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ABSTRACT Deep learning has attracted intense interest in Prognostics and Health Management (PHM),

because of its enormous representing power, automated feature learning capability and best-in-class perfor-

mance in solving complex problems. This paper surveys recent advancements in PHMmethodologies using

deep learning with the aim of identifying research gaps and suggesting further improvements. After a brief

introduction to several deep learningmodels, we review and analyze applications of fault detection, diagnosis

and prognosis using deep learning. The survey validates the universal applicability of deep learning to various

types of input in PHM, including vibration, imagery, time-series and structured data. It also reveals that

deep learning provides a one-fits-all framework for the primary PHM subfields: fault detection uses either

reconstruction error or stacks a binary classifier on top of the network to detect anomalies; fault diagnosis

typically adds a soft-max layer to perform multi-class classification; prognosis adds a continuous regression

layer to predict remaining useful life. The general framework suggests the possibility of transfer learning

across PHM applications. The survey reveals some common properties and identifies the research gaps in

each PHM subfield. It concludes by summarizing some major challenges and potential opportunities in the

domain.

INDEX TERMS Condition-based maintenance, deep learning, fault detection, fault diagnosis, prognosis.

I. INTRODUCTION

Prognostics and Health Management (PHM) has emerged as

a critical approach to achieving a competitive edge in many

industries because of its potential for reliability, safety and

cost reduction. PHM uses measurements, models and soft-

ware to perform incipient fault detection, condition assess-

ment and failure progression prediction [1], [2]. It provides

users with the ability to perceive the health state of a part,

asset, subsystem or system [3]. As shown in Fig. 1, a holis-

tic PHM framework typically incorporates data collection,

data manipulation, fault detection, fault diagnosis, progno-

sis and decision support in sequential order [2], [4], [5].

Of these, fault detection, diagnosis and prognosis are themost

The associate editor coordinating the review of this manuscript and

approving it for publication was Faisal Khan .

researched [6], [7]. Therefore, in this paper, we restrict our

review to these three topics.

PHM methods can be roughly classified as either physics

model-based or data-driven [2], [8], [9]. The former requires

knowing the first principles of the item under investigation,

such as material properties, structural characteristics and

failure mechanisms [10], [11]. While highly accurate when

applied to the component level, the method may not perform

well in modern complex systems because intra-system inter-

actions often occur in very complicated ways and cannot be

easily captured by physical models [9]. Data-driven methods

attempt to acquire hidden knowledge from empirical data,

to infer current health states of the item of interest and to

predict its Remaining Useful Life (RUL) [7], [12]. Data-

driven methods can be further divided into supervised and

unsupervised approaches, depending on whether the raw data
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FIGURE 1. Holistic PHM framework, adapted from Open System
Architecture for CBM (OSA-CBM) and ISO 13374-2:2007 [2], [4], [5].

are labeled or not. With the data deluge in industry and ever-

increasing computing power, data-driven methods are finding

more opportunities in PHM applications [13], for example,

in [14] and [15].

Advances in sensor technology and Information and Com-

munication Technologies (ICT) have led to the creation of

‘‘Industrial Big Data.’’ These data tend to be multi-modal,

unstructured, decentralized, heterogeneous, fast-flowing and

highly nonlinear [16], posing significant challenges to tra-

ditional data-driven methods in PHM applications. For

example, in two studies, Unmanned Aerial Vehicles (UAV)

were used to carry out regular inspection of railway

tracks [17], [18]. Images and videos taken by the drones

can be analyzed to detect potential track defects, such as

squats, poor-quality insulated joints, structural damage and

so on. However, traditional methods of analysis rely on

domain expertise to extract useful features like edges, lines

and textures, which can then be fed to other learning algo-

rithms [17], [18]. These hand-crafted features may be subjec-

tive, implying low efficiency and high labor cost. Traditional

methods also require a large number of labeled samples

for training. It is hard to meet this requirement in many

real-world applications where experiments are costly or even

not allowed. In another study, researchers showed how bear-

ing RUL could be predicted using vibration data [19]. Thanks

to advancements in artificial intelligence, deep learning pro-

vides a way to meet the challenges of Big Data.

Deep learning comes from research into Artificial Neural

Networks (ANNs), where ‘‘deep’’ contrasts itself with con-

ventional shallow neural networks in terms of the depth of

the network architecture [20]. The use of deep architecture,

extensible hidden units and nonlinear activation functions

gives a deep neural network with an ability to model complex

data, such as acoustic data, natural language and images; see

the universal approximation theorem [21]. One, maybe the

most attractive aspect of deep learning is that it can automate

feature engineering, the learning of internal representation

and the creation of feature vectors of the raw data without

human intervention [20], thus alleviating the need for domain

expertise and hardcore feature extraction. The learned fea-

tures are typically stacked layer-wisely, with high-level ones

more abstract than lower ones; the high-level representations

can detect, classify and predict patterns in the input. In addi-

tion, the incorporation of feature learning into a deep neural

network allows parameters in a feature engineering module

and a pattern recognition module to be jointly trained, leading

to better performance [22]. It also enables end-to-end learn-

ing, making deep learning models generic in PHM, i.e., not

restricted to a specific piece of equipment or a particular

application. In other words, deep learning models can be

adapted to new problems relatively easily. Many researchers

have reused pretrained networks to solve their problems in

PHM with an effortless modification in the architecture and

a finetuning process; see Section III for concrete examples.

This is generally called transfer learning, i.e., transferring

the knowledge learned from a source problem to a similar

but different target problem. The use of transfer learning can

greatly reduce the need for labelled samples in the target

problem. All the above properties of deep learning make its

performance best-in-class in many complex problems.

Many researchers have applied deep learning technologies

to PHM applications. Some focus on a subfield of PHM,

e.g., fault diagnosis or prognosis [23], [24]; others focus on

applications to a specific item, e.g., bearing or electronic

system [25]–[27], while still others survey PHM applications

from the point of view of various deep learning architec-

tures [22], [28]. However, none provides a comprehensive

survey of the full coverage of the PHM domain from an

application perspective. Besides, the major problems in the

field are: studies to various PHM subfields are somewhat

independent from each other, leading to a lack of sharing

of data, models and knowledge; existing researches share

many commonalities, yet scholars are still reinventing the

wheels; there are no guidelines on the design or selection

of a ‘‘good’’ deep learning model for different applications;

a unified evaluation system to different methods is still miss-

ing. Though this paper is not intended to solve all the above

problems, we do hope it may induce others to come forward

with valuable contributions.

In this paper, we survey recent advancements of PHM

methodologies using deep learning, with a focus on their

applications in fault detection, diagnosis and prognosis.

In response to the emerging challenges, as well as the oppor-

tunities, we identify research gaps that when filled may lead

to the improvement of PHM in both theory and practice. The

major contributions of this paper are the following:

1) It presents a comprehensive review of deep learning

applications in fault detection, diagnosis and prognosis.

To enable systematical analysis, the applications are

categorized according to their type of input: vibration

(incl. acoustic), imagery, structured and time-series

data. With this design, the paper may serve as a ref-

erence for researchers looking for studies related to

their work. It also validates the universal applicability

of deep learning to various types of data in PHM.
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2) The review leads us to conclude that deep learning

provides a one-fits-all framework for fault detection,

diagnosis and prognosis. This makes transfer learning

possible, allowing a pretrained network to be reused

across different PHM subfields. In other words, given

the same type of input, we can adapt a deep learning

model from one PHM application to another with min-

imal effort. This could significantly reduce the number

of required labeled samples. Notably, the use of trans-

fer learning across different PHM subfields are rarely

reported in the literature.

3) For each PHM subfield, we find some common prop-

erties, such as the design of an appropriate network

architecture, the selection of loss functions and evalua-

tion metrics. These common properties can be a guide-

line for future studies. In addition, we mention some

benchmarking datasets and compare existing research

referring to these datasets, with the hope of recognizing

the best practices. We also identify the research gaps

within each PHM subfield.

4) The paper summarizes five challenges and three oppor-

tunities based on the review. The five challenges are:

the artistic use of deep learning technologies; poor

generalization to real-world applications; the ‘‘concept

drift’’ problem; the timeliness concern; the creation of

actionable tasks. The three opportunities are: transfer

learning, data augmentation and end-to-end learning.
The remainder of this paper is organized as follows.

Section II briefly introduces four commonly used types of

deep learning architecture and their variants. Section III

reviews research adopting deep learning in fault detection,

fault diagnosis and prognosis. Section IV presents current

challenges of and opportunities for using deep learning in

PHM. Finally, Section V concludes the work.

II. DEEP LEARNING MODELS

With the theoretical development of deep learning, vari-

ous network architectures have been proposed for differ-

ent domains, ranging from speech recognition to computer

vision, natural language processing, learning from structured

data and so on [20]. Each has its own specialties and frailties

in dealing with different types of data. In PHM, the data

available for training are widely variable, including, for

instance, thermal infrared images, vibration signals, stator

current and multiple sensor fusion. In this section, we briefly

touch on four widely used architectures in the PHM domain:

auto-encoder (AE), restricted Boltzmann machine (RBM),

convolutional neural network (CNN), recurrent neural net-

work (RNN) and their variants.

A. AUTO-ENCODER AND ITS VARIANTS

An auto-encoder has a feed-forward network architecture

which can learn feature representations of input data without

supervision. It consists of two components, i.e., an encoder

and a decoder, as shown in Fig. 2. The encoder compresses

input data to hidden layers with a smaller number of neurons,

FIGURE 2. Architecture of an auto-encoder, containing two components:
an encoder and a decoder.

from which the decoder tries to reconstruct the input [29].

Training an auto-encoder requires minimizing the average

reconstruction loss, typically the squared error function over

a given training set.

The intuition behind an auto-encoder is as follows: if the

decoder obtains a good reconstruction of the input, the neu-

rons in the hidden layers must preserve the vast majority

information of the original data. The shrinkage in the size

of hidden neurons forces the network to learn representative

features of the input. The use of nonlinear activation func-

tions, such as relu, tanh and sigmoid, enables the network

to learn complex and useful feature representations, and the

deep depth of the architecture gives the network the chance

to learn hierarchical and more abstract features. It is worth

noting that greedy layer-wise pretraining can be performed

on auto-encoders to learn hierarchical feature representations

of input, as detailed in the next subsection.

Variants of auto-encoders include the following:
1) Sparse Auto-Encoder (SAE): By imposing sparsity

constraints on the hidden neurons, an auto-encoder can

learn sparse feature representations of the input [30].

More specifically, it adds a sparsity cost term to

the loss function; the sparsity cost term measures

the KL-divergence between a target activation level

and the average activation value of all hidden units.

In this way, the activation of hidden units is suppressed,

leading to a sparse representation.

2) Denoising Auto-Encoder (DAE): DAE takes in

stochastically corrupted data and tries to denoise a

clean version from the corrupted one. It can make the

reconstruction more robust and prevent the network

from learning the identity transformation [31]. The

most common way to corrupt the data is to introduce

dropout noise or binary masking noise; this randomly

sets a fraction of elements in the input to zeros.

Isotropic Gaussian noise is also used occasionally.
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3) Contractive Auto-Encoder (CAE): CAE encourages

invariance or robustness for small variations of input by

adding a penalty term to the loss function; this penalty

term, the Frobenius norm of the Jacobian of the nonlin-

ear mapping 32], can learn more robust representations

of the input.

B. RESTRICTED BOLTSMANN MACHINE

AND ITS VARIANTS

The architecture of a restricted Boltzmannmachine is a bipar-

tite graph, in which two groups (or layers) of nodes – visible

units and hidden units – are fully interconnected, with no

intra-layer connection in the graph. Visible units take in input

data, and hidden units are feature representations of them,

as shown in Fig. 3.

FIGURE 3. Architecture of a restricted Boltzmann machine, which is
essentially an undirected probabilistic graphical model.

RBMs are undirected Probabilistic Graphical Models

(PGMs). All the visible/hidden units are conditionally inde-

pendent on the hidden/visible units [33]. By iteratively updat-

ing the network connection weights and bias units using an

algorithm called contrastive divergence, the log likelihood of

a given dataset with respect to the network parameters can be

maximized. This leads to a useful feature representation of

the input in the hidden layer; from the hidden layer one can

reconstruct the input approximately, in much the same way

as an auto-encoder. Two RBM variants are the following:

1) Deep Belief Network (DBN): A DBN can be con-

structed by stacking multiple RBMs on top of each

other. The output of the i-th hidden layer serves as

visible units of the (i+1)-th hidden layer. Except for the

undirected connections between the two layers farthest

from the visible layer, all connections among all other

layers are directed [34]. A DBN is typically trained

using an unsupervised, greedy, layer-wise pretrain-

ing, followed by a back propagation finetuning [35].

Layer-wise pretraining provides a good initialization

to the network parameters, while finetuning adjusts the

parameters to fit the target more accurately.

2) Deep Boltzmann Machine (DBM): By extending a

simple RBM’s single hidden layer to multiple hidden

layers, we obtain a deep Boltzmann machine. Unlike

DBN, which is a mixed directed PGM, a DBM is

fully undirected with cross-layer connections but no

within-layer connections [36]. This requires the net-

work to be trained jointly, calling for a sophisticated

and computationally expensive training algorithm [37].

DBMs can learn complex structures and construct hier-

archical feature representations of input data.

C. CONVOLUTIONAL NEURAL NETWORK

CNN was originally proposed by LeCun in a handwritten

digit recognition task [38]. Since then, researchers have

repeatedly proven its success in various applications, includ-

ing computer vision, natural language processing and speech

recognition. CNN has a feedforward architecture, consisting

of two fundamental operators: convolution and subsampling

(also known as pooling), as shown in Fig. 4. The convolution

operator extracts local features from the input using different

filters (also known as kernels). One unique characteristic of

CNN is that the filters can be learned automatically instead

of being handcrafted. The subsampling operator extracts the

most significant local features from the output of a convolu-

tional layer. It may reduce the dimensionality of an intermedi-

ate layer, consequently avoiding overfitting. Another merit of

the pooling operation is the translation and rotation invariance

property the network can achieve [39].

The stack of multiple convolutional layers and pooling

layers allows a CNN to learn hierarchical feature representa-

tions of the input. The deeper the layer, the more abstract the

feature representation that can be learned. Typically, the final

layers of a CNN are constructed with fully connected lay-

ers, followed by an output layer associated with the target

prediction. The training of a CNN can use the famous Back

Propagation (BP) algorithm. CNNs spatially (or temporally)

exploit local correlations by enforcing a local connectivity

pattern, i.e., sparse connectivity, between neurons of con-

tiguous layers. Sparse connectivity mimics the behavior of

the local receptive field in the human brain, a concept from

neuroscience. Sparse connectivity, together with the weight

sharing mechanism, also reduces the number of network

parameters significantly, making the network less prone to

overfitting.

The network architecture shown in Fig. 4 is a 2D CNN.

It uses 2D filters and the convolution operation is conducted

on both the lateral and longitudinal dimension of the input.

One variant of CNN is the 1DCNN, which employs 1D filters

to convolve along single dimension of its inputs. Though

applicable for 2D inputs, 1D CNNs are mainly tailored for

1D inputs, such as acoustic, electrocardiogram signal, etc.

In contrast to 2D CNNs which relies on massive matrix

operations, 1D CNNs adopt simple array operations. This

makes 1D CNNs much less computationally demanding.

D. RECURRENT NEURAL NETWORK AND ITS VARIANTS

To encode temporal information in sequential data, a recur-

rent neural network defines unique topological connections

between neurons. The hidden state at time step t can receive

a signal from the input at current time t , as well as from the

output of the hidden state at previous time t-1, allowing the
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FIGURE 4. Architecture of a 2D convolutional neural network, stacked with a fully-connected layer.

FIGURE 5. Architecture of a bi-directional recurrent neural network.

memory of previous inputs to be maintained in the network,

as shown in Fig. 5. An RNN takes in sequential data, prop-

agates calculations through hidden states step by step and

then yields an output [40]. Neurons in the output layer of

an RNN may have varying sizes, depending on the specific

application.

Unlike traditional neural networks, which use different

parameters at each layer, an RNN shares the same set of

parameters across all steps. This greatly reduces the total

number of parameters and forces the network to learn impor-

tant features from the sequences. Likemany other deep neural

networks, the RNN keeps feature representations of input

sequences in hidden layers. A stacked RNN is constructed

by stacking multiple hidden layers on top of each other.

To maintain long-term memory (i.e., long temporal depen-

dencies in sequential data), vanilla RNNs need to have deep

recurrent architecture. However, the training of a vanilla RNN

may suffer from the gradient vanishing problem. To solve

this, two variants of RNN were proposed: Long Short-Term

Memory (LSTM) andGated Recurrent Units (GRU) network.

The key of LSTM and GRU lies in the introduction of a

gating mechanism, which allows important features in the

input stream for a long series of steps to be maintained as it is

instead of being overwritten invariably. GRU is a simplified

version of LSTM, but it is comparable to LSTM in terms of

generalization capability.

Another RNN variant, a Bidirectional RNN (BRNN),

attempts to exploit temporal information in sequential data.

BRNNs encode temporal information not only in the forward

direction, but also in the backward direction [43]. Conse-

quently, the hidden states in a BRNN depend on both past and

future states. By replacing the basic hidden units in a BRNN

with LSTM units or GRU units, we can obtain bidirectional

LSTM or bidirectional GRU networks. The increased com-

plexity of these variants allows them to be more flexible and

powerful than a simple RNN.

III. APPLICATIONS OF DEEP LEARNING IN PHM

Deep learning is increasingly popular in PHM applica-

tions because of its powerful representing capability and its

universal applicability to various types of data. However,

the difficulties of needle-threading all the steps in the PHM

framework using deep learning, and outputting actionable and

reasonable recommendations are still formidable. In the liter-

ature, most related work studies the PHM subfields individu-

ally, mainly fault detection, fault diagnosis or prognosis; very

few focuses on decision making. Accordingly, we organize

our review into the following three subsections and categorize

existing work according to the type of data input. Fig. 6 gives

an overview of this section.

A. FAULT DETECTION

Human beings are capable of sensing their own illness, even

if they do not know the exact nature of the illness. Machines

should be endowed with a similar self-aware intelligence.

Fault detection, also called anomaly detection, aims to detect

instances which deviate so much from others that they are

suspected of being generated by different mechanisms [44].

Fault detection can be simplified to a binary classification

task, i.e., to classify whether the item of interest is working

well or if something has gone wrong [5]. Depending on

the availability of positive (faulty) samples, fault detection

applications using deep learning can be grouped into two

categories: supervised and unsupervised.
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FIGURE 6. Deep learning provides a one-fits-all framework to all the major PHM subfields, including fault detection, fault diagnosis and prognosis.
It also has universal applicability to various types of input in the PHM domain, mainly vibration, imagery, time-series and structured data.

1) SUPERVISED LEARNING

When there are enough faulty data, may not limit to a certain

faulty type, a classifier can be constructed to discriminate

faulty from normal states. The classifier tries to learn a

function, mapping from sensor measurements to their state

labels with the aim of separating the two classes. But in

most real-world scenarios, data available for training have a

skewed class distribution, also known as imbalanced classes,

the majority of which are negative (normal samples) and a

minority positive. In such circumstances, techniques like data

augmentation, oversampling or under-sampling and stratified

cross validation should be integrated into the learning process

to improve the generalization capability [45]. In general,

these techniques can fit any machine learning tasks facing the

class imbalance problem; hence, we do not provide further

details of this. Instead, we focus on deep learning related

topics.

The selection of a particular deep learning model in fault

detection is dependent on the type of data available and the

application domain. To structure our analysis, we divide the

literature into four categories according to the type of input

data: vibration (incl. acoustic data), time-series, imagery

(incl. video frames) and structured data.

Vibration (incl. acoustic data) data play a major role in

detecting and diagnosing faults in rotating or reciprocating

equipment. In fact, this is the most researched subject in

PHM. The prevailing deep learning model for vibration data

is CNN, as shown in Fig.7. Janssens et al. built a classi-

fier to detect bearing faults from the vibration signal [46].

In their use of CNN, the internal representation of the vibra-

tion signal was captured by two perpendicularly mounted

accelerometers. They then used random forests to classify the

learned high-level features. The main point is to use CNN’s

capability to exploit the spatial structure in data to capture

the covariance of the frequency decomposition of the data.

By doing so, the model can differentiate between complex

bearing conditions by learning the patterns of changes in the

joint accelerometer signal.

Abdeljaber et al. used 1DCNN to detect structural damage

using vibration signals [47]. They fed raw vibration signals

directly to the 1D CNN model and outputted a binary label

(damaged/undamaged), forming end-to-end learning. This

method allows feature engineering and classification to be

jointly trained, leading to better accuracy.

In their study, Bach-Andersen et al. first extracted fre-

quency domain features from the vibration data of a wind

turbine drivetrain using traditional signal analysis tech-

niques [48]. Then they down-sampled the frequency spectrum

to some predetermined dimensions and fed the spectrum

data to their CNN model. Though superior accuracy was

reported, the hand-crafted features may not be better than

the features learned from an end-to-end architecture. Similar

work appears in [49].

The use of other deep learning models includes work by

Luo et al. [50]. These researchers built an architecture com-

prised of stacked SAE and fully-connected layers to distin-

guish impulse responses from non-impulse responses in the

vibration data of machine tools. They pretrained their SAE

layers with vibration data frames in an unsupervised fashion

and finetuned the whole network using back propagation

under supervision. They compared time domain, frequency

domain, time-frequency domain and SAE features. SAE fea-

tures were found to be more accurate and stable than tradi-

tional signal-based features in classifying the two types of
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FIGURE 7. Fault detection applications: selection of deep learning models given different types of data input, a) supervised cases, b) unsupervised.

responses. The results prove the value of integrating feature

learning into a deep learning model.

Although vibration data are collected in the form of

time series, their sampling frequency is typically signifi-

cantly higher than ordinary time-series data. The source

of time-series data is not restricted to one type of sen-

sor; multiple sensors can be fused together. The key point

in time-series modeling is to capture temporal information

which may reflect the health status of the monitored asset.

Unsurprisingly, RNN is the most favorable model to deal

with time-series data, as shown in Fig. 7. One of the earliest

papers using RNN for fault detection was by Hu et al. [51].

They constructed a very simple RNN architecture to model

a bi-process combining software fault detection and correc-

tion; its prediction accuracy outperformed feedforward ANN.

Zhang et al. used an LSTM network to capture long-term

dependencies in time-series data to detect line trip faults in a

power system [52]. Taking current, voltage and active power

data as the input, they built three separate LSTMs, the outputs

of which were concatenated and further fed to an SVM classi-

fier. Obst built an RNN to learn spatial-temporal correlations

between sensors in a distributed wireless sensor network [53].

The residuals between actual sensor readings and the RNN

predictions were used to detect sensor faults. It is noteworthy

that anomalous patterns may exist in the covariation between

multiple sensors, even though each sensor signal behaves

normally. Overall, the above research shows the value of data

fusion.

CNN is another architecture commonly adapted for time-

series data. Guo et al. constructed a CNN to detect faulty

feeders in zero-sequence current waveform acquired from

power distribution systems [54]. Interestingly, they applied

continuous wavelet transform to the raw current signal and

inputted the obtained time-frequency grey scale images to

the CNN. They reported that accurate and robust predictions

are possible with the proposed method. Ince et al. also dealt

with current signals using CNN [55]. They inputted the raw

signal to a 1D CNN and stacked it with fully connected

layers, similar to the method proposed in [47]. The temporal

information in time-series data can be captured by a CNN

because of the slidingwindowmechanism in its convolutional

operation, and the size of the kernel may have a great impact

on the length of the learnable temporal dependencies.

Imagery data are attracting attention in fault detection

applications. As has been repeatedly proven in the field of

computer vision, CNN can achieve state-of-the-art perfor-

mance in classifying imagery data. Gibert et al. proposed

using CNN to inspect railway tracks, specifically to detect

broken or missing fasteners [56]. They trained the network

for two purposes: track inspection and material identifica-

tion. The multi-task learning setting allowed the knowledge

learned in one task to be transferred to another (i.e., transfer

learning), forming a mutually beneficial mechanism. Similar

work used CNN for railway track inspection [57], road pave-

ment crack detection [58], and concrete crack detection [59].

Video data are a composition of images along the tempo-

ral dimension. However, if its architecture is not modified,

CNN is not good at encoding temporal information. Most

existing research has used CNN to learn patterns from video

frames, essentially images, and then model the temporal

dependencies, as shown in Fig. 7. Chen and Jahanshahi built

a CNN to detect crack patches in video frames of metallic

surfaces in a nuclear power plant [60]. Their CNN model

does not encode temporal information itself, but the output
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forms spatiotemporal registration tubelets which can be fed

to a Naïve Bayes classifier to detect crack patches. Jha et al.

combined CNN and the Gaussian process to detect instable

combustion behavior from high-speed grey-scale videos of

a swirl-stabilized combustor [61]. They used CNN to extract

features from video frames and adopted the Gaussian process

to model the dynamics in the sequential images. As reported

in the paper, the model generalizes better when the Gaussian

process is added.

Depending on their complexity, the imagery data may not

be readily fed to a CNN, outputting the desired state label.

Sometimes the object of interest needs to be located in an

image before classification can take place. Chen et al. pro-

posed a three-stage architecture to locate and detect defective

fasteners in images of a catenary support device [62]. The

first stage used the SSD (i.e., Single-Shot multi-boxDetector)

framework to locate cantilever joints; the second employed

the YOLO (i.e., You Only Look Once) framework to locate

six different fasteners, and the third used a primitive CNN to

detect missing or potentially missing fasteners. In a similar

process, Lei and Sui used the Faster R-CNN architecture to

locate and detect broken insulators and bird nests in high

voltage line images [63]. It is worth noting that they reused the

pretrained ResNet-101 network, a very deep network trained

for the ImageNet competition, to initialize their detection

network. This strategy allows the knowledge learned in one

field to be transferred to another (i.e., transfer learning).

It shortens the time for training and reduces the number of

required labelled samples. We discuss this in Section IV.

Last but not least, structured data constitute a major

source of fault detection in industry. In contrast to the

abovementioned three types of data, structured data may

be multi-sourced, distributed and heterogeneous, requiring

considerable effort in data fusion and preprocessing. From

an algorithmic perspective, structured data have been heavily

approached using conventional machine learning techniques,

such as SVM, random forest, and feedforward neural network

with shallow architectures. The key is to find good feature

representations that can be discriminative in separating posi-

tive from negative samples. To this end, Chen et al. proposed

a CNN-based architecture to learn deep representation of

SCADA (i.e., Supervisory Control andDataAcquisition) data

to detect icing accretion faults in wind turbines [64]. Their

input data included 22 measurements related to wind, energy

and temperature, and the output was a high-dimensional

embedded feature space that could preserve within-class and

between-class information while having high discriminative

capability. Mandal et al. built a DBN to detect faults in a fast

breeder test reactor [65]. They fed 175 thermocouple readings

into the DBN and output a binary label, indicating faulty or

normal. In short, complex cross-correlations between mul-

tiple sensors can be captured using deep architecture and

nonlinear transformation.

The selection of deep learning models in fault detection

depends on the application domain and the type of data avail-

able, but there are some common practices across models.

First, in model design, the backbone architecture is typically

stacked with a logistic layer as the final layer, implying

that cross-entropy loss can be used. Second, in the learning

process, regularization techniques such as dropout andweight

decay are usually adopted to prevent overfitting, and the

amount of regularization is a hyperparameter that needs to

be tuned. Third, precision, recall, ROC (Receiver Operating

Characteristics) curve, AUC (Area Under the Curve) and

F-score are commonly used metrics to evaluate model accu-

racy. Although many applications have been reported in the

literature, the limitations of supervised approaches originate

in the difficulty of obtaining faulty data. Most research uses

data from laboratory tests, but these data are generally insuf-

ficient in the real world [9]. Moreover, the generalization

capability of supervised approaches to situations that have not

yet happened (‘‘unhappened’’ faults) is poor.

2) UNSUPERVISED LEARNING

When there is a lack of sufficiently labelled data, often

the case in reality, fault detection may resort to unsuper-

vised methods. In an unsupervised setting, normal operating

conditions are modeled beforehand, and faults are detected

as deviations from the normal behavior in a process also

known as the one-class classification problem. Intuitively,

this problem tries to learn patterns from negative samples,

specifically, to find a low-dimensional embedding that can

capsulize most informative features, from which the samples

can be reconstructed with minimal information loss. If a test

sample cannot be well reconstructed from its feature embed-

ding, we are tempted to doubt the normality of its generating

mechanism. In contrast to supervised learning where a hard

rule, e.g., a separating hyperplane, is used to generate a binary

output, unsupervised methods often spit out a continuous

score representing the abnormality of a given sample; the

larger the value, the more its anomalousness, and vice versa.

In practice, a threshold is then needed to assist judgment of

the occurrence of faults. However, the process is not easy

and very much application-dependent because the goal of

fault detection is to minimize the chance of committing both

Type I error (false positive, or false alarm) and Type II error

(false negative, or missed detection), and the cost of these

two errors may vary significantly for different applications.

In the following section, we survey the relevant research and

organize it according to the data type.

Vibration signals are still the major form of input in unsu-

pervised fault detection applications, although the preference

for deep learning architecture has obviously shifted the choice

towards AE-based ones, as shown in Fig. 7. Sun et al. built

a model to detect defective electro-motors from vibration

signals [66]. They applied greedy layer-wise training on the

cepstrograms of vibration clips of normal conditions to learn

several RBMs, and then stacked them to form an encoder-

decoder-like DBN architecture. Testing samples were fed into

the learnedDBN, and reconstruction errors between input and

output were the criteria to judge their extent of abnormality.

Oh and Yun used an AE to detect faults in surface mounting
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devices using machine sound [67]. They trained the AE with

normal data to retain as much information as possible in the

bottleneck layer. The residual error between a testing sample

and the output of the AE, given the testing sample as the input,

was the anomalous score. To shorten the time for training and

putting the anomaly detector into production, Park and Yun

proposed replacing the basic fully-connected layer in an AE

with a stacked LSTM layer in the same application context

as above [68]. Both the number of parameters in the network

and the training time were significantly cut down at the

sacrifice of tolerable accuracy reduction. Using a similar idea

but in a different field (i.e., to detect electric motor faults),

Principi et al. compared the performance of three AEs with

different building blocks: a fully-connected layer (what they

called MLP), a convolutional layer and an LSTM layer [69].

With meticulous tuning of the hyperparameter, they found

that AEs with a fully-connected layer or an LSTM layer

outperformed, in terms of accuracy, the convolutional layer

and a traditional one-class SVM algorithm.

In contrast to the above research, Lu et al. built an architec-

ture explicitlymodeling the temporal dependencies in bearing

vibration data [70]. They used AE to extract features from

vibration spectra; the learned features were organized sequen-

tially to form a transition feature pool, which, in turn, was sent

to an LSTM network. They compared their method to several

alternatives and noted its superior effectiveness. The same

pipeline was adopted by Liet al. in the same context [71].

Time-series data are relatively more complex than other

data types, because they comprise temporal dependencies

which need to be modeled either implicitly or explicitly.

Jiang et al. proposed using the sliding window strategy to

model temporal information in SCADA data to detect faults

in wind turbines [72]. More specifically, they divided mul-

tivariate time-series data into fixed-length chunks along the

time axis, allowing overlap between different chunks. They

trained a DAE using chunks obtained under normal operating

conditions. At the online stage, they applied the same slid-

ing window strategy to test samples before sending them to

the trained DAE; the residual error was the evidence of an

anomaly. A nearly identical idea was adopted by Fan et al.

to detect faults from building energy usage data [73]. Instead

of slicing data along the time axis, Ellefsen et al. VAE model

takes in one vector (multivariate measurements) at a time, and

the chronological ordered residual errors form a new time

series [74]. A high rate of increase in the new time series

indicates a potential fault in maritime components.

Kim et al. took a different approach and proposed a model

where temporal information was explicitly modeled in the

architecture [75]. Their model, named DeepNAP, comprises

two modules: prediction and detection. The former is essen-

tially an AE with LSTM as its building blocks; it tries to

predict a sequence of output which has a minimum recon-

struction error with the given sequential input. The latter

is a fully-connected MLP taking in only part of the output

sequence from the previous step and projecting it to the

remaining part of the sequence. With a newly suggested loss

function, i.e., partial reconstruction loss, the two modules

can be trained jointly; superior accuracy was observed when

this was done. Similar work by Zheng et al. adopted AE with

LSTMunits, much like the above predictionmodule, to detect

anomalous power demand [76]. To improve accuracy, robust-

ness, and resistance to the spillover effect, Baraldi et al. com-

pared the ability of RNN, auto-associative kernel regression

and fuzzy similarity to detect faults from time-series temper-

ature measurements. They further proposed an ensemble of

these models and reported a satisfactory result [77].

Although imagery data have been extensively studied in

fault detection applications, as shown in Fig. 7, unsupervised

applications are rarely reported. The only example we found

in the literature was an attempt by Kang et al. to detect

defective catenary insulators [78]. They applied the Faster

R-CNN algorithm to localize the insulator in an image first,

and then built a denoising AE in an unsupervised manner.

Unsurprisingly, at testing stage, reconstruction error was used

as the evidence signifying a potential fault. To increase the

representativeness of the feature embedded in the denoising

AE, the authors enforced the encoder network to be shared

with a different but similar task, classifying an image patch

as an insulator or others, under supervision. In this way, the

knowledge learned in one task could be transferred to another,

i.e., multi-task learning, as done in [56].

The scarcity of unsupervised fault detection from imagery

data may be attributed to the complexity of the data.

Although, at times, the complexity may not be overly

intimidating for human brains, image annotation is very

labor-intensive and might hinder the replication of a model

from one domain to another. We expect more studies to fill

this research gap.

Structured data have been investigated in the regime of

unsupervised fault detection as well. For example, Zhao et al.

used SCADA data to build an AE to detect faults in a wind

turbine [79]. Using only samples of normal condition, they

conducted layer-wise pretraining and finetuning to train the

network. They used the reconstruction error of a testing sam-

ple as an indicator of potential faults. To accommodate the

non-stationary operating condition, they designed adaptive

thresholds for triggering alarms following extreme value the-

ory. Similar work used denoising AE to monitor sensors in a

nuclear power plant [80].

Another common strategy when dealing with structured

data is to select one target variable from the multivariate

measurements and build a prediction model that maps all

other measurements to this specified target. Notably, the tar-

get may not necessarily directly reflect the health status of

the equipment of interest, but it should be dependent on

other variables. Likewise, the prediction model should be

trainedwith samples of normal condition. At the testing stage,

given a set of incoming measurements, the residual error is

the difference between the target prediction and the actual

target measurement. This converts an unsupervised problem

into a supervised one. Using this strategy, Wang et al. built

a DBN for detecting faults in wind turbine using SCADA
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data, in which the main bearing temperature was selected as

the target variable [81]. Other work by Wang et al. selected

lubricant pressure as the target variable; in this case, the

researchers built a feedforward neural network to detect faults

in a wind turbine gearbox [82].

Fig. 7 provides a crosstab-like summary of the above fault

detection applications, with a focus on the selection of deep

learning models for different types of data input. The fig-

ure validates the universal applicability of deep learning for

various data types. In general, all data require their intrinsic

features to be extracted to better represent the patterns in neg-

ative samples, thus detecting positive samples which do not

follow the patterns. Specifically, vibration data include time

domain features, frequency domain features, time-frequency

domain features and a combination of these; imagery data

encompass spatial structural features; time-series data com-

prise temporal dependencies; structured data contain cross

correlations. As shown in Fig. 7, the vast majority of deep

learning models in the unsupervised regime are AE-based

because their objective functions for training fit well with

the learning mechanism, i.e., the use of reconstruction errors.

While deep learning models are popular in supervised appli-

cations, a limited number of studies have considered unsu-

pervised settings. This may be attributed to the attainability

of data from laboratory tests andmany easy-to-use supervised

algorithms. Because of the high costs of obtaining labels in

real-world applications, we expect more research on unsuper-

vised fault detection using deep learning.

B. FAULT DIAGNOSIS

To return to our previous analogy, being aware of our own

illness is not enough; we need to consult professionals to

identify the type, localize the body part and identify the

severity. By the same token, once an equipment fault is

detected, steps need to be taken for fault recognition, fault

localization and identification of severity, a process called

fault diagnosis. The diagnosis procedure should be able to

identify ‘‘what went wrong’’ (kind, situation and extent of the

fault) as an extension of the knowledge that ‘‘something went

wrong’’ derived at the previous step (i.e., detection). Fault

diagnosis must be much more rigorous than fault detection

in its prediction accuracy and results, since it may directly

suggest the ensuing operation adjustments or maintenance

tasks.

From a machine learning point of view, diagnosis is a

multi-class classification problem, classifying a detected fault

to a certain combination of fault type, location and severity.

A typical design in the deep learning architecture is the addi-

tion of a soft-max layer to the final layer. Correspondingly,

cross-entropy loss is often chosen as the loss function, based

on which the network can be trained. After training a deep

learning model, nonlinear dimensionality reduction methods,

such as the t-SNE method, can be adopted to visually inspect

whether the learned high-level features are discriminative;

see [83] for an example. Typically used evaluation metrics

include accuracy, precision, recall, ROC curve, AUC and

F-score. A confusion matrix is often employed to visually

investigate the classification results, especially to locate mis-

classified classes. Finding misclassifications may give a hint

on the direction to take to improve the accuracy.

Another common property of fault diagnosis using deep

learning is its use of supervised learning. Although feature

representations can be pretrained in an unsupervised manner,

their classifiers are mostly finetuned with labels. In these

cases, we also consider them supervised. Though our review

of the literature may not be exhaustive, all papers mentioned

in the next subsections are under the supervised regime,

like the supervised fault detection applications we have dis-

cussed. To make a difference from supervised fault detection

(i.e., binary classification), we assume fault diagnosis have at

least three different classes of fault types and the classes are

more balanced. Similarly, we structure our analysis according

to the type of input data.

1) VIBRATION DATA

Vibration or acoustic data are a significant, if not the most

significant, source for diagnosing rotating and reciprocating

machines whose health condition is critical to system safety

and reliability. Given this, a large part of fault diagnosis

research is about learning from vibration or acoustic signals.

Depending on the integration level of the learning pipeline,

we divide related work into two paradigms: separate learning

and end-to-end learning, as shown in Fig. 8.

Like many conventional machine learning tasks, sepa-

rate learning consists of several independent steps, including

feature extraction, feature selection and pattern recognition.

End-to-end learning builds an integrated network, taking in

the raw signal, extracting discriminative feature represen-

tations and outputting the desired targets. The distinctions

between these categories will be explained in the next section.

Data and features often determine the upper limit of

learning performance, and models and algorithms only

approximate this upper limit. In the following discussion,

we intentionally neglect the finer details of how to construct a

deep neural network and focus on data preparation and feature

learning.

It is well-known that mechanical equipment faults can

be easily concealed in time-domain waveforms and mani-

fest better in the frequency domain. Numerous studies have

adopted signal processing techniques. The most popular

one, Fast Fourier Transform (FFT), is used to extract the

frequency spectrum from original time-domain signals and

forward them to a deep neural network [84]–[91]. How-

ever, the process might not work well for transient or sta-

tionary signals whose frequency components vary in time,

usually the case in the real world. For non-stationary sig-

nals, it is common to transform the raw signals into the

time-frequency domain using Short Time Fourier Transform

(STFT) [92]–[94], Wavelet Transform (WT) [95]–[98] or

Empirical Mode Decomposition (EMD) [99], [100]. STFT

adopts a window function of fixed length, thus suffering from

the time-frequency resolution trade-off problem. To improve
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FIGURE 8. The two learning paradigms: separate learning vs end-to-end learning.

STFT, WT conducts multi-resolution analysis using varying

window size for every single spectral component; however,

it is very dependent on the basis function chosen and has

shift-variant and poor directionality problems. EMD does

not rely on any basis function, but it may suffer from the

mode mixing problem in cases of intermittence and noise.

Verstraete et al. compared the above three signal process-

ing techniques and observed that WT yielded consistently

high accuracy in their study [101]. To improve prediction

accuracy, several researchers tried to fuse all the statistical

features, also called tri-domain features, derived from the

signal processing techniques mentioned above [102]–[105].

Note that signals in the time-frequency domain naturally

have a two-dimensional form, making them suitable for

the input of a traditional CNN. After a proper normal-

ization step, those time-frequency domain signals were

treated as images and various CNN-based variants were built

by [92], [94]–[98], [101], [106], [107].

The raw vibration signal has also been transformed to an

imagery form for diagnosis purposes using techniques like

Continuous Interleaved Sampling (CIS) [108]–[112], Omni-

directional Regeneration Technique (ORT) [113] and Sym-

metrized Dot Pattern (SDP) [114], [115]. Armed with these

transformation techniques and the transfer learning strat-

egy, several pretrained CNNs, originally trained on natural

images, were transferred to fault diagnosis applications using

vibration data; examples include LeNet-5 [107], [109], [110],

VGG-16 [106], AlexNet [95] and ResNet-50 [108]. We also

found some studies using auto-encoder [105], [116], [117]

and random projection [118] as a pre-posed layer before

a deep neural network for the purpose of denoising and

compressing.

Vibration data are essentially time series, but with strong

periodicity and high sampling frequency. This sequential type

of input can be fed into the input layer of an RNN or a 1D

CNN, giving the opportunity to conduct end-to-end learning.

Taking raw vibration signals as input, researchers built a

standard RNN [119], [120] and 1D CNN [121], [122] to auto-

matically learn representative features and output the desired

targets. Some merits of the end-to-end learning paradigm

are the following: it lets the data speak; feature engineering

is automated, without the need for hand-crafted features;

parameters of the whole network can be jointly optimized,

leading to better accuracy; the network is generic and can

be easily transferred or adapted to a different but similar

scenario.

When adopting 1D CNN to directly process vibration data,

the kernel width parameter should be designed with caution.

With a narrow kernel width, the time resolution is better

but the frequency resolution is poorer and vice versa. This

is consistent with the support of the window function used

in STFT. Peng et al. [123] and Zhang et al. [124] proposed

using wide kernels to enhance the learning of low frequency

fault-related features and suppress noise interference. In other

work, a multi-scale 1D CNN [83], a dilated convolutional

layer [125] and a combination of the LSTM layer with

1D CNN [126] were proposed for the same purpose. The

stride parameter should also be selected carefully, because

an overly large stride parameter will inevitably produce

undesired shift-variant features. To improve accuracy, sev-

eral studies attempted to fuse features produced by multiple

1D CNN [127] and GRU [128]. In the end-to-end learning

regime, although rarely reported, AE-based models for vibra-

tion data have been investigated; see [129]–[131].
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TABLE 1. Diagnostic research referring to the CWRU dataset.

Interestingly, in the reviewing process, we discovered that

most of the cited papers were referring to the Case West-

ern Reserve University (CWRU) dataset [132], the de facto

benchmarking dataset for rolling bearing fault diagnosis. The

vibration data were collected under different faulty condi-

tions, each of whichwas inducedwith a specific type of defect

(inner race, roller, outer race) and one severity level (0.007,

0.014 and 0.021 inches). A typical problem formulation using

the CWRU dataset is a ten-class classification considering the

combination of various faulty types and severities together

with the normal condition. As shown in Table 1, the testing

accuracy of all the referenced papers is above 92%, with

several surpassing 99%. Admittedly, this is astonishing given

the large number of faulty conditions to classify.

Note that in Table 1, the most commonly used architectures

for this dataset are CNN and AE. Also note that all the

figures in Table 1 were excerpted from the original papers

without verification. Though some researchers adopted the

same model, they reported different testing accuracies. This

may be attributed to such factors as the partition of the

training and testing sets, hyperparameter tuning and random

variation.

Quantitatively, the number of papers employing the end-

to-end learning paradigm is still much less than the separate

learning paradigm. With a significance level of 5%, we con-

ducted a two-sided Welch’s t-test on the difference of mean

testing accuracy between the two learning paradigms and

obtained a p value of 0.64. This implies there is no significant

difference between the testing accuracy of the two learning

paradigms.While this proves the traditional signal processing

techniques can extract useful features from vibration data,

the end-to-end learning paradigm should be favored as it does

not require much human intervention in feature engineering.

2) IMAGERY DATA

Image classification research has progressed tremendously

with the recent advancements in deep learning theory,

especially the development of CNN. One seemingly intim-

idating obstacle to the application of fault diagnosis from

imagery data is the availability of sufficiently labeled sam-

ples. However, this is generally not a prerequisite. With

only 40 infrared thermal videos, each 10 minutes long,

Janssens et al. successfully conducted rolling-element bear-

ing fault diagnosis by reusing the well-known pretrained

VGG-16 model [137]. They simply replaced the last layer of

the architecture with a soft-max layer, restricting the number

of nodes to the desired output classes, and finetuned thewhole

network with a limited number of samples. Although their

application context differed significantly from the scenario

on which the VGG-16 was originally trained, the knowledge

learned was transferrable, leading to an accuracy of more

than 95%. This type of transfer learning can markedly reduce

the required number of labeled samples. Using the same strat-

egy, Xu et al. adopted and compared four pretrained networks

(SqueezeNet v1.1, Inception v3, VGG-16 and ResNet-18) in

the context of roller bearing surface defect diagnosis [138].

They validated a gain in both convergence speed and accuracy

using a pretrained network.

Transfer learning is not a panacea for all domains, how-

ever, and training from scratch can also yield reasonably

good results. Tao et al. trained a compact CNN from

scratch with only 50 raw images to diagnose metallic surface

defects [139]. With the aid of data augmentation (including

random rotation, translation, zoom, shear and elastic transfor-

mation) and a segmentation step prior to classification, they

successfully augmented the number of labeled training sam-

ples. As a result, their model achieved an accuracy of 86.82%,

much higher than classical models based on hand-crafted

features. Similar work used data augmentation to diagnose

furnace combustion states [140], weld flaw types [141] and

balancing tail ropes’ faults [142].

Depending on the complexity of a concrete problem,

using a pretrained network or data augmentation techniques

may not be necessary. Jia et al. trained a CNN with only
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FIGURE 9. Fault diagnosis applications: selection of deep learning
models given different types of data input.

450 images per class to diagnose nine faulty states of rolling

bearings, attaining nearly 100% accuracy [143]. Likewise,

Li et al. trained a CNN with only 1400 samples per class

to diagnose five module defects in photovoltaic farms, again

with highly accurate results [144]. As shown in Fig. 9, all the

above studies used CNN, with some differences in their net-

work depth, the choice of regularization methods or training

details.

3) TIME-SERIES DATA

Time-series data encapsulate temporal dependencies that are

typically crucial for fault diagnosis. In a multivariate case,

they may also contain cross correlations amongst multiple

measurements, as in structured data. A naive assumption that

samples at different timestamps are independent would dis-

card the useful temporal information, thus inevitably leading

to poor performance. Researchers have attempted to tackle

this problem at two different levels: the data level and the

algorithm level.

Data-level methods use phase space embedding represen-

tation in which a sequence of data instances is generated

via a fixed-length sliding window; see [145]–[148]. Through

data-level transformation, temporal dependencies may be

translated into cross correlations. However, the determination

of the window size and the sliding stride size becomes a

problem which may require prior knowledge or extra efforts

in hyperparameter tuning. Note that the stride size parameter

may affect the shift-invariant property of the method, and this

is sometimes desired for time-series data.

Algorithm-level methods explicitly model the temporal

dependencies in their architectural design, mainly RNN.

Examples of this type can be found in [8], [149]–[152].

Although the length of data input in an RNN needs to be

determined beforehand, it is significantly different from the

window size in data-level methods. RNN can learn the length

of temporal dependencies via its memory retention mecha-

nism, and the length is changeable, providing more flexibility

in fault diagnosis using time-series data.

4) STRUCTURED DATA

Structured data have always been an important part of

conventional fault diagnosis applications using machine

learning. In the literature, the most commonly adopted deep

learning architectures for structured data are RBM-based and

AE-based, as shown in Fig. 9, possibly because these two

types of model do not impose topological or sequential rela-

tionships when learning from input, unlike CNN and RNN.

Instead, their architecture resembles a feedforward neural

network, allowing cross correlation in the input to be learned.

As explained in Section II, RBM-based and AE-based mod-

els can be trained in two steps: layer-wise pretraining, and

fine-tuning on the network by stacking previously learned

layers. Using this strategy, several researchers built regular

DBNs [153]–[159] and AEs [160]–[163] for fault diagno-

sis; [153]–[155], [160] emphasized network hyperparameter

tuning. Note that the layer-wise pretraining step is typically

unsupervised, and the pretrained network serves as an ini-

tialization to the whole model. This can greatly reduce the

number of labeled data required and boost the convergence

speed [162].

Other researchers have endeavored to improve the classi-

fication accuracy by combining deep learning models with

other models, such as the multi-grained cascade forest [164],

fisher discriminative dictionary learning [165] and deep

quantum neural network [166]. One commonality is they all

used the deep learning model to learn feature representations

and the other model to increase discriminative power.

Real-world structured data may originate from all sorts

of sources, including current, voltage, speed, displacement,

pressure, temperature and many others, and data fusion may

be necessary [167]. Data may also be subject to problems

like incompleteness, heterogeneity, low signal to noise ratio,

exhibition of certain topology, etc. Chen et al. attempted to

conquer the incomplete data problem caused by multi-rate

sampling by using transfer learning [168]. They proposed a

framework enabling a portion of the structure and parameters

to be transferred between the model of structurally complete

data and the model of incomplete data. An interesting study

by Wang et al. proposed using CNN to tackle structured

data with spatial topology embedded in them [169]. Their

data contained power flow measurements in a power system,

and the purpose was to diagnosis the system’s faults. They

designed rules transforming the original power flow into

images, in which geometry, digits and other characteristics

could be preserved. Experiments proved the efficacy of their

model.

Fig. 9 presents a crosstab-like summary of the diagnosis

studies reviewed above, with a focus on the selection of deep
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learning models for different types of data input. The fig-

ure reconfirms the universal applicability of deep learning to

various data types. The figure may also serve as a dictionary

for researchers to link future studies to existing ones.

Although numerous studies have validated the superior-

ity of adopting deep learning in fault diagnosis, they are

generally restricted to laboratory data, largely because of

the insufficiency of labeled data in real-world applications

where destructive experiments are costly or not allowed.

Furthermore, the learned classifier may only be sensitive to

those faults that are included in the training set. In other

words, its generalization capability to unhappened faults may

be poor, leading to low testing accuracy in the real world.

For instance, a soft-max layer in a deep learning model

outputs a fault type associated with a neuron with the highest

activation, regardless of whether the fault pattern has been

observed or not [93]. Strictly speaking, compound faults

(several faults occur simultaneously) that are not included in

the training set should also be considered unhappened. For

this reason, several studies meticulously collected compound

faults related data and incorporated them into their training

set [104], [129], [143], [162]. However, this type of study

is restricted in the sense that the combinatorial explosion of

many faulty types prevents us from collecting sufficiently

labelled data to train an all-in-one diagnostic model. A poten-

tial solution is to exploit an unsupervised fault detection

model and periodically update the diagnostic model based on

newly observed data samples.

C. PROGNOSIS

After diagnosing a disease, health professionals infer the

patient’s recovery or survival rate based on empirical data

and their experience. In PHM, this is generally known as

prognosis. In prognosis, we estimate the Remaining Useful

Life (RUL) of the item of interest. This step projects the states

of the monitored item into the future using a combination

of prognostic models and future operational usage models.

In other words, it estimates the RUL of the item taking into

account its degradation trajectory and the future operational

use plan. From a practical perspective, it is important to have

an accurate RUL estimation, because an early prediction may

result in over-maintenance and a late prediction could lead

to catastrophic failures. With an appropriate RUL estimation,

maintenance work can be adequately scheduled considering

the required maintenance personnel, spare parts, tools and

other logistics. In light of the uncertainties in the real world,

a confidence level of the assessment is required to quantify

the fluctuation in the RUL estimates.

From a machine learning viewpoint, prognosis is a regres-

sion problem, as the target value (RUL) is in the real domain.

Prognosis aims to learn a function that maps the condition of

an item to its RUL estimates. As in many regression tasks,

it is challenging to provide labels for training. Specifically,

in prognostic applications, it is hard, sometimes impossible,

to accurately determine the RUL of an object at any given

time. Most research uses data from run-to-failure tests, from

which the RUL labels can be derived. The criteria defining

a failure occurrence are application-dependent; for example,

a machining tool is defined failed when its wear size achieves

a threshold of 0.6mm [170], a lithium-ion battery fails when

it has 30% capacity fade from the rated capacity [171] and a

rotating bearing fails when its maximum vibration amplitude

exceeds 20g [172].

The simplest way to define RUL is by calculating time to

failure, i.e., subtracting the timestamp of the failure occur-

rence from each time step; see [173], [174] for examples.

However, this inadvertently implies that the health state of

an item degrades linearly with its usage and may result in

over-estimation of the RUL. In some cases, a reasonable

assumption is that the degradation of the monitored item is

much less significant at the early stage of its lifecycle, and

it starts to degrade only after a certain amount of usage.

This yields a piece-wise linear setting of RUL, namely a

constant RUL followed by a linear degradation function.

The time point segmenting the piece-wise function can be

set according to prior knowledge, as in [175]–[179]. It can

also be determined via a fault detection procedure, using, for

example, statistical process control [180], SVM [181], vari-

ational AE [182] or a singular value decomposition (SVD)

normalized correlation coefficient [183]. As an alternative

to the linearly decreasing function, researchers investigated

power functions [181] and low-order polynomials [182] with

the hope of better capturing the degradation pattern. Their

findings verified the necessity of conducting fault detection

before prognostic tasks. In general, fault detection techniques

can facilitate the labeling of RUL in prognostic tasks.

In prognostic tasks, the final layer of a deep learning archi-

tecture can be a single neuron with a linear activation func-

tion [170], [184]–[186] or a sigmoid function squashing the

RUL prediction to a normalized range [187], [188]. Accord-

ingly, many loss functions can be selected for training; typical

ones are Mean Absolute Percentage Error (MAPE) [174],

Mean Absolute Error (MAE) [180] and Mean Squared Error

(MSE) [181]. These loss functions can also be applied to

evaluate model performance in a testing set.

It has to be noted that one unique characteristic of prog-

nostic tasks is the penalization of late RUL predictions

(i.e., the estimated RUL is larger than the actual RUL). Late

prediction may lead to unplanned breakdown, or even catas-

trophic damage, whereas early prediction only causes extra

maintenance cost. To cope with this problem, the following

asymmetric scoring function for evaluating model perfor-

mance was proposed by [189], adopted by [182], [190], [191]

and modified by [192]–[194]:

s =

m
∑

i=1

si,

si =

{

e−di/a1 − 1, if di < 0

e−di/a2 − 1, if di ≥ 0, where a1 > a2 > 0
(1)

where m is the number of testing samples, di equals to

RULestimated−RULactual, denoting the difference between the
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estimated RUL and the actual RUL of the i-th sample, and the

magnitude of a1 and a2 controls the degree of penalty for late

predictions. Though reasonable, the use of a scoring function

tends to underestimate RUL values, which may or may not

coincide with the user’s intention. The exponential form of

the scoring function also makes it extremely sensitive to out-

liers. In other words, a very bad prediction can dominate the

overall score, masking the accuracy of other predictions. This

makes the selection of evaluation metric very application-

dependent.

Having introduced the fundamentals of prognostic tasks,

we now provide a detailed analysis of existing work. In the

literature, related papers we found are extremely imbalanced

in their types of input data. Therefore, the following analysis

is structured according to their application scenarios instead

of data types. The most researched items for RUL prediction

are the machining tool, battery, turbofan engine and rotating

bearing, with the last two mainly referring to the benchmark-

ing datasets from the PHM 2008 data challenge [195] and

IEEE PHM 2012 data challenge [196].

Although the wear of a machining tool can be measured

offline, it is desirable to monitor and predict tool wear in real

time using onlinemeasurements, typically force and vibration

signals. zadeh et al. proposed a spectral subtraction method

to intensify fault signatures by subtracting theWPT spectrum

of a signal by its steady-state part; the obtained residuals were

fed to a standard CNN for tool wear estimation [186]. To bet-

ter model the degradation trend, Wang et al. proposed using

bidirectional GRU to capture the temporal-dependencies

among the tri-domain features of the original signal [185],

while Rui et al. used CNN for feature extraction and bidi-

rectional LSTM for sequential modeling [184]. Comparisons

of traditional machine learning and deep learning models,

including CNN, LSTM, AE and DBN, in tool wear prediction

can be found in [197].

Battery RUL prediction is of great practical significance

in modern life given the ubiquity of portable equipment, but

the complex electrical-chemical nature of the battery makes

it difficult to use first principles to model its degradation

mechanism. Data-driven methods attempt to learn a func-

tion by mapping multivariate time-series measurements of

a battery (current, voltage, temperature, etc.) to its capacity

retention, a common indicator signifying the life of a battery.

The use of deep learning in battery prognosis is still in its

early stages. There is a limited amount of work in the litera-

ture; for example, feedforward DNN [171], [198] and regular

LSTM [199], [200] have been used in studies as the function

approximator.

The PHM 2008 data challenge asked researchers to predict

the RUL of NASA’s turbofan engines based on multivari-

ate time-series measurements, also known as the C-MAPSS

dataset [195]. The dataset is comprised of four sub-datasets

subjecting to different operating and fault conditions. Sev-

eral regular deep learning models, such as sparse AE [201],

CNN [202], LSTM [177], [181], were used to tackle the

problem. Using bidirectional LSTM, Zhang et al. studied

the transferability of the problem among different operating

conditions [191]. An interesting observation was that neg-

ative transfer occurred when transferring from a dataset of

multiple operating conditions to a dataset of single operating

condition. To improve accuracy, Long et al. built a k-fold

ensemblemodel using residual CNN; this methodwas similar

to the bagging technique in machine learning. In a method

resembling the principle of random forest, Zhang et al. con-

structed a multiple DBN ensemble to maximize two con-

flicting objectives: accuracy and diversity. Composite models

using LSTMwith RBM [190] and 1DCNN [176], [182] were

also investigated recently, and quite competitive performance

was reported.

In one of the most researched prognostic problems,

the IEEE PHM 2012 data challenge works with bearing

vibration data acquired from an accelerated aging platform

PROGNOSTIA. It expects participants to predict the RUL

of bearings whose monitoring data are truncated [196].

Although the target is different, the data type is in line with

the aforementioned fault diagnosis problem using the CWRU

dataset. Therefore, we provide some details of related studies

in Table 2 with the aim of comparing them to those in Table 1.

Although we tried to provide a unified metric for better com-

parison, different people use different metrics when evaluat-

ing model performance. Note that the ‘‘Evaluation’’ column

of Table 2 has three different metrics, i.e., Score, RMSE and

MAPE, and their magnitudes are incomparable. In addition,

the score is different from that defined in equation (1). The

higher the score the better the accuracy; see [196] for a

definition. As in Table 1, the figures in Table 2 are directly

from the original paper or indirectly calculated and have not

been verified.

After carefully scrutinizing these studies, we found the

proposed methods share many common properties with those

in Table 1. A simple modification by replacing the final

classification layer with a regression layer can turn a diag-

nostic method into a prognostic one. This observation was

also made by [183] and [185]. This gives an opportunity

to conduct transfer learning in these two closely related but

different tasks. Another interesting observation was that all

the proposed methods in Table 2 fall into the category of

separate learning, not end-to-end learning. In light of all the

merits of end-to-end learning, we expect more studies of this

type to work on prognostic problems in the future.

This subsection surveys prognostic research that aims

to predict the RUL of machining tools, batteries, turbofan

engines and rotating bearings. After reviewing the referenced

papers, we made some interesting observations:

1) Compared with fault detection and diagnosis, no

imagery data were used as input in prognosis tasks.

This may imply that degradation process is not evident

in images in some domains. It may also indicate the

potential to develop imagery data-driven prognostic

applications.

2) While a confidence bound associated with the tar-

get RUL prediction is a desirable output, very few
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TABLE 2. Comparison of prognostic research referring to the IEEE PHM 2012 data challenge.

researchers handle the requirement properly or report

their efforts sufficiently. This should be addressed in

future studies.

3) A few benchmarking datasets, such as the C-MAPSS

and the PROGNOSTIA, are heavily used for the pur-

pose of model validation. However, researchers tend to

use different metrics to evaluate their models’ accuracy,

making comprehensive comparisons difficult. We call

for a unified evaluation metric for model assessment in

future studies.
Many studies explicitly encode temporal information of the

sensormeasurements using 1DCNN, RNN and their variants,

while others implicitly encode them using the sliding window

strategy. Researchers agree on the importance of capturing

the temporal dependencies of data in prognostic tasks.

IV. CHALLENGES AND OPPORTUNITIES

A. CHALLENGES

In the fourth industrial revolution, or Industry 4.0, a key

objective is to upgrade equipment’s ability to perceive its own

health state and predict future behavior. The development of

PHM theory and practice aligns with this objective. As we

have shown in the preceding sections, many pilot studies

indicated deep learning is a promising tool in facilitating

PHM applications. But this cross-disciplinary research is

challenging, and the way ahead is long and arduous. Based

on the work surveyed so far, in this section, we summarize

some issues that have been overlooked or insufficiently dealt

with to date. We also point out some challenges facing future

applications of deep learning in PHM. Notably, however,

the following challenges may not be unique to PHM. Some of

the challenges share commonality with deep learning appli-

cations in other fields.

First, the use of deep learning is still an art. It requires

experienced practitioners to select an appropriate deep learn-

ing model, regularize a too-complex model to prevent overfit-

ting, pick a proper learning rate for faster convergence, tune

the hyperparameters so the model has better generalization

capability, consider scalability in a big data environment, and

many others. All these requirements apply to the scenario of

PHM applications; for example, as shown in Table 1, the use

of the samemodel to solve the same problem yielded different

162430 VOLUME 7, 2019



L. Zhang et al.: Review on Deep Learning Applications in PHM

testing accuracies. Although deep learning is known for its

automated feature learning capability which alleviates the

need for domain-specific knowledge in feature engineering,

the above requirements pose yet another difficulty when

adopting deep learning technologies. The solution relies on

the further development of deep learning theory. It also

demands a better documentation of best practices in PHM

using deep learning.

Second, most research mentioned here conducted model

validation on datasets gathered from bench-scale experi-

ments, and this leads to poor generalization to real-world

applications. Laboratory experiments attempt to simulate

reality but often with simplifications or strong assumptions

that may not hold in reality. Assessment of the health con-

dition of an in-situ item is complicated, because it may

be affected by too many factors, such as operating con-

ditions, intercorrelations, multi-sourced and heterogeneous

data, noises etc. Another concern is the scarcity of labeled

samples in the real world. While fault injection and run-to-

failure lifetime testing may be allowed in laboratory tests,

destructive experiments are typically restricted in the real

world for safety and economic reasons, resulting in insuffi-

cient labels. In spite of the challenges, we believe transfer

learning is a bridge that can link laboratory tests and the real

world, as will be detailed later in this section. In general,

applying deep learning in real-world PHM applications is

more complex than in labs, but we expect more studies to

employ in-situ data in the future.

Third, an important but relatively understudied aspect is

the ‘‘concept drift’’ problem, also known as covariate shift,

in nonstationary data streams. In other words, online data

may have a time-varying characteristic causing the model

trained in an offline stage to become obsolete over time. This

is generally true for any real-world PHM applications but the

impact is less significant in rigorously controlled laboratory

tests. Concept drift can sometimes be partly explained by con-

textual information, such as the load, rotating speed, ambient

temperature etc. Therefore, it is necessary to incorporate

contextual information as input to the deep learning model.

Alternatively, concept drift may result from an item’s intrinsic

mechanism and contingent factors, making it unavoidable.

To prevent deterioration in prediction accuracy because of

concept drift, both active and passive solutions are appropri-

ate. The former type relies on explicit change-detection and

retrains the deep learningmodel after the detection of concept

drifts. The latter type designs the model to be self-adaptive

by adjusting the network parameters upon the arrival of new

samples. Each solution has advantages and disadvantages,

so they should be investigated individually for specific PHM

scenarios.

Fourth, timeliness is a primary concern in PHM appli-

cations. An accurate but late prediction of a fault occur-

rence may not allow adequate time for remedies, causing

damage or losses. This requires on-the-fly data processing

and low-latency responses. However, current research makes

little mention of time complexity analysis. Deep learning

algorithms are typically computationally demanding, and

some may rely on the computing power of Graphical Pro-

cessing Units (GPUs). A conventional scheme of deep learn-

ing applications resorts to cloud computing, where massive

amounts of data are transmitted to the cloud for computa-

tion, and the results are transmitted back to end users. This

scheme may suffer from the problem of limited bandwidth

and delayed response. To this end, edge computing has been

proposed to bring computation and storage closer to the

location where it is needed. The new scheme exploits field

computing resources and can improve response times and

save bandwidth. The deployment of edge computing for PHM

is another related challenging task.

Last but not least, as shown in Fig. 1, an ideal PHM solution

should output actionable tasks after identifying faults and

estimating the RUL of the monitored system. The actionable

tasks may be operational adjustments or prescriptive main-

tenance. Decision theory comes into play here, taking into

account factors like risk, mission criticality, life-cycle costs,

resource constraints and cost-benefit balance. Theoretically,

deep reinforcement learning can play a role in systems con-

sisting of states, actions, and rewards. The ultimate goal is

to maximize long-term rewards by recommending feasible

actions based on current states. However, the reality is com-

plex, as all the above factors may vary along the time axis.

In addition, it is hard to get enough data, a collection of

triplets, i.e., ‘‘state-action-reward’’, to train the deep rein-

forcement learning model. The credit assignment problem,

assigning long-term rewards or losses to each individual

action, is a final challenging task. To the best of our knowl-

edge, no such studies have been performed in the PHM area.

B. OPPORTUNITIES

Fortunately, opportunities always accompany challenges.

Data are raw material that can be repeatedly exploited to

extract information, knowledge and wisdom. Industrial digi-

talization is accelerating the speed of data collection, enhanc-

ing data richness and increasing computing power. On the

demand side, industries long for high reliability and safety

– and this was the original intention of PHM. In light of the

powerful representing capability and the universal applica-

bility to various types of data, deep learning can serve as a

tool to mine data to achieve the goal of PHM. Based on our

review, in the following, we point out three technologically

related innovations in data science as the opportunities that

could make possible for the further betterment in PHM.

1) TRANSFER LEARNING

Transfer learning aims to take advantage of experience

learned in a source problem to improve the learning of a target

problem [206]. The major merits are threefold: it alleviates

the demand for a large number of labeled samples; it can

accelerate the convergence speed in model training; it can

boost the prediction accuracy. Many studies have already

demonstrated the efficacy of transfer learning in PHM; there-

fore, we believe it is a very promising tool for future studies.
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However, cautions should be taken to prevent negative trans-

fer as we discussed earlier in Section III-C, and one example

of this can be referred to [191]. Depending on the domain

(feature space and its marginal distribution) and task (label

space and the predictive function) differences of the source

and target, transfer learning can be categorized into three

types: inductive, transductive and unsupervised [206].

Unsupervised transfer learning focuses on solving unsu-

pervised target problems, when no labels are available in the

source and target. Although fault detection can be realized

in an unsupervised manner, there is little research on this

topic.

Inductive transfer learning has different source and tar-

get tasks, and some labeled data in the target problem are

required to induce the predictive function. As introduced in

Section III-A, Gibert et al. and Kang et al. both built a deep

multi-task learning model for the purpose of fault detection

from imagery data, namely the target problem [56], [78].

In the two studies, the source problems were material classi-

fications, and the annotation of material classes was found to

be easier than that of fault types. This is thought-provoking,

as in some cases, it is hard to annotate the data as desired

but easy to annotate them in a different way, giving the

opportunity for multi-task learning. Another example of a

widely studied type of inductive transfer learning in PHM

is the reuse of a pretrained network, such as LeNet, VGG,

AlexNet, and ResNet; see Section III for more examples.

Note that fault detection, diagnosis and prognosis may have

the same type of input but different targets, as illustrated in

Section III. Deep learning provides a general framework for

these PHM tasks. An architecture designed for one task is

transferrable to another with effortless modification, open-

ing the window to transfer learning, though rarely reported

in the literature. For example, we can reuse a deep neu-

ral network originally trained for diagnosis in a new sce-

nario for prognosis simply by replacing the final soft-max

layer with a regression layer and finetuning the whole

network.

Transductive transfer learning has the same source and

target task, but the domains are different. In addition, labels

in the source problem are abundant while labels in the target

problem are sparse. The differences between the source and

target domains may exist in the feature space or the marginal

distribution. The former depicts a greater difference, also

known as domain adaptation; hence, it can better resemble

the cases transferred from laboratory tests to real-world appli-

cations. Existing work of this type is rare. We believe the

challenge in large-scale expansion of PHM applications in

the real world can be met via transfer learning. The latter

(differences in marginal distribution) represents a smaller

difference, which can be regarded as sample selection bias or

covariate shift. Examples of this type appear in [134], [191],

where a source network was trained with labels in one oper-

ating condition and transferred to another with no target

labels. The difference in operating conditions explained the

difference in marginal distributions of input.

2) DATA AUGMENTATION

In general, the number of samples for training has a direct

impact on the upper bound of a deep neural network’s accu-

racy. However, data labeling is often tedious, labor-intensive

and costly. We can use data augmentation techniques to

obtain more training samples to improve the performance of

PHM applications. For example, when methods like random

crop, rotation, translation, zoom, shear and elastic transfor-

mation were adopted on natural images to generate more

training samples for fault diagnosis, improved accuracy was

reported [62], [124], [138]–[140], [142]. The success of this

type of data augmentation on natural images is explained

by the human visual perception mechanism; for instance,

a rotated cat can still be recognized as a cat by the human

brain. The photographing of natural images is subject to

ambient light, focal length, canted angle etc., and this explains

the validity of the augmented data. Other data augmentation

methods requiring knowledge of the first principles of the

system, such as high-fidelity simulation, are not within the

scope of this paper.

As for other types of data, there is no such intuition to

guide us to generate data that are more real. Fortunately,

the rise and recent development of Generative Adversarial

Network (GAN) provides a partial solution. GAN is a new

type of deep learning framework which consists of two mod-

els: a generator and a discriminator [207]. The generator

aims to generate synthetic samples so that it can fool the

discriminator, while the discriminator tries to distinguish the

generated fake data from real data. The two models are pitted

against each other until the fake samples are indistinguishable

from genuine ones. Using this framework, Shao et al. built

an auxiliary classifier GAN, named ACGAN, to generate

artificial vibration data for fault diagnosis [208]. In cases of

class imbalance, the use of GAN-based data augmentation

supplemented the minor classes and improved the accuracy.

More examples of this appear in [209]–[212].

The above-mentioned data augmentation methods for nat-

ural images rely on domain knowledge, whereas GAN-based

data augmentation is automated without human intervention.

This is analogous to hand-crafted features using conventional

signal processing techniques versus automated feature learn-

ing using deep learning. More importantly, with a proper

model design, GAN-based data augmentation can synthe-

size any type of data, attesting to its universal applicability.

Overall, while the study of GAN-based data augmentation in

PHM applications is in its infancy, we believe there are great

opportunities to use it in future studies.

3) END-TO-END LEARNING

As shown in Fig. 8, end-to-end learning refers to building

an integrated network as a whole, taking in raw signals and

directly outputting the desired targets. This is in contrast

to separate learning, in which feature learning and pattern

recognition are independent. The primary advantages of end-

to-end learning are fourfold. First, it lets the data speak; it can

capture whatever statistics are in the data rather than being
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forced to reflect human preconceptions. Second, feature engi-

neering is automated, without needing hand-crafted features.

This vastly reduces the degree of dependency on domain

knowledge and lowers the barrier to PHMapplications. Third,

parameters of the whole network can be jointly optimized,

typically improving accuracy. This can be compared to sepa-

rate learning, where a global optimum might not be achieved

by optimizing each individual learning stage. Fourth, the net-

work is generic, and from an architectural perspective, it can

be easily transferred or adapted to a different but similar

scenario. This is consistent with what we claimed above: deep

learning provides a general framework which increases the

transferability of deep learning models in PHM applications.

Although many studies have proven the effectiveness of

end-to-end learning, increasing model complexity will cre-

ate a need for more labeled training samples. Dividing the

learning pipeline into several steps might help, especially

when labeled data are sufficient in each individual step but

insufficient from an end-to-end perspective. For example,

fault detection using imagery data was accomplished through

separate learning – object location followed by object classi-

fication [62], [63]. In cases of limited training samples, sep-

arate learning can be a good option, as human preconception

provides an auxiliary approach to feature learning. But end-

to-end learning should be favored when enough labeled data

are available because of the automation in feature learning.

We also think hybrid models incorporating both hand-crafted

features and automated learned features can further boost the

performance of PHM applications.

Deep learning is noted for its capability in automated

feature learning. However, one important but neglected fact

is that the learned features are part of a larger ‘‘black box’’.

We believe a large body of physical meanings are embedded

in these features in PHM applications. There is a fundamental

opportunity for research to demystify the underlying mecha-

nisms. As shown by [137], CNN can be made interpretable,

and new insights can be gained into the underlying physics.

More examples appear in [121], [124]. In these studies,

the automatically learned 1D filters (convolutional kernels)

were visualized and found similar to the basis function used

in signal processing; each focused on extracting one or more

specific frequency component in the vibration signal.

V. CONCLUSION

Many areas have been or are being transformed by deep

learning technologies, including financial fraud detection,

medical image diagnosis, machine translation and so on.

Because it is a data-intensive field, PHM research is also

reaping benefits from the advancement of deep learning the-

ory. Traditional PHM applications have a fairly high technical

barrier, as they require human expertise in statistics, signal

processing, domain knowledge and many other skills. The

most attractive specialty of deep learning is the automation

of feature learning without the need for supervision. This

greatly reduces the height of the technical barrier of PHM

applications.

Deep learning provides a one-fits-all framework for PHM

applications: fault detection uses reconstruction error or

stacks a binary classifier on top of the learned network to

detect anomalies; fault diagnosis typically adds a soft-max

layer to perform multi-class classification; and prognosis

adds a continuous regression layer to predict remaining useful

life. The selection of a concrete deep learning architecture

is application-dependent; it mainly depends on the type of

data available. The analysis in this paper may suggest how to

select an appropriate deep learning architecture for a specific

application scenario.

Problem-solving in PHM and the theoretical development

of deep learning can be seen as parasite and host, forming a

mutually beneficial mechanism. In the literature, an increas-

ing amount of research is focusing on fault detection, diagno-

sis and prognosis using deep learning. This paper surveys this

work, reveals some of the common properties, pinpoints some

important but overlooked issues and indicates challenges and

potential opportunities for future studies. We can anticipate

more research and industrial applications using deep learning

in the PHM domain in the near future.
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