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ABSTRACT Deep learning approach has been used extensively in image analysis tasks. However, imple-

menting the methods in 3D data is a bit complex because most of the previously designed deep learning

architectures used 1D or 2D as input. In this work, the performance of deep learning methods on different 3D

data representations has been reviewed. Based on the categorization of the different 3D data representations

proposed in this paper, the importance of choosing a suitable 3D data representation which depends on

simplicity, usability, and efficiency has been highlighted. Furthermore, the origin and contents of the major

3D datasets were discussed in detail. Due to growing interest in 3D object retrieval and classification tasks,

the performance of different 3D object retrieval and classification on ModelNet40 dataset were compared.

According to the findings in this work, multi views methods surpass voxel-based methods and with increased

layers and enough data augmentation the performance can still be increased. Therefore, it can be concluded

that deep learning together with a suitable 3D data representation gives an effective approach for improving

the performance of 3D shape analysis. Finally, some possible directions for future researches were suggested.

INDEX TERMS 3D data representation, 3D deep learning, 3D models dataset, computer vision, classifica-

tion, retrieval.

I. INTRODUCTION

The increasing availability of 3D models from con-

structed and captured 3D data from low-cost acquisition

devices and other modeling tools requires effective algo-

rithms to perform key tasks such as retrieval [1]–[3],

classification [4]–[7], recognition [8]–[10], and other 3D

shape analysis tasks [11]–[15]. In 3D deep learning algo-

rithm, there are two key challenges, i.e., the 3D data represen-

tation to use and the network structure adopted. Majority of

the deep learning methods are deeply rooted in 2D data [15]

which makes it more challenging on 3D data, fortunately

with increase interest on 3D objects like the yearly 3D shape

retrieval contest organized by [16] in order to evaluate the

effectiveness of 3D retrieval algorithms and other 3D objects

related tasks have increased tremendously the number of deep

learning algorithm on different 3D data.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

The success of deep learning in image feature extrac-

tion over handcrafted methods have attracted interest in raw

3D data like points clouds because of their simplicity and

flexibility. [17], [18] process points cloud directly without

any transformation to other formats. These approaches prove

effective in 3D object classification and segmentation tasks.

However, point clouds are permutation invariant and there is

uncertainty on how these methods can be processed without

affecting output quality. 3D data can also be projected into

2D space and still maintains some of the main properties

of the original 3D data [19], [20] but their major limitation

is information loss when the 3D objects are very complex,

in order to overcome this shortcomings, some approaches

adopted reconstruction methods that retrieved objects from

a 3D shape database and use a real time scanning of the

environment which helps to replace scanned RGB-D data

with complete hand-modeled objects from the shape database

and finally align and scale retrieved models to the input

data to obtain a high quality virtual representation of the
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real world environment which is very similar to the original

geometry. Surfaces mesh is among the most popular 3D data

representation which is commonly used in computer graphics

and computer vision fields [21]. MeshCNN was Proposed

in [22] which utilizes the key features of mesh data by

combining convolution and pooling layers to operate on the

mesh edges by taking advantages of their intrinsic geodesic

connections. The major limitations of mesh data are its com-

plexity and irregularity which makes it less usable in the

research community as can be seen in Fig. 2 which shows the

history of 3D data representation using different types of data

from 2003 to 2018.

Voxels and octrees are the two popular solids 3D data rep-

resentations that exploit the full geometry of the 3D objects.

[23] represents the input object as a 30 × 30 × 30 binary

tensor which categorized the 3D object, even though this

approach is among the first to exploit 3D volumetric data on

deep learning directly, they imposed many constraints among

which is the additional kernel which leads to difficulty in

processing high-resolution data. Octrees which is a varying

sized voxel was exploited in [24] for 3D object classification,

retrieval and segmentation tasks. The authors proposed octree

based convolutional neural network that support a modest

octree structure that supports all CNN operations on the GPU.

Some works exploit the high-level structures of 3D shape

by expressing the 3D shape in form of high-level shape

feature which is informative and contains geometric extract

of the 3D objects. 3D descriptors can be divided into Global

descriptor [25]–[27] and local descriptor [28]–[30]. The other

classification is based on the essence of the information char-

acterization e.g. non-diffusion 3D descriptors e.g. statistical

moments [31], light field descriptor [32], and the diffusion-

based descriptors [33]–[36] this will be discussed in details

in section IID. Other two popular high-level 3D data repre-

sentations are the graphs and skeleton. [37] Performed a 3D

object retrieval based upon a graph-based object represen-

tation which is composed of new mesh segmentation along

with a graph matching between graph of the query and each

of the graph that corresponds to the object of the 3D objects

database. In [38], a unified framework was proposed that

generalize CNN architectures to graphs and manifolds and

learn compositional task- specific features. The relationship

between graphs and meshes will be elaborated in section III

D. To have an effective deep learning model on 3D data

representations, there is a need to consider the fundamental

properties of the 3D data representations and its efficiency,

simplicity and usability which is the main priority in this

work.

3D data representation used in deep learning methods for

3D objects retrieval and classification have continued to grow

rapidly in recent time. In [39], Griffiths et al. review the

current state of the art deep learning architectures but focus

on unstructured Euclidean data only, also in [40], Pichao

et al. presented a detailed overview of recent advances in

RGB-D based motion recognition. In this survey, the meth-

ods are categorized into four groups based on the modality

adopted for recognition which are; RGB-based, depth-based,

skeleton-based and RGB+D-based. A special consideration

was given to the way in which the spatial, temporal and

structural information have been utilized. Some of the key

benefits of this survey is the comprehensive discussion of the

challenges of RGB-D based motion recognition, analysis of

the limitations of available methods and finally discussion

of potential research directions. The aim of our paper is to

broadly review the performance of deep learning methods on

different 3D data representations. We emphasize on the com-

putational difference of each 3D data representations which

include: Simplicity (less difficulty of acquisition, hardware

speed/timing), Usability (benefit) and Efficiency (effective-

ness).

In [41], a survey was presented that classified 3D data

representation into Euclidean and non-Euclidean data. How-

ever, the recent deep learning methods that explore octree

data representation were not presented. Therefore, our cur-

rent work presented all the different 3D data representations.

currently used in deep learning architectures including the

most popular 3D objects datasets available in the deep learn-

ing community. The main contributions of this paper are as

follows:

1) A comprehensive review about the performance of

deep learning methods on different 3D data representa-

tions with an emphasis on the computational difference

of each 3D data representation based on simplicity,

usability and efficiency.

2) Thorough Analysis about the future direction of 3D

data representations used in deep learning models with

literature to support the field where the future direction

would be beneficial

II. REVIEW OF DIFFERENT CATEGORIES OF 3D DATA

REPRESENTATIONS

3D data representations serve as the basis for computer graph-

ics, robotics, visualization and many others. They serve as the

language for defining geometry syntax and semantics. In this

section, we reviewed in details the different categories of 3D

data representation which include: Raw data, solids, surfaces,

multi views and high-level structures. Recent work [42] focus

on unstructured Euclidean data only in contrast to ours which

extensively study both structured and unstructured data which

will serve as a guide for choosing the suitable 3D data repre-

sentation for future research.

A. RAW DATA

Raw 3D data can be obtained by different divergent scanning

devices such as Microsoft Kinect [43], structured lights scan-

ning [44] and many others. Some of the popular 3D data rep-

resentations that belong to this group are point cloud, RGB-

D data, and 3D projections subsubsectionPOINT CLOUD

Point clouds have a background in photogrammetry and in

recent time lidar. A point cloud is simply a set of 3D data

points and each point is represented by three coordinates in
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a Cartesian or other coordinate systems.it is regarded as a set

of unstructured 3D points that symbolize the geometry of 3D

objects and are utilized in many computer vision tasks. E.g.

classification and segmentation [17], object recognition [45],

reconstruction [46] etc.

Even though points clouds can be obtained easily using

Kinect [43] and other sensors like devices, processing them

can be challenging due to absence of connectivity information

in the point clouds and capturing them from the environment

in the acquisition setup. The point clouds obtained some-

times are incomplete, with noise and missing data which can

be caused due to constrained of the sensors [47] and other

environmental factors [48]. Recent methods deal with noise

reduction in point cloud [49].

1) RGB-D DATA

Microsoft Kinect [43] can be used to characterize 3D data

to RGB-D images. It gives a 2.5D data about the obtained

3D object by giving the depth map (D) together with color

information (RGB). Many RGB-D datasets are available like

RGB-D object dataset [50], SUN 3D [51] and many more.

RGB-D data prove to be effective in pose regression [52],

correspondence [53] and character recognition [54].

2) 3D DATA PROJECTIONS

3D projections are a way of mapping 3D points to 2D planes.

It is realized using imaginary projections which give the

projected data crucial features of the original 3D object.Many

of the projection’s methods convert the 3Dmodel to a 2D grid

with key properties. Spherical domains projections [55] aid

the data projected to be invariant to rotations. However, some

projections are not optimal in complicated computer vision

tasks due to loss of information in projections [56].

B. SOLIDS

Solids representations of 3D models are virtually space con-

trol information for a given object. Usually the information

is binary which implies that the space can be occupied by the

object or none. Octree and voxels are the two major solids

representations used in deep learning community.

1) OCTREE

An octree is a simplified data structure for effective storage

of 3D data. It is an extension of a 2D quadtree. The individual

node in an octree contains eight children [57]. Octree is

simply a fluctuating sized voxel and it is considered one of the

most scattered voxel representations which was recently used

in conjunction with CNN for 3D shape analysis task in [12]

and [24]. It has the advantages of efficient memory utilization

and can be used for generating high resolution voxels [58].

However, it has a major drawback which is caused by its

inability to maintain the geometry of some 3D objects like

the smoothness of the surface.

2) VOXELS

Voxels are used to represent 3D data by characterizing

the manner the 3D object is allocated through the three

dimensions of the scene. The occupied voxels can be clas-

sified into seeable block or self-occluded by encoding the

view information about the 3D shape. [60] and [61] used a

voxel variational auto encoder for shape classification. [62]

Create CNN learning as a beam search with the intention of

identifying an optimal CNN architecture namely, the number

of layers, nodes, and their connectivity in the network, but the

major limitations of voxels are its demand for unnecessary

storage due to representation of both the occupied and non-

occupied scene [63]. The huge demand for memory storage

makes it not good enough for high resolution data [57].

C. SURFACES

Surfaces polygons are usually used in boundary representa-

tion of 3D objects which surround the inner part of the object.

The set of this polygons are usually stored for the description

of the object which has the benefit of simplicity and speeding

of the rendering of the surface and object display because all

surfaces can be characterize with linear equations. There are

many methods for surface representations of 3D objects such

as the polygon mesh, sub division, parametric and implicit

but among these representations’ polygon mesh is the most

popular surface representations used in the deep learning

community.

1) 3D MESH

3D meshes consist of a combination of vertices, edges and

faces that are mostly used in computer graphics applica-

tion for storing 3D objects and for rendering purpose. The

vertices contain connectivity list that describes how each

vertices are connected to one another. The major challenges

of mesh data are, they are irregular and very complex, which

makes them not usually used in deep learning methods until

recently when [21] propose MeshNet which can to deal with

the complexity and irregularity problems of mesh data and

successfully performed 3D shape classification and retrieval

task on Model 10 dataset. Also [22] used the edges of the

mesh to perform pooling and convolution on the mesh edges

by taking advantages of their intrinsic geodesic connections.

D. HIGH-LEVEL STRUCTURES

In 3D shape retrieval and classification, there is a need for

succinct still, very rich representation of a 3D object that

will be used to describe an object as representative of some

category. 3D shapes can be represented in the form of high-

level 3D shape descriptors which is a simplified represen-

tation that contains the geometric characteristics of the 3D

object [25]–[30]. Apart from 3D descriptors, the graph can

also be expressed in the form of high-level structures.

1) 3D DESCRIPTORS

3D shape descriptors play a significant role in 3D shape

retrieval and other shapes analysis tasks. For 3D shape

retrieval which can be describe as a way of querying a

3D object from a database of many 3D models in order to

discover the closest match, there is a need to change the
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shapes into feature descriptors in order to keep the enormous

volume of 3D data and expeditiously query to find the closest

match [25]–[30]. 3D shape descriptors can be divided into

Global descriptors [25]–[27] and local descriptors [28]–[30].

The other categories of 3D shape descriptors are the

diffusion -based [33]–[35] and non-diffusion based [like

the statistical moments [31], light field descriptor [32], and

Fourier descriptor [64]. The diffusion-based descriptors are

effective in capturing the geometric properties of the 3D

shape. For example the Global Point Signature which is term

as (GPS) [34] characterizes the shape of a 3D model by

using the Laplace-Beltrami Operator that is defined on a

3D surface. Other two popular diffusion based descriptors

are the Heat Kernel Signature (HKS) [33] and Wave Ker-

nel Signature (WKS) [35] which both have the advantages

of invariance to isometric deformations. Regardless of the

capabilities of HKS, GPS and WKS they are still point based

descriptors that lacks the global description of the shape.

Temperature Descriptor which is a global descriptor was

developed to represent the entire shape which is very efficient

but represents the shape at only one single scale that leads to

an incomplete description.

2) GRAPH

Graph 3D data representation collect the geometric essence

from a 3D object by linking different shape parts using a

graph. Graph approaches are usually categorized into three

based on the category of graph used e.g. model graph [65],

reeb graphs [66] and skeleton graph [67]. Meshes are also

extended to graph-structured data in which the nodes of the

graph are used as the vertices of the mesh and the edges

represent the connections between the vertices [68].

E. MULTI VIEW DATA

Another form of 3D data representation is to render a set of

images from verities of views and takes the pile image and use

as an input to CNNwhich can be used for shape analysis tasks

[69], [70]. The key benefits of these approaches are that they

can handle high-resolution inputs as well as utilizing the full

image-based CNNs for 3D shape analysis tasks. However,

determining the number of views and self-occlusions are

major draw-backs of these methods which can lead to huge

computational cost if the numbers of views are large.

III. DATASETS

Datasets are very useful for fair comparisons between dif-

ferent deep learning algorithms. Synthetic and real-world

datasets are the two major categories of datasets available

in the deep learning community. Most of these datasets are

produced by universities research groups or large industries.

This section presents the benchmark datasets mostly used in

testing the deep learning algorithms. We present the datasets

in chronological order based on the category.

A. RGB-D DATASETS

The following list outlines the different types of RGB-D

datasets that are captured using a Kinect or similar devices:

1) RGB-D OBJECTS DATASETS

This dataset consists of 11,427 RGB-D images which are

manually segmented. The dataset was developed in con-

junction with the Intel labs Seattle by researchers from

Washington University. It is available freely for educa-

tional/noncommercial use and consists of 300 common

objects that are categorized into 51 classes. The kinect

style sensor was used to acquire the images and generate

640 × 480 RGB-D frames.

2) NYU DEPTH DATASETS

The NYU depth dataset was developed by researchers at

Yew York University and was obtained using Microsoft

Kinect V1 and consist of 1449 RGB-D segmentation labels

for images of indoor scans. There are 40 classes of objects

split and 407,024 validation images are available.

3) SUN RGB-D DATASETS

This dataset was developed at Princeton University using four

sensors to acquire the datasets and consist 10,000 manually

segmented images which are split into 63 classes of indoor

scenes.

B. OTHER 3D DATASETS

The following list outlines other Synthetic and real-world

datasets that are mostly used in the deep learning community.

1) ShapeNet

ShapeNet is a large collection of 3D objects e.g. bicycles,

planes, bottles, chairs, tables, etc. that are developed by a team

of researchers from Stanford and Princeton universities as

well as TTIC institute. Two categories datasets are available

that is ShapeNet Core that includes 51,300 3D models that

are divided into 55 classes and ShapeNetSem which consist

of 270 classes of 12,000 models.

2) SCAPE DATASET

One of the key aims of this dataset is providing human shapes

models. The 3Dmodels are obtained using both the shape and

pose parameters so that changes due to deformation in both

poses and shapes can be captured. Cyberware whole-body

scanner is used to capture the surface data then meshes of the

full body are created after merging scans of four directions

that are captured by the scanner simultaneously. It consists of

scanned human figure of 37 people having 70 different poses

each.

3) TOSCA DATASET

The Tosca dataset consist of 3D non-rigid shapes which are

categorized into Non-rigid world and Tosca high-resolution

datasets. Both of the datasets consist of animals and humans

in a variety of poses that can be used for shape analysis and

correspondence experiments

4) SHREC DATASETS

Network of Excellence AIM @ SHAPE [71] initiated the

now famous 3D Shape Retrieval Contest (SHREC) in 2006.
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FIGURE 1. Examples of different 3D data representations.

It contains a track of models from the Princeton Shape

Benchmark. Now it is organized in collaboration with the

Eurographics Workshop on 3D object Retrieval every year

including many tracks which consist of CADmodels, protein

models, water tight models and many more. The main aim

is to provide researchers with an opportunity to test their

algorithms by using common test collection.

5) NIST SHAPE BENCHMARK

The National Institute of Standard and Technology (NIST)

shape benchmark consist of 800 3D models of daily life

objects which are sub-divided into 20 models per class.

6) FAUST

The dataset contains 300 high resolutions of human body

scans in 10 subjects and 30 poses. The models are obtained

through full body high accuracy 3D multi-stereo system with

172,000 average numbers of vertices for each object and the

ground truth correspondence are computed automatically.

7) ENGINEERING SHAPE BENCHMARK (ESB)

This dataset was developed by Purdue University researchers.

It consists of 867 triangulated meshes mostly fromCAD parts

in the field of mechanical engineering. This dataset has two

levels of order with 3-main classes and 4 sub-classes.

8) McGILL 3D SHAPE BENCHMARK

The models in this repository are mostly adopted from PSB

and other internet websites that are mostly created from CAD

modeling tools. The dataset consists of 456 models in total

and 255 of which are articulated parts shapes. They are

divided into 10 classes with 20-30 models in each category.

9) ModelNet

The ModelNet dataset is a comprehensive collection of clean

3D CAD models provided by researchers from department

of computer Science of Princeton University. The datasets

contain 127,915 CAD models belonging to 662 object cate-

gories. It is obtained using online search engines after query-

ing for each object category and then manually annotated

the data. ModelNet has two subsets which ModelNet10 and

ModelNet40 that are mostly used in object recognition and

classification tasks.

10) PERSISTENT HEAT SIGNATURE

This dataset was developed by researchers at Ohio state

university for used in Shape Retrieval algorithms for partial

and incomplete models with pose variations. The dataset

consist of 50 queries models among which 18 are complete

and the remaining are incomplete or partial models. In total

in consists of 300 shapes from 21 classes of dogs, horses,

airplanes etc.

11) ScanNet

This is one of the recent and rich datasets for real world

scenes. The dataset was annotated and labeled with semantic

segmentation and consist of 2.5 million views that are used
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FIGURE 2. Progress of 3D data representation along with time from 1999-2019.

for training directly without the need for pre-training on other

datasets.

IV. PERFORMANCE OF DEEP LEARNING METHODS ON

DIFFERENT 3D DATA REPRESENTATIONS

With the increase number of 3D models, 3D shape retrieval

and classification tasks continue to receive attention in the

field of computer vision,medical imaging, graphics andmany

others. 3D shape retrieval deals with the issue of discovering

3D objects from a shape database that are similar to a partic-

ular query. Network of Excellence@Shape [71] initiated the

famous 3D shape retrieval contest (SHREC) in 2006. It con-

tains a track of models from the Princeton shape benchmark

and now it is organized in collaborationwith the Eurographics

Workshop on 3D object Retrieval every year including many

tracks that consist of CAD models, protein models, water

tight models and many more. Deep learning has achieved

tremendous success in image-based task [72]–[74]. Despite

the success of deep networks in image concepts, in sufficient

training examples can leads to decayed performance more

especially for deep networks with strong representations

structure making them vulnerable to overfitting. To address

some of these problems, Shu et al. in [75] proposed a novel

deep network structure that can transfer labeling information

across heterogeneous domains particularly from text domain

to image domain which has the advantage of reducing the

issue of insufficient image training data by utilizing the labels

in the text domain. They built multiple weekly shared layers

of features which enable them to share the labels from text to

image. Experiments on real world datasets show the compet-

itive performance of the propose method. Motivated by their

success in [75], the authors in [76] proposed a more Gen-

erative Deep Transfer Networks (DTNs) that are equipped

with more generated layers and they use several parameter

and representative-shared layers that helps to hierarchically

learn to transfer the semantic knowledge from web texts to

images. They used two SAEs to accept both text and images

as inputs then followed by multiple generalized layers. They

test their approach on their new datasets that is an extension of

NUS-WIDE [77] that can be used for social image retrieval,

multilabel image classification and cross-domain processing

of image and text. With the high rise of 3D models available

examining and understanding them is of great significance

more especially in retrieval and classifications tasks.one of

the clue for this kind of tasks is to get the features of 3D

shape that can rightly describe both the shape and their parts.

Many researchers utilized the different 3D data represen-

tations available to perform shape analysis task. A recent

survey in [78] reviewed the most common architectures of

deep neural networks which are: Convolution Neural Net-

work (CNN), Autoencoder, Restricted Boltzmann Machine

(RBM) and Long Short-Term Memory (LSTM). CNN which

is most widely use deep neural network in computer vision

contains many convolutional and subsampling layers which

are sometimes follow by fully connected layers. The training

example (x,y) with respect to the cost function in hidden

layers are expressed as [78]:

J (W , b; x, y) =
1

2

∥

∥hw,b(x) − y
∥

∥

2
(1)

For layer l, the error term δ equation as [78]:

δ(1) = ((W (l))T δ(l+1)) · f ′(z)(1) (2)

δl+1 represent the error of the (l + 1)th layer of a network

with cost function J (W , b; x, y) while f ′(z)(1) is the activation

function derivative [78].

▽wjJ (W , b; x, y) = δ(l+1)(a(l+1))T (3)

▽b(j)J (W , b; x, y) = δ(l+1) (4)
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a serve as the input. while the error for sub-sampling layer is

computed also as [78]

δ
(l)
k = upsample((W

(l)
k )T δ

(l+1)
k ) · f ′(z

(l)
k ) (5)

Here k is the filter number in the layer. In [4], a voxel-based

method was used to characterize a 3D shape and use a 3D

CNN to the whole volume. References [79], [80] used the fea-

tures describe on a manifold to execute CNN operations. But

still using deep learning methods on 3D data is very challeng-

ing because of the complexity and geometric properties of the

3Dmodels. The advantage of havingmany verities of 3D data

representation has given researchers the opportunity to select

the suitable data representations for their tasks. This section

reviewed the performance of deep learning methods used in

different 3D shape analysis tasks based on the representation

of 3D data adopted. Figure 2 below illustrates the taxonomy

of different 3D data representations currently in used in deep

learning community.

A. PERFORMANCE OF DEEP LEARNING METHODS ON

RAW DATA

Depending on the scanning device used to capture object of

particular interest, raw 3D data can be obtained in differ-

ent kinds. Range image can be obtained from UAV scans

using different viewpoints and then used a registration pro-

cess to combine them together to make a correspondence

between them. The 3D point cloud can be obtained using lidar

scanners to capture a scene, while RGB-D images can also

be obtained using Kinect devices. Previously, Handcrafted

descriptors signatures are used to extract features from the 3D

objects or images. The success achieved by [81] in the image

classification task now makes deep learning taking over of

majority of computer vision tasks. While neural networks

have been in existence since [82], the development of pow-

erful computer hardware’s like the GPU and the accessibility

of large-scale datasets makes deep learning a success. In this

section, we will cover the performance of deep learning

methods on raw 3D data namely: Point Cloud, Projections

and RGB-D including their strength and weakness.

1) PERFORMANCE OF DEEP LEARNING METHODS ON

POINT CLOUDS

Point cloud is a special type of 3D data representation because

of its irregular structure. Point cloud is uncomplicated and

integrated data structures which are clear of complexities of

mesh data. Previous methods for using point cloud are mostly

hand crafted for a particular task. They aremostly categorized

into intrinsic [83], [84] and extrinsic [85], [86] which are used

as point features to encrypt some statistical information of

points.

Reference [87] used point clouds as a combination of sets

with distinct sizes. In this method, they show that when learn-

ing an underlying model, the orders in which input/output

data are organized are important. They used read-write net-

work to learn sorting numbers. Reference [88] Introduce a

simple permutation equivariant layer for deep learning with

set of structures. The layers are obtained by parametric shar-

ing and have a linear time complexity in the size of each set.

They successfully use deep permutation invariant networks

to perform point cloud classification and MNIST- digit sum-

mation. Even though their network has a linear time com-

plexity in the size of each set and it is comparatively simple,

the performance of the network on ModelNet dataset was

low. Reference [89] Proposed DeepSet that operate on sets

and can also be used in different scenarios in both supervised

and unsupervised task. The applicability of their method was

demonstrated on population estimation, set expansion, outlier

detection and point cloud classification.

Qi et al. in [17] proposed pointNet which is a network

architecture that rightfully utilizes unordered point clouds

and provides end-to-end classifications with less memory

requirement than voxels grids or possible loss of information

from 2D image representations. Reference [17] represents

{x1, x2, . . . xn} as unordered pointset and xi ∈ Rd , f : X → R

can be define as a set function that maps a vector to a set of

points [17]:

f (x1, x2, . . . , xn) = γ

(

MAX
i=1,...n

{h(xi)}

)

(6)

where γ and h are the multi-layer perception (MLP) net-

works. pointNet does not use convolution operations to

extract features as commonly used by other methods, instead

it used fully connected layers to represent each point in a

Euclidean space. It uses a spatial encoding for every point to

combine into a global point signature for classification pur-

pose. They use a Multi-layer Perception (MLPs) to generate

features and combined them using max-pooling and single

symmetric function. To help with the classification, they use

the objects orientation in a canonical form to intensify the

invariance to permutation of the input. PointNet demonstrates

its robustness against input perturbation and partial data by

producing comparable results in classification and segmen-

tation task to the state-of-the-art methods as can be seen

in table 2. A major challenge of pointNet is that it fails to

capture local structures caused by the points occupied by the

metric space. To overcome this limitation, the authors in [18]

proposed pointNet++which is a hierarchical neural network

that uses the idea of 2D-CNNs where features are capture

on a larger scale progressively through a multi-resolution

hierarchy. Despite the fact that this network captures more

features, it is very complicated and very low in computational

speed. Nevertheless, PointNet++ performance on ModelNet

40 dataset is 90.7% which is a 2.7% higher than PointNet and

also out performed [90].

Reference [91] proposed KD-Networks and avoids

operating on the point clouds structure directly. Instead

KD-Network uses multiplicative transformations based on

the sub-divisions of the point clouds foist onto them

by Kd-trees. The network is feed forward network and it

demonstrate competitive performance in shape retrieval, clas-

sification and shape part segmentation tasks. Also, in [92],

Roveri and Rahmann et al. avoided using point cloud directly
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TABLE 1. A summary of 3D data representations.

by automatically transforming 3D unordered input data

into a set of 2D depth images and successfully classified

them by utilizing excellent performing image classifica-

tion CNNs [93]. Their network consists of 3 key modules,

the first module deals with input point cloud after learn-

ing k-directional views to create the depth maps, while

the last two modules processed the already created k-depth

maps for object classification. Previous deep networks that

directly deal with points usually used a supervised learning

approach. Yang et al. in [94] proposed FoldingNet a novel

end-to-end deep auto-encoder to deals with unsupervised

learning issues on point clouds. Their network used a graph-

based enhancement on the encoder tomake local structures on

top of pointNet and a folding decoder successfully deforms

a canonical 2D grid onto the underlying 3D object surface

of a point cloud. They also used an SVM together with the

FoldingNet which is used for 3D classification. The network

performed well on ModelNet40 dataset which achieved high

classification accuracy. Recently, Li et al. proposed So-

Net [95] which used unsupervised model for a permutation

invariant architecture with orderless point clouds. The key

idea of So-Net is the building of Self Organizing Map (SOM)

tomodels the spatial distribution of point clouds. The network

represents the input point cloud by a single feature vector by

using the SOM to execute hierarchical feature extraction on

each points and SOM nodes. SO-Net archived higher classi-

fication accuracy on ModelNet 40 as can be seen in table 2.

Reference [96] propose RS-CNN a relation shape CNN

which extends regular grid CNN to the irregular configuration

of point cloud. The network learns from geometric topol-

ogy constraint among individual points. Each local convo-

lutional neighborhood is created by using a sample point x
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FIGURE 3. The taxonomy of different 3D data representations currently in used in deep learning community.

which the centroid then surrounding points as its neighbors.

RS-CNN performed well on ModelNet40 which achieves

a state-of-the-art performance as can be seen in table 2.

In another work, [97] address the problem of 3D seman-

tic segmentation of unstructured point clouds using a deep

learning architecture by introducing grouping techniques that

define point neighborhoods in the initial world space and the

learned feature space. They use a dedicated loss functions to

help structure the learned point feature space by defining the

neighborhood in an adaptive manner which is very sensitive

to the local geometry by utilizing k-means clustering on the

input point cloud and then defining dynamic neighborhoods

in the learned feature space using K-nearest neighbor (KNN).

The effectiveness of the propose method was demonstrated

on the task of semantic segmentation of 3D point clouds

on indoor data from the standard 3D indoor scene dataset,

ScanNet dataset and outdoor data from the virtual KITTI 3D

dataset. Similarly, [98] propose PointSift which is similar to

a SIFT. The module tries to encode information of variants

of orientations which is adaptive to scale. Instead of using

K-nearest neighbor as used in PointNet++, they obtain the

information from all the points in the local neighborhood by

combining the pointSIFT module on the PointNet++ archi-

tecture which demonstrate a high performance on segmen-

tation task on ScanNet and Standard Large-Scale 3D indoor

spaces datasets. In similar work, [99] proposed SPLANet that

used unordered point cloud and incorporate a spatial convo-

lution operator within the network structure. In this method,

sparse bilateral convolutional layers are utilized that use

indexing structures to perform convolutions only on the parts

of the lattice been occupied. One of the major variations of

SPLANet to PointNet++ is the use of flexible specification

of the lattice structure to help hierarchical and spatially aware

feature learning. SPLATnet have many advantages among

which are: it accepts the input point cloud and use it directly

without requiring any pre-processing to voxels or images and

it allows an easy specification of filter neighborhood as in

standard CNN architectures.

Reference [100] proposed to use ConvNets to recognize

human actions from depth maps on a dataset based on Depth

Motion Maps (DMMs). They employ three strategies to

effectively utilized the capability of ConvNets in minimizing

discriminative features for recognition. they start by rotat-

ing virtual cameras around subjects represented by the 3D
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TABLE 2. Classification and mean average precision accuracies of some methods on ModelNet40 datasets.

points of the captured depth maps in order to mimicked

different viewpoints, then DMMs are encoded into Pseudo-

RGB images which helps in turning the spatial-temporal

motion patterns into textures and edges and finally through

the use of transfer learning, the three ConvNets are trained

independently on the color coded DMMS which are con-

structed in three Orthogonal planes. There proposed method

was evaluated on MSR Action 3D, MSR action 3D Ext and

UT-Kinect-Action datasets and achieved the state-of-the-art

results on these datasets. As can be observed from the lit-

eratures reviewed in this section, the major challenges in

raw point cloud are its non-uniform nature of the data which

was usually caused by occlusions, sensor noise and distance

from the sensors. Since point cloud has unordered structure

researchers usually use a learning approach that is invariant

to the order of the point cloud.

2) PERFORMANCE OF DEEP LEARNING METHODS ON

RGB-D DATA

The availability of RGB-D datasets from RGB-D sensors

e.g. Microsoft Kinect has motivated researchers to exploit

RGB-D data representation due to the added advantage

of color information and depth representation provided by

the sensors. Socher et al. [101] were the first to use

RGB-D data for 3D object classification. The authors used the

integration of convolution and recursive neural networks to

process depth channel and color independently. In the begin-

ning, two single-layers CNN are used to extract low level

descriptors from the RGB-D data. The output descriptor was

forwarded to a set of Recursive Neural Networks (RNNs) that

are initialized with random weights. The resultant descrip-

tors from the RNN were merged to serve as input to a

SoftMax classifier. This approach demonstrates good perfor-

mance for house-hold object classifiers. Reference [102] also

used a multi-scale CNN for semantic segmentation on indoor

RGB-D scenes. The network use three different scales to

process the input depth and RGB images then used the com-

bined upsampled results which are forwarded to a classifier

to obtain object class labels. The classifier predictions were

merged with a super pixel’s segmentation of the scene which

is performed in parallel to get the final labeling of the scene.

This method showed efficient and fast performance than the

previous methods. However, its major limitation is the failure

of the CNN to learn the geometry of the shape by focusing on

learning only the class objects.

Motivated by the performance of [100], Eitel et al. in [103]

proposed RGB-D architecture for object recognition that con-

sist of two separate CNN processing for each representation

and finally merging them with a late fusion network as can
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FIGURE 4. Object recognition Architecture for RGB-D data were two streams CNN are
utilized [100].

be seen in figure 4. They avoided using the same network for

more than one different learning task like segmentation and

classification instead they used one CNN stream for process-

ing RGB color information and the other stream for the depth.

They trained each network separately and then fused in the

results to the Fully Connected (FC) layers and the SoftMax

for object classification which leads to promising results for

object recognition task that outperformed existing methods.

In [104], Feng et al. used Ensemble of auto-encoders for 3D

shape retrieval. Each auto encoder was trained to learn a com-

pressive representation of depth views using the Stochastic

Gradient Descent algorithm with a large-scale CAD dataset.

A likelihood score is derived as a similarity measure by

viewing each auto-encoder as a probability model. They also

used Domain Adaptive layer (DAL) to receive the output

score of the auto-encoders to rank the retrieved scenes. This

method demonstrates increased performance when compared

with other similar methods.

Reference [105] proposed an approach that utilize multi-

scale CNN that is trained from raw pixels and use it to extract

dense feature vectors which encode regions of multiple sizes

centered on each pixel. They also propose a technique to

automatically obtains from a pool of segmented compo-

nents, a best set of components that thoroughly explain the

scenes. There method achieved a record accuracy on the SIFT

flow dataset, Barcelona dataset and on standard background

dataset. The major limitation of this approach is that by

stacking a depth channel onto an existing CNN architecture

leads to less exploitation of the full geometry information

encoded in the depth channel. Gupta et al. exploits stacking a

depth channel on existing CNN architecture by representing

each pixel in terms of horizontal disparity pixel height above

ground and angle between normal and gravity. They stacked

these three computations into a three-channel image. In the

pipeline, a structured forest approach was first implemented

to get the contours from the RGB-D image which is used to

generate region proposals in the depth channel of the image

using a RF regressor at the same time, the RGB channels

of the region proposal are handle by a CNN for feature

extraction then SVM classifier is used to processed both the

RGB and depth channels features. In [106], a long-Short term

memory (LTSM) fusion on top of multiple convolutional lay-

ers to fuse RGB and depth data are proposed. In this method,

many convolutional layers and a long short-term memory

layer are stacked together to obtain depth channels and pho-

tometric features. Both the long-range spatial dependencies

and short-range are encoded by the memory layer in an image

along the vertical direction. The proposed method achieved a

state-of-the-art performance on the large-scale SUN RGBD

dataset and the NYUDV2 dataset.

The concept of transfer learning and CNNs are combined

to train 4 CNN individually by Alexandre [107]. The four

individual CNN are train in sequence against training them in

parallel and then using the weights of an already trained CNN

as a beginning point to train other CNNs that will process

the remaining channels. This approach saves training time

and also further improves the recognition accuracy based on

the experiments carried out. Schwarz et al. [108] also delve

into the transfer learning idea for object classification. In this

model, they use a canonical perspective to rendered RGB-D

data to obtain depth color because of the distance from the

object center. The CNN used in this method are pre-trained

CNNs for object categorization and the features obtained

by the CNN are forwarded to SVM to decide object class

and pose. Inspired by the success of [104], Zhu et al. [109]

proposed to learn a robust domain invariant representation
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between 3D shape and depth image domain by creating a pair

of distance neural network for every domain. The networks

are connected via a loss function with a restriction on the

inter-class and intra-class margin that helps to reduce the

intra-class variance and still maximizing the inter-lass margin

between the data from the two domains i.e. depth image

and 3D shape. This method produces superior results over

existing state of the art methods based on depth image 3D

shape retrieval.

Learning RGB-D data using deep learning approach have

demonstrated effective performance. Furthermore, the extra

depth representation been provided by the RGB-D sensors

on top of the standard RGB-channels allows researchers to

treat the depth channels and the colors individually even

though others utilized only the depth information for their

systems. The major disadvantages for this kind of data is that

sometimes the data might be noisy and incomplete capture

data which makes them difficult to use in complex situations.

There is also the issue of lack of learning the full geometry

of the 3D object this motivates many researchers to exploit

the volumetric representations of the 3D shape as discussed

in section C.

3) PERFORMANCE OF DEEP LEARNING METHODS ON 3D

DATA PROJECTIONS

Representing a 3D shape by using a number of 2D projections

rendered frommany directions is also used in many 3D shape

analysis tasks. Stereographic projection can be described

as a special mapping that directly projects a sphere on to

a plane. Early works on this direction is the approach of

Zhu et al. [110] which learn the features of a 3D shape by

projecting them into 2D planes. A global deep representation

of a 3D object was obtained by using an Auto encoder for the

task of 3D object retrieval. Initially each 3D shape undergoes

a series of scaling, translation and pose normalization then

a set of 2D projections were applied on already processed

3D object and then forward to a stack of RBMs to obtain

the features for all projections. [110] also introduce the pre-

training procedure for binary units and generalize to real

valued by showing that the pixels correspond to the visible

units because their states can be observed while the feature

detectors correspond to the hidden units. they then defined

a joint configuration (v, h) for both the visible and hidden

units [110] as

E(v, h) = −
∑

iǫvisible

aivi −
∑

jǫhidden

bjhj −
∑

i,j

wi,jvihj, (7)

vi, hj represents the binary states of both the hidden units and

visible units of i and j while ai, bj denote their biases and

finally wij the weight between them. Experiments showed

that the proposed method performed better compared to

global descriptors-based approaches. This is due to the com-

bination of local descriptor with the global representation

which results in a good performance.

Leng et al. [111] also used an AE for 3D object retrieval.

In this method, an extension of the normal AE i.e. Stacked

Local Convolutional Auto-Encoder (SLCAE) was used. They

exploit multiple depths images of different views of 3D shape

as input to the AE then trained each layer of the architecture

with gradient decent method. Themethod was tested onmany

standard datasets with promising results. In [8], Shi et al.

proposed DeepPano which extract 2D panoramic views of 3D

shape using a cylindrical projector in the principal axis of

the 3D shape. To make the learned features Invariant to

rotations they train the model architecture with 2D classical

CNN and use a row-wise max pooling layer in between the

convolution layer and the fully connected layers. This method

was tested on 3D object retrieval and recognition task which

demonstrate effective performance in comparisons with pre-

vious methods. In [112], Sinha et al. convert a 3D object

into a geometry image and use CNNs to learn 3D shapes.

Rotation, scaling, data augmentation is carried out as pre-

processing step to have more training data. This method uses

authelic parameterization to create planar parameterization

on a spherical domain which helps to learn the 3D object

surfaces. This framework was tested on standard 3D shape

datasets like ModelNet 10, ModelNet 40, McGill11 and

SHREC1 which achieved a higher performance in compar-

isons to state of the art.

Motivated by the success of projections methods, in [113],

Cao et al. projects a 3D object onto a spherical domain cen-

tered on its barycenter then classify the spherical projections

using a neural network. To successfully captures the 3D fea-

tures, they used two complementary projections with the first

capturing the depth variations of the 3D object and the second

one dealing with the contour information fix in different pro-

jections from different angles. This method produces com-

parable results on 3D object classification tasks on different

standard datasets. In [114], Sfikal et al. extracted 3D objects

normalized pose and then represent them as panoramic views.

They used SYMPAN method to pose normalized the 3D

model after the panorama representation is extracted then

used it to train CNN network by utilizing the augmented view

of the extracted panoramic representation views. This method

performed well in standard large-scale dataset on classifica-

tion and retrieval task. The method in [115] is extensions of

their previous method where they used an ensemble of CNNs

for the learning taskwhich leads to impressive performance in

ModelNet10 and ModelNet40. Projections based approaches

proved to be effective for learning 3D shapes more especially

by exploiting the deep learning methods. To overcome the

loss of geometric properties of the shapes during projec-

tions, [112] used many projections representations to recover

the loss data. There is a lot of benefits of using 2D deep learn-

ing models directly on Projections data but it still requires

much fine-tuning.

B. PERFORMANCE OF DEEP LEARNING METHODS ON

MULTI-VIEW DATA

Exploiting multi-view data of 3D objects have shown that

building 3D objects descriptors directly on 3D data might

not be the best approach to solving 3D shape retrieval and
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FIGURE 5. Multi-view CNN a novel architecture that combines information from multiple views of a 3D shape into a single shape descriptor [70].

classification tasks. Despite the efficiency of the volumetric

deep learning methods, most of this approach requires huge

computational resources due to the used of convolutional

filters to obtain the features. These motivate researchers to

exploit the multi-view data representation which has the ben-

efit of utilizing the standard 2D deep learning models. Multi-

view CNNs consist of several of 2D rendered views of a

3D shape that are used to obtained the viewpoints by utiliz-

ing the normal rendering devices. Some of the key reasons

why multi-view CNN performed better than the volumetric

CNNs are: High resolution 3D data can be used because

of low memory requirement, availability of large training

dataset and the use of standard 2D deep learning models.

Leng et al. [116] were among the first researchers to exploit

2D deep learning models to learn multi-view 3D data. In this

method, high level features of 3D object were extracted on

a number of view-based depth images using deep belief net-

work. They adopted a contractive divergence method to train

the network in a layer-wise approach. This method performed

better than [90] that use composite descriptors. In [117],

Xie et al. adopted the multi-view depth image representation

and proposed Multi-View Deep Extreme Learning Machine

(MVD-ELM) that achieved rapid and qualitative projective

feature learning for 3D models. This method uses 20 multi-

view depth images that are captured uniformly at the center

of each 3D shape using a sphere. in ELM feature mapping,

an input data xǫRD, the generalized output function of a single

hidden layer feedforward neural network for ELM is given by

as in [117]

f (x) =

i=1
∑

k

βihi(x) = h(x)β, (8)

h(x) = [h1(x), . . . hk (x)] represent the output vector

of the hidden layer while β = [β, . . . βk ]
T ǫRKXM is

the output weights vector [117], while in ELM learning

T ǫRNXM is denoted as the target matrix supplied by the

training data N. The N random feature maps contains in

[h(x1), . . . , h(xN )]
T ǫRNXK are obtained in the initial stage

and the weighted sum of the training error and the norm of

output weights is minimize as the objective function [117]

w ‖Hβ − T‖22 + ‖β‖22 (9)

using the closed form solution, β can be obtained [117] as:

β =











(HTH +
1

w
I )1HTT , L ≤ k,

HT (HHT +
1

w
I )−1T , L ≥ k,

(10)

I represent the identity matrix. in the case of multi view

feature mapping, they represent the input data as N = MXD

depth images that are denoted by a matrix of (dXdXD) which

is an array of N depth images of dXd resolution [117]. Since

the MVD-ELM consist of layers of convolution and pooling

operations, for a given layer L, the random convolution for

the normalized kernels is given by [117]

Wl = [wl,k ]
kl
k=1 ⊂ RclXclXKl , l = 1, . . . ,L (11)

which include Kl convolution kernels wl,k of size clXcl and

the k − th normalized random convolution kernel is obtained

as [117]: Wl,k (i, j) = rand(0, 1), i, j = 1, . . . , cl

Wl,k (i, j) = Wl,k (i, j)/
∑

i,j

(Wl, k(i, j)) (12)

rand(0, 1) generates a random number in [0,1]. Also, the k−

th feature map for any view n at layer l can be obtained [117]

as:

Fl,k,n = (Fl−1,k,n ∗Wl,k )
⊗

ml,n, n = 1, . . . ,D (13)

The ∗ is convolution operation while
⊗

is the multiplication

of the element-wise that put in the foreground mask ml,n
that remove the background. while for multi-view pooling,
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they use the average pooling. For the l-th layer, the size

of the pooling is taking as sl that cause the pooling maps

of size dl/slXdl/sl [117]. The average pooling is then

applied to obtained the k − th pooling map for layer l and

view n as [117]

Pl,k,n(p, q) =
1

s2l

p∗sl
∑

i=(p−1)∗sl+1

p∗sl
∑

j=(p−1)∗sl+1

Fl,k,n(i, j). (14)

p, q = 1, . . . , sl where Pl,k,n is the next layer input fea-

ture map. This method was extended to fully convolutional

(FC-MVD-ELM) which was used for 3D segmentation by

training the multi-view depth images and then projected

the predicted labels obtain during training back to the 3D

object then smoothed the final result using the graph cut

optimization method. Both the two methods are tested on 3D

shape segmentation and classification tasks and the results

significantly outperformed [23] with less processing time.

Leng et al. carried out more research in an effort to exploit

deep learning models on multi-view 3D data and came-

up with the extension of classical auto-encoders in [111].

In this work, 3D object retrieval approachwas proposed based

on Stacked Local Convolutional Auto-Encoder (SLCAE).

The SLCAE was trained using greedy layer-wise strategy

and then use gradient descent to train each layer to obtain

the representative of input data which is the feature of 3D

object. The results of the experiments conducted demon-

strate that the approach significantly improved on 3D shape

retrieval compared with several state-of-the-art methods on

PSB, SHREC 09 and NTU datasets. Reference [118] pro-

posed a 3D CNN to deals with a number of 2D views of the

3D object where a Stochastic Gradient Descent (SGD) was

used to pre-train the convolutional layer and then employ a

back propagation to fine-tune the whole network and finally

used the results of the two phases for 3D shape retrieval.

This method also outperformed the state-of-the-art methods

based on the experiments carried out on public available 3D

datasets.

In [70], the novel multi-view CNN (MV-CNN) was pro-

posed by Su et al. for 3D shape retrieval and classification

tasks. In this method, there is no specific order use in view

pooling layer to process multiple views of 3D objects which

is not the case in [103]. Multi-view CNN rendered 12 and

80 virtual views for the object and used the image stacks to

serve as the input of CNNwhichwas pre-trained on ImageNet

1k dataset and fine-tune on ModelNet40 [4]. For the shape

retrieval part, the fully connected layer of the network which

is the seventh layer serves as shape descriptor. They defined a

distance between shape x with nx image descriptors and shape

y with ny image descriptors as [70]

d(x, y) =

∑

j mini
∥

∥xi − yj
∥

∥

2

2ny
+

∑

i minj
∥

∥xi − yj
∥

∥

2

2nx
(15)

they represent the distance between a 2D image xi and a 3D

shape y as (x, y) = minj
∥

∥xi − yj
∥

∥

2
then they compute the

average of all nx distances between x
′s 2D projections and y.

Experiments evaluation on shape retrieval and classification

showed that multi-view CNN outperformed all other previous

methods tested and also the shape descriptor outperformed

the state of the art 3D ShapeNet [4] with a wide margin in

the retrieval task on ModelNet40 dataset figure 5 shows the

architecture of multi view CNN. Johns et al. [119] use a

different approach to utilize the views of a 3D object using

camera trajectories. The views are arranged in pairs together

with their relative pose and then supply to a CNN. Each pair

are classified separately and the final result is obtained using

theweight contribution of each pair. TheVGG-Marchitecture

Chatfield et al. [120] was employed which consists of three

fully connected layers and five convolutional layers. It can

accept depth image, gray-scale or both as input. This method

performed better than ShapeNet [23] and [70].

The impressive performance of multi-view deep learning

architectures pushes researchers to carry out more work on

GPU based approaches to learn multi-view 3D data. Bai et al.

in [69] propose a multi-2D views real time GPU CNN search

engine. The method is called GIFT and use two inverted files

in which one is use for matching and the other for ranking the

initials results. This method was tested on many standard 3D

datasets like ModelNet, PSB, SHREC 14, McGill and many

others and produced more qualitative results than the state-

of-the-art methods. More research work to exploit multi-view

3D data was carried out. Zanuttigh and Minto in [121] used

a multi-branch CNN to classify different 3D objects. In this

work, the input consists of a rendered depth maps from dif-

ferent point of views of the 3D object and five convolutional

layers for each CNN branch to process each depth maps to

produce a class file vector. These vectors are then supply

to a linear classifier to indicate the class of the 3D object.

In [9], Wang et al. proposed the view clustering and employ

pooling layers on the dormant sets. The main idea here is to

pool views that are similar and cluster them recursively to

build a pooled feature vector and then forward this feature

vectors which serve as input to the same layer in a recurrent

training approach. This network performed effectively on

3D shape recognition task with a higher performance than

the state of the art [23], [70]. Based on the perception that

multi-view deep neural networks perform better than the ones

utilizing the full 3D information of 3D shapes, Qi et al. [5]

carry out extensive study and compare volumetric and multi-

view CNNs for object classification. In this study, sphere

rendering based on multi-resolution 3D filtering is used to

get information from multiple scales for the multi-view CNN

were proposed and using combination with training data

augmentation achieved enhancement of multi-view CNN on

ModelNet 40. The multi-view approaches proved to perform

better compared to the volumetric counterparts with less

computational requirement need. Nevertheless, this kind of

representation still has some challenges which include lack

of preserving the intrinsic geometric features of a 3D object

and the needs to have sufficient number of views.

More research work to improve on the performance of

multi-view-based data representation was carried out and
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in [14], Kanezaki et al. proposed RotationNet which utilizes

the multi-view images of an object as input and together

estimate both the pose and object category. Different from

previous methods that use known view point labels for

training, this method deals with the view point labels as

latent variables. The network use only a partial set of multi-

view images for inference. The performance of this method

is demonstrated by its higher performance on ModelNet

datasets. Against the view to shape setting normally adopted

by many methods, Feng et al. [10] propose group view CNN

(GVCNN) in order to exploit the intrinsic hierarchical corre-

lation and discrimination among views. This model consists

of a hierarchical view group shape architecture which is

organized into view level, group level and shape level that

are re-arranged using a grouping strategy. Initially, view level

descriptor was first extracted using an expanded CNN, then a

groupmodule was used to estimate the content discrimination

of each view in order to split all views into different categories

based on their discriminative level and pooling from view

descriptors was done to further generate a group level descrip-

tor and finally combined all group level descriptors into the

shape level descriptor based on their discriminative weights.

This approach achieved a robust performance on 3D shape

retrieval and classification tasks on ModelNet40 dataset.

References [122], [123] extensively discusses 3D model

retrieval methods which they classified into model based

and view based methods. At the beginning, majority of the

approaches used model-based methods and deals directly

with a 3D model data for retrieval. Examples of this

methods are (geometric moments [124], surface distribu-

tion [125], volumetric distribution [126], surface geome-

tries [127] among others. Similarly, Osadi et al. [127] utilized

the shape feature of 3D models by constructing the distribu-

tion of the shape that is sampled from the 3D model as the

digital signature of an object which was used to calculate the

similarity between different models. Most of themodel-based

methods require 3D model reconstruction which requires

high computational costs. Recently, view basedmethods have

been used in 3D model retrieval in [128]–[130] and have the

advantages of not requiring 3D model reconstruction [122].

In view-based methods, many visual features are extracted

frommultiple views of a single 3D object that are represented

by a set of 2D images captured from different views such

as HOG descriptors [131], Zernike moments [132] among

others. In [122] a Multi-modal clique graph (MCG) match-

ing method was propose that systematically generates MCG

that used cliques and contains neighborhood nodes in multi-

modal feature space together with hyper-edges that link pair-

wise cliques. In this method, the issue of set-to-set distance

measurewas addressed using an image set-based clique/edge-

wise similarity measure which is central difficulty in MCG

matching. By representing an individual 3D model with

multi-view and multi-modal information their MCG preserve

both the local and global structure of a graph. The proposed

MCGmatching method was applied to view-based 3D model

retrieval which is evaluated extensively using three popular

single-modal datasets; NTU, PSB, ETH datasets and a novel

multi-viewRGB-D object dataset (MV-RED)whichwas con-

tributed by the authors.

Reference [122] list three main steps of view-based meth-

ods which include selection of representative view through

clustering, the measurement of similarity based on distance

metrics or probabilistic models and the generation of a

ranking list based on the computed similarity measure. The

authors proposed a discriminative multi-view latent variable

model (MVLVM) for 3D object retrieval where they regarded

each individual 3D model as a square of ordered 2D images

capture from multiple views then they used an undirected

graph model with latent variables to automatically find the

context among multi-view images in both the spatial and fea-

ture domains. Each node in the graph denotes a latent repre-

sentative view and each edge represents the latent spatial con-

text between the corresponding latent representative views

which helps to get a joint distribution over similarity labels

and latent variables given the observed features obtained from

multiple views by using an undirected graph model to learn

the dependencies among the latent variables. There proposed

method was evaluated on single modal datasets (NTU and

ITI datasets) and a multi-modal dataset (MVRED-RGB and

MVRED-DEPTH) which shows the superiority of the pro-

posed method.

In an attempt to study variants of deep metric learning

losses for 3D object retrieval, [133] proposed two kinds of

representative losses which are center loss and triplet loss

to learn more discriminative features than the normal tradi-

tional classification loss for 3D shape retrieval. The authors

also propose the normal loss to the triplet center loss, this

loss learns a center for each class and minimizes the dis-

tance between samples and centers from the same class.

This method was tested on ModelNet40 dataset and outper-

formed [68]. Recently, Jiang et al. [134] proposed a multi-

loop view CNN (MLVCNN) for 3D object retrieval which

used different loop directions to extract a number of views

and introduce a hierarchical view loop shape architecture that

consist of view level, loop level and shape level in order to

carry out 3D shape representation for different scales. A CNN

is trained to extract view features in the view level, and then

the loop level features are generated using the proposed loop

normalization and LSTM for each loop of view considering

the intrinsic associations of different loops in the same loop.

Finally, all the loop level descriptors are combined into a

shape level descriptor for 3D shape representation which is

used for 3D shape retrieval. This method was evaluated on

ModelNet40 dataset and outperformed the state-of-the-art

methods in 3D shape retrieval task as can be seen in table 2.

C. PERFORMANCE OF DEEP LEARNING

METHODS ON SOLIDS

Two major representations of volumetric 3D shapes are

Octree and Voxels i.e. representation of 3D in three-

dimensional space as a regular grid. Volumetric 3D data

representation usually encodes a 3D object as a 3D tensor
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FIGURE 6. ShapeNet Architecture were the input is represented as a 30 × 30 × 30 binary
tensor [23].

of binary or real values. Voxel representation characterize

3D object by describing its distribution through the three

dimensions of the scene. A 3D convolution accepts a shape

w,h,l as input, then use a kernel k, k, d and delivers a shape

w, h,m. The depth is increase by a set of strides after the

convolution of each 2D plane. GivenC(n, d, f ) as an operator

for 3D convolution for which nxnxn is the input and d as the

size of the feature maps f× f× f. At position x, y, z the output

on m− th feature map of layer l as in [39] is:

v
x,y,z
lm = blm +

∑

q

f−1
∑

i=0

f−1
∑

j=0

f−1
∑

k=0

w
lmq
ijk v

(x+1)(y+j)(z+k)
(l−1)q (16)

blm represents the layer bias and w
lmq
ijk are the weights at

position i, j, k of the kernel at the 5 − th feature map while

q pass through the feature maps in the l − 1th layer [39].

The major limitation of voxels based method is their unnec-

essary demand of computer storage because of its abil-

ity to represents both non-occupied and occupied parts of

the scene which makes it not suitable for high resolution

3D objects [57], [63].

Octree which is also a volumetric representation of the 3D

object is more efficient and it is a varying size voxel. Octree

data representation was recently utilized in conjunction with

CNN for 3D shape analysis tasks [24], [58] and prove to be

effective for high resolution input [59]. In this section, wewill

explore the performance of deep learning methods on these

two volumetric 3D data representations.

1) PERFORMANCE OF DEEP LEARNING METHODS ON

VOXELS DATA

Wu et al. in [23] are one of the first deep learning methods

to utilize the voxels 3D data representation. In this method,

a 30 × 30 × 30 binary tensor represent the object which is

used as the input to indicate if the voxel belongs to the 3D

object or not as shown in figure 6. Also [135] adopted the

concept of a Convolutional Deep Belief Network (CDBN)

used in 2D deep learning to characterize the 3D model.

The CDBN framework also use convolution to minimize the

number of parameters because of its ability to share weights.

This property gives CDBNs the ability to learn the joint

probability distribution of voxels by representing varieties

of object categories with a few parameters. The ShapeNet

network consist of one input layer, one output layer and

three convolution layers which in total makes five layers

which were initially pre-trained in a layer wise manner and

Contrastive Divergencemethodwas used to train the first four

layers while the last layer was trained using Fast Persistent

Contrastive Divergence. A single depth map was used as the

input during testing stage which represents the 3D object and

then converted to a voxel grid representation. The network

was tested on retrieval and classification, view-based view

prediction. The major constrained in this method include

the additional dimension in the convolutional kernel which

leads to computationally unmanageablemodel that is difficult

to process high resolution input and there is the issue of

very hard learning process because the network was trained

on isolated view of fixed sized with minimum information.

Nevertheless, the network performs better despite the fact that

it is operating on low resolution voxels.

VoxNet was proposed by Maturana and Scherer in [136].

In this method, the concept of 3D convolution was employed

on 3D object recognition task on different of 3D data rep-

resentation which include RGB-D, 3D CAD models, and

Lidar point clouds. The key difference of convolution used

in VoxNet with the 2D convolution is the filter. A 3D filter

replaces the 2D filter and the network consist of two FC

layers, one pooling layer, two Convolution layers and one

input layer. A volumetric occupancy grid of 32 × 32 ×

32 voxels was used as the input data and then supply to

the network which they used Stochastic Gradient Descent

(SGD) to train with a momentum. Extensive experiments
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demonstrate that VoxNet outperformed [23] in NYUv2,Mod-

elNet datasets when the network was trained from scratch

for classification task but [23] outperformed the VoxNet on

NYUv2 if the pre-trained model of ModelNet10 is employed.

In [137], inspired by the impressive performance of [136],

Seaghat et al. improved the architecture of VoxNet to accom-

modate orientation of 3D object during the learning pro-

cess which helps improve the classification performance on

ModelNet 10 dataset.

Unsupervised learning approach was used in [138]. In this

method, 3D GAN was proposed in which probabilistic latent

space was used to tactically learn the features of 3D object

by employing the adversarial discriminator which was used

to model 3D objects then create synthetic data. Voxception-

ResNet was proposed by Brock et al. [139]. In this method,

a 2D very deep model was adopted on ModelNet10 and

ModelNet40 datasets for classification task. The authors

very deep model (VRN) that depends on the architecture

of [93] and [140] and also used the same batch normalization

of [93]. This network required data augmentation for training

and consist of 45 deep layers. This network is also similar

to VoxNet because of the presence of 3D filters with Con-

vNet. The VRN model demonstrates effective performance

on ModelNet datasets in classification task which is a state-

of-the-art result. In spite of the efficiency of thismethod, there

is a likelihood of over fitting problem if a large amount of data

augmentation is not provided which usually leads to small

dataset of a deep architecture.

The Beam search model for learning the optimal 3D CNN

architecture was proposed byXu and Todorovic in [141]. This

model performs 3D classification on ModelNet 40 dataset

and successfully indicates number of layers of 3DCNN, num-

ber of nodes, training parameters and connectivity. It consists

of one FC layer and two Conv. layers which are the starting

points of this architecture and then increase to building 3D

CNN optimal model through adding a new Conv. Filter. The

training of the network was similar to [135] where they also

adopted the Contrastive Divergence method to train Conv.

Layers and then used Fast Persistent Contrastive Divergence

to train the FC layers. After one layer was successfully

learned, its weights are fixed and parameters of the activation

are sent to the next layer. The network produced effective

results on ModelNet 40 dataset for classification task. Deep

Sliding shapes was proposed by Song and Xiao in [142] in

order to learn the features of 3D objects at different scales by

utilizing 3D CNNs for object classification and recognition

task on ModelNet dataset. In this method, depth maps of

RGB-D scenes are converted to 3D voxels by exploiting a

directional Truncated Signed Distance Function (TSDF). The

TSDF representation gave this model the advantage of learn-

ing the geometry of the 3D object which is an alternative to

using depth map directly. This model demonstrates effective

performance on NYUv2 dataset on various object classes for

object detection task.

Even though volumetric 3D models prove to be effective,

most of the existing architectures needs large amount of

computational resources because of convolution operation

and the huge number of parameters. Due to this major con-

strains, Zhi et al. [62] proposed a real time volumetric CNN

for 3D object recognition task which is termed LightNet. The

network architecture has two major capabilities which are:

the use of multi-tasking to learn a lot of features at the same

time and its ability for fast convergence with fewer param-

eters by adding the batch normalization operation between

both the activation and convolution operations. The network

was tested on ModelNet datasets and it outperformed [136]

by 24% in both ModelNet10 and ModeleNe40 datasets for

classifications tasks. Recently, Wang et al. [143] propose

NormalNet which is a voxel-based CNN for 3D shape

retrieval and classification task. In this method, normal vec-

tors of the object surfaces are used as input instead of binary

voxels. The authors propose a Reflection Convolution Con-

catenation (RCC) module for extracting clear features for 3D

vision tasks and at the same time minimizing the number

of parameters. The performance of NormalNet was signif-

icantly improved by combining two networks that accept

normal vectors and voxels as input respectively. The network

achieves a competitive performance on 3D shape retrieval and

classification task on ModelNet10 and ModelNet40 datasets.

2) PERFORMANCE OF DEEP LEARNING METHODS ON

OCTREE DATA

Octree data representation serve as a central method used in

many computer graphics applications such as shape recon-

struction, rendering, collision detection and 3D shape anal-

ysis tasks. Recently due to its GPU implementation friendly

approach, some methods start to use it for many shape analy-

sis tasks. In [144], Häne et al. proposed a hierarchical surface

prediction (HSP) which aid high resolution voxel grid predic-

tion. The interior and exterior of the object are represented by

a course resolution voxel. Tatarchenko and Dosovitskiy [57]

used octree representation to generate volumetric 3D output

in a memory efficient manner by utilizing deep convolutional

decoder architecture. This method can predict the occupancy

values of individual cells and the structure of the octree which

makes it possible for higher resolution output with minimum

amount of memory.

Reference [58] proposed OctNet which is a representa-

tion for deep learning with sparse 3D data. In this method,

the sparsely of the input data was exploited to hierarchically

partition the space by utilizing a set of unbalanced octrees

that used each leaf node to stores pooled features represen-

tation. OctNet was build based on the observation that 3D

data is usually sparse in nature like point cloud, meshes etc.

which leads to an unwanted computation when using 3D

convolutions this motivated the authors to exploit the sparsely

property of this data representation. OctNet was trained

on [23] for 3D shape classification task. OctNet showed the

advantages of octree-based decoder on depth fusion, 1283

2563 and even higher resolutions output could be achieved

by octree-based decoders.
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Motivated by the success of OctNet, Wang et al. [24]

proposed O-CNN which is an Octree-based Convolutional

Neural Network (O-CNN) for object classification, retrieval

and segmentation tasks. The O-CNN was designed using a

modest octree structure that supports all CNN operations on

the GPU. The average normal vector of a 3D shape was

used as input and the features of the finest level octants are

then computed. A pooling operation was performed to down-

sample to the parent octants at next coarser level which is then

supplied to the next CNN layer, and this operation repeated

continuously until all the layers are evaluated. Repeated con-

volution and pooling operations are performed on the octree

data structure from bottom to top and a Relu function was

used for output activation and finally batch normalization was

used to reduce internal covariance shift. 3D convolution is

applied efficiently to an octant by picking its neighboring

octants at the same depth and the convolution operator 8c

is represented in the unrolled form as in [24]

8(O) =
∑

n

∑

i

∑

j

∑

k

W n
i,j,k · T (n)(Oijk ). (17)

where Oijk represents a neighboring octant of O and and

the feature vector represented by T (.).O-CNN was tested

on SHREC16 dataset for shape retrieval task and achieved

comparable results to state of the art. Moved by the suc-

cess of O-CNN, the authors in [12] proposed Adaptive

O-CNN (AOCNN) which represents 3D shapes adaptively

with octants at different levels, and the 3D shape was mod-

els within each octant with a planar patch. In this method,

an adaptive encoder and decoder for encoding and decoding

3D shapes were proposed. The encoder is used to receive

the planar patch normal with displacement as it is input and

then execute 3D convolutions at the octants at each level only

while the decoder read the shape occupancy and the status

of the sub-division at each level to estimate the best plane

normal and displacement for each leaf octant. AOCNN was

validated on effectiveness on 3D auto-encoding, shape pre-

diction, shape classification and shape completion for noisy

and incomplete dataset with a classification accuracy better

than [17], [58] and [24]. AOCNN have two major limitations

which are: one, lack of seamless in the adjacent patches at the

adaptive octrees and secondly, the planar patch used does not

approximate curved features very well.

D. PERFORMANCE OF DEEP LEARNING METHODS ON

SURFACES

Surface mesh is one of the most significant and powerful

3D shape representation and it is widely used in computer

graphics. However, due to the irregularity and complexity of

mesh data not much deep learning work has been done using

this data representation for 3D shape analysis tasks as can

be seen in figure 1 which shows the progress of 3D data

representations along with time used for 3D shape analysis

tasks from 1999 to 2019 based on the literature’s discussed in

this review.

Reference [21] recently proposed MeshNet which directly

learns 3D shape representation from mesh data. The authors

proposed face unit and feature splitting with a general archi-

tecture with effective blocks to deal with the key challenges

of mesh data. The faces are treated as the unit and there

exists a defined connection between faces sharing common

edges which help to solve the irregularity and complexity

problem with a symmetry function and per-face processes.

Furthermore, faces features are split into structural feature

and spatial descriptors that are used for learning the initial

features and then a mesh convolution block for aggregating

neighboring features. MeshNet was able to solve both the

irregularity and complexity problem of mesh. MeshNet was

tested on ModelNet 40 dataset for 3D shape retrieval and

classification task. Experimental results and comparison with

the state-of-the-art method shows MeshNet achieved satis-

fying result on ModelNet datasets. Reference [22] proposed

MeshCNN that utilize the distinctive features of mesh data

and design a convolutional neural network that specifically

deals with triangular meshes. In this method, a well spe-

cialized convolution and pooling layers that work on the

edges of the mesh are designed by taking advantage of their

intrinsic connections. The convolution operations are applied

on edges and the four edges of their incidental triangles

and an edge collapse operation is used for pooling operation

that maintains surface topology which generates new mesh

connectivity for further convolutions. Using this approach,

a task driven process was established were the network get

rid of redundant features and then exposes and expands the

significant ones. In MeshCNN, edges of a mesh are treated

similar to pixels in an image because they are the building

block which usually all operations are performed on. Since

every edge is incident to exactly two faces (triangles) that

normally defines a natural fixed sized convolution neighbor-

hood of four edges, they exploit the consistent face normal

order and apply a symmetric convolution operation which

learns edges features that are invariant to transformations in

translations, scale and rotation. Another important feature

of MeshCNN is its pooling operations which adopted the

popular mesh simplication technique [132] to downsample

the features. But different from the original edge collapse

which directly removes edges that have a minimal geometric

distortion, themesh pooling assigns the option ofwhich edges

to collapse to the network.

E. PERFORMANCE OF DEEP LEARNING METHODS ON

HIGH-LEVEL STRUCTURES DATA

3D objects can also be represented in the form of high-level

structure for 3D shape analysis tasks. 3D shape descriptors

ease the operations of many shape analysis tasks e.g. for 3D

shape retrieval which consist of querying a 3D object against

a database of many 3D models in order to find the closest

match, it is very important to transform the shapes into feature

descriptors to keep the huge amount of 3D data models and

efficiently query and find the nearest match. This section
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covers the up to date innovations in using deep learning

methods on 3D descriptor and graphs.

1) PERFORMANCE OF DEEP LEARNING METHODS ON 3D

DATA DESCRIPTOR

Zhang et al. [146] published the first survey on 3D shape

descriptors in 2007 where a categorization of 3D shape

descriptors was done. In 2013, Kazim et al. in [147]

performed extensive reviewed on 2D and 3D descriptors.

However, most of the previous reviews cover traditional

approaches of constructing 3D shape descriptors. Recently,

Rostami et al. [148] carryout a comprehensive study on

Data-Driven 3D shape descriptors. In this study, the 3D

descriptors are divided into two main categories which are

shallow descriptors and deep shape descriptors. The shallow

descriptors are further sub-divided into optimization based

which are mostly implemented in a supervised manner [149]

and clustering based descriptors that are mostly unsupervised

and are built using Bag of Features technique (BoF) [150].

The deep shape descriptors are sub-divided into probabilistic

models [151], auto-encoding [152], or CNN [101]. The prob-

abilistic groups are again sub-divided into DBN-based and

GAN-based. Deep learning models offered the advantage of

learning hierarchical discriminative features effectively.

In [153], Liu et al. encoded low-level features in the visual

Bag ofWords (BoW) in order to learn high level features from

DBNs for retrieval and classification tasks. An experiential

evaluation shows that this approach achieved superior perfor-

mance than the normal BoW low level features. Bu et al. [154]

used a three-staged approach to learn the geometric essence

of 3D objects. In this work, middle level geometric features

are built from low-level features extracted from the 3D shapes

and then a deep learning model was then utilized to learn the

hierarchical high-level features of the 3D shapes. TheAuthors

used scale invariant heat kernel signature [84] and Averaged

Geodesic Distance (AGD) as local low-level descriptors and

then employ the Spatially Sensitive Bag of Words (SS-BoW)

to establish the connection between spatially close words

from the extracted low-level features and finally using DBN

to learn the high-level features from the SS-BoW). Experi-

ments demonstrate the effective performance of this approach

in comparisons to using low-level descriptors alone.

GPU implementation was used in the extension of [154]

by Bu et al. in [155] which adopted a GPU based implemen-

tation for symmetry detection and correspondence tasks in

which the proposed method showed improved performance.

Inspired by the success of Heat kernel Signature (HKS) in

obtaining low-level descriptors, Xie et al. [155] utilized the

HKS as a low-level descriptor at different scales and used

auto-encoder to discriminate features from the HKS for 3D

shape retrieval task. In [156], Han et al. learn the discrim-

inative features of 3D shapes from a Mesh Convolutional

Restricted Boltzmann Machines(MCRBMs) in which Local

Function Energy Distribution (LFED) was used to preserved

the structure of the local features which leads to success-

ful learning of the local and global features of 3D shapes.

The use of MCRBMs which is a deeper model showed

effective performance for shape retrieval and correspondence

task which outperformed [4] and [84]. Ren et al. [157] pro-

posed 3D A-Nets which is a 3D deep shape descriptor in

which a new definition of 2Dmulti-layer dense representation

(MDR) of 3D volumetric data was developed in order to cap-

ture geometric informative shape descriptor using adversarial

neural networks that train a combination of convolutional

neural network, adversarial discriminative and recurrent neu-

ral network. 3D shape features that stimulate clustering of

samples of the same category with correct class label are

produced by the generator network while the discriminator

network prevent the clustering by allocating them with incor-

rect adversarial class labels which helps in addressing the

challenges caused by computational cost of directly using

CNN to 3D volumetric data. The proposed method was tested

on ModelNet40 dataset which showed superior performance

on 3D shape retrieval and classification tasks over the state of

the art.

Motivated by the achievement of 3D deep shape descrip-

tors, Xie et al. [158] proposed 3D DescriptorNet which com-

bine the volumetric ConvNets in [136] and the generative

ConvNet [159] to model 3D shape patterns. In this method,

a probability density function is defined on voxilized shape

signal and the model which is a deep convolutional energy-

based model can synthesize 3D shape patterns by sampling

from the probability distribution via MCMC like Langevin

dynamics. In the training stage, analysis by synthesis [15]

is used unlike the adversarial learning on the variational

inference. The same set of parameters of a single model is

used for both the learning and sampling process which leads

to statistically rigorous framework. The model produced very

high results when tested on ModelNet10 dataset.

[160], Bu et al. proposed 3D feature learning framework

which fuse different representation data effectively using

deep learning approach by promoting the discriminability

of uni-modal feature. Firstly, CNNs and CDBNs are used

to extract both the geometric and visual information of 3D

data then two independent CDBNs are used to learn high-

level features from geometric and visual features and finally

a Restricted Boltzman Machine (RBM) was trained for min-

ing the deep correlations between different representations.

Experiments conducted for 3D shape retrieval and recog-

nition tasks shows that the proposed framework achieved

promising results. Similarly, Zhao et al. in [161] used a

feature fusion method via multi-modal graph learning for

view based 3D object retrieval. In this method, a variety of

visual features including 2D fourier descriptor, 2D Zernike

moments and 2D krawtchouk moments are extracted to

describe each view of a 3D object. Then a similarity measure

between two 3D objects with multiple views are computed

using Haudorff distance and finally using different features,

a multiple graph was constructed and the optimized weight

of each graph was learned automatically for feature fusion

task. Experiments performed on the ETH-80 datasets and

National Taiwan university 3Dmodel dataset demonstrate the
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superior performance of the proposed method.The increasing

availability of 3D models from construct and capture 3D data

from low-cost acquisition devices and other modeling tools

requires effective 3D shape descriptors in order to analyze

and retrieve them, However, there is need for enough training

data for the learning algorithm to extract 3D shape descriptors

accurately from the examples which help reduce over fitting

as in [162]. Despite some of the limitations mention above,

the use of 3D descriptors have proved to be effective in 3D

shape analysis task.

Recently, Vishwanath et al. [163], proposed two simple

yet effective early fusion approaches to combine the RGB

and point cloud representations which are term point-fusion

and voxel-fusion. In this method, a multi-modal voxel-Net

(MVX-Net) is presented which augment LIDAR points with

semantic image features and learn to fuse image and LiDar

features at early stages. In the point fusion, points from the

LiDar sensor are projected onto the image plane, preceded

by Image feature extraction from a pre-trained 2D detec-

tor and a voxelNet architecture is used to jointly processed

the concatenation of image features and the corresponding

points. While in the voxel fusion part, voxelNet is use to

create a non-empty 3D voxel which are then followed by

extracting image features for every projected voxel using a

pre-trained CNN. The features are then pooled and appended

to the VFE feature encoding for every voxel and further

used by the 3D Recognition Proposal Network (RPN) to

produce 3D bounding boxes. Experimental results on the

KITTI datasets demonstrates significant improvements over

approaches using a single representation.

2) PERFORMANCE OF DEEP LEARNING METHODS ON

GRAPHS

The ability of graph convolution to encode the structure of

graph on variety of data input using neural networks has

attracted lots of attention recently [37], [164] and it can also

be utilized in the semi supervised learning process. Previous

approaches for GraphConvolutionNeural Networks (GCNN)

are usually divided into spatial filtering and Spectral filtering

methods. The major difference between these two methods

is on the way the locally processed information is merge and

how the filtering is used. In this section, we will overview the

performance of deep learning methods on both the spatial and

spectral filtering methods.

Bruna et al. was the first to introduce the concept of

spectral convolution on graph data structured in [165]. In this

method, spectral CNN (SCNN) is proposed using spectral

Eigen decomposition of the graph Laplacian to define a

convolution operation. The authors successfully propose two

constructions, the first based on the spectrum of the graph

Laplacian and the second based on the hierarchical cluster-

ing of the domain. Experiments evaluation showed that it

is feasible to learn convolutional layers on low-dimensional

graphs with a number of parameters in respective of the

size of the input which leads to efficient deep architectures.

However, this method has some major limitations of being

computationally expensive and inconsistent results are

produced using the learned spectral filters coefficients

on different domain with different basis as in [166].

Kovnatsky et al. in [167] overcome this limitation using

orthogonal compatible basis on many domains by utilizing

a joint diagonalization. But, this needs prior information

of correspondence across domains. Some recent approaches

used the concept of approximation to construct local spectral

filters so that all graph information will be included in the

processing [168], [169]. In these methods, the filters are rep-

resented through a polynomial expansion to avoid operating

on the spectral domain directly. In [168], Defferred et al used

Chebysher polynomials on graphs to performed local spectral

filtering to estimate graph spectral filters. A more simplified

polynomial approximation process introduced in [168] was

proposed in [169] by Kipf and Welling. In this method local

spectral filters are obtained by graph spectral filters first order

linear approximation which is utilized in a two-layer graphi-

cal convolution neural network (GCNN). The local spectral

filters are used in both the two layers and the information

from the closest neighborhood of each vertex is then clustered

together.

Inspired by the performance of the local spectral fil-

tering models, Wang et al. [170] used the concept of

PointNet++ [18] in GCNNs to deals with ordered point

clouds. In this method, the framework of PointNet++ was

combined with local spectral filtering in order to address

two major limitations of these models separately. Spectral

filtering was adopted as a learning approach to include the

structural details in the neighborhood of all points against

processing each point separately in the point clouds [13].

Furthermore, clustering strategy and recursive pooling are

used against the graph max pooling operation which avoid

the winner takes all approach. This method can be trained in

an end to end form which has the advantages of dynamically

building the graph and ease of computation of the pooling

hierarchy and the graph Laplacian different from [165], [168]

and [169]. This method was tested on numerous datasets and

achieved a state-of-the-art performance.

The graph spatial filtering idea was first used in [171].

In this method, GNNs are introduced in an effort to used deep

learning models on graphs. The GNNs consist of a number of

layers in which the graph low-pass and high pass operators

serve as the linear combination of each layer. This shows that

the graph features learning is based on every vertex neigh-

borhood. Highly sophisticated Architectures are obtained

by fluctuating nonlinear function of the vertex [172]–[174].

Similar to CNNs, graph structured data can undergo pool-

ing operation using graph coarsening. In spatial filtering,

due to the spatial structure of the input graph, the graph

topology is used to aggregate the neighborhood nodes with

the feature vectors directly. The approaches used in [171]

and [175] typically embed all vertex of the graph using the

recursive connections in the RNN. A diffusion function was

adopted for the transition function and the node representa-

tion are continuously propagated up to the time it is fixed
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and stable. The nodes representation obtained are then used as

features for regression and classification problems. However,

the major limitation here is the continues propagation of

the node features which leads to a computational cost but

addressed by [172]. Li et al. proposed a different version of

the previous model that utilized the gated recurrent units to

execute the update states in order to learn the optimal graph

representation. The work of Bruna et al. [165] obtained the

local spatial formulation of GNN by forcing the spatial local

receptive field on the GNN tominimize the number of learned

parameters by using similarity measure [176], [177] to group

similar features. In Bruna et al. [165], the same idea of local

receptive field was also used in the graph to calculate a multi-

scale clustering to be supplied to the pooling layer which

the model successfully decreases the number of processed

parameters by forcing the locality on the already processed

features.

Linked Dynamic Graph CNN (LDGCNN) for classify-

ing and segmenting point clouds directly was proposed by

Zhang et al. [178]. The LDGCNN consist of two parts; con-

volutional layers that serve as the extractors and the fully con-

nected layers which are the classifiers. LDGCNN achieved a

state-of-the-art performance on ModelNet40 and ShapeNet

datasets. A comprehensive study about the spectral methods

can be found in [179]. In this study, the authors showed

that mathematically, both the spatial and spectral methods

are equivalent more especially with the capabilities of their

representations. However, the key distinctions are on the

aggregation of the learned features and how the convolution

operations are performed which depends on the task.

Recently, in [180], Feng et al. proposed a Hypergraph

Neural Network (HGNN) for data representation learning.

In this method, a hypergraph structure was used to encode

high order data correlation in a hypergraph structure which is

different from the normal graph that uses mandatory 2 for the

degree for all edges. The framework uses degree free hyper-

graph which gives it’s the ability to encode high order data

correlation using a simple hyper-edge convolution operation.

HGNN was tested on four standard 3D dataset which shows

effective performance on learning data representation using

high-order and more complex correlations.

3D meshes can also benefit from models design for graphs

to be used onmesh structured data. In this setting, the nodes of

the graph correlate to the vertices of the mesh while the edges

are the connectivity between these vertices. Using this con-

cept, Masci et al. [181] proposed Geodesic CNN which gen-

eralizes classical CNNs to triangular meshes. In this method,

local patches are constructed in a local polar coordinate and

a mapping is established between local polar coordinates

and the values of the functions around each vertex through

the patch operator that helps to define the patches in which

the geodesic convolution can be used. Using the idea of

multiplication by a template in which the geodesic convolu-

tion is built on while here arbitrary rotation is required for

the convolution filters due to angular coordinate ambiguity.

Despite the advantages of this method which results in using

CNN framework to triangular meshes, it has a number of

limitations that include computational cost due to rotations

on the convolution filters. Boscaini et al. [182] try to over-

come the limitations of [181] by proposing Anisotropic CNN

(ACNN) that is not limited to triangle meshes alone and

can easily be used on graphs. ACNN framework adopted a

simpler construction of local patches which does not depend

on the injectivity of the radius of the mesh. The idea of

spectral filtering was used in which a weighting function was

employ to in cooperate the spatial information to get a local

function which is defined on the meshes. The Eigen values of

the Anisotropic Laplacian Beltrami Operator (LBO) received

the learnt spectral filters while anisotropic heat kernels serve

as spatial weighting functions for the convolution filters. This

approach shows remarkable performance for local correspon-

dence tasks.

Monti et al. [38] proposed MoNet which void the used of

fixed kernel construction. In this method, local systems of

coordinates of pseudo-coordinates are defined around each

vertex with weight functions. Fey et al. [183] proposed Spline

CNN which discards the requiring of defining local patches

on graph or meshes explicitly. Spline CNN can be utilized on

meshes and graphs irrespective of dimensionality. The 1-hop

neighborhood ring features of the graph as the patch is used in

place of using the charting-based method to define the local

patches. The method proved to be computationally efficient

and state of the art results are produced on correspondence

tasks which is attributed to the used of local support of the

B-spline basis which helps to make the kernel size and the

computational time independent.

F. PERFORMANCE OF DEEP LEARNING METHODS ON

MIXED DATA REPRESENTATIONS

In order to take the full advantages of more than

one 3D data representations, some efforts to combined

more than one 3D data representation were exploited by

Wang et al. [184] which uses a pair of multi views and 2D

sketch to represent each 3D object. In this method, a Siamese

CNNs is used which consist of two similar sub-convolutional

networks in which one treats the 2D sketches and the other

the multi views input. Both the networks are composed of

three convolution layers followed by max pooling layer and

a fully connected layer at the top. The stochastic Gradient

Descent method was used to train the networks. The method

was tested on three benchmark datasets including SHREC13,

which achieved competitive results when compare to other

methods in the literature on 3D shape retrieval task.Motivated

by the performance of [184], the authors in [185] combine

the learning pair of AEs, ConvNets and Extreme Learning

Machine (ELM) to proposed Convolutional Auto -Encoder

Extreme Learning Machine (CAE-ELM) 3D descriptor. they

use the extreme learning machine as an Auto-Encoder to

represent the input into three main representations which are:

compressed representations, sparse representation and equal

dimension representation. The ELM-AE hidden nodes biases

and the random weights extend the input data to a different
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FIGURE 7. ML-ELM. (a) Output weights β1 with respect to input data x (b) Output weights βi + 1 with respect to ith hidden layer (c) Final weights
computed [186].

dimension space using the equation as in [186]:

h = g(ax + b) (18)

aT a = I , bT b = 1 (19)

where a = [a1, . . . , aL] are the orthogonal random weight

while b = [b1, . . . , bl] represent the random bias between

the input nodes and hidden nodes [186]. In the case of com-

pressed and and sparse ELM-AE representations, their output

weights β are computed as in [186]:

β = (
I

C
+ HTH )−1HTX (20)

where H = [h1, . . . , hN ] serve as the outputs of the hidden

layer of ELM-AE while X = [x1, . . . , xN ] represent both the

input data and output data of ELM-AE [186]. And the equal

dimension ELM-AE representations, their weights output β

are computed as in [186]:

β = H−1X (21)

β = Tβ = I (22)

The major advantages of the ELM are its ability to learns

high level discriminative features of input data in unsuper-

vised learning way which prove to be effective than many

deep learning models [186] and efficient with large scale 3D

datasets. The CAE-ELM accepts two different data represen-

tations which consist of Signed Distance Field (SDF) and

voxels data while global and local features of the 3D models

are obtained by the SDF. The CAE-ELM approach is a mixed

method that utilized the 3D descriptor with the structured

of the 3D objects and achieved a superior performance on

classification task on ModelNet datasets. Figure 7. below

show the Adding layers in ML-ELM.

The mixed methods continue to attract more interest and

in [187], Ben-Shabat et al. proposed 3D modified Fisher

vectors (3DMFV). The 3DMFV is a 3D point cloud rep-

resentation that utilized the mixed data representations of

continuous generalization of fisher vectors with discrete grid

structure to represent the 3D data. In this method, the input

point cloud is converted to 3D modified fisher vector by

a module then another module which is the deep learning

module is represented in the CNN. The network consists of

fully connected layers on top, max-pooling layers, and an

inception module [188]. The method achieved competitive

performance when to the state of the art. Reference [189] also

combine voxels and 2D views for object classification task

by fushioning both representations. In this method, AlexNet

was used for processing the 2D views while the 3D voxels are

treated using two 3D CNNs. The advantages of this approach

are that it does not require much computational requirements

and there is no need for data augmentation.

V. CONCLUSION, DISCUSSION AND TRENDS

FOR FUTURE RESEARCH

In this paper, we surveyed the performance of the deep

learning methods based on the taxonomy proposed in fig-

ure 3 which is discussed here.
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In figure 3, the 3D data representations are categorized

based on the representations of the 3D object. We divided

the 3D object representations into four major categories (Raw

data, Surfaces, Solids, High level structures andMulti-views)

accordingly.

Understanding the proper categorization of each deep

learning method reviewed in the literature is a bit difficult

for some methods due to the fact some approaches adopted

the mixed data representations [184]. In assigning 3D data

representations to most categories, we consider the mode of

acquisition of the 3D data and the data structure of each

representation.

Also, in the case of graphs, 3D meshes can also benefits

from models design for graphs to be used on mesh struc-

tured data. But models design for meshes alone cannot be

used for graphs. For example, Boscaini et al. [182] proposed

Anisotropic CNN (ACNN) that can be used in both graph and

meshes while in [21], Feng et al. proposed MeshNet which

learns 3D shape representation from mesh data that can only

be used on mesh data alone. We listed the method of [182]

under graphs-based categorization not meshes because of the

used of local patches construction which does not depends on

the injectivity radius of themesh. Some of the examples stated

above shows that there is not rigid border among different 3D

data representations proposed taxonomy.

In table 1, we summarize the reviewed 3D data represen-

tations based on divergent standard. The following list below

analyzes each column of the table.

1) MODE OF ACQUISITION

This column describes how the 3D data is obtained. for

example, RGB-D data are obtain from mostly kinect style

sensors which are categorized as raw data

2) PROPERTY/KEY FEATURES

This column describes the key characteristics of each 3D data

representations discussed in the literature

3) ADVANTAGES

This column describes the key benefits of each 3D data

representations discussed in the literature

4) LIMITATIONS

This column describes the restriction or constraint of each 3D

data representation.

Previously, deep learning methods have been used exten-

sively in 1D and 2D data. However, utilizing them in 3D

field is challenging due to the fact that most of the deep

learning architectures previously designed used 1D or 2D as

input data. To deal with this limitation, several deep learning

models for 3D data have been proposed. Some researchers

exploit the local or global descriptors for 3D data to extract

low-level features but because the low-level descriptors are

not strong enough to describe the high-level semantics of 3D

shape other works used them together with deep learning

models to obtained high-level descriptors. However, due to

the complex nature of 3D data, this approach has insufficient

discriminative power due to missing information from the 3D

representations because of the shallow nature of the represen-

tations.

The availability of RGB-D datasets from RGB-D sensors

e.g. Microsoft Kinect has motivated many researchers to

exploit this data representation due to the presence of color

and depth representation provided by the sensors. However,

sometimes the data might be noisy and incomplete capture

data which makes them difficult to use in complex situations.

There is also the problem of not learning the full geometry

of the 3D object which motivated some researches to exploit

the full volumetric representations of the 3D shape. 3D vol-

umetric are powerful and rich 3D shape representations that

attracted many researches works but their major limitations

is the huge demand for computation time and memory which

makes them not suitable for high resolution data. Other works

exploit the multi view 2D images which have the benefits

of learning many feature sets to minimize noise, occlusion

and incompleteness issues. However, selecting the number

of views is still an open question with many views causing

computational overhead.

In order to ease the comparisons between different meth-

ods, some of the works discussed in the literature address-

ing 3D shape classification and retrieval that used Model-

Net40 datasets are presented in tables 2 respectively. The

table give a summary of state-of-the-art works for 3D retrieval

and classification tasks as well as the data representation

used, the deep learning models adopted, the dataset and some

other key experimental details.

For 3D shape classification, multi views performed very

well as can be seen in table 2, Asako et al. [14] reported 97.3%

classification accuracy on ModelNet40 datasets exceeding

other 3D data representations by a relatively great margin.

Sfikal et al. [114] using 3D data projections achieved mean

Average Precision (mAP) of 93.2% exceeding by 2.1% the

previous performance of 91.1% by Bai et al. [69] on the same

dataset. Also [114] achieved 95.5% classification accuracy on

ModelNet40 respectively. Recently, Feng et al. [180] using

graph 3D data achieved 96.6% classification accuracy on

ModelNet40 dataset surpassing [178] by 3.7% which also

adopt the same graph 3D data respectively. Point clouds 3D

data representations also demonstrate high performance with

mostmethods reporting classification accuracy above 90%on

both ModelNet40 datasets. Towards using the mixed 3D data

representations, [184] reported 91.4% classification accuracy

on ModelNet40 outperforming other methods that used sin-

gle 3D data representation (Chen et al. [4], Shi et al. [8])

with more than 15% difference on the same ModelNet

datasets.

In general, regarding the findings of this survey, the 3D

data representation adopted plays a crucial role in determin-

ing the performance of a particular method and it can be

concluded that deep learning together with a suitable 3D data

representation presents effective approach for improving the

performance of 3D shape analysis tasks.

57588 VOLUME 8, 2020



A. S. Gezawa et al.: Review on Deep Learning Approaches for 3D Data Representations in Retrieval and Classifications

All the 3D data representations discussed in this review are

very active areas of research. Even though we have highlight

where each 3D data has advantages over the other in conclu-

sion no direct winner among the 3D data representations.

In spite of the fact that 3D deep learning is not as matured

as 2D deep learning, the works reviewed showed a rapid

developing community of researchers that are highly effective

in solving 3D computer vision tasks. The papers reviewed

present state of the art results using almost all the 3D data

representations which clearly showed no winner takes all

approach.

We present a summary table which addressed the key ben-

efits and limitations of each 3D data. Furthermore, we looked

at the major 3D benchmark datasets by discussing the origin

and content of each dataset.

Recently, Wang et al. [24] performed 3D shape analysis

tasks using octrees where they perform CNN computations

in the octree data structure. Utilizing similar lattices hierar-

chical structures like the tetrahedral lattices or permutohedral

lattices could be a great future research.

There have beenmany techniques in the literature that used

3D projections for 3D shape analysis tasks. Majority of these

methods used traditional images, geometry images together

with deep learning could be of great interest.

Another future direction is to continue to explore themixed

3D data representations for feature extraction like the low-

level and mid-level features and then used AEs for 3D shape

retrieval.
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