jects*)

180 2D (1190 subjects*) 3 DSC=0.86, Rec=0.81,
Prec=0.93, HD=15.49
mm

Xia et al., [100] (2021) Lung 6312 2D 701 2D - Acc=0.83, Rec=0.82,
Spec=0.83, AUC=0.95

Chen et al., [101] (2020) Lung 206 2D 126 2D 1 MAE= 1.56 mm

Weerasinghe et al., [102]
(2020)

Kidney 40 3D 60 3D 2 DSC=0.81, IoU=0.69,
HD=8.96 mm

Franz et al., [103] (2021) Spine 320 3D 80 3D - -

Chen et al., [104] (2021) Spine - - 2 Rec=0.93, Prec=0.96,
Acc=0.94, IoU=0.91

Schmidt-Richberg et al.,
[105] (2017)

Abdomen 126 3D 42 3D - MAE=2.24 mm

Droste et al., [106]
(2019)

Abdomen 30 videos 3 videos Few AUC by Judd=0.87,
DKL= 2.16
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Paper (Year) Organ Training set size Test set size Annotators Performance metrics

Wang et al. [107] (2019) Femur 30 3D (30 subjects) 20 3D (20 subjects) 1 DSC=0.91, IoU=0.83,
HD=4.08 mm,
ED=0.87 mm

Cerrolaza et al., [108]
(2018)

Head 52 3D 16 3D Few DSC=0.83, IoU=0.70

Perez-Gonzalez et al.,
[109] (2020)

Head 10 3D (18 subjects*) 8 3D (18 subjects*) 1 DSC=0.81, AUC=0.82

Wang et al., [110] (2020) Head 799 2D (HC18) 200 2D (HC18) Few DSC=0.94

Sridar et al., [111] (2019) Multiple 3109 2D 965 2D 1 Acc=0.97, Prec=0.76,
Rec=0.75

Ishikawa et al., [112]
(2019)

Body, Head, Leg 10000 2D 2000 2D 1 Rec=0.92%

Sharma et al., [113]
(2019)

Multiple 31629 2D 3986 2D Few Top-1 ACC=0.77, Top-3
ACC=0.94

Chen et al., [114] (2020) Abdomen, Heart, Skull 225825 (free hand) and
30048 (single sweep) 2D

7512 (single sweep) 2D - Acc=0.73 and Acc=0.89
for 3- and 4-class classi-
fication, respectively

Alsharid et al., [115]
(2020)

Abdomen, Head, Heart,
Spine

12808 2D 9979 2D - Prec=0.96, Rec=0.96,
DSC=0.96

Xu et al., [116] (2018) Kidney, Liver, Spleen 149775 2D 37444 2D 2 Acc=0.85

Gao et al., [117] (2019) Abdomen, Heart, Skull 365 videos 91 videos - AP=0.91

Wu et al., [118] (2017) Abdomen, Head 1588 2D 741 2D 1 DSC= 0.97, IoU=0.96

Yang et al., [119] (2019) Fetus, Gestational sac,
Placenta

60 3D 44 3D 10 DSC=0.80, HD= 14.13
mm

these structures. A total of 820 images is used to test the
framework, achieving a mAP of 0.95 in detecting structures
and Acc, Prec and Rec of 0.95, 0.95, 0.93, respectively in
classify them. A hybrid approach is proposed in [43], where
a CNN is trained to localise 13 anatomical structures by
means of a weak supervision provided by image-level labels,
thus, without the need for bounding-box annotation during
training. The approach is tested on 109165 images and 200
videos. Mean Prec, Rec F1 and IoU of 0.77, 0.90, 0.80
and 0.62 are achieved, respectively. In [44], FVSP detection
is accomplished by localizing fetal brain by means of a
segmentation CNN at first. Then, CSP visibility, fetal brain
symmetry, and midline orientation are assessed by means of
a number of additional CNNs. A five-fold cross-validation on
19838 images is used to evaluated the framework, reaching an
achievable FVSP detection in more than 95% of cases.

More recently, semi-supervised and self-supervised strate-
gies for standard-plane detection have been investigated.
In [45], a semi-supervised pipeline is proposed to detect FTSP
and FCSP from freehand fetal US video. The framework
consists of a CNN for feature extractor, a prototypical learning
module and a semantic transfer module to automatically label
unseen video frames. A total of 60 videos (20 subjects) is
used as test set, reaching a mAP of 0.87. In [46], a self-
supervised method for scan plane detection in fetal 2D US
images is proposed. Specifically, given an image, two small
patches are randomly selected and swapped on the image and
this procedure is repeated multiple times. A CNN is trained
to restore the altered image back to its original version. The
CNN weights are then used to perform classification of fetal
standard planes (FASP, FBSP, FFESP, Kidney, Spine, 4CH,
3VV, RVOT, LVOT and facial profile. When tested on the same

dataset as the one used in [43], the method achieves Prec, Rec
and F1 of 0.89, 0.90 and 0.89, respectively. A semi-supervised
learning approach to classify 13 standard planes is exploited
in [47]. 100 images for each class from a dataset of 22757
images are used as labelled data. The remaining images are
treated as unlabelled data. For a test set of 5737 images, overall
accuracy is close to 0.70.

A number of researchers is working to perform standard
plane detection using DRL from 3D fetal US, mainly to mimic
what clinicians do and exploring inter-plane dependency. The
work in [48] proposes a DRL to localize fetal brain standard
planes in US volumes. The DRL framework is equipped
with a landmark-aware alignment module that exploits a
CNN to detect anatomical landmarks in the US volume. The
landmarks are then registered to a plane-specific atlas. The
DRL agent’s interaction procedure is terminated by means of
a RNN module. The efficacy of the method is validated on
100 US volumes, obtaining an average theta of 9.36◦along
with a mean DF of 3.03 mm are obtained. The approach
is further enhanced in [49], which designs an adaptive RNN-
based termination module to early stop the agent searching. To
validate the method, 100, 110 and 144 volumes of fetal brain,
fetal abdomen and uterus, respectively, are used. A mean DF
of 2.31 mm along with a mean θ of 10.36◦are obtained. A
similar approach is performed in [50], which localizes multiple
uterine standard planes in 3D simultaneously by multi-agent
DRL. The latter is equipped by one-shot neural architecture
search (NAS) module. To improve system robustness against
the noisy environment, a landmark-aware alignment model
is utilized. The spatial relationship among standard planes
is learnt by a RNN. The method is evaluated by means of
144 volumes of fetal brain and uterus. A mean θ and DF of
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Fig. 5. Overview of the most common tasks in the literature for fetal organs
analysis.

7.20◦and 1.82 mm are obtained, respectively.
US volumes are also processed in [51], where 2D image

planes are fed to a CNN that predicts the 3D transformation
to register each plane to a ground truth standard plane. The
process is evaluated on 3D US volumes of fetal brain from 22
subjects. A mean plane centre difference of 3.44 mm along
with rotation angle between the planes of 11.05◦are obtained.

A. Limitations and open issues for fetal standard-plane detec-
tion

From the review of the literature on standard-plane detec-
tion, a first limitation emerges in the number of considered
planes. There are papers ([33], [26], [27], [34]) that consider
only few planes. In some cases ([36], [37], [25]) only one
plane is considered.

When focusing on the experimental setup, only few papers
refer to US scans on patient basis. This information is,
however, of crucial importance since US scans belonging to
a woman should not be part of both training/validation and
test set to avoid bias. A second issue arises in terms of
quantitative comparison among the different approaches. The
use of different datasets, some of which are really small in
size, does not allow to make a fair comparison among the
solutions proposed in the literature.

An important step towards a fair evaluation of methods has
been done in [20], which released the first dataset in the field.
However, only FASP, FBSP, 4CH, maternal cervix, FFESP
are considered. Showing training/validation curves as well as
using visual explanation techniques (i.e. Grad-CAM [120])
should also be considered for a fair assessment of algorithm
performance, also in terms of model bias and variance.

IV. ANATOMICAL-STRUCTURE ANALYSIS

This section surveys methods for the analysis of fetal heart
(Sec. IV-A), brain (Sec. IV-B), and placenta and amniotic fluid
(Sec. IV-C), for which a relatively rich literature already exists.
DL approaches for the analysis of other fetal anatomical-
structures are grouped in Sec. IV-D, while Sec. IV-E surveys
approaches for multi-structure analysis. Figure 5 summarizes
the main tasks addressed in the literature of anatomical-
structure analysis.

A. Heart

Fetal cardiac evaluation is of crucial importance to detect
heart diseases, such as congenital heart diseases (CHDs), and
intrauterine growth restriction. Cardiac evaluation generally
consists of cardiac-function analysis and heart anatomical
evaluation, including heart dimension and shape.

A number of DL approaches in the field focuses on heart and
heart-structure detection. The work in [54] uses an SSD model
with aggregated residual visual blocks to detect anatomical-
heart structures such as left atrial pulmonary vein angle, apex
cordis, moderator band, and multiple ribs in 4CH. Experiments
on 1991 4CH show a mAP = 0.93. A cardiac-structure
localization algorithm is proposed in [55]. The presence of
the heart in the 4CH is detected using a modified VGG-16,
then a Faster RCNN model coupled with LSTM layers is
used to temporally classify the presence of Foramen ovale,
Mitral valve, Tricuspid valve, LV wall and RV wall. Two
out of 12 subjects’ videos, which are in total 91 (39556
frames), are used as test set. An Acc = 0.82 is reached. In
[56], the presence, viewing plane, location and orientation of
the fetal heart is predicted by means of a recurrent CNN. A
total of 91 fetal cardiac screening videos from 12 subjects
is annotated at frame level. A leave-one-out cross-validation
over each subject, resulting in 12-fold validations, is used
to evaluate the accuracy of classification and localization. A
custom based metric is proposed, which takes classification
and localization results into account. In [57], the same task
as in [56] is formulated as a multi-task learning problem
within a hierarchical convolutional model that progressively
encodes temporal information throughout the network. The
dataset consists of 91 videos from 12 subjects, 2 of which
are used as test. An Acc of 0.83 in correctly classifying
views and an Acc = 0.79 in correctly localize structures are
reached. In [58], spatio-temporal representations of fetal heart
are learned by means of an end-to-end two-stream fully CNN
for temporal sequence analysis. The goal is to captured motion
and appearance features in a weakly supervised manner. The
15% of 412 fetal US videos is used as test. In terms of heart
identification, a 0.90, 0.85 and 0.89 of ACC, Prec and Rec,
respectively are obtained.

Structure segmentation offers more information than de-
tection, since heart and heart-structure shape is a significant
indicator of possible pathology. Here, encoder-decoder CNNs
are often exploited in the literature. In [60], a U-Net archi-
tecture is used to segment fetal cardiac standard planes to
early detect possible structural heart abnormalities. The testing
data consists of 106 images including atrial septal defects and
ventricular septal defects. An IoU and Acc of 0.94 and 0.96
are obtained, respectively. A cascaded network is developed in
[61] to accurately segment 7 anatomical structures in the 4CH
view. The network consists of a dilated sub-network respon-
sible for aggregating both global and local information and
two stacked U-Nets. A five-fold cross-validation on 895 4CH
views (895 health women) is used to validate the approach.
Mean DSC, Acc and AUC of 0.83, 0.93, 0.99 are obtained,
respectively. A cascaded U-Net is also used in [62] to segment
anatomical heart structures, reaching DSC, HD and Acc of
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0.85, 3.33, 0.93, respectively on 428 images. Segmentation of
fetal left ventricle from fetal echocardiac videos is proposed
in [63]. A dynamic CNN trained with multiscale information
and different fine tuning strategies is used. The first cardiac
frame is labelled to fine-tune the CNN. As the frames are
segmented sequentially, the CNN is fine-tuned dynamically by
shallow tuning to fix the latest frame. To differentiate the left
ventricle and atrium regions, the mitral valve base points were
tracked. 41 sequences (40 frames each) are used as testing
set. The CNN achieves HD, AD, DSC of 1.26, 0.20, 0.94,
respectively.

Instance segmentation of heart structures is performed in
a number of papers, including [64] where the four cardiac
chambers are segmented with a network with three branches:
the category branch, the mask branch, and a category-attention
branch. This latter is used to correct the instance mis-
classification and improve the segmentation accuracy. A total
of 638 images from 319 fetuses is used for testing, following
a five-fold cross-validation. Mean DSC = 0.79, 0.76, 0.82,
0.75 for the four cardiac chambers, respectively, is obtained,
with mAP of 0.45. A Mask-RCNN is used in [59] to detect
and segment the left (LA) and right atrium (RA), left (LV) and
right ventricle (RV), aorta and hole. The proposed approach
is used to assess fetal heart defects (atrial septal, ventricular
septal and atrioventricular septal defects). The 10 % of 693
images is used as testing set. A DSC = 0.84 (aorta), = 0.68
(hole), = 0.88 (LA), 0.89 (RA) and = 0.87 are obtained. A
Mask RCNN is used in [65] to segment the fetal heart in
4 different standard views (3VT, 4CH, LVOT, RVOT) and
fetal heart chambers in each view to search for possible heart
defects. A total of 116 US images is used as testing set. A
mAP = 0.96, IoU = 0.79 and DSC = 0.90 are reached in
the detection and segmentation of standard view fetal heart.
A IoU = 0.72 in detecting heart structures (e.g. left ventricle,
right atrium etc) in fetal standard views is obtained.

CHD diagnosis is another popular task investigated in the
literature of fetal heart analysis. A hypoplastic left heart
syndrome (HLHS) detector is developed in [66]. The detector
consists of a SonoNet to detect standard planes (4CH, LVOT,
RVOT) and a VGG16 to identify HLHS patients versus healthy
subjects. Starting from US images from 100 fetuses, data
curation and split is performed manually. Test set size in
terms of fetuses and frames is not specified. The authors
achieve Prec, Rec, F1 and AUC of 0.85, 0.86, 0.86 and 0.93,
respectively. In [67], ventricular septal defects are evaluated
by means of YOLOv2, which detects the ventricular septum,
and U-Net that is used to segment the cropped ventricular
septum area. A calibration module is used to further enhance
U-Net output. A total of 615 images (421 videos) is extracted
from 211 fetuses. A three-fold cross-validation is used for
validation. A IoU and DSC of 0.55 and 0.68 are obtained,
respectively. YOLOv2 is also used in [68] for the detection of
abnormalities in cardiac cardiac from 4CH and 3VT videos.
The analysis is performed on 2D frames extracted from 34
videos using three-fold cross-validation. A mAP of 0.70
is achieved in detecting cardiac substructures along with a
mean AUC of 0.83 in the assessing of cardiac structural
abnormalities detection. In [69], an ensemble of deep residual

networks are used to classify five heart views and successively
classify normal hearts and complex CHD. A modified U-
Net is further trained to calculate cardiothoracic parameters
such as the cardiothoracic ratio (CTR), cardiac axis (CA)
and fractional area change (FAC) for each cardiac chamber.
Four datasets (FETAL-125: 19822 images, OB-125: 329405
images, OB-4000: 4473852 images, BCH-400: 44512 images)
are used for testing. The approach achieves a mean AUC
= 0.94 in classifying normal and abnormal hearts. In [70],
a CNN with a residual learning module linked with guided
back-propagation to visualize feature maps is used to diagnose
fetal CHD. The framework is evaluated by means of 100
4CH views (50 healthy fetal heart and 50 CHD). Framework
reaches a Prec = 0.93 and Rec = 0.93. In [71], a one-class
classification network is proposed to classify patients with
CHD and healthy subjects. An improved GAN is used for
data augmentation. A balanced dataset of 400 testing images
is used as testing set to compared the the approach with state-
of-the art ones. An Acc = 0.85 is obtained. In [72], a YOLOv3
is exploited to detect the four-chamber views at first. Then
a mobileNet is used to classify samples into ED or ES. A
total of 151 videos is used to evaluate the framework. The
method achieves Acc Rec, Spec and F1 of 0.95, 0.93, 0.94,
0.95, respectively. In order to tackle lack of available data in
fetal CHD domain, the work in [73] proposes an incremental
learning approach to build a hierarchical network model that
allows for a parallel inclusion of previously unseen anatomical
classes without requiring prior data distributions. The goal here
is the detection of different anatomical structure in different
fetal cardiac views. The pipeline relies on natural hierarchies
in US videos and it is built to account for new data in a self-
organized fashion. Two out of 12 subjects’ videos, which are in
total 91 (39556 frames), are used as test set. Results, presented
with custom metrics, highlight the benefits of incremental
learning.

B. Brain

Assessing fetus brain development is crucial to evaluate
fetus growth and diagnose brain pathologies. In the clinical
practice, several structures are analyzed to assess the fetal
brain development and well-being. From the clinician side,
this is not effortless due to challenges such as the high intra-
and inter-structure variability. Automatic fetal-brain analysis
commonly includes anatomical-structure localization, segmen-
tation, classification, and measurement. Structures considered
in the literature include middle cerebral artery, cavum septum
pellucidum (CSP), cerebellum, brainstem, ventricles, thala-
mus, cortical plates and fissures (Sylvian, Parieto-occipital,
calcarine).

Among DL approaches for fetal brain analysis, a number of
work focuses on brain-structure segmentation using encoder-
decoder architectures. The work in [74] proposes a DL-based
architecture to segment the middle cerebral artery and provide
the gate position on Doppler US images to the sonographer.
The architecture uses a pre-trained dilated residual network as
encoder and dense upsampling convolution blocks as decoder.
After the segmentation, the gate position is retrieved as the
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center of the segmented area. When training the model on a
dataset of 4005 US images, the authors achieve DSC, IoU
and HD of 0.77, 0.63, and 26.40 pixel, respectively. The
work in [75] proposes a deep attention network inspired by
the U-Net encoder-decoder architecture to segment the CSP
and measure its width to evaluate the presence of anomalies.
VGG11 is used as backbone in the encoding path and a
channel attention module is introduced between the encoder
and the decoder. Segmentation results obtained on a dataset
of 448 US images acquired both on trans-thalamic axial
and sagittal planes are: Prec = 0.79, Rec = 0.74, DSC =
0.77, HD = 0.78. Similarly, a U-Net inspired CNN (i.e.,
ResU-Net) is used in [76], with the aim to automatically
segment the cerebellum. ResU-Net encodes residual blocks
and dilated convolutions to recover the spatial resolution lost
in the encoder keeping the number of training parameters low.
A total of 734 US images acquired in the fetal trans-cerebellar
plane is used following five-fold cross-validation, achieving a
mean DSC, HD, Rec and Prec of 0.87, 28.15, 0.86, and 0.90
respectively. In [77], a U-Net inspired CNN (i.e., MA-Net)
is proposed for fetal head circumference segmentation. MA-
Net is based on an encoder-decoder architecture consisting
of 5 modules: encoder, atrous convolution, pyramid pooling,
decoder and residual skip pathway modules. Results obtained
testing the model on 70 images of the HC18 dataset are: DSC
= 0.97, Prec = 0.97, Rec = 0.98 and HD = 10.92 mm.

More recently, a number of segmentation approaches has
been exploring 3D architectures for processing the 3D in-
formation naturally encoded in 3D US data. A 3D U-Net is
used in [78] to mask out extra-cranial tissues as a preliminary
step to simultaneously segment and localize 5 brain structures
(lateral ventricles, CSP, thalamus, cerebellum, and cisterna
magna). The output of the 3D U-Net is projected in three
standard planes (axial, sagittal and coronal), which are then
processed by three CNNs, one for each standard plane. Each
CNN outputs the 2D segmentation mask of the 5 structures.
The 3D bounding boxes for the structures are reconstructed
from the 2D predictions through backward projection. A total
of 285 3D US volumes is partitioned following five-fold cross-
validation, achieving an IoU of 0.63. A 3D U-Net is also used
in [79], [80], [81] and [82] . In [79], it is used to segment the
fetal cortical plate and measure the depth of the Sylvian fissure
on a dataset annotated by expert clinicians using atlas. A total
of 36 volumes is used to test the network performance, which
achieves a DSC of 0.82. Similarly, in [80] a multi-task CNN
based on 3D U-Net is used for the automatic segmentation
of the white matter, thalamus, brainstem, and cerebellum. The
network, trained with a dataset labeled by expert clinicians
using atlas, and tested on 48 volumes achieves a segmentation
performance of: DSC = 0.81, ED = 2.17 mm, HD = 3.80
mm for thalamus, DSC = 0.82, ED = 2.09 mm, HD = 4.14
mm for brainstem, DSC = 0.77, ED = 2.42 mm, HD = 4.20
mm for cerebellum and DSC = 0.92, ED = 2.27 mm, HD =
5.93 mm for white matter. In [81], the authors propose a 3D
U-Net combined with active contours for CSP segmentation.
Results obtained on a test set of 15 volumes are evaluated
with two custom metrics. In [82], a 3D U-Net is trained to
segment the whole fetal head. The 3D U-Net is combined

with a hybrid attention scheme to enhance the feature maps.
Results obtained on a test set of 50 volumes are DSC = 0.96,
IoU = 0.92 and HD = 0.46 mm.

Brain-structure segmentation is further explored and in-
cluded in a multi task context in [83]. The authors propose
an approach to align 3D US brain volumes, recovered from
a stack of axial slices, to a coordinate system based on skull
boundaries, eye socket location, and head pose. A multi-task
FCN is trained to address the problem of 3D fetal brain
localization, structural segmentation, and alignment. Results
obtained testing the model on 2D axial slices sampled from
140 volumes are: Acc = 0.99 for superior-to-inferior brain
orientation, ED = 6.9 mm for eye localization performance,
IoU = 0.82 for brain segmentation and HD = 9.3 mm for
target alignment error. A method for brain localization is also
proposed in [84], which explores the use of an end-to-end 3D
CNN for automated brain localization and extraction from 3D
fetal US. Differently from [83], which predicts the position of
the brain from 2D slices extracted from 3D volumes, this is a
fully 3D approach and relies on a modified 3D U-Net for brain
extraction. Results obtained on a test set of 300 volumes are
ED, HD, DSC of 1.36 mm, 9.05 mm and 0.94, respectively.

Other than structure segmentation and localization, re-
searchers are also working on gestational age (GA) estimation
and brain development analysis. An approach to GA estima-
tion from 2D trans-thalamic US images is proposed in [86].
The authors propose a Bayesian Neural Network (BNN)
with a VGG-16 backbone and an auxiliary regression model,
which are trained to predict calibrated aleatoric and epistemic
uncertainties on GA. Results obtained testing the model over
2 different datasets are: (i) MAE = 12.5 days on 849 frames
from the same dataset used to train the model; (ii) MAE =
19.6 days on 20 frames from a different dataset. Methods to
evaluate brain development are investigated in [87] and [88].
The work in [87] presents a model to predict brain maturation
from 3D US scans through the use of a 3D Convolutional
Regression Network. The model, evaluated in five-fold cross-
validation with 121 volumes for testing, obtained an error in
predicting brain maturation of 6.9 days. In [88], the authors
propose a method to estimate the development of 3 brain
fissures (i.e., Sylvian, Parieto-occipital and Calcarine) from
3D US volumes, by predicting the fetal GA based on their
respective morphology. The regions relative to each fissure are
extracted from the US volumes and passed to three separate
ResNet to predict the GA of each region. The model tested on
122 volumes obtained the following results: MAE = 4.1, 5.1,
4.9 days for Sylvian, Parieto-occipital and Calcarine fissure
respectively.

As for computer-assisted diagnosis of brain pathology,
in [85] the authors propose a DL-based pipeline to support the
diagnosis of brain lesion from 2D images. The pipeline relies
on 3 architectures for (i) cranio-cerebral segmentation, using
U-Net with dilated convolutional, (ii) image classification in
normal/ abnormal, using VGG-19 pre-trained on ImageNet,
and (iii) lesion localization, using Grad-CAM. The dataset
includes both 2D US images and 3D volume data cropped
in the axial view, for a total of 15372 normal and 14047
abnormal images. For the segmentation step, mAP , Rec and
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DSC of 0.98, 0.91 0.94 are obtained, respectively. The overall
classification Acc, Rec, Spec and AUC are 0.96, 0.97, 0.96
and 0.99, respectively. The lesion localization, in the form
of Grad-CAM activation heatmaps, is visually evaluated by a
doctor, resulting in heatmaps localized correctly in the 61.60%
of the images.

C. Placenta & amniotic fluid

The placenta is an organ that provides oxygen and nutrients
to the fetus, ensures thermo-regulation, and removes waste
products from the fetus’s blood. This structure is closely
related to fetus health: abnormal placental function may affect
the development of the fetus, and in severe cases, even
endanger the life of the fetus. Given its relevance, several
clinical assessments are performed to evaluate the placenta
condition along with the fetus health. In this scenario, placenta
segmentation may provide automatic quantification of placenta
volume and morphology.

A number of approaches performs placenta segmentation
from 2D US images. The approach proposed in [89] uses a
U-Net inspired CNN. The CNN is modified adding a layer
to detect acoustic shadow and improve the segmentation ac-
curacy. The model, when tested on 205 images, obtains mean
DSC and Acc of 0.92 and 0.93, respectively. Similarly, in [90]
a U-Net inspired CNN is used for placenta segmentation. An
EfficientNet is then used for the classification of normal or
abnormal placenta. Classification results achieved with five-
fold cross-validation over 13384 frames are: Acc = 0.81,
Rec = 0.88, and Spec = 0.65. A U-Net inspired architecture
for placenta segmentation is also used in [91]. The authors
introduce an auxiliary classification task, incorporating the
prediction of the placental position (anterior or posterior) in
the U-Net architecture and improve the segmentation accuracy.
Results obtained training the model with images of both
anterior and posterior placenta and testing on 5149 2D slices
extracted from 172 volumes are: DSC = 0.86 and HD =
28.66 mm for anterior placenta; and DSC = 0.78 and HD
= 35.02 mm for posterior placenta. In [92], three 2D cross-
sectional images manually extracted from 3D US, are used
to train an encoder-decoder CNN architecture. An atlas-based
joint label fusion algorithm is then applied to the CNN output
to combine the three prediction and enhance segmentation
performace. The predictions from CNN and joint label fusion
are combined via a random forest model to obtain the final
segmentation. A mean DSC = 0.86 is obtained performing
four-fold cross-validation.

Other researchers are working on placenta segmentation
from 3D US data. The work in [93] uses a 3D U-Net. The
model is evaluated through a two-fold cross-validation on
a test set of 1196 US volumes, obtaining DSC and HD
of 0.84 and 14.6 mm, respectively. For the same goal, in
[94] the authors use an open-source CNN trained with labels
obtained through a semi-automatic Random Walker strategy.
The proposed method tested on 20 US volumes obtained a
DSC and HD of 0.73 and 27 mm, respectively. The work
in [95] proposes a three stage pipeline for whole placenta
segmentation and volume estimation from multi-view 3D US

volumes. The pipeline includes: (i) multi-view acquisition
through a multiplexer device that fixes 3 probes in an angle of
30 degree to each other and switches the view from one probe
to the other almost in real time; (ii) voxel-wise fusion to
combine the multiple views; (iii) segmentation based on a 3D
U-Net. The model, when tested on 12 US volumes, reaches
mean DSC of 0.80. The work in [96] proposes an approach
to automatically segment placenta, fetus and gestational sac.
The first step includes a customized 3D CNN with long
skip connections to segment the 3 structures. A RNN is
used to add contextual knowledge and refine the semantic
segmentation. Finally, a hierarchical deep supervision
mechanism is used to boost the flow of information in the
RNN and improve the segmentation performance. When
tested on 44 volumes, the model achieves a DSC and HD
of 0.64 and 24.54 mm, respectively, for placenta segmentation.

Amniotic fluid plays an important role in fetal well-being
and development. Amniotic fluid has a myriad of functions:
it protects fetus and umbilical cord, prevents infections and
provides the necessary growth factors to allow normal devel-
opment and growth of fetal organs. In the clinical practice, to
assess the sufficiency of amniotic fluid quantity, the amniotic
fluid index is used. This index is calculated dividing the
maternal abdomen into 4 quadrants using the midline and
the umbilicus, then the deepest pocket of amniotic fluid is
evaluated in each quadrant. The index is given by the sum
of the 4 measurements. With a view to automatize the index
computation, amniotic fluid segmentation is a crucial task.

In [97], an encoder-decoder architecture with VGG16 as
backbone is used to segment amniotic fluid and fetal body in
2D US images. For amniotic fluid segmentation, the model
tested on 400 images obtains Acc and IoU of 0.78 and 0.54
respectively. In [98], a 2-step framework is used to segment
the amniotic fluid pocket and measure the amniotic fluid
index. The segmentation step is performed with a modified
U-Net architecture, called AF-net, which combines atrous
convolution and multi-scale side-input and side-output layers.
Results obtained on a test set of 125 images are DSC, Prec,
Rec and Spec of 0.87, 0.89, 0.87 and 0.99, respectively. This
approach is further improved in [99], which proposes a dual-
path network to segment the amniotic fluid volume from 2D
US images. The primary path consists of AF-net, while the
secondary path is an auxiliary CNN used to remove reverbera-
tion artifacts and complement the primary path prediction. The
final segmentation output, obtained combining the primary and
secondary path results, obtained a mean DSC, Rec, Prec and
HD = 0.86, 0.81, 0.93 and 15.49 mm respectively, on a test
set of 180 images.

D. Others

1) Lungs: Immaturity of fetal lung development is the
primarily cause of neonatal respiratory morbidity. Quantitative
US imaging is often used as a non-invasive tool for fetal lung
maturity assessment, through US visualization at 4CH level.
The normal fetal lung has of very similar echogenicity to
the adjacent liver, but with slightly different texture; and in
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presence of abnormalities either increasing or decreasing in
echogenicity can be seen. Recently, DL approaches have been
introduced to tackle the challenges of lung analysis from fetal
US image, especially for estimating GA.

The framework in [100] is based on DenseNet, which is
trained performing a ten-fold cross-validation on a dataset of
US images of 4CH plane acquired from 1023 pregnancies and
divided in 3 classes based on GAs: class I (from 20 to 29+6
weeks), class II (from 30 to 36+6 weeks) and class III (from
37 to 41+6 weeks). The overall Acc in classifying GA is of
0.83. Rec, Spec are computed for each GA class resulting as:
0.91 and 0.76 for class I, 0.69 and 0.90 for class II, and 0.86
and 0.83 for class III, respectively. The AUC of each class is
0.98, 0.90 and 0.96, respectively. For the same aim, the work
in [101] proposes a two-stage transfer learning approach. A U-
Net-like architecture with residual connection is first trained
to recognize samples of fetal lung regions from other regions
taken from the US images; then, the pre-trained U-Net is tuned
on fetal lung region samples only to regress the corresponding
GA, and thus its maturation degree. This study involves 332
patients, each with one 4CH US scan available, of which 126
US scans are used for testing, manually selecting the lung
region, of which the gestational week is predicted. The authors
achieve a MAE of 1.56 weeks. However, this work provides
only an indirect prediction of the lung maturation degree, as it
relies on the direct correlation between the lung maturity and
the GA, which does not always exist.

2) Kidney: In-utero assessment of kidney is crucial to
perform early diagnosis of renal pathologies. Poor kidney
development is known to be associated with increased risk
of kidney disease into adulthood. At the same time, abnormal
fetal growth is associated to a reduced functionality of kidneys
after birth [121], [122]. In this field, the work in [102] proposes
a 3D U-Net to perform kidney segmentation from 3D B-mode
and Power Doppler volumes. When tested on 20 3D images,
the algorithm achieves average DSC, IoU and HD of 0.81,
0.69 and 8.96 mm, respectively. Despite the small number of
testing volumes, this is an interesting study that may pave
the way for the development of early diagnosis tools for fetal
kidney.

3) Spine: Fetal spine length provides insights into the fetal
growth as it is affected by a variety of malformations (spina
bifida, meningocele, diastematomyelia, vertebral segmentation
anomalies, sacral agenesis, spinal dysgenesis, spondylotho-
racic or spondylocostal dysplasia). To provide an assessment
of fetal spine, the work in [103] focuses on the identification
of spine centerline from 3D US scans. Spine segmentation is
performed with a CNN that processes images at multiple scales
and different fields of view. The prediction is used as input
for a model-based tracing algorithm responsible to draw spine
centerline. The model is trained in a five-fold cross-validation
leaving out 80 scans for testing. Results are graphically
reported for a variety of dilation radii, used for constructing
ground truth masks from the annotated spine centerlines, thus
no mean or best values are provided. For a similar aim, the
work in [104] presents an approach to identify the spina-bifida
and segment it, which is based on a U-Net model modified
introducing Octave features to reduce redundant information.

Results show that Rec, Prec, Acc, and IoU are 0.93, 0.96,
0.94, and 0.91, respectively; in addition, the mean standard
error of the model was 4.12 mm, and its average running
time reaches 12.15 seconds. This approach achieves high
recognition accuracy, good segmentation accuracy, and short
running time, but it is limited on few cases, without dividing
among different spina bifida types and with an imbalanced
presence on malformation cases compared to healthy ones (24
cases of spina bifida over a total of 3300 cases).

4) Abdomen: Fetal abdomen assessment is performed to
evaluate important prognostic parameters of neonatal morbid-
ity and mortality and to assess fetal growth. Segmentation
of the abdominal outline is of interest for measuring fetal
abdominal circumference. For this purpose, the work in [105]
develops an approach based on CNNs to extract image features
to be integrated in a deformable model. The method tested
on 42 3D US images achieves a MAE of 2.24 mm. This
approach represents a first attempt to use DL for abdominal
segmentation form 3D fetal US. However, it still relies on
deformable models. Fetal abdomen localization is achieved
in [106] using an encoder-decoder architecture for US video
saliency prediction. The encoder part consists of a truncated
SonoNet, while the spatio-temporal decoder of the network is
made up of a bidirectional gated-recurrent-unit recurrent con-
volutional network (GRU-RCN). In a five-fold cross-validation
with 3 test videos, the architecture achieves AUC by Judd and
DKL of 0.87 and 2.16, respectively.

5) Femur: Volume and length of fetal femur have unique
importance in fetal weight estimation. However, it is hard to be
evaluated through US, due to the difficulty in locating the tips
of the femur, boundary deficiency and ambiguity for tissues’
low contrasts, and variation of pose, shape and size of this
structure. In [107], the authors develop a unified framework
for simultaneous segmentation and landmark localization of
fetal femur in prenatal US volumes: fetal femur ROI is first
identified through a U-Net model, then segmentation and
landmark localization branches receive the common features of
ROI extracted by the shared layers and generate task-specific
descriptors. The method tested on 20 US volumes reaches
DSC, IoU , HD and ED equal to 0.91, 0.83, 4.08 mm and
0.87 mm, respectively.

6) Skull and Head: The evaluation of fetal head is a
critical part of sonographic examination. This evaluation is
dependent on operator experience and US image intrinsic
characteristics. To attenuate these issues, DL algorithms in the
literature mainly focus on the segmentation of the fetal head.
The work in [108] proposes a two-stage approach for skull
segmentation in fetal 3D US. A 3D U-Net is used to roughly
segment the skull. This segmentation concatenated with two
additional channels (i.e., the US-wave incidence angle map
and the US shadow casting map) and fed to a second 3D U-
Net. The model, when tested on 14 volumes, achieves DSC
and IoU of 0.83 and 0.70 respectively. The work in [109] aims
at merging several partially occluded US volumes, acquired by
placing the US transducer at different projections of the fetal
head, to compound a new US volume containing the whole
brain anatomy. For this aim, the authors propose a pipeline of
4 CNNs. The first 2 CNNs follow what is done in [109], while
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Fig. 6. Most addressed tasks (from left to right) in the field of anatomical-structure analysis. temp = temporal information

the additional 2 CNNs perform US-volume registration. For
the segmentation tasks, the pipeline achieves DSC and AUC
of 0.81 and 0.82, respectively, performing four-fold cross-
validation on 8 US volumes. A different approach is proposed
in [110], with the aim of segmenting fetal head. A CycleGAN
is trained with a set of unpaired images and auxiliary masks
obtained from a shape prior model, to generate the pseudo
labels corresponding to each of the training images. The
CycleGAN is equipped with a Variational Auto-encoder based
discriminator and a Discriminator-guided Generator Channel
Calibration module which calibrates the pseudo label generator
using the discriminator’s feedback to improve the pseudo
labels. The model, when tested on 200 images from the HC18
dataset, obtains a DSC of 0.94.

E. Multi-organ analysis

DL researchers are working on multi-organ analysis to
reproduce the actual clinical screening, which accounts for
a comprehensive list of anatomical structures.

A number of DL learning algorithms in the field focuses on
classification tasks. The work in [111] proposes a method to
automatically classify 14 different fetal structures (abdomen,
arm, blood vessels, cord insertion, face, femur and humerus,
foot, genitals, head, heart, kidney, leg, spine, hand) from US
images by fusing information from both cropped regions of
fetal structures and whole images. Two CNNs pre-trained
on ImageNet are used as feature extractors. The features
are classified by means of support vector machines. When
tested on 965 images, the method achieves mean Acc, Prec
and Rec of 0.97, 0.76 and 0.75, respectively. Similarly, the
work in [112] fine-tunes a VGG16 to classify US images
in four classes (head, body, leg and other). This is needed
as preliminary step towards the estimation of fetal position.
Based on the output of Grad-CAM, the body parts position in
the images is estimated. 2000 US images are used to test the
algorithm obtaining an average Rec of 0.92. Spatio-temporal
classification is performed in [113], in which a LSTM is
used to classify 11 anatomical categories (heart, background,
brain with skull and neck, Doppler maternal anatomy, spine,
abdomen, nose and lips, kidneys, face side profile, femur,
other). The authors use 31629 frames from 3 US videos to
test the model, achieving an Acc of 0.77.

In [115], the authors propose a method for multi-organ (ab-
domen, head, heart, spine) classification from the integration
of fetal US images with corresponding textual descriptions.
The authors exploit a curriculum learning approach to train a
NLP-based fetal US image captioning model with a dataset
prepared using real-world US videos along with synchronized
and transcribed sonographer speech recordings: 12808 and
9979 image-caption pairs are used for training and testing
sessions, respectively. The method obtains Prec, Rec and
DSC equal to 0.96, 0.96 and 0.96, respectively.

An unsupervised approach to multi-organ classification is
proposed in [114], which develops a cross-device and cross-
anatomy adaptation network to classify heart, abdomen and
skull of an unlabelled single-sweep video dataset guided by
knowledge of a labelled free-hand scanning protocol video
dataset. The network consists of encoder, projection layer,
anatomy classifier, domain classifier and two mutual infor-
mation discriminators. As results, the Acc is reported on the
test target domain data considering a 3-class classification
task (without the background) and a 4-class classification task
obtaining 0.73 and 0.89 for each task, respectively.

A different approach is used in [116], where a multi-
task learning framework is proposed to classify 11 different
views related to abdominal organs and detect 14 landmarks
from kidney, liver and spleen. This framework relies on a
shared ResNet encoder and two branches, for classification and
landmark detection. For the classification, the method obtains
an Acc of 0.85, while for landmark detection, the average
MAE is 5.6 mm.

Multi-organ analysis also involves DL algorithms for local-
ization and segmentation tasks. In a weakly supervised fashion,
the work in [117] proposes a model consisting in a CNN for
extracting features and an attention-gated LSTM to localize
skull, abdomen and heart in consecutive frames, considering
also non-standard planes. The training is performed on fetal
US videos of healthy subjects in a five-fold cross-validation.
The localization is achieved with an average AP equal to 0.91.
A pipeline to segment fetal head and abdomen is proposed
in [118]. The pipeline consists of three cascaded CNNs and is
evaluated by means of 236 fetal head and 505 fetal abdomen
images. Mean DSC and IoU of 0.97 and 0.96 are obtained,
respectively. In [119], a framework to simultaneously segment
fetus, gestational sac, and placenta is proposed. The frame-
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Fig. 7. Number of papers surveyed in Sec. IV according to the anatomical
structure.

work consists of a 3D CNN, which explores spatial intensity
concurrency, and a RNN, which encodes spatial sequential
to improve boundary refinement. The test over a 44 volumes
dataset results in DSC and HD in average equal to 0.80 and
14.13 mm, respectively.

F. Limitations and open issues for anatomical-structure anal-
ysis

As shown in Fig. 6, segmentation is the most addressed task
for all the anatomical structures. However, most of the pro-
posed methodologies consist of 2D U-Net-based architectures,
while more advanced architectures exploited in closer fields
(e.g. adversarial segmentation, spatio-temporal processing) are
investigated less. Interestingly, priors relevant to anatomical-
structure shape have not been fully exploited yet. However,
shape-constraint DL strategies have being recently proposed in
the literature to drive the output of segmentation CNN towards
the desired structure shape, for example by using adversarial
learning [155], [156].

However, newer techniques that have become more widely
available, such as volume sonography (3D/4D/spatiotemporal
image correlation (STIC)) have not been exploited yet for a
more detailed anatomical and functional assessment of the
fetal heart.

Up to now, the most studied anatomical-structures are heart
and brain, contributing with the 30.3% and 24.2% of the
surveyed papers, respectively, as shown in Fig. 7. Few papers
focus the attention on multi-organ analysis: the inter-organ
relations are frequently exploited by doctors when navigating
and interpreting medical images [157], making the multi-organ
analysis essential for a good fetus evaluation. The lack of
annotated dataset even in this field, does not allow to 1)
characterize the complex inter-organ relations and 2) underline
the difference between pathological and physiological images
since data which mix health and pathological cases is critical
to develop CAD systems robust to pathology and unusual
anatomy.

The number of applications for DL in fetal brain anatomical-
structure analysis are heterogeneous and each one focuses
on a particular task, such as brain localization, segmentation,
classification, and GA estimation. Given the fragmented nature
of the literature available in this field, comparing the different

(a) (b)

(c) (d)

Fig. 8. Common biometry parameters. Transverse section of: (a) femur
length (FL), (b) abdominal circumference (AC), (c) head circumference
(HC), biparietal diameter (BPD) and occipito-frontal diameter (OFD), (d)
transcerebellar diameter (TCD).

approach is challenging. The lack of public datasets further
hampers a fair comparison among the different approaches.

V. BIOMETRY PARAMETER ESTIMATION

Assessing fetal size and GA, as well as detecting fetal
growth abnormalities, lay the foundation of modern prenatal
care. Fetal biometry assessment represents the most common
medical investigation undertaken in this regard. Before 14
weeks, the GA and fetal size are estimated by the measurement
of crown-rump length (CRL), which is calculated from the top
of fetus’s head to bottom of its torso. Once the CRL exceeds
a fixed length (generally after 14 weeks), common measure-
ments include HC, biparietal diameter (BPD), occipito-frontal
diameter (OFD), transcerebellar diameter (TCD), lateral ven-
tricles (LV), abdominal circumference (AC) and femur diaph-
ysis length (FL). Figure 8 shows image samples for each of
these biometries. These fetal biometries are used to assess fetal
growth trajectory and ensure normal fetal development when
measured at different points in time (trimesters). Additionally,
cardio-thoracic ratio (CTR) and cardiac axis biometrics are
measured for diagnosing CHD.

Biometry measurements are performed in a standardized
manner by identifying the appropriate sonographic plane and
by precisely placing calipers in the corrected position [53].
Over the years, DL algorithms that provide automated place-
ment of the calipers to measure BPD, OFD, CRL, TCD, HC
and AC have been extensively exploited to reduce operator-
dependent errors and improve accuracy of fetus well-being
assessment. Table IV-E summarizes the papers surveyed in
this section.

Most of the approaches in literature tackle the problem of
caliper measurement by segmenting the area of interest at first.
In [123], a VGG-like CNN is used to segment fetal head and
successively provide HC and BPD measurements by means
of ellipse fitting. A total of 100 test images annotated by two



18

TABLE VI
SUMMARY OF DEEP-LEARNING ALGORITHMS FOR BIOMETRY PARAMETER ESTIMATION (FOR PERFORMANCE METRICS REFER TO TABLE II). HC: HEAD

CIRCUMFERENCE, BPD: BIPARIETAL DIAMETER, OFD: OCCIPITO-FRONTAL DIAMETER, AC: ABDOMINAL CIRCUMFERENCE, FL: FEMUR LENGTH,
TCD: TRANSCEREBELLAR DIAMETER

Paper (Year) Biometry Training set size Test set size Annotators Performance metrics

Sinclair et al., [123] (2018) HC, BPD 2164 2D 100 2D 2 DSC = 0.98, MAE = 1.3
mm

Rong et al., [124] (2019) HC 999 2D (HC18) 335 2D (HC18) - DSC = 0.95, MAE =
2.44 mm

Skeika et al., [125] (2020) HC 999 2D (HC18) 297 2D (HC18) 1 DSC = 0.97, MAE =
1.89 mm

Zeng et al., [126] (2021) HC 999 2D (HC18) 335 2D (HC18) Few DSC = 0.98, MAE =
1.77 mm

Aji et al., [127] (2019) HC 999 2D (HC18) 335 2D (HC18) Few DSC = 0.76, average error
= 14.96%

Qiao et al., [128] (2020) HC 849 2D (HC18) 150 2D (HC18) - DSC = 0.97, MAE =
2.27 mm

Oghli et al., [129] (2020) HC HC18 HC18 1 DSC = 0.95, HD = 4.5
mm

Bhalla et al., [130] (2021) HC HC18 HC18 - MAE = 2.16 mm

Sobhaninia et al., [131] (2019) HC HC18 HC18 - DSC = 0.97, MAE =
2.12 mm

Sobhaninia et al., [132] (2019) HC 849 2D (HC18) 150 2D (HC18) - DSC=0.92, MAE = 2.22
mm

Li et al., [133] (2020) HC, BPD, OFD 999 2D (HC18) 335 2D (HC18) Few DSC = 0.97, MAE =
1.81 mm

Kim et al., [134] (2019) HC, BPD 102 2D 70 2D 2 ACC=0.87, success rate =
0.93

Al et al., [135] (2019) HC 999 2D (HC18) 335 2D (HC18) 1 DSC = 0.97, MAE =
2.33 mm

Fiorentino et al., [136] (2021) HC 999 2D (HC18) 335 2D (HC18) 1 DSC = 0.97, MAE =
1.90 mm

Moccia et al., [137] (2021) HC 999 2D (HC18) 335 2D (HC18) 1 DSC = 0.98, MAE =
1.95 mm

Meng et al., [138] (2020) HC 905 2D (HC18) 94 2D (HC18) - DSC = 0.97

Budd et al., [139] (2019) HC 2848 2D (2000 subjects*) 540 2D (2000 subjects*) 45 DSC = 0.98, MAE =
1.81 mm

Zhang et al., [140] (2020) HC 800 2D (HC18) 199 2D (HC18) - MAE=4.52 mm

Zhang et al.,[141] (2020) HC 800 2D (HC18) 199 2D (HC18) - MAE = 4.78 mm

Jang et al., [142] (2017) AC 56 2D (1 subject*) 32 2D (1 subject*) 2 DSC=0.85, ACC=0.79

Kim et al., [143] (2018) AC - (77 subjects*) - (77 subjects*) - DSC= 0.92, ACC=0.87

Cengiz et al. [144] (2021) CRL 697 2D 545 2D 1 DSC = 0.93, IoU = 0.88,
MAE = 3.87 mm

Chen et al., [145] (2020) LV 4379 2D 500 2D 3 Acc=0.96, Prec=0.98,
Spec=0.90, MAE= 1.80
mm

Zhu et al., [146] (2021) FL 2300 2D (435 subjects*) 310 2D (435 subjects*) 1 DSC=0.92, MAE= 0.46
mm

Chen et al., [147] (2021) CTR 1669 2D 417 2D 2 DSC = 0.93

Bano et al., [148] (2021) HC, AC, FL 262 2D (42 subjects*) 87 2D (42 subjects*) 1 MAE = 2.67 mm (HC),
MAE = 3.77 mm (AC),
MAE = 2.10 mm (FL)

Plotka et al.[149] (2021) HC, AC, FL 274275 2D (560 patients) 57001 2D (140 patients) 6 DSC = 0.96, MAE = 2.9
mm (HC), MAE = 3.8 mm
(AC),MAE = 0.8 mm (FL)

Gao et al., [150] (2021) HC, TCD 937 2D (937 subjects) 913 2D (913 subjects) 1 MAE=2.04 mm
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Paper (Year) Biometry Training set size Test set size Annotators Performance metrics

Ryou et al., [151] (2019) CRL, HC, AC 44 3D 21 3D Few IoU = 0.92 for abdomen and
head and a IoU = 0.66 for
limbs segmentation, MAE
= 2.24 mm

Oghli et al., [152] (2021) AC, BPD, FL, HC 999 2D (HC18) + 1154 2D
(551 subjects*)

335 2D (HC18) + 180 2D
(551 subjects*)

2 DSC = 0.98, HD = 1.14
mm, average perpendicular
distance = 0.2 mm

Prieto et al., [153] (2021) BPD, HC, CRL, AC, FL 147855 2D (4433 subjects) 7233 2D (2491 subjects) Few Acc = 0.93, IoU = 0.91,
MAE=1.89 cm

Rasheed et al., [154] (2021) HC, BPD 30000 2D 1000 videos 1 Acc=0.96.

experts is used to evaluate the proposed method. Mean DSC
and MAE of 0.98 and 1.3 mm are obtained, respectively.

More recently, encoder-decoder CNNs have been investi-
gated for the segmentation task. Here, the majority of pub-
lished papers focuses on HC measurement only, relying on
the HC18 challenge dataset (Sec. II). The work in [124]
proposes an active-contour model guided by external forces
that are derived with a U-Net-like CNN trained to segment
the fetal head. The HC is then identified via ellipse fitting
with the direct least squares fitting [158]. Mean DSC and
MAE of 0.95 and 2.44 mm, respectively, are obtained. For
the same goal, in [125] a V-Net is used to automatically
segment the fetal skull and the HC is extrapolated, obtaining
DSC and MAE 0.97 and 1.89 mm, respectively. V-Net is
modified to encode attention mechanism in [126], obtaining
DSC and MAE of 0.98 and 1.77 mm, respectively. A U-Net
architecture is instead used in [127], reaching a DSC = 0.76
and an average error = 14.96%. Similarly, in [128] a U-Net
architecture is modified by adding dilated convolution layers
after the last layer of the encoder and squeeze-and-excitation
blocks on the skip connections. The method reaches a DSC
and MAE of 0.97 and 2.27 mm, respectively. In [129] a multi-
feature pyramid U-Net is proposed obtaining DSC and HD of
0.95 and 4.5 mm, respectively. An encoder-decoder network is
also proposed in [130]. The network consists of dense blocks
that strengthen feature propagation and channel attention in
bottleneck to enhance the important features. A MAE = 2.16
mm is obtained. In all the previous work HC is extrapolated
by means of ellipse fitting methods.

The work in [131] proposes a multi-task CNN inspired by
the structure of LinkNet, for the automatic segmentation of
fetal head and the successively estimation of the HC main
axes, center and angle. The approach is evaluated on the
HC18 challenge test, obtaining mean DSC and MAE of
0.97 and 2.12 mm, respectively. The authors present another
approach [132] based on a multi-scale and low complexity
structure inspired by LinkNet. Mean DSC and MAE of 0.92
and 2.22 mm, respectively, are obtained. A multi-task approach
is also exploited in [133], where head segmentation accuracy
is enhanced by a feature pyramid inside a U-Net-like CNN. A
regressor branch is added for predicting the HC value. DSC
and MAE of 0.97 and 1.81 mm are obtained.

To improve segmentation accuracy, some papers incorporate
a localization network in the pipeline to relieve the seg-
mentation network from learning the position of the head.
In [134], a region proposal network is used as post processing

procedure once the fetal head is segmented by U-Net on
polar transformed images. HC and BPD are extrapolated by
an ellipse fitting method. Even if with encouraging results
(ACC=0.87 for plane acceptance check and success rate =
0.93 for HC and BPD estimation), the approach is tested on
70 images only on a custom dataset. A Mask-RCNN is used
on [135] to improve segmentation accuracy by incorporating
a object localisation framework. Coordinates are extrapolated
by means of a ellipse fitting method. The proposed model is
tested on the HC18 dataset, achieving DSC and MAE of
0.97 and 2.33 mm, respectively.

A different strategy is used on [136], which considers
the problem of fetal head caliper placement as a distance
regression task. The proposed framework consists of a tiny-
YOLO for head location and centering, and a regression CNN,
which by means of distance field, accurately delineates the
fetal head boundaries. HC is successively obtained using a
ellipse fitting method. The framework is evaluated on the
HC18 challenge reaching a DSC and MAE of 0.97 and
1.90 mm, respectively. The work is further improved in [137]
in which the framework is made end-to-end using a Mask-
RCNN along with ellipse fitting for HC extrapolation. Results
are comparable (DSC = 0.98, MAE = 1.95 mm). The direct
regression of the contours coordinates is also performed in
[138]. However, CNN is jointly with a attention refinement
module along with a graph convolution network (GCN). This
approach does not requires any ellipse fitting method. A DSC
= 0.97 is obtained when testing on the HC18 dataset.

The work in [139] further extends the research in the field of
HC estimation by developing two probabilistic CNN methods:
Monte Carlo Dropout during inference and a probabilistic
U-Net. These methods are particularly useful in the clinical
practice since multiple plausible semantic segmentations of
fetal heads along with HC measurements are provided to the
clinicians, which can choose the best option. Mean DSC and
MAE of 0.98 and 1.81 mm are obtained from a custom
dataset of 540 test images labelled by 45 expert sonographers.

In order to avoid intermediate steps, such as segmentation
CNN along with ellipse fitting methods, which may be compu-
tationally expensive (both for model training and labeling), the
work in [140] proposes a regression CNN to directly estimate
the HC measure. Different CNNs are tested (including VGG16
and ResNet) as backbones, reaching a MAE of 4.52 mm
with data from the HC18 challenge. A similar approach is
followed in [141] in which saliency maps are used to provide
interpretation of the regression CNN results.
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(a) Segmentation (along with possible head localiza-
tion pre-prossing) + Ellipse fitting

(b) Region proposal along with boundary regression
+ Ellipse fitting

(c) Multi-task framework

(d) Direct regression

Fig. 9. Most common deep-learning strategies to fetal HC measurement.

Besides head biometries, a number of researchers is focus-
ing on AC estimation. The work in [142] proposes a method
for the AC estimation from 2D US data acquired from 88
patients. The framework performs semantic segmentation of
several anatomical structure (i.e., stomach bubble, amniotic
fluid, and umbilical vein) by using a custom designed CNN.
AC measurement is achieved through Hough transformation,
and a plane acceptance check performed by another CNN,
which verifies the presence of all structures of interest. The
DSC obtained over the test set is equal to 0.85 for AC
measurement and the mean ACC for the plane acceptance
check is 0.79. This method faces problems in predicting
the AC precisely in the case of insufficient amniotic fluid,
which commonly occurs when observing oversized fetuses.
To improve the results achieved by [142], the work in [143]
proposes a method consisting of a combination of multiple
CNNs. A CNN is used to identify anatomical structures in US
images (stomach bubble, amniotic fluid, and umbilical vein)
acquired from 77 pregnant women and Hough transform is

used to obtain an initial estimate of the AC. These data are
fed to other CNNs to estimate the spine and bone positions,
which are used to compute AC accurately. Then, a U-Net and
a classification CNN are used to check whether the image is
suitable for AC measurement. With this framework, a DSC
of 0.92 is achieved for AC measurement and an ACC of 0.87
for acceptance check of the fetal abdominal standard plane.

Only one work [144] focuses on CRL measurement estima-
tion. A U-Net is used to segment the all fetus area and CRL
is computed from the obtained segmentation. A total of 545
images is used to evaluate the approach, reaching DSC, IoU
and MAE of 0.93, 0.88 and 3.87 mm, respectively.

Few papers in the literature focus on FL, LV biometry and
CTR estimation. A first approach for automatically measuring
the width of LV is proposed in [145]. This approach, which
relies on Mask-RCNN, reaches Acc, Prec, Spec and MAE
of 0.96, 0.98, 0.93 and 1.8 mm respectively, when tested
on 500 images labeled by 3 experienced sonographers. FL
measurement is performed with SegNet and image skeletoniza-
tion in [146]. A total of 310 images labeled by an expert
sonographer is used to validate the approach, reaching a DSC
and a MAE of 0.92 and 0.46 mm, respectively. The work
in [147] focuses on CTR and cardiac axis estimation. The
proposed CNN is a one-stage ellipse detection algorithm. The
20% of 2086 fetal echocardiographic images is used as testing
set, reaching a DSC = 0.93. However, no measurements in
pixels or mm are reported.

Multiple biometry estimation is addressed in [148], where
head, abdomen and femur are semantically segments using
state-of-the-art CNNs. This step is followed by region fitting
and scale recovery for the biometry estimation. The framework
is evaluated through four-fold cross-validation on a dataset of
349 images (42 pregnancies). MAE of 2.67 mm, 3.77 mm
and 2.10 mm are obtained for HC, AC and FL, respectively.
The work in [149] proposes a multi-task framework consisting
of U-Net along with ConvLSTM to jointly localize, classify
and measure HC, AC and FL in fetal US video. A mean
DSC od 0.96 is obtained, along with MAE = 2.9 mm (HC),
MAE = 3.8 mm (AC) and MAE = 0.8 mm (FL). A multiple
biometry estimation is performed also in [151] with the aim
of supporting first trimester fetal assessment from a single 3-D
US scan. The framework extracts automatically a slice of the
whole fetus in the sagittal view and simultaneously segments
the whole fetus by means of a multi-task network. Automated
segmentation of the whole fetus into head, abdomen and limbs
is then performed to extrapolate biometry measurements. A
dataset consisting of 21 US volumes is used as testing set,
reaching a IoU = 0.92 for abdomen and head and a IoU =
0.66 for limbs segmentation. A MAE = 2.24 mm is obtained
for head and abdomen biometry measurements. The work in
[129] is further expanded on [152] in which HC, BPD, AC and
FL measurements are also considered. A total of 335 images
(HC18 test set), along with 180 images coming from a local
dataset, is used to test the method. DSC and HD of 0.98 and
1.14 mm are obtained, respectively.

The work in [150] proposes an approach that relies on
unsupervised domain adaptation for HC and TCD biometry
estimation from low cost US devices. The domain invariant
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representations for feature extraction are jointly learnt from
both high-end and low cost US images and a unsupervised
learning is used to calibrate the model in the low cost domain
in order to produce consistent predictions. The final biometric
estimation is performed fitting an ellipse to the contours (for
HC measurements) and performing non-maximum suppression
to find the pixels with greatest probabilities (for TCD measure-
ments). A total of 913 images are used for model evaluation.
An MAE = 2.04 mm between HC and TCD measurements
is obtained.

In [153], a fully-automated pipeline for GA estimation is
proposed. The pipeline relies on BPD, HC, CRL, AC and
FL estimation, which is accomplished following U-Net based
structure segmentation. For this study, three different datasets
are used: the first one, including 23209 fetal US images from
1450 women, and the second one, with 124646 2D images
from 2,983 US sessions, are used for training the algorithm,
while the third one with 7233 US images from 2491 US studies
is used for the evaluation. An approach to automate the fetal
head biometry in real-time is proposed in [154]. Firstly, an
AlexNet is used to classify and extract fetal head from US
images; successively a U-Net is used to compute HC and BPD
to estimate gestational age. A dataset consisting of 1000 US
videos is used to validate the model, which achieves an Acc
of 0.96.

A. Limitations and open issues for biometry parameter esti-
mation

Most of the papers dealing with biometry parameter estima-
tion focuses the attention on HC estimation only. This may be
attributed to the release of the HC18 dataset, which strongly
advanced the research in this domain. However, the HC18
dataset does not allow to study advanced DL methodologies
due to both the limited number of images and anatomical struc-
tures (only fetal brain is shown). From the virtuous example
of the HC18 challenge, the research community should work
to collect and release datasets for other biometries, too.

An end-to-end approach to identify the scan plane at first,
and then calculate biometries associated to that plan, could be
a valuable support tool for clinicians. Only the work in [153]
proposes something similar, but further research is needed.

A unified framework to biometry estimation from multiple
anatomical regions have not been proposed, yet. Here, the most
peculiar challenge is the huge variability in terms of shape and
morphology of the anatomical structures (i.e. abdomen less
contrasted with the background as opposed to other organs,
femur and cerebellum that not fit an ellipse), as well as
the dimension of the organs, which varies according to the
gestational trimesters.

VI. OTHER TASKS

Besides standard-plane detection (Sec. III), anatomical-
structure analysis (Sec. IV) and biometry measurements
(Sec. V), researchers are working on a number of other tasks,
including:

1) Adipose tissue evaluation: Observation and evaluation
on fetal adipose tissue is significant to determine the growth
and nutritional adequacy of the fetus. The work in [159]
performs fetal adipose tissue segmentation through a U-Net
with depth-wise separable convolutions. The performance on
a test set of 340 US slices, extracted from 68 volumes, results
in Rec, Spec and DSC of 0.87, 0.99 and 0.80, respectively.

The work in [160] proposes a framework for detecting
and segmenting the fetal thigh cross-sectional area of adipose
tissue. The framework relies on Faster R-CNN for localizing
the regions containing the fetal thigh cross-section, on which
threshold-based segmentation is performed to allow measure-
ment of adipose tissue thickness.

The framework achieves, on a test set of 50 cross-sectional
US images, Prec, Rec, Spec and DSC of 0.92, 0.94, 0.95
and 0.93, respectively.

2) Face analysis: Accurate detection and visualization of
fetal face position and orientation is crucial in prenatal diag-
nosis, growth monitoring and detection of fetal anomalies. A
U-Net inspired encoder-decoder 3D CNN is proposed in [161]
to segment fetal face from 3D US volumes. The model obtains
a mean ED of 1.72 mm over a five-fold cross-validation with
6 volumes for testing in each fold. In [162], an RPN-based
object detection framework is proposed to detect landmarks in
3D facial US volumes. Predictions from the RPN architecture
are further refined with a distance-based graph prior to produce
the final bounding box for each landmark. The model tested
on 32 volumes obtained a mean IoU of 0.64.

3) Gender identification: Determining fetal gender by US
scan is among the main tasks during the early stages of
pregnancy. With the aim of canceling this information from the
US display to prevent unauthorized gender viewing, the work
in [163] develops a residual network to identify frames con-
taining gender-defining region in real-time among the entire set
of images in cine-loop acquired from 50 women, between 11
and 20 weeks of gestation. The training is performed in five-
fold cross-validation and, despite the strong dataset imbalance,
in average their method achieve Acc, Rec, Prec and F1 equal
to 0.83, 0.82, 0.70 and 0.69, respectively.

4) Pose estimation: In [164], fetal pose is estimated by
localizing 16 landmarks, including joints. The authors propose
a self-supervised learning framework to fine tune a network
to form visually plausible pose predictions: a pre-trained 3D
U-Net predicts the heatmaps of the 16 landmarks with an
intermediate fetal pose estimator. By retrieving a support set of
atlases in the pose library via rigid registration, label proxies
are produced to form the self-supervision. The landmark
detector is tuned iteratively for on-line refinement and updated
under the gradient checkpointing strategy in necessary. The
performance is evaluated over 52 US volumes, achieving ED
and AUC in landmark detection of 4.92 mm and 62.90%,
respectively.

5) Preterm-birth prediction: An early detection of risks of
preterm birth is crucial to timely intervene and preserve fetal
survival. US data are typically inspected by expert doctors,
which use hand-designed image features such as cervical
length and anterior cervical angle. Lately, to overcome errors
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related to a subjective and manual method, DL was used to
predict preterm birth.

In [165], a U-Net is used to segment the cervix from US
images. The masks obtained are used to estimate the cervical
length and the anterior cervical angle. The cervical length
is measured through the centerline algorithm and evaluated
performing linear regression between estimated and ground
truth lengths of cervix. For the anterior cervical angle esti-
mation is used an iterative algorithm that finds centroid point
of the cervix mask and splits it into two shapes. In the end,
the anterior cervical angle is measured between the anterior
wall and the line between the last two centroids. On a test
set of 108 images the segmentation step achieves an IoU
of 0.91; while the final classification to assign preterm vs
control labels, performed with Bayes classifier in a five-fold
cross-validation, obtains an Acc, Prec, Rec and AUC of
0.77, 0.85, 0.74 and 0.78 respectively. A similar approach is
proposed in [166],which uses a U-Net with a parallel branch
for classification to simultaneously segment and classify the
cervix in 2D US images. The model tested on 70 images
reaches a IoU , Rec, Prec and AUC of 0.92, 0.67, 0.68 and
0.72 respectively.

6) US simulation: US simulation based on ray tracing can
provide an interactive environment for training sonographers
as an educational tool. However, a trade off between image
quality and interactivity has to be taken into account, as it can
lead to sub-optimal results in terms of interactive rates. The
work in [167] proposes a patch-based GAN for improving
the quality of simulated US images while keeping constant
computational time, via image translation of computationally
low-cost images to high quality simulation outputs. In addi-
tion, segmentation and attenuation integral maps are provided
to the translation framework to improve the preservation of
anatomical structures and the synthesis of relevant acoustic
shadows. The dataset used consists of patches extracted from
6669 images and a constant binary mask covering the beam
shape for all samples. When tested on 669 US images, the
framework achieves mean KLD of 13.80.

7) Shadow artifact removal: Acoustic shadows caused by
sound-opaque occluders can potentially hide vital anatomical
information in 2D US and thus can be a big burden for
US analysis, ranging from anatomy segmentation to landmark
detection. An automatic shadow detection method is presented
in [168]. It generates a pixel-wise shadow confidence map
from weakly labelled annotations, jointly using: a FCN as
shadow image discriminator, a feature attribution map from
a Wasserstein GAN and an intensity saliency map from a
graph cut model. The evaluation is performed on two US
datasets, one containing 993 2D images from 14 fetal standard
planes and the other consisting of 643 brain 2D images; the
DSC achieved for the two test datasets is equal to 0.55
and 0.36, respectively. The authors improve these results
in [169], developing a CNN-based, weakly supervised method
for automatic confidence estimation of shadow regions in 2D
US images. By learning and transferring shadow features from
weakly-labelled images, continuous shadow confidence maps
are directly predicted from input images. The method is trained
and evaluated using a multi-class dataset (8500 US images

of 13 fetal standard-planes) with global image-level label
(“has shadow” or “shadow-free”) and a single-class dataset
(643 fetal brain images). The performances on the 48 multi-
class images and on 93 brain images result in DSC equal to
0.54 and 0.71, respectively; the average classification Acc is
0.98. Differently from previous work, in which shadow region
segmentation is performed, in [170] a disentanglement method
is presented to disjoint anatomical from shadow features,
to generalize anatomical standard plane analysis for abnor-
mality detection in early pregnancy. The authors proposed
a multi-task architecture with adversarial training, evaluated
on standard-plane / shadow artifacts classification tasks. The
dataset involved contains 8400 US images of 8 fetal standard-
planes sampled from 4120 screening examinations.The ACC
achieved for plane recognition is on average 0.94, while for
shadow presence identification is about 0.79. Together with the
indiscriminate mixing of image properties, e.g. artifacts and
anatomy, another challenge for DL algorithms in US image
analysis is the presence of different acquisition devices char-
acteristics. The work in [171], while considering the shadow
artifacts presence, explores also the cross-device adaptation
problem. In contrast to previous work, the authors present
a non-adversarial method that evaluates mutual information
between latent features to disentangle categorical features and
domain features in a semi-supervised learning framework.
They evaluate the method on fetal US datasets for two
different image classification tasks where domain features are
respectively defined by shadow artifacts and image acquisition
devices. Experiments on the first dataset, consisting of 7000
fetal US images of 6 standard planes sampled from 2694
US scans, aim to separate anatomical and shadow artifacts
features (categorical and domain features, respectively) and
they result in Prec, Rec and F1 equal to 0.83, 0.62 and
0.68, respectively. Further experiments are performed for a
standard plane classification task on a second dataset of 11000
US images acquired from two US devices (different device
domains), achieving Prec, Rec and F1 equal to 0.80, 0.60
and 0.66, respectively.

8) Video summarization: Video summarization is crucial
to lower the workload of clinicians when reviewing US
examination. In [172], DRL is applied to video summariza-
tion to select a subset of frames to create a shorter video
that contains sufficient and essential information to facilitate
retrospective analysis. An encoder-decoder CNN structure is
firstly used to extract features from frame sequences; these
features are then passed into a bi-directional long short-term
memory network (Bi-LSTM) for sequential modeling. After
the feature extraction, the summarization task is modeled as a
decision-making process using a reinforcement learning (RL)
network which, through a reward function, selects frames to
be included in the summary. Experiments conducted in a five-
fold cross-validation using 10 videos as test set, resulted in
a F1, Prec and Rec of 0.63, 0.62 and 0.64 respectively.
Video summarization is further investigated in [173], which
proposes an approach for video description and clinical-
workflow analysis during fetal US scans. The semi-automatic
method to temporally segment the US videos into semantically
meaningful segments is based on a double branch architecture
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in which a SonoNet is employed to extract spatial features,
and an LSTM unit is used to model temporal dependency.
The segments are then classified into 23 anatomical categories.
The resulting semantic annotation is then used to describe
operator clinical workflow via machine learning methods, to
characterize operator skills and assess operator variability.
The automatic annotations of 341 US videos (62 of which
manually annotated) resulted in an Acc of 0.92 in four-fold
cross-validation.

9) Probe movement control: Accurate obstetric US scan-
ning is highly operator dependent. This issue may be overcome
with the use of US probe-movement guidance, especially to
assist less-experienced operators. In [174], contrastive learn-
ing is used to train an end-to-end self-supervised network
for visual-assisted probe movement, via automated landmark
retrieval. Firstly, a set of landmarks is built on a virtual 3D
fetal model; then, during obstetric scanning, a transformer is
used to locate the nearest landmark through descriptor search
between the current observation and the landmarks. The global
position visualization is displayed on the monitor in real-time
as visual guidance for the operator. The model is tested on 10
test cases for a total of 10084 2D US images, achieving an
average Rec of 0.94.

10) Volume reconstruction: 3D US is extensively used
in fetal diagnostic, despite its limited field of view. 3D
US volume reconstruction from 2D frames can address the
problem, providing more expansive range. In [175] a three-
fold approach for fetal 3D US reconstruction from 2D slices is
proposed. First, the reconstruction process is approached with
a differentiable algorithm based on Convolutional LSTM. Sec-
ond, self-supervised learning is applied on the reconstructed
volumes to perform pseudo supervision and regularize the
prediction of future frames. Finally, adversarial learning is in-
troduced to improve the representation learning of anatomical
shape priors, to prevent uneven reconstructions. The model
tested on 13 sequences with 90 2D frames each achieves an
HD of 14.12 mm.

VII. DISCUSSION AND CONCLUSIONS

This review analyzed a wide spectrum of the most recent
DL algorithms for fetal US image analysis. Fetal US image
analysis dates back to mid 1900s and a solid and rich literature
today exists. Our survey started with the aim of answering the
following questions:

Which are the most investigated tasks addressed using
DL in the field of fetal US image analysis? According to
our findings, standard plane detection (19.9%) and biometry
parameter estimation (21.9%) are among the most investigated
tasks (Fig 2(a)). In standard plane detection, fetal brain,
abdomen and heart standard planes are the most explored since
biometric measurements and identification of abnormalities
are mainly performed on these planes. The identification of
the specific anatomical landmarks is the key for evaluating
the quality of each scanned plane and detection algorithms
or attention mechanisms are thus particularly used in this
domain. As regard biometry parameter estimation, the HC is
the most investigated measurement among all the others. This

Fig. 10. Overall workflow of a computer-assisted tool to support fetal
clinicians.

is mainly due to the release of HC18 challenge that allowed a
more extensive research in the domain. Segmentation (along
with possible head localization pre-processing) followed by
fitting methods approaches are the most exploited ones. The
46.6% of the analysed papers dealt with anatomical-structure
analysis. According to Fig. 7, the 30,3% and the 24,2% of the
papers work on fetal heart and brain applications, respectively.
The cardiac examination of fetus in literature is designed
to maximize the detection of heart anomalies and genetic
syndromes. Detection rate is often optimized by recognizing
the main fetal heart planes (4CH, LVOT and RVOT) at
first. The analysis is often performed on 2D US images
or integrating spatio temporal information, which improves
CNN performance since the temporal dependencies present in
consecutive frames are exploited.

As regards fetal brain analysis, a great part of the papers
surveyed focuses on the evaluation of brain structures. The
analysis is performed both with 2D and, more recently, 3D
architectures but structure segmentation is mainly assessed
with encoder-decoder inspired architectures. Gestational age
and brain development also occupy a consistent part of fetal
brain evaluation. The anatomical regions that have received
marginal attention are the lungs, kidney and spine whose
approaches are also less varied.

Which are the main challenges in regard to fetal
examination that are currently tackled by using DL? From
our survey, it emerged that DL is today able to tackle US-
image related challenges, including inhomogeneities, artifacts
(i.e. shadows), poor contrast and intra- and inter-clinician
acquisition and measurement variability, supporting clinicians
in a wide range of clinical applications. For standard plane
detection, current DL algorithms are robust when processing
single-center datasets, collected and annotated by 1 or 2
experts mostly from a single US machine. The algorithms are
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able to tackle challenges such as a high variability (size and
shape) of fetuses among different GAs, as well as the pres-
ence of shared anatomical structures among different standard
planes. Here, a winning strategy in the literature is to check
that a predefined number of structures appears in the US probe
field of view.

As regard anatomical-organ contest, DL has proven to be an
essential tool to support the segmentation process of different
anatomical structures, which may vary in shape and size over
GA. Boundary incompleteness is a common problem for those
anatomical structures that are not particularly contrasted with
respect to the background. Up to now all the DL segmentation
techniques, which are mainly supervised, outperformed other
state-of-the art methods in both performance and speed. How-
ever, those approaches may be unable to deal with boundary
information loss due to a lack of the prior shape information.
Dilated convolutions along with residual learning are, thus,
often exploited to help increase CNN field of view and recover
information loss, respectively. Computer-aided diagnosis sys-
tems that make full use of DL have been an other research for
the past few decades in the field, helping clinicians in their
decision-making process.

For biometry-parameter estimation, DL today achieves ro-
bust results on HC estimation tackling challenges such as
different position of the head in the image, varying dimensions
of fetal head among the gestational trimesters and partially
visible head skull. These challenges are today tackled for still
images acquired from a single US machine and annotated by
a limited number of clinicians. Only one paper proposed an
approach in the field invariant to significant image distribution
shift between image types [150]. Besides tasks addressed
in paragraphs III,IV, V, recently other tasks are analyzed.
Emerging fields such as preterm birth prediction or fetal pose
estimation are investigated to intervene and preserve fetal
survival and quantify fetal movements. Techniques which im-
prove image quality and image analysis are also exploited such
as shadow artifact removal and 3D volume reconstruction from
2D slices, which is particularly useful to provide information
on the entire anatomy (typical of 3D imaging) together with
a more complete field of view.

Are the commonly-used datasets sufficient enough for
robust DL algorithm development and testing? Collecting
and sharing annotated datasets for DL algorithm development
is a well-known problem for the medical-image analysis
community. Up to now, only few datasets are available in the
US fetal field (Sec. II). Besides practical issues (annotating
data is a labour-intensive process), there are social and ethical
concerns that have to be considered. To attenuate these issues,
all these aspects should be deeply studied in collaboration with
non-technical communities (e.g., lawyers, ethicists, ...). This
step is crucial with a view to develop robust and generalizable
algorithms.

In terms of number of images, almost all articles were
evaluated with less than 1000 images and some of them even
with less then 300 images. Moreover, the number of the images
that have been used are missing in some of the articles. In order
to have a high degree of robustness, train/test size must be
always clarified as well as patient number which is an essential

information to avoid that the same woman’ scan is part of both
training/validation and test set. A cross-validation is strongly
suggested when limited data sample is available, especially if
we are facing with multi-class problems. With cross-validation
strategies all the data is used to evaluate model capability,
making algorithm performance more reliable.

Which are open issues that still have to be addressed by
DL in the field?

Hereafter, we discuss about the main open issues and future
research directions that we have identified in the field of fetal
US image analysis.

1) Multi-expert image annotation: The lack of image an-
notation by multiple clinicians currently represents a major
drawback. While it is undeniable that having more than one
expert annotator is expensive in term of money and time, this
multi-expert annotation is crucial towards the development of
robust DL algorithms and the fair comparison of algorithm
performance. Moreover, the inter-clinician variability could be
assessed, which is an indicator of the degree of image com-
plexity. With these considerations in mind, result interpretation
must be carefully evaluated when manual annotation is used
as the main reference for the study.

2) Performance evaluation: The absence of a systematic
evaluation workflow emerged as a critical point. Fair algorithm
comparison if often hampered due to an inconsistent use
of performance metrics and/ or testing datasets. A direct
comparison of methods could not be in fact performed for
all the section under exams since each work is validated
through different measures. Moreover, despite the efforts of
some researchers and International Organizations, the publicly
available datasets are still too few, and often released for some
specific tasks (e.g., biometric measurements in a body district).

3) Comprehensive analysis: Developing comprehensive
computational models of the fetus is particularly challenging:
as the baby grows, the fetus’ body is in constant transfor-
mation, with significant structural and physiological changes
among trimesters leading to an important inter- and intra-organ
variability. The creation of anatomically accurate models able
to characterize the complexity of fetus anatomy represents,
thus, one of the biggest challenges. In addition, the acquisition
of quality images is the first step to adequately valuate fetus
well-being: an end-to-end approach able to correctly classify
fetal planes and successively evaluate biometries or fetus
defect hasn’t fully exploited yet. Among the few papers that
tried to create an unified approach, the work in [69] is the
most complete. However, the application is limited to only
one anatomical structure (in this case the heart), and thus it
does not exploit the potential of DL for distinguishing in-size
and shape different objects.

4) Semi, weak and self-supervised learning: To attenuate
the issue of having small annotated datasets, researchers in
closer fields are proposing semi, weakly or self-supervised
approaches. In the fetal US domain, only 13 out 145 pa-
pers investigates the potential of such approaches. These
include [45], [47] to classify and detect planes, and [171] to
explore cross-device adaptation problems. Weak supervision
tasks are involved in scan plane detection [43], fetal heart
representations [58], multi-organ analysis [117] and shadow
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detection [168], [169]. Self supervised techniques are used for
scan plane detection [46], fetal pose estimation [164], probe
movement estimation [174], fetal 3D reconstruction [175].
Other interesting approaches propose unsupervised learning
techniques such as in [114] for multi-organ classification and
in [150] for biometry estimation in low cost US devices.
Even if there is a recent attempt to exploit such techniques in
the field, still too few papers makes use of these techniques,
proving that this is still an unexplored field in fetal US domain

5) Model efficiency: The computational cost associated to
the training and deployment of DL models is not reported in
the majority of the surveyed papers. An high computational
cost hampers the efficient deployment of the DL algorithms
on single-board computers for on-the-edge computation. At the
same time, a high computational cost is associated with a high
CO2 consumption. Model efficiency is a critical aspect that
is currently monitored by International Organizations 6 and
performance on this regard should be considered as additional
evaluation metric.

6) On-device DL in fetal US: All the world’s tech giants
embrace DL to provide next-level products and services in
fields such social networks, self-driving cars and finance. DL
applications in medical imaging give great results in research
papers, however, their commercial use is not common yet.
Among the DL algorithms used for commercial purposes in
this field, SonoLyst is the first fully integrate AI tool in the
world that allows the identification of 20 views recommended
by the ISUOG mid-trimester practice guidelines for fetal
sonography imaging7 .

7) Use of federated learning: The majority of the surveyed
papers relies on single-center datasets or datasets made avail-
able through international initiatives (e.g., Grand Challenge,
Sec. II). Accessing sufficiently large and diverse datasets of
fetal US images is still a significant challenge. The col-
laboration among clinical centers based on centrally-shared
US images face privacy and ownership concerns. Federated
learning is a novel paradigm for data-private multi-institutional
collaborations, where model-learning leverages all available
data without sharing data between institutions [176]. Despite
the benefits of such a paradigm, none of the reviewed articles
has implemented it.

8) Adherence to the ethics guidelines for trustworthy
AI: With the rapid development of DL algorithms for fetal
US image analysis, the application of ethical principles
and guidelines have become crucial. In 2018, the European
Commission has published a white paper8 titled Ethics
Guidelines for Trustworthy AI, to stress on the important of
respecting and promoting ethical principles in all the steps
that involve the use of DL, from design to deployment.
However, no attempts have been made in the reviewed papers
in this directions. The Guidelines present an assessment
list that offers guidance on each requirement’s practical
implementation. This assessment list should be filled by
researchers and reported as supplementary material.

6https://cordis.europa.eu/programme/id/H2020-EU.3.5.
7https://www.intelligentultrasound.com/scannav-assist/
8https://ec.europa.eu/futurium/en/ai-alliance-consultation.1.html

To conclude, this review introduced and discussed the most
innovative and effective DL methods found in the literature for
fetal US image analysis. The methods were summarized using
tables reporting performance metrics, training and test set size,
and number of annotators. Pros and cons of each method were
highlighted. We hope our review may be helpful for young
researchers to get a better picture of the methods available,
leading to a speed-up on the development and enhancement
of methods for fetal US image analysis.

https://cordis.europa.eu/programme/id/H2020-EU.3.5.
https://www.intelligentultrasound.com/scannav-assist/
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NOMENCLATURE

AC: Abdominal Circumference

Acc: Accuracy

AUC: Area Under the ROC Curve

AUC-J: Area Under the ROC Curve by Judd

BPD: Biparietal Diameter

CNN: Convolutional Neural Networks

CRL: Crown-Rump Length

CSP: Cavum Septum Pellucidum

CTR: Cardio-Thoracic Ratio

DIFF: Mean Plane Centres Difference

DL: Deep Learning

DRL: Deep Reinforcement Learning

DSC: Dice Similarity Coefficient

ED: Euclidean Distance

FASP: Fetal Abdomen Standard Plane

FBSP: Fetal Brain Standard Plane

FCN: Fully Convolutional Networks

FCSP: Fetal Trans-Cerebellum Standard Plane

FFASP: Fetal Face Axial Standard Plane

FFSP: Fetal Facial Standard Plane

FFESP: Fetal Femur Standard Plane

FL: Femur Diaphysis Length

FLVSP: Fetal Lumbosacral Spine Standard Plane

FTSP: Fetal Trans-Thalamic Standard Plane

FVSP: Fetal Trans-Ventricular Standard Plane

FV: Fetal Ventriculomegaly

F1: F1-score

GA: Gestational Age

GAN: Generative Adversarial Network

GRU-RCN: Gated-Recurrent-Unit Recurrent Convolutional Network

HC: Head Circumference

HD: Hausdorff Distance

IoU : Intersection over Union

ISBI: International Symposium on Biomedical Images

ISUOG: International Society of Ultrasound in Obstetrics and Gyne-
cology

KLD: Kullback-Leibler Divergence

LVOT: Left Ventricular Outflow Tract

LVR: Lateral Ventricle Ratio

LSTM: Long Short-Term Memory

MAE: Mean Absolute Error

MICCAI: Medical Image Computing and Computer Assessed Interven-
tion

MVP: Maximum Vertical Pocket

NAS: Neural Architecture Search

NSS: Normalized Scanpath Saliency

OFD: Occipito-Frontal Diameter

Prec: Precision

Rec: Recall

RMSE: Root Mean Squared Error

RNN: Recurrent Neural Network

ROC: Receiver Operating Characteristic

RVOT: Right Ventricular Outflow Tract

SE: Squeeze-and-Excitation

Spec: Specificity

SSL: Self-Supervised Learning

SVM: Support-Vector Machine

TCD: Trans Cerebellar Diameter

US: Ultrasound

3VT: Three-Vessel Trachea

3VV: Three-Vessel View

4CH: Four Chamber View
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