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Summary
Summarizing the effect of many covariates through a few linear combinations is an effective way
of reducing covariate dimension and is the backbone of (sufficient) dimension reduction. Because
the replacement of high-dimensional covariates by low-dimensional linear combinations is
performed with a minimum assumption on the specific regression form, it enjoys attractive
advantages as well as encounters unique challenges in comparison with the variable selection
approach. We review the current literature of dimension reduction with an emphasis on the two
most popular models, where the dimension reduction affects the conditional distribution and the
conditional mean, respectively. We discuss various estimation and inference procedures in
different levels of detail, with the intention of focusing on their underneath idea instead of
technicalities. We also discuss some unsolved problems in this area for potential future research.
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1 Description of the Dimension Reduction Problem
Accompanying the advancement of sciences and technologies, scientific data has the
tendency of growing in both size and complexity. One characteristic of such complexity is
the sheer amount of available covariates, which makes it difficult to detect the dependence
between a response variable and the collection of the covariates.

To reduce the problem of many covariates to one with a few covariates, mainly two different
approaches exist in the statistical literature. One is variable selection, where the researchers
believe that among all the available covariates, only a few are truly related to the response,
all others are redundant and have no real explanatory effect. Literature in variable selection
has experienced an explosion recently and we do not further elaborate in this article. The
second approach to reduce the number of covariates is the so called (sufficient) dimension
reduction, which is the focus of this review here. In contrast to the variable selection
approach, dimension reduction approach assumes that the response variable relates to only a
few linear combinations of the many covariates. Thus, it could happen that all the covariates
have explanatory effect, but the effect is only represented in a few linear combinations. It is
the goal of dimension reduction to identify these few linear combinations.

To set notations, we use Y ∈ ℝ to represent the response variable, and x = (X1, …, Xp)T ∈
ℝp to represent the covariates. A main class of dimension reduction problems concern the
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distribution of Y conditional on x, written as pr(Y ≤ y | x). If there exists a p × d matrix β
such that

(1)

that is, conditional on x, the distribution of Y is the same as that conditional on βTx, then, as
far as the relation between Y and x is concerned, the p-dimensional covariates x can be
replaced by the d-dimensional linear combinations βTx. The dimension reduction model (1)
is closely related to the effective dimension reduction model in Li (1991). It implies that Y is
statistically independent of x when βTx is given (Cook, 1998), and the replacement of x by
βTx retains all the dependence information of Y on x. In fact, Zeng & Zhu (2010) formally
proved the equivalence of (1), the effective dimension reduction model of Li (1991) and the
independence model of Cook (1998). If we can find a so called loading matrix β satisfying
(1), we then convert a problem with a p-dimensional covariate to one with a d-dimensional
covariate. Typically, d is much smaller than p, hence we achieve the goal of dimension
reduction. It is easy to recognize that β is not identifiable, hence the goal of dimension
reduction is to identify the central subspace (Cook 1994, 1998), defined as the column space
of β which satisfies (1) with the smallest number of columns d. Central subspace is typically
denoted by Y|x in the dimension reduction literature.

While the central subspace problem concerns the conditional distribution of Y on x hence
provides a complete picture of their relation, sometimes one might be only interested in
certain aspects of the dependence of Y on x. For example, one might be only concerned
about the mean of Y conditional on x, expressed by E (Y | x). In such case, usually a weaker
assumption

(2)

is made, where β is still a p × d matrix with d typically much smaller than p. This is referred
to as a central mean subspace problem. In comparison to the central subspace assumption,
the central mean subspace assumption only concerns the conditional mean function of the
response, and it says that the dependence of the conditional mean of Y on x is completely
described by the dependence of the conditional mean of Y on the d linear combinations βTx.
Thus, to study the relationship between the mean of Y and x, it suffices to study the
relationship between the mean of Y and βTx, which is a multivariate mean regression
problem with d, instead of p, covariates. Thus, as long as we find a loading matrix β, we
then reduce the p-covariate mean regression problem to a d-covariate mean regression
problem. Similar to β in model (1), β in model (2) is also not identifiable. Thus, our interest
is in estimating the central mean subspace (Cook & Li, 2002), which is defined as the
column space of β satisfying (2) with the smallest number of columns d. Central mean
subspace is typically denoted by E(Y|x).

Yin & Cook (2002) generalized the idea of the central mean subspace and defined the
central k-th moment subspace, which is the column space of a p × d matrix β with the
smallest number of columns d satisfying

(3)

Central k-th moment subspace is typically written as . To estimate the conditional
variance when x is high dimensional, Zhu & Zhu (2009a) introduced the notion of central
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variance subspace, defined as the column space of a p × d matrix β with the smallest number
of columns d satisfying

(4)

Central variance subspace is usually denoted as var(Y|x). If we are concerned with some
other characteristic of the dependence of Y on x, we can develop the corresponding
dimension reduction subspace as well. To deliver the most essential messages, in the
following, we focus our discussion on the central subspace Y|x and central mean subspace

E(Y|x) mainly.

2 The Current Approaches in Literature
The description of the dimension reduction problems in Section 1 indicates that finding the
column space of β with the smallest dimension d is the target of the dimension reduction
literature. In other words, dimension reduction is considered as a problem of estimating a
space, instead of the more classic statistical problem of estimating parameters. Except for
some degenerated cases, the smallest subspace usually exists and is uniquely defined (Cook,
2004). Another useful observation is that if we set z = V−1(x − u) for any symmetric
invertible matrix V and any p-dimensional vector u, then pr (Y | βTx) = pr {Y | (Vβ)Tz},
E(Yj | βTx) = E{Yj | (Vβ)Tz} and var(Y | βTx) = var{Y | (Vβ)Tz}. Thus it follows

immediately that Y|x = V−1 Y|z, E(Y|x) = V−1 E(Y|z),  and var(Y|x) =
V−1 var(Y|z). This is the celebrated invariance property coined by Cook (1998). This
property ensures that centring and normalizing the covariates x does not change the nature
of the dimension reduction problem. Therefore for simplicity, we assume without loss of
generality that the covariates x have mean zero and the identity variance–covariance matrix
Ip in our subsequent exposition.

Generally speaking, there are mainly three classes of methods available in the literature for
estimating the column space of β: the inverse regression based methods, the non-parametric
methods and the semiparametric methods, respectively. We review these three classes of

methods for estimating Y|x and E(Y|x) in detail. The methods for estimating  and

var(Y|x) are similar hence are omitted.

2.1 Inverse Regression Based Methods
Inverse regression methods form the oldest class of dimension reduction methods and are
still under active development currently, see Adragni & Cook (2009) for a comprehensive
and detailed review on this class of methods. The origin of inverse regression is an
ingenious idea of reversing the relation between the response variable and the covariates (Li,
1991; Li & Duan, 1991). In this class, instead of considering distributions or expectations of
functions of Y conditional on x, which suffers the well-known curse of dimensionality when
x is high dimensional, the methods consider expectations of functions of x conditional on Y,
which is suddenly a low dimensional problem because Y is univariate. The inverse
regression based methods often rely on some additional assumptions on the covariates to
link the low dimensional problem and the original high dimensional problem. These
additional assumptions include the linearity condition:

(5)

which is indispensable for almost all inverse regression based methods. For some methods
in this class, the constant variance condition is also needed, which requires
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(6)

In the above displays (5) and (6), P = β(βTβ)−1 βT, Q = Ip − P, and β is a basis matrix of the
corresponding dimension reduction subspaces.

For the inverse regression based methods to work, assumptions (5) and (6) only need to hold
at the true value of β. But β is unknown. Hence to facilitate the practical verification of these
conditions, they are often strengthened to hold for all possible β. If the linearity condition
holds for all possible β, then (5) implies that x has an elliptically contoured distribution
(Eaton, 1986). Hall & Li (1993) showed that the linearity condition (5) always offers a good
approximation to the reality when p diverges to infinity while d remains fixed. If both
conditions (5) and (6) are assumed to hold for all possible β, it implies that x has a
multivariate normal distribution. If the covariates x do not satisfy these two conditions,
useful treatment includes transformation (Box & Cox, 1964) and reweighting (Cook &
Nachtsheim, 1994). Note that the presence of any categorical variable will violate the
elliptical or normal distributional assumption and void the utility of transformation and
reweighting techniques, hence the strengthened version of the linearity condition is not
suitable in this case. Because these conditions are not always satisfied, and are not easy to
check in practice, Li & Dong (2009) and Dong & Li (2010) relaxed the linearity condition to
requiring E(x | βTx) to be a polynomial function of βTx, while retaining the constant variance
condition (6).

For estimating Y|x, the most representative method in the inverse regression class is the
sliced inverse regression (SIR, Li, 1991). It uses the eigenvectors associated with the d non-
zero eigenvalues of the matrix ΛSIR ≝ cov {E(x | Y)} to recover Y|x. In order for SIR to
work, the linearity condition (5) is critical, as will be illustrated more clearly in Section 2.3.
Inspired by SIR, Zhu & Fang (1996) proposed kernel inverse regression and Fung et al.
(2002) proposed canonical correlation (CANCOR) analysis. Observing that SIR fails to
identify some symmetric patterns, Cook & Weisberg (1991) developed sliced average
variance estimation (SAVE) using the eigenvectors associated with the d non-zero
eigenvalues of the matrix ΛSAVE ≝ E {Ip − cov(x | Y)}2. Cook & Lee (1999) proved that
SAVE is more comprehensive than SIR, yet SIR is more efficient than SAVE. To combine
the advantages of both SIR and SAVE, Zhu et al. (2007) suggested using a hybrid of SIR
and SAVE through a convex combination αΛSIR + (1 − α)ΛSAVE for some 0 ≤ α ≤ 1, and Li
& Wang (2007) proposed direction regression (DR) with the kernel matrix defined by ΛDR
≝ E[{2Ip − A(Y, Ỹ)}2], A(Y, Ỹ) = E{(x − x̃)(x − x̃)T | Y, Ỹ}, and (x̃, Ỹ) is an independent
copy of (x, Y). One can use either the slicing estimation or the kernel regression method to
estimate the kernel matrices of SIR, SAVE, and DR. Yet how to select an optimal number of
slices or how to decide an optimal bandwidth remains unknown in the literature. To avoid
selecting the tuning parameters such as the number of slices in slicing estimation and the
bandwidth in kernel regression, Zhu et al. (2010a) introduced the idea of the discretization–
expectation method which improves the estimation accuracy of the slicing estimation, and
Zhu et al. (2010d) proposed a family of cumulative slicing estimation in parallel to the
development of SIR, SAVE, and DR. Li et al. (2005) proposed contour regression to
identify the central subspace Y|x. These methods extend the inverse regression idea and are
promising in recovering the central subspace.

The inverse regression methods are also used in a similar way to identify the central mean
subspace E(Y|x). Li & Duan (1991) proved that the column space of the ordinary least
squares (OLS) is a subspace of E(Y|x) if the covariates x satisfy the linearity condition (5),
which can be viewed as the first attempt in this aspect. Li (1992) and Cook & Li (2002) later
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proposed the principal Hessian directions (PHD) and the iterative Hessian transformations
methods, which are able to recover E(Y|x) if both (5) and (6) are satisfied.

Overall, it is fair to say that inverse regression methods are elegant, mysterious at first
glance and relatively simple to implement, but are restricted by the moment conditions such
as (5), (6) or their variations. It is also worth mentioning that through assuming the
conditional normality of x on Y, Cook & Forzani (2008) proposed a likelihood based
method. Because a fully parametric model is assumed on x given Y, the joint distribution of
(x, Y) can now be fully specified as long as the marginal distribution of Y is obtained. Thus,
the inherent difficulty of the dimension reduction problem is assumed away.

The inverse regression based methods can be readily adapted to accommodate regressions
with multivariate response. In general the identification of the joint central subspace has
been developed along three main streams. The first is to generalize the slicing methodology
of Li (1991) through dividing the multivariate response data into several hypercubes. See,
for instance, Aragon (1997), Hsing (1999), and Setodji & Cook (2004). The second is to
recover the joint central subspace from marginal central subspaces. Some important work in
this class includes Cook & Setodji (2003), Saracco (2005), and Yin & Bura (2006). The
third approach utilizes one-dimensional projections of response variables. For example, Li et
al. (2003) chose to project the multivariate response onto a few “optimal” projections, while
Li et al. (2008) and Zhu et al. (2010e) considered to replace the multivariate responses with
their random projections to preserve the integrity of the entire joint central subspace.

2.2 Non-Parametric Methods
The idea of non-parametric estimation for dimension reduction is relatively new.
Conceptually, this class of estimators estimates the column space of β through minimizing a
criterion that describes the fit of the dimension reduction models (1) and (2) to the observed
data. Because the criterion inevitably involves unknown distributions or regression
functions, non-parametric estimation is always involved. To facilitate our subsequent
illustration in this subsection, we further require β to be an orthogonal matrix, that is, βTβ =
Id. For notational simplicity, even with the additional orthonormal requirement, we still
retain the same notation β.

The most original non-parametric method is the minimum average variance estimation
method (MAVE, Xia et al. 2002) for recovering the central mean subspace E(Y|x). The
MAVE method is based on a very simple localizing idea used frequently in semiparametric/
non-parametric estimation. Specifically, one can recast the dimension reduction model (2)
into an equivalent but more familiar multiple-index model

where m is an unspecified regression function, and the unobserved error term ε satisfies E(ε |
x) = 0. From a Taylor expansion, m(βTxi) ≈ m(βTx0) + m′(βTx0)(βTxi − βTx0) for xi close to
x0, where m′ ≝ ∂m(βTx)/∂(xTβ) denotes the first derivative of m. With the m function being
an unknown smooth function, we localize the usual ordinary least square criterion to obtain

, where wi = Kh(βTxi − βTx0) and Kh(·) = K(·/h)/hd

is a d-dimensional kernel function scaled by the bandwidth h. Minimizing this criterion
subject to the constraint βTβ = Id then yields an estimate of a0, b0, β. Considering that a
common β is shared by different x0 values, a natural compromise is to set x0 to be the
observed predictor values x1, …, xn, and obtain the corresponding aj, bj and β jointly. This
leads to minimizing
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with respect to aj’s, bj’s, and β, where wij = Kh(βTxi − βTxj). The minimizer β̂ obtained from
the above minimization can be used as an estimated basis matrix of E(Y|x). Differing from
the aforementioned inverse regression based methods, the MAVE method guarantees to
recover E(Y|x) if d is correctly specified. This property is named exhaustiveness, first
introduced by Li et al. (2005). We point out a technique detail that in performing the non-
parametric estimation to recover the unknown link function, MAVE has used local linear
smoothing, while in the literature, there has been related work in single-index and multiple-
index model framework, where kernel method is used (Ichimura, 1993). The local linear
choice reduces boundary bias which leads to computational advantages.

To estimate the central subspace Y|x, a useful observation is that E {Kb(Y − y) | x}
converges to the density of Y conditional on x as the bandwidth b shrinks to zero. Since the
central subspace model (1) implies that the conditional density of Y given x is identical to
the conditional density of Y given βTx, Xia (2007) adapted the idea of MAVE by regarding
Kb(Y − y) as a response variable and proposed the density based MAVE (dMAVE)
procedure targeting at recovering Y|x. Specifically, for any fixed y, the MAVE procedure
can be adapted to minimizing

with respect to aj, bj, and β, where β is an orthonormal matrix and wij = Kh(βTxi − βTxj). The
above minimization is carried out for an arbitrary y, and selecting y to be the observed
response values yields minimizing

the most basic form of dMAVE. More elaborative forms of dMAVE are described in Xia
(2007) and some variations such as sliced regression (SR) are proposed in Wang & Xia
(2008). Both dMAVE and SR methods inherit the merit of MAVE in the sense that they can
recover the entire Y|x exhaustively if d is correctly specified. Built on similar ideas of
MAVE, Hernández & Velilla (2005) proposed to minimize a criterion function which
involves kernel density estimation, yet their approach can only be applied to classification
problems. Yin & Cook (2005) and Yin et al. (2008) proposed a method to recover the
dimension reduction space via minimizing another criterion based on Kullback–Leibler
distance.

None of the non-parametric methods requires the linearity condition (5) or the constant
variance condition (6). Because of the implicit usage of smoothing, however, a common
assumption of these non-parametric methods is that all the covariates are continuous.
Consequently, as soon as one of the covariates is categorical, the description described
above can break down. This issue is likely fixable through more careful handling of the
smoothing procedure, although it will further increase the computational complexity of the
methods. Overall, comparing with the inverse regression methods, non-parametric methods
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are conceptually more intuitive while computationally more complex. A review of both the
inverse regression based methods and the non-parametric methods can be found in Yin
(2010).

2.3 Semiparametric Methods
The semiparametric methods (Ma & Zhu, 2012a) use a geometric tool in Bickel et al. (1993)
and Tsiatis (2006) to derive the complete family of influence functions, and subsequently
obtain the complete class of estimators. This treatment enables to eliminate the moment
conditions (5) and (6) required for the inverse regression methods and the continuity
condition required for the non-parametric methods, hence is more flexible. The treatment
also further reveals the underlying rationale behind various inverse regression methods and
their interrelation, which in turn helps understanding these methods. The concept of
influence function was originally introduced by Hampel (1968) in his PhD thesis as a tool to
study robustness of an estimator, and has been used by Prendergast (2005, 2007) in the
dimension reduction framework to analyse the statistical properties of various inverse
regression methods. However, the semiparametric approach of Ma & Zhu (2012a) uses
influence function in a completely different way. Instead of deriving the influence function
of an existing method, Ma & Zhu (2012a) constructs a class of influence functions directly,
then forms the estimators and studies their properties based on the influence functions.

The basic idea of semiparametric methods is very simple. It involves writing down the
likelihood of one observation, recognizing that the essential problem of dimension reduction
is equivalent to that of parameter estimation in the presence of nuisance components, and
taking advantage of the influence function structure to avoid estimating all the nuisance
components.

For example, to estimate the central subspace Y|x in model (1), the likelihood of one
observation is η1(x)η2(Y, βTx), where η1, η2 are the marginal and conditional density
functions and are viewed as nuisance, and the interest is solely on β. Thus, the geometric
approach readily yields the unnormalized influence function class as

Some more explicit members in this class are for example

for any gi, αi, or simply

(7)

for any g, α. The double centring through subtracting E(g | βTx) from g and subtracting E(α |
βTx) from α is beneficial because it provides a double robustness property. This means that
the mis-specification of either E(g | βTx) or E(α | βTx) can be tolerated and the resulting
estimation is still consistent. In particular, mis-specifying E(g | βTx) while providing
additional assumptions (such as the linearity condition (5) and the constant variance
condition (6) when α is linear or quadratic) to enable the calculation of E(α | βTx) is the
foundation under the inverse regression class.
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The simplest illustration can be obtained from the SIR example. In (7), we select g(Y, βTx)
= E(x | Y) and α(x) = xT. The linearity condition yields E(α | βTx) = xTP. Subsequently, the
double robustness allows us to mis-specify E(g | βTx) = 0. Simple algebra shows that (7)
then becomes ΛSIRQ = 0, which is equivalent to SIR following some linear algebra
manipulation. Different choices of g and α lead to different inverse regression methods, see
Ma & Zhu (2012a) for details of more such exercises. The importance of this derivation is
that the rationale behind the inverse regression methods is now clear. The true reason that
this class of methods work is the double robustness property, which allows the linearity and/
or constant variance condition alone to guarantee the consistency of the whole estimating
equation. Understanding the underlying driving force is crucial for further relaxing these
assumptions. For example, assuming a polynomial instead of a linear form of E(x | βTx)
leads to the relaxed methods of Li & Dong (2009) and Dong & Li (2010). Furthermore,
without assuming any structure on E(α | βTx), but instead, estimating this quantity through
the data, will then completely eliminate the linearity and constant variance conditions and
provide a generalized inverse regression estimator class.

The estimation of the central mean subspace E(Y|x) parallels that of the central subspace

Y|x. The likelihood of one observation is η1(x)η2{Y − m(βTx), x}, where η1, η2 have the
same meaning as before, but with the additional constraint that ∫ εη2(ε, x)dμ(ε) = 0. The
corresponding unnormalized influence function family is

This is similar to the central subspace analysis, except that the freedom of choosing g is lost
to the sole choice of g(Y) = Y. Comparing the model specification, (1) assumes more
structure than (2), hence it is no surprise that the estimator class for Y|x is richer than that
for E(Y|x). Similarly, various choices of α leads to various inverse regression estimators,
and estimating E(α | βTx) instead of assuming it leads to the relaxation of the linearity and
constant variance conditions.

From the general theory of semiparametrics, the non-parametric methods, provided that they
offer root-n consistent estimation, also have their corresponding influence functions, and
should correspond to members in the semiparametric class. Establishing a clear link requires
theoretical analysis of the non-parametric estimators and the derivation of the corresponding
influence functions, which are not yet available in the dimension reduction literature.

Overall, semiparametric approach offers a birds’ eye view to dimension reduction. It allows
a better understanding of the various methods and their connection, and enables the
relaxation of some routine assumptions. The approach further provides tools for deriving
new estimation and inference procedures, as is elaborated in Section 3.

3 Inference Issue
Because dimension reduction is generally viewed as a problem of estimating a space,
inference is strikingly left out of the main stream research in this field. Except for some
sporadic analysis growing out of particular needs of specific problems (Chen & Li, 1998;
Cook, 2004; Li et al., 2010), no systematic studies have been devoted to inference. This has
resulted in estimation of Y|x or E(Y|x) without knowing the variability, and certainly has
made it impossible to perform a fair comparison between different estimation procedures.

The underlying difficulty of inference or lack of it is due to the concept of space estimation,
instead of the more classical parameter estimation in the dimension reduction problems.
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None of the existing statistical methods apply if we are overwhelmed by the idea of space
estimation. On the other hand, the spaces Y|x and E(Y|x) can be characterized by
parameters contained in β. Although different parametrization of β may lead to the same
space, for the space estimation purpose, these differences are uninteresting. In other words,
as long as we make up our mind to stick with only one particular parametrization strategy,
then the issue of space estimation is totally equivalent to that of parameter estimation. This
will subsequently make inference more or less standard. We now summarize various
different parametrizations and investigate the inference issue subsequently.

3.1 Various Parametrizations
The most widely used parametrization for both Y|x and E(Y|x) is β ∈ ℝp×d, where each
column of β has length 1 and the d columns of β are mutually orthogonal to each other. This
certainly does not uniquely match one space with one β matrix, since both β and βA satisfy
the constraints and yield the same space. Here A is an arbitrary d × d orthogonal matrix. For
this reason, when this parametrization is used, not only additional constraints βTβ = Id needs
to be respected, but one also has to take into account that different βs may actually
correspond to the same space. Therefore, this parametrization can be viewed as a non-
thorough conversion from space to parameter. However, in practice, because most numerical
procedures look for roots or minimizers in a local neighbourhood, while βAs, with different
orthogonal matrices A, form a discrete set of matrices, hence the one-to-many mapping issue
hardly ever poses a real problem. The constraint of βTβ = Id sometimes offer simplification
in computations, although it leads to difficulty in analysing the estimation variability of β̂,
because the domain of β is no longer an open set.

A second parametrization is motivated by the aim of representing the spaces Y|x and

E(Y|x) without additional constraints on the parameters (Li & Dong, 2009). For d = 1, it
parametrizes through requiring the k-th element of β to be sin(θ1) … sin(θk−1) cos(θk) for k
< p and the p-th element sin(θ1) … sin(θp−2) sin(θp−1). Here θ1, …, θp−1 are values in [0, 2π)
and are otherwise without constraints. This parametrization is found to bring great
computational challenge hence is not further explored for d > 1 cases in the literature.

A third parametrization avoids additional constraints in a different way from the second one.
Recognizing that βA and β yield the same space as long as A has full rank, Ma & Zhu
(2012b) directly requires the upper d × d submatrix of β to be the identity matrix Id. This
leaves the lower (p − d) × d submatrix of β completely free and provides a one-to-one
mapping to the spaces. Similar parametrization was already proposed in Ma & Genton
(2010) in a different context, and caution needs to be taken since the parametrization does
require the first d components of the p covariates to be non-dismissable. Otherwise, the d
rows in Id will not be always cumulated in the upper part of β. Because with a suitable
ordering of the covariates, this parametrization offers a one-to-one mapping between the
parameters and spaces without any additional constraints, it is convenient for further
investigating inference issues. Since (p − d)d free parameters are needed in this
parametrization, it also becomes explicit that Y|x and E(Y|x) are effectively objects with
(p − d)d degrees of freedom. Both the second and third parametrization can be viewed as a
direct parametrization of any point of the Grassmann manifold (Cook et al., 2010), which is
defined as the collection of all d-dimensional subspaces of the p-dimensional real space.

3.2 Inference and Efficient Estimation
Having obtained the unnormalized influence function for estimating Y|x and E(Y|x) in
Section 2.3, adopting the third parametrization in Section 3.1, inference is more or less
straightforward. Generally speaking, the raw form of the estimating equation system often
contains more than (p − d)d equations. We first use a generalized method of moments
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(GMM) procedure to reduce the number of equations to (p − d)d. Denoting the resulting

estimating equation , a standard Taylor expansion then yields

and inference is therefore straightforward. Here, vecl(β) or vecl(β̂) is the concatenation of
the lower (p − d) × d block of β or β̂ (remember the upper d × d block of β or β̂ is the identity
matrix Id).

With the availability of influence function family and inference tools, a curious issue is
whether or not one can obtain efficient estimators. This is where the central subspace
estimation problem splits from the central mean subspace estimation problem, because the
latter turns out to be almost impossible due to the high dimensionality of x.

Let us start with the easier problem of estimating Y|x efficiently. Ma & Zhu (2012b)
derived the efficient score for estimating β as

Hypothetically, the efficient estimator can be obtained through solving

However, Seff is not readily implementable because it contains the unknown quantities E(x |
βTx) and ∂{logη2(Y, βTx)}/∂(xTβ).

To circumvent this problem, we can estimate η2 and its first derivative based on (Yi, βTxi),
for i = 1, …, n by modifying the idea of the “double-kernel” local linear smoothing method

studied in Fan et al. (1996). Let the resulting estimators be η̂2(·) and . The estimation of
E(x | βTx) is more straightforward and we denote the estimator by Ê(x | βTx). Inserting these
estimated quantities into Seff, the resulting estimator will indeed yield efficient estimation
for Y|x (Ma & Zhu, 2012b).

The analysis appears to be similar for estimating E(Y|x). The efficient score function in this
case is

To obtain the efficient estimator, it seems one just needs to insert various estimated
quantities for ∂m(βTx)/∂(xTβ), E(ε2 | x), E[{E(ε2 | x)}−1 | βTx], and E [x{E(ε2 | x)}−1 | βTx].
However, estimating E(ε2 | x) involves a high dimensional problem and is the very same
problem that motivated the original central mean subspace model. Hence, without additional
assumptions, the efficient estimation of E(Y|x) is practically very hard to achieve because
of the difficulty in estimating E(ε2 | x) when x is high-dimensional.
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A useful compromise here is to seek local efficiency, in which case one can, for example, set
E(ε2 | x) to a constant or other plausible variance function. Because other than the quantity
E(ε2 | x), all the non-parametric estimation involved in the efficient estimation is of lower
dimension and can be handled rather easily, one can calculate the locally efficient estimation
via setting a model for E(ε2 | x) and estimating all other quantities non-parametrically. This
will in general still lead to a consistent estimation of E(Y|x). In addition, when the model
for E(ε2 | x) happens to be true, then an efficient estimation will be obtained.

3.3 The Role of Linearity/Constant Variance Condition
Among the possible drawbacks of assuming the linearity condition (5) and the constant
variance condition (6), the loss of estimation efficiency is certainly the last that one would
expect. On the contrary, the typical conjecture would be just the opposite. One would
usually suspect that giving up these conditions will incur a price of variability inflation.
However, numerical experiments repeatedly support the counter-intuitive phenomenon of
improved efficiency through giving up using the conditions (5) and (6) even when they hold,
and the ability of performing inference finally allows a formal investigation of this issue.

In this review article we leave out the derivation and proof of this surprising phenomenon.
One can refer to Ma & Zhu (2012c) for technical details. Even with the proof, to understand
this phenomenon intuitively is not simple at all. One way to help understanding is to refer to
Henmi & Eguchi (2004), where using a geometric tool, they explained a similar discovery in
treating missing data via inverse probability weighting and provided some general insight.
The problem here is unfortunately much more complex than the one they considered and
their result or explanation does not apply and cannot be adapted. However, Henmi & Eguchi
(2004) at least made one thing clear. In general estimation procedures, using a true quantity
to replace an estimated quantity does not necessarily increase or decrease the variability of
the estimation of the parameter of interest. The variance of an estimator could go either way,
and in our case, using a known form increased the variability. Loosely speaking, when using
inverse regression methods, assuming condition (5) and/or (6), E(α | βTx) is simply set to its
true value when α is a linear or quadratic function of x. Compared with estimating E(α |
βTx) non-parametrically, this practice eliminates a variance component. This variance
component turns out to be in a direction that is beneficial to the variability of estimating β,
which is why assuming the conditions would bring an eventual efficiency loss.

This discovery appears somewhat detrimental to the commonly used linearity and constant
variance conditions. Because if these conditions are falsely assumed, the inverse regression
methods are not consistent, and if they are correctly assumed, they cause inflated variation.
In addition, linearity and constant variance conditions are completely irrelevant for the
efficient estimation purpose, as is clear from Section 3.2. In fact, these conditions are useful
only when α in (7) is taken to be linear or quadratic. In this aspect, if we had chosen to use
some other α, we would simply assume a form for E(α | βTx) and carry out the subsequent
derivation. However, it is also important to recognize the practical usefulness of these
conditions. Computationally, these conditions have enabled great implementation
simplification of the most familiar inverse regression estimators.

4 Determining the Dimension
Up till now, we have assumed the structural dimension d to be known. In practice, deciding
d is not a simple task. In this section we review the literature on how to decide d.

When the linearity condition (5) and/or the constant variance condition (6) are satisfied, the
inverse regression methods listed in Section 2.1 formulate the problem of estimating Y|x
and E(Y|x) into an eigen-decomposition problem. Therefore, the determination of d
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becomes a problem of determining the number of non-zero eigenvalues of the corresponding
matrix, termed kernel matrix in the literature. Let Λ be the kernel matrix of a specific inverse
regression based dimension reduction method. For example, ΛSIR = cov{E(x | Y)} in SIR
(Li, 1991), ΛSAVE = E{Ip − cov(x | Y)}2 in SAVE (Cook & Weisberg, 1991) and ΛPHD =
E{Y − E(Y)}{x − E(x)}{x − E(x)}T in PHD (Li, 1992). Since the structural dimension d is
the number of non-zero eigenvalues of Λ in these methods, and the data provide an estimator
Λ̂, thus any sensible way of deciding the number of non-zero eigenvalues through using Λ̂
will yield a reasonable way of deciding d. To this end, there are mainly four approaches in
the literature: the sequential test method, the bootstrap method, the BIC type criterion and
the sparse eigen-decomposition method.

To implement the sequential test, one tests a series of null hypotheses that Λ has l, from p −
1 down to 1, non-zero eigenvalues. The test procedure stops when the first time a null
hypothesis is not rejected. In the context of deciding d for the central subspace Y|x, Li
(1991) proposed a sequential chi-square test for the SIR method by assuming that x is
normally distributed. Schott (1994), Velilla (1998), Bura & Cook (2001), Cook & Yin
(2001), and Cook & Ni (2005) proposed more general versions to relax the normality
assumption. To determine the dimension d of the central mean subspace E(Y|x), Li (1992),
Cook & Li (2004) designed several sequential tests for principal Hessian directions (Li,
1992) and iterative Hessian transformation (Cook & Li, 2002). A nice summary of the
sequential test in various inverse regression methods is given by Bura & Yang (2011). In
general, the dimension d̂ obtained from these sequential tests is not consistent due to the
presence of the type-I error. When the dimension p is large, such test procedures are
computationally inefficient and the cumulative type-I error may not be ignorable. Moreover,
it relies heavily on the asymptotic normality of the estimator of the kernel matrix, and
requires plugging in an estimate of the asymptotic variance. Due to these theoretical and
implementation issues, the sequential test method is usually studied case-by-case for each
dimension reduction method in the literature.

Ye & Weiss (2003) proposed to decide d through a bootstrap procedure. Their intuition is
that, at the true reduced dimension d, the distance between the estimated central (mean)
subspace obtained from the bootstrap sample and that from the original sample must have
the smallest variability under suitable distance measure. Therefore, choosing d that
corresponds to the smallest estimated variability, assuming no or minimal bias, is a
reasonable procedure. Zhu & Zeng (2006) modified the bootstrap procedure through using a
different distance measure. The bootstrap procedure estimates the dimension in a data-
driven manner, but it is computationally intensive (Zeng, 2008). In addition, the consistency
of the bootstrap procedure is still unestablished in the literature.

For the SIR method, Zhu et al. (2006) imitated the classical BIC procedure and proposed a
BIC type criterion. The estimated dimension obtained from the BIC type criterion is
consistent if the estimator of the relevant kernel matrix converges. However, deciding the
amount of penalty through a data-driven procedure is usually difficult in practice. Zhu &
Zhu (2007) suggested a classical rate logn penalty, while Luo et al. (2009) used a cutoff
value for the ratio of eigenvalues to decide d, both are somewhat ad hoc. Empirical studies
suggest that the performance of the BIC type procedure can vary a great deal when different
penalties are used, unless the sample size is very large.

Zhu et al. (2010c) proposed a sparse eigen-decomposition (SED) strategy. The main idea of
the SED method is to cast the spectral decomposition problem resulting from an inverse
regression method into a least squares problem. They then imposed an adaptive LASSO
penalty (Tibshirani, 1996; Zou, 2006) to shrink some small estimated eigenvalues to zero
directly. Different from the aforementioned methods, the SED method can estimate Y|x or
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E(Y|x) and the structural dimension d simultaneously. The minimization can be solved
effectively by the LARS algorithm (Efron et al., 2004). Therefore, it is computationally
attractive. In addition, the resulting estimators of the eigenvalues are consistent, hence d̂ is
consistent.

The link to matrix eigen-decomposition is completely lost as soon as the estimation methods
deviate from the inverse regression type. In the non-parametric methods we reviewed in
Section 2.2, d is often determined through a leave-one-out cross-validation procedure.
Specifically, at any fixed working dimension k, the average leave-one-out prediction error is
calculated to yield CV(k), and subsequently, the k value that yields the smallest CV(k) is
selected as d̂. For estimating E(Y|x), one can easily formulate

calculated at a fixed working dimension, where the subscript “−i” stands for the usual
estimate of the corresponding component with the i-th observation left out (Xia et al., 2002).
For estimating Y|x, a similar formulation

can be used.

Cross-validation in the non-parametric methods requires the estimation of m in the central
mean subspace case and η2 in the central subspace case, which are the quantities often
avoided to estimate in the semiparametric methods we reviewed in Section 2.3. Thus, Ma &
Zhu (2012a) proposed a bootstrap procedure to determine d in the semiparametric class.
This procedure adapts the original idea of Ye & Weiss (2003) and Dong & Li (2010) in the
inverse regression class.

For two arbitrary random vectors u and v, define

where λ1, …, λk are the non-zero eigenvalues of

For any working dimension k, let β̂k be the semiparametric estimate based on the original
sample, and β̂k,b be the same estimate based on the b-th bootstrap sample, b = 1, …, B. Then
the bootstrap method determines d through choosing the k value that maximizes the average
r2 value
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The rational behind the bootstrap method is the following. First, we note that r2 is a kind of
correlation measure. For any working dimension k equal to the true dimension d, β̂k, and β̂k,b
both estimate the true dimension reduction space hence are largely identical, thus the
average r2 is expected to be close to 1. For k larger than d, β̂k, and β̂k,b contain too much
freedom hence would have to contain some additional random directions that are contributed
purely by the randomness of the sample. Thus, their corresponding average r2 value would
be diluted by the random directions hence would decrease. On the other hand, when k is
smaller than d, not enough freedom is included in β, hence β̂k and β̂k,b will both only be the
best approximation to the true β. This best approximation is purely decided by the data
randomness and will be different when the random sample is different, hence the
corresponding average r2 value will also decrease.

5 The Issue of High Dimension
In the classic statistical literature, the dimension p of the covariates x is typically regarded as
fixed. To study statistical properties in situations where p is fairly large in comparison with
the sample size n, it is more convenient to consider the case where p diverges with n at some
rate. In the dimension reduction context, Zhu et al. (2006) established the consistency for
SIR when p = o(n1/4) under the Frobenius norm. That is, they showed that ‖Λ̂SIR − ΛSIR‖2 =
op(1) as long as p = o(n1/4) and the linearity condition (5) is true. Zhu et al. (2010d) obtained
the consistency of the cumulative slicing estimation when p = o(n1/2) under the Frobenius
norm. We suspect that under the Frobenius norm, all the consistent methods mentioned in
Section 2 for a fixed p actually remain consistent as long as p = o(n1/2). We also believe that
p = o(n1/2) is the largest possible dimension to retain the consistency, if no additional
assumption is made on the correlation structure of x.

Recent trend in statistics is to study the situation when the covariate dimensionality p is even
larger than the sample size n. This poses new challenges to dimension reduction. For
example, even the original normalization of the covariates x is no longer possible because
the sample version of Σ = var(x) would be singular. Similarly, in many inverse regression
based methods, the kernel matrices involve the computation of quantities such as Σ−1.
However, a consistent estimator of Σ−1 is typically not available when p is larger than n. To
implement the inverse regression methods in Section 2.1, a useful strategy is to combine the
idea of partial least squares with the inverse regression based methods. This avoids the
operation of matrix inversion which is not possible if p is larger than n. See, for example,
Naik & Tsai (2000), Li et al. (2007), Cook et al. (2007), Zhu & Zhu (2009b), and Zhu et al.
(2010b). This strategy is also useful when the covariates x are highly correlated such that Σ
is a singular matrix.

Another strategy to handle ultrahigh dimensionality is to utilize the sparsity principle in the
dimension reduction context, that is, we assume that only a moderate portion of the
covariates are truly relevant to the response variable and need to be reduced further. This
corresponds to assuming that most rows in β are simply zeros. In the context of linear
regression, Tibshirani (1996), Fan & Li (2001), Candes & Tao (2007) proposed, respectively
LASSO, SCAD, and Dantzig selector to penalize some small sample coefficients to zero to
yield sparse solutions. One advantage of these methods is that these regularization methods
can estimate the magnitude of these non-zero coefficients and screen out those zero
coefficients simultaneously. If we only intend to select important covariates in the linear
regression context, we can borrow the idea of sure independence screening (SIS) procedure
(Fan & Lv, 2008). The SIS procedure ranks the importance of each covariate using the
magnitude of the Pearson correlation coefficients. In the screening stage, they only selected
the covariates associated with large squared correlation coefficients. They demonstrated that
the SIS procedure has the sure screening property, that is, all important predictors will
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survive after the screening procedure if the sample size n is sufficiently large. With the
normality assumption, their results can be applied to the central mean subspace model (2).
Following the idea of Fan & Lv (2008), Zhu et al. (2012) proposed sure independence
ranking and screening (SIRS) procedure to select important predictors from the central
subspace model (1). They proved that the SIRS method has the ranking consistency
property, that is, all important predictors will be ranked above the unimportant ones in an
asymptotic sense. The ranking consistency property immediately implies the sure screening
property provided that an ideal cut-off is available.

The aforementioned procedures all require that the covariates satisfy the linearity condition
(5). However, how to handle ultrahigh dimensionality is still unknown when the linearity
condition (5) is violated. Research along this line is in much demand.
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