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Abstract Time series classification is an increasing research topic due to the vast amount of time series data
that is being created over a wide variety of fields. The particularity of the data makes it a challenging task
and different approaches have been taken, including the distance based approach. 1-NN has been a widely used
method within distance based time series classification due to its simplicity but still good performance. However,
its supremacy may be attributed to being able to use specific distances for time series within the classification
process and not to the classifier itself. With the aim of exploiting these distances within more complex classifiers,
new approaches have arisen in the past few years that are competitive or which outperform the 1-NN based
approaches. In some cases, these new methods use the distance measure to transform the series into feature
vectors, bridging the gap between time series and traditional classifiers. In other cases, the distances are employed
to obtain a time series kernel and enable the use of kernel methods for time series classification. One of the main
challenges is that a kernel function must be positive semi-definite, a matter that is also addressed within this
review. The presented review includes a taxonomy of all those methods that aim to classify time series using a
distance based approach, as well as a discussion of the strengths and weaknesses of each method.
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1 Introduction

Time series data are being generated everyday in a wide range of application domains, such
as bioinformatics, financial fields, engineering, etc [Keogh & Kasetty, 2002]. They represent a
particular type of data due to their temporal nature; a time series is an ordered sequence of
observations of finite length which are usually taken through time, but may also be ordered with
respect to another aspect, such as space. With the growing amount of recorded data, the interest
in researching this particular data type has also increased, giving rise to a vast amount of new
methods for representing, indexing, clustering, and classifying time series, among other tasks
[Esling & Agon, 2012]. This work focuses on time series classification (TSC), and in contrast
to traditional classification problems, where the order of the attributes of the input objects is
irrelevant, the challenge of TSC consists of dealing with temporally correlated attributes, i.e.,
with input instances xi which are defined by complete ordered sequences, thus, complete time
series [Bagnall et al. , 2017; Fu, 2011].

Time series classification methods can be divided into three main categories [Xing et al. ,
2010]: feature based, model based, and distance based methods. In feature based classification
methods, the time series are transformed into feature vectors and then classified by a conventional
classifier such as a neural network or a decision tree. Some methods for feature extraction include
spectral methods such as discrete Fourier transform (DFT) [Faloutsos et al. , 1994] or discrete
wavelet transform (DWT), [Popivanov & Miller, 2002] where features of frequency domain are
considered, or singular value decomposition (SVD) [Korn et al. , 1997], wsingular value decom-
position (SVD) [Korn et al. , 1997], where eigenvalue analysis is carried out in order to reduce
the set of features while retaining the relevant information. On the other hand, model based
classification assumes that all time series in a class are generated by the same underlying model,
and thus a new series is assigned with the class of the model that best fits. Some model based
approaches are formed using auto-regressive models [Bagnall & Gareth Janacek, 2014; Corduas
& Piccolo, 2008] or hidden Markov models [Smyth, 1997], among others. Finally, distance based
methods are those in which a (dis)similarity measure between series is defined, and then these
distances are introduced in some manner within distance-based classification methods such as
the k-nearest neighbour classifier (k-NN) or Support Vector Machines (SVMs). This work focuses
on this last category: distance based classification of time series.

Until now, almost all research in distance based classification has been oriented to defining
different types of distance measures and then exploiting them within k-NN classifiers. Due to
the temporal (ordered) nature of the series, the high dimensionality, the noise, and the possible
different lengths of the series in the database, the definition of a suitable distance measure is a
key issue in distance based time series classification. One of the ways to categorize time series
distance measures is shown in Figure 1; Lock-step measures refer to those distances that compare
the ith point of one series to the ith point of another (e.g., Euclidean distance), while elastic
measures aim to create a non-linear mapping in order to align the series and allow comparison
of one-to-many points (e.g., Dynamic Time Warping [Berndt & Clifford, 1994]). These two types
of measures consider the important aspect to define the distance is the shape of the series, but
there are also structure based or edit based measures, among others [Esling & Agon, 2012]. In
this sense, different distance measures are able to capture different types of dissimilarities, and,
even if in theory there is a best distance for each case [Li et al. , 2004], in practice it is hard
to find it. Nevertheless, the experimentation in [Esling & Agon, 2012; Xing et al. , 2010; Wang
et al. , 2013; Chen et al. , 2013; Ding et al. , 2008; Lines & Bagnall, 2015; Xi et al. , 2006] has
shown that, on average, the DTW distance seems to be particularly difficult to beat.

One of the simplest ways to exploit a distance measure within a classification process is by
employing k-NN classifiers. One could expect that a more complex classifier would outperform
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Fig. 1: Mapping of Euclidean distance (lock-step measure) vs. mapping of DTW distance (elastic
measure) [Wang et al. , 2013]

the performance of the 1-NN and, as such, the bad performance of these complex classifiers may
be attributed to the inability of the classifiers to deal with the temporal nature of the series
using the default settings. On the other hand, it is known that the underlying distance is crucial
to the performance of the 1-NN classifier [Tan et al. , 2005] and, hence, the high accuracy of
1-NN classifiers may arise from the efficiency of the time series distance measures -which take
into consideration the temporal nature- for classification. In this way, methods that exploit the
potential of these distances within more complex classifiers have emerged in the past few years
[Kate, 2015; Jalalian & Chalup, 2013; Marteau & Gibet, 2014], achieving performances that are
competitive or outperform the classic 1-NN.

These new approaches aim to take advantage of the existing time series distances to exploit
them within more complex classifiers. We have differentiated between two new ways of using
distance measures in the literature: the first employs the distance to obtain a new feature repre-
sentation of the series [Kate, 2015; Iwana et al. , 2017; Hills et al. , 2014], i.e., a representation
of the series as an order-free vector, while the second uses the distance to obtain a kernel [Gud-
mundsson et al. , 2008; Cuturi & Vert, 2007; Marteau & Gibet, 2014], i.e., a similarity between
the series that will then be used within a kernel method. Both approaches have achieved com-
petitive classification results and, thus, different variants have arisen [Jeong & Jayaraman, 2015;
Zhang et al. , 2010; Lods et al. , 2017]. The purpose of this review is to present a taxonomy of all
those methods which are based on time series distances for classification. At the same time, the
strengths and shortcomings of each approach are discussed in order to give a general overview
of the current research directions in distance based time series classification.

The rest of the paper is organized as follows: in Section 2 the taxonomy of the reviewed
methods is presented, as well as a brief description of the methods in each category. In Section
4 a discussion on the approaches in the taxonomy is presented, where we draw our conclusions
and specify some future directions.

2 A taxonomy of distance based time series classification

As mentioned previously, the taxonomy we propose intends to include and categorize all the
distance based approaches for time series classification. A visual representation of the taxonomy
can be seen in Figure 2. From the most general point of view, the methods can be divided into
three main categories: in the first one, the distances are used directly in conjunction with k-NN
classifiers; in the second one, the distances are used to obtain a new representation of the series
by transforming them into features vectors, while in the third one, the distances are used to
obtain kernels for time series.
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Fig. 2: A visual representation of the proposed taxonomy of distance based time series classifi-
cation methods.

2.1 k-Nearest Neighbour

This approach employs the existing time series distances within k-NN classifiers. In particular,
the 1-NN classifier has mostly been used in time series classification due to its simplicity and
competitive performance [Ding et al. , 2008; Lines et al. , 2012]. Given a distance measure and
a time series, the 1-NN classifier predicts the class of this series as the class of the object closest
to it from the training set. Despite the simplicity of this rule, a strength of the 1-NN is that
as the size of the training set increases, the 1-NN classifier guarantees an error lower than two
times the Bayes error [Cover & Hart, 1967]. Nevertheless, it is worth mentioning that it is very
sensitive to noise in the training set, which is a common characteristic of time series datasets.
This approach has been widely applied in time series classification, as it achieves, in conjunction
with the DTW distance, the best accuracies achieved on many benchmark datasets. As such,
quite a few studies and reviews include the 1-NN in the time series literature [Bagnall et al. ,
2017; Wang et al. , 2013; Lines & Bagnall, 2015; Kaya & Gündüz-Öüdücü, 2015], and hence, it
is not going to be further detailed in this review.
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2.2 Distance features

In this group, we include the methods that employ a time series distance measure to obtain a
new representation of the series in the form of feature vectors. In this manner, the series are
transformed into feature vectors (order-free vectors in R

N ), overcoming many specific require-
ments that are encountered in time series classification, such as dealing with ordered sequences or
handling instances of different lengths. The main advantage of this approach is that it bridges the
gap between time series classification and conventional classification, enabling the use of general
classification algorithms designed for vectors, while taking advantage of the potential time series
distances. In this manner, calculating the distance features can be seen as a preprocessing step,
thus, the transformation can be used in combination with any classifier. Note that even if these
methods also obtain some features from the series, they are not considered within feature based
time series classification, but within distance based time series classification. The reason is that
the methods in feature based time series classification obtain features that contain information
about the series themselves, while distance features contain information relative to their relation
with the other series. Three main approaches are distinguished within this category: those that
directly employ the vector made up of the distances to other series as a feature vector, those that
define the features using the distances to some local patterns, and those that use the distances
after embedding the series into some vector space.

2.2.1 Global distance features

The main idea behind the methods in this category is to convert the time series into feature
vectors by employing the vector of distances to other series as the new representation. Firstly,
the distance matrix is built by calculating the distances between each pair of samples, as shown
in Figure 3. Then, each row of the distance matrix is used as a feature vector describing a time
series, i.e., as input for the classifier. It is worth mentioning that this is a general approach
(not specific for time series) but becomes specific when a time series distance measure is used.
Learning with the distance features is also known as learning in the so-called dissimilarity space
[Pȩkalska & Duin, 2005]. For more details on learning with global distance features in a general
context, see [Pȩkalska & Duin, 2005; Chen et al. , 2009; Pȩkalska et al. , 2001; Graepel et al. ,
1999].
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Fig. 3: A visual representation of the global distance features method.

Even if learning with distance features is a general solution, it is particularly advantageous
for time series; the distance to each series is understood as an independent dimension and the
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series can be seen as vectors in a Euclidean space. This new representation enables the use of
conventional classifiers that are designed for feature vectors, while it takes advantage of the
existing time series distances. However, learning from the distance matrix has some important
drawbacks; first, the distance matrix must be calculated, which may be costly depending on
the complexity of the distance measure. Then, once the distance matrix has been calculated,
learning a classifier may also incur large computational cost, due to the possible large size of
the training set. Note that in the prediction stage, the consistent treatment of a new time series
is straightforward -just the distances from the new series to the series in the training set have
to be computed- but it can also become computationally expensive depending on the distance
measure. Henceforth, given a distance measure d, we will refer to the methods employing the
corresponding distance features as DFd .

After this brief introduction of the distance based features, a summary of the methods em-
ploying them is now presented. Gudmundsson et al. [2008] made the first attempt at investigating
the feasibility of using a time series distance measure within a more complex classifier than the
k-NN. In particular, they aimed at taking advantage of the potential of Support Vector Ma-
chines (SVMs) on the one hand, and of Dynamic Time Warping (DTW) on the other. First,
they converted the DTW distance measure into two DTW-based similarity measures, shown in
equation (1). Then, they employed the distance features obtained from these similarity measures,
DFGDTW and DFNDTW , in combination with SVMs for classification.

GDTW (TSi, TSj) = exp

(

−

DTW (TSi, TSj)
2

σ2

)

, NDTW (TSi, TSj) = −DTW (TSi, TSj) (1)

where σ > 0 is a free parameter and TSi, TSj are two time series. They concluded the new
representation in conjunction with SVMs is competitive with the benchmark 1-NN with DTW.

In Jalalian & Chalup [2013], the authors introduced a Two-step DTW-SVM classifier where
the DFDTW are used in order to solve a multi-class classification problem. In the prediction stage,
the new time series is represented by the distance to all the series in the training set and a voting
scheme is employed to classify the series using all the trained SVMs in a one-vs-all schema. They
concluded that even if DFDTW achieves acceptable accuracy values, the prediction of new time
series is too slow for real world applications when the training set is relatively big.

Additionally, based on the potential of using distances as features for time series classifi-
cation, Kate [2015] carried out a comprehensive experimentation in which different distance
measures are used as features within SVMs. In particular, they tested not only DFDTW but also
a constrained version DFDTW−R (a window-size constrained version of DTW which is compu-
tationally faster [Sakoe & Chiba, 1978]), features obtained from the Euclidean distance DFED

and also concatenations of these distance features with other feature based representations. In
their experimentation, they showed that even the DFED, when used as features with SVMs,
outperforms the accuracy of 1-NN classifier based on the same Euclidean distance. An extension
of Kate [2015] was presented in Giusti et al. [2016], who argued that not all relevant features can
be described in the time domain (frequency domain can be more discriminative, for example)
and added new representations to the set of features. Specifically, they generalized the concept
of distance features to other domains and employed four different representations of the series
with six different distance measures, giving rise to 24 distance features. For each representation
of the series Ri, i = 1, . . . , 4, they computed six different distance features DFRi

d1
, . . . ,DFRi

d6
. In

their experimentation on 85 datasets from UCR1, they showed that using representation diver-
sity improves the classification accuracy. Finally, in their work about early classification of time
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series, Mori et al. [2017] benefit from Euclidean distance features DFED in order to classify the
series with SVMs and Gaussian Processes [Rasmussen & Williams, 2006].

Recently, Wu et al. proposed another distance feature approach for time series classification in
[Wu et al. , 2018b] which is based on Random Features [Rahimi & Recht, 2008] approximation.
Following the methodology of the D2KE kernel [Wu et al. , 2018a] discussed in Section 2.3,
the authors exploit the idea of randomly sampled time series and employ the distances from
the original series to the random series as features: DFRF . The random series are defined by
D segments -where the length D is a user-defined parameter-, each segment associated with a
random number. The idea is that these random series can be interpreted as the possible shapes
of the time series. In the experiments carried out on 16 UCR datasets, they compare their
representation -in combination with SVMs- against 6 state-of-the-art distance based classification
methods. In particular, they propose two variants of their method: the first employs a large
number of random series, while the second employs a small number. The experimentation shows
that the first approach outperforms the accuracies of the baseline methods but incurs in large
computational times, while the second obtains comparable accuracies in less time (reducing the
time complexity from quadratic to linear).

With the aim of addressing the limitation of the high computational cost of the DTW dis-
tance, Janyalikit et al. [2016] proposed the use of a fast lower bound for the DTW algorithm,
called LB Keogh [Keogh & Ratanamahatana, 2005]. Employing DFLB Keogh with SVMs, Janya-
likit et al. showed in their experimentation on 47 UCR datasets that their method speeds the
classification task up by a large margin, while maintaining the accuracies comparing with the
state-of-art DFDTW−R proposed in Kate [2015].

As previously mentioned, another weakness of using distances as features is the high dimen-
sionality of the distance matrix, since for n instances a n× n matrix is used as the input to the
classifier. In view of this, Jain & Spiegel [2015] proposed a dimensionality reduction approach
using Principal Component Analysis (PCA) in order to keep only those dimensions that retain
the most information. In their experimentation they compare the use of DFDTW with the re-
duced version of the same matrix, DFDTW+PCA in combination with SVMs. They showed PCA
can have a consistent positive effect on the performance of the classifier but this effect seems to
be dependent of the choice of the kernel function applied in the SVM. Note that for prediction
purposes, they transform the new time series using the PCA projection learned from the training
examples and, hence, the prediction process will also be significantly faster.

Another dimensionality reduction approach used in these cases is prototype selection, em-
ployed by Iwana et al. [2017]. The idea is to select a set of k reference time series, called proto-
types, and compute only the distances from the series to the k prototypes. The authors pointed
out that the distance features let each feature be treated independently and, consequently, pro-
totype selection can be seen as a feature selection process. As shown in Jain & Spiegel [2015],
this dimensionality reduction technique not only speeds up the training phase but also the pre-
diction of new time series. The proposed method uses the AdaBoost [Freund & Schapire, 1997]
algorithm, which is able to select discriminative prototypes and combine a set of weak learners.
They experimented with DFDTW+PROTO and analyzed different prototype selection methods.

To conclude this section, a summary of the reviewed methods of Global distance features for
TSC can be found in Table 1.

1 UCR is a repository of time series datasets [Chen et al. , 2015a] which is often used as a benchmark for
evaluating time series classification methods. These datasets are greatly varied with respect to their application
domains, time series lengths, number of classes, and sizes of the training and testing sets.



8 Amaia Abanda et al.

Table 1: Summary of global distance feature approaches

Authors Features Classifier Datasets

Gudmundsson et al. [2008] DFGDTW , DFNDTW SVMs 20 UCR

Jalalian & Chalup [2013] DFDTW SVMs 20 UCR

Kate [2015] DFED −DFDTW −DFDTW−R − SAX SVMs 47 UCR

Giusti et al. [2016] DF
R1,...,4

d1,...,6
SVMs 85 UCR

Mori et al. [2017] DFED GPs, SVMs 45 UCR

Wu et al. [2018b] DFRF SVMs 16 UCR

Janyalikit et al. [2016] DFLB Keogh SVMs 47 UCR

Jain & Spiegel [2015] DFDTW+PCA SVMs 42 UCR

Iwana et al. [2017] DFDTW+PROTO Adaboost 1 (UNIPEN)

2.2.2 Local distance features

In this section, instead of using distances between entire series, distance to some local patterns
of the series are used as features. Instead of assuming that the discriminatory characteristics
of the series are global, the methods in this section consider that they are local. As such, the
methods in this category employ the so-called shapelets [Ye & Keogh, 2009], subsequences of
the series that are identified as being representative of the different classes. An example of three
shapelets belonging to different time series can be seen in Figure 4. An important advantage
of working with shapelets is their interpretability, since an expert may understand the meaning
of the obtained shapelets. By definition, shapelets are subsequences and as such, the methods
employing shapelets are not a priori applicable to other types of data. However, it is worth
mentioning that the original shapelet discovery technique, proposed by Ye & Keogh [2009], is
carried out by enumerating all possible candidates (all possible subsequences of the series) and
using a measure based on information theory that takes O(n2m4), where n is the number of time
series and m is the length of the longest series. Thereby, most of the work related to shapelets
has focused on speeding up the shapelet discovery process [He et al. , 2012; Mueen et al. ,
2011; Rakthanmanon & Keogh, 2013; Ye & Keogh, 2011] or on proposing new shapelet learning
methods [Grabocka et al. , 2014]. However, we will not focus on that but rather on how shapelets
can be used within distance based classification.

Building on the achievements of shapelets in classification, Lines et al. [2012] introduced the
concept of Shapelet Transform (ST). First, the k most discriminative (over the classes) shapelets
are found using one of the methods referenced above. Then, the distances from each series to the
shapelets are computed and the shapelet distance matrix shown in Figure 5 is constructed. Fi-
nally, the vectors of distances are used as input to the classifier. In Lines et al. [2012], the distance
between a shapelet of length l and a time series is defined as the minimum Euclidean distance
between the shapelet and all the subsequences of the series of length l. Shapelet transformation
can be used in combination with any classifier and, in their proposal, the authors experimented
with seven classifiers (C4.5, 1-NN, Näıve Bayes, Bayesian Network, Random Forest, Rotation
Forest and SVMs) and 26 datasets, showing the benefits of the proposed transformation.

Hills et al. [2014] provided an extension of Lines et al. [2012] that includes a comprehensive
evaluation which analyzes the performance of the seven aforementioned classifiers using the
complete series and the ST as input. As such, the authors concluded that the ST gives rise to
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Fig. 4: Visual representation of two shapelets (Shap1 and Shap2) and six time series from the
Coffee dataset (UCR). These shapelets are identified as being representative of class membership:
Shap1 belongs to class 1, as can be seen in the three time series (T1, T2 and T3) which belong
to class 1, while Shap2 belongs to class 2, as can be seen in the three time series (T4, T5 and
T6) which belong to class 2.
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Fig. 5: Example of the local distance features methods using ST.

improvements in classification accuracy in several datasets. In the same line, Bostrom & Bagnall
[2014] proposed another shapelet learning strategy (called binary ST ) and evaluated their ST in
conjunction with an ensemble classifier on 85 UCR datasets, showing that it clearly outperforms
conventional approaches of time series classification.

Recently, Li & Lin [2018] proposed another approach that exploits time series distances in a
novel way: their method maps the series into a specific dissimilarity space in which the different
classes are effectively separated. This specific dissimilarity space is defined based on what they
call Separating References (SRs), which, in practice, are subsequences. These SRs are found, by
means of an evolutionary process, such that the distances between the SRs and series belonging to
different classes differs with a large margin. The corresponding decision boundaries that split the
classes in the dissimilarity space are also found during the same process. As such, this approach
does not specifically employ distances as features but, since it is very related to the methods
in this category, it has been included. They experiment with 40 UCR datasets showing that
their Evolving Separating References (ESR) approach is competitive with the benchmark TSC
methods, being particularly suitable for datasets in which the size of learning set is small.”

Lastly, Wang et al. [2016] introduced another representative subsequence based approach that
is similar to shapelet based methods but from a novel perspective. Their method first transforms
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the real-valued series into discrete-valued series using Symbolic Aggregate approXimation (SAX)
[Lin et al. , 2007] and employs a grammar induction (GI) procedure [Senin et al. , 2014] to
generate a pool of representative pattern candidates. Then, it selects the most representative
patterns from these candidates and transforms them back into subsequences. Finally, the series
are represented by a vector containing the distances from the series to these subsequences, and
the classification is carried out using SVMs.A significant difference between this method, called
Representative Pattern Mining (RPM), and shapelet based methods is that, while a shapelet may
be representative of more than one class -exclusiveness is not required-, in RPM the representative
subsequences can only belong to one class. In addition, the pattern discovery in RPM is much
more efficient than the existing shapelet discovery procedures.

To sum up, a summary of the reviewed methods that employ Local distance features can be
found in Table 2.

Table 2: Summary of Local distance feature approaches

Authors Features Classifier Datasets

Lines et al. [2012] ST 7 classifiers* 18 UCR + 8 own

Hills et al. [2014] ST 7 classifiers* 17 UCR + 12 own

Bostrom et al. [2016] Binary ST Ensemble 85 UCR

Li & Lin [2018] SRs ESR 40 UCR

Wang et al. [2016] RPM SVMs 42 UCR + 1 own

* C4.5, 1-NN, Näıve Bayes, Bayesian Network, Random Forest, Rotation Forest and
SVMs

2.2.3 Embedded features

The methods presented until now within the Distance features category employ the distances
directly to create feature vectors representing the series, however, this is not the only way to
use the distances. In the last approach within this section, the methods using Embedded features
do not employ the distances directly as the new representation. Instead, they make use of them
to obtain a new representation. In particular, the distances are used to isometrically embed the
series into some Euclidean space while preserving the distances.

The distance embedding approach is not a specific method for time series. In many ar-
eas of research, such as empirical sciences, psychology, or biochemistry, it is common to have
(dis)similarities between the input objects and not the objects per se. As such, one may learn
directly in the dissimilarity space mentioned in Section 2.2.1, or one may try to find some vectors
whose distances approximate the given (dis)similarities. If the given dissimilarities come from the
Euclidean distance, it is possible to easily find some vectors that approximate the given distances.
This is known in literature as metric multidimensional scaling [Borg & Groenen, 1997]. On the
contrary, if the distances are not Euclidean (or even not metric), the embedding approach is not
straightforward and many works have addressed this issue in research [Pȩkalska et al. , 2001;
Graepel et al. , 1999; Wilson et al. , 2014; Jacobs et al. , 2000].

In the case of time series, this approach is particularly advantageous since a vector representa-
tion of the series is obtained such that the Euclidean distances between these vectors approximate
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the given time series distances. The main motivation is that many classifiers are implicitly built
on Euclidean spaces [Jacobs et al. , 2000] and this approach aims to bridge the gap between
the Euclidean space and elastic distance measures. However, as it will be seen, the consistent
treatment of new test instances is not straightforward and it is an issue to be considered.

As examples in TSC, Hayashi et al. [2005] and Mizuhara et al. [2006] proposed, for the first
time, a time series embedding approach in which a vector representation of the series is found
such that the Euclidean distances between these vectors approximate the DTW distances between
the series, as represented in Figure 6. They applied three embedding methods: multidimensional
scaling, pseudo-Euclidean space embedding, and Euclidean space embedding by the Laplacian
eigenmap technique [Belkin & Niyogi, 2002]. They experimented with linear classifiers and a
unique dataset (Australian Sign Language (ASL) [Lichman, 2013]), in which their Laplacian
eigenmap-based embedded method achieved a better performance than the 1-NN classifier with
DTW.
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Fig. 6: Example of the stages of embedded distance features methods using the approach proposed
by Hayashi et al. [2005].

Another approach presented by Lei et al. [2017] first defines a DTW based similarity measure,
called DTWS, following the relation between distances and inner products [Adams, 2004] (see
equation (2)). Then they search for some vectors such that the inner product between these
vectors approximates the given DTWS:

DTWS(TSi, TSj) =
DTW (TSi, 0)

2 +DTW (TSj , 0)
2 −DTW (TSi, TSj)

2

2
(2)

where 0 denotes the time series of length one of value 0. Their method learns the optimal vector
representation preserving the DTWS by a gradient descent method, but a major drawback is
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that it learns the transformed time series, but not the transformation itself. The authors propose
an interesting solution to deal with the high computational cost of DTW, which consists of
assuming that the obtained DTWS similarity matrix is a low-rank matrix. As such, by applying
the theory of matrix completion, sampling only O(n log n) pairs of time series is enough to
perfectly approximate a n × n low-rank matrix [Sun & Luo, 2016]. However, it is not possible
to transform new unlabeled time series, which makes the method rather inapplicable in most
contexts.

Finally, Lods et al. [2017] presented a particular case of embedding that is based on the
shapelet transform (ST) presented in the previous section. Their proposal learns a vector repre-
sentation of the series (the ST), such that the Euclidean distance between the representations
approximates the DTW between the series. In other words, the Euclidean distances between
the row vectors representing each series in Figure 5 approximate the DTW distances between
the corresponding time series. The main drawback of this approach is the time complexity in
the training stage: first all the DTW distances are computed and then, the optimal shapelets
are found by a stochastic gradient descent method. However, once the shapelets are found, the
transformation of new unlabeled instances is straightforward, since it is done by computing the
Euclidean distance between these series and shapelets. Note that the authors do not use their
approach for classifying time series but for clustering, but since it is closely related to the meth-
ods in this review and their transformation can be directly applied to classification, it has been
included in the taxonomy.

As previously mentioned, an important aspect to be considered in the methods using em-
bedded features is the consistent treatment of unlabeled test samples, which depends on the
embedding technique used. In the work by Mizuhara et al. [2006], for instance, it is not clearly
specified how unlabeled instances are treated. The method by Lei et al. [2017], on the other
hand, learns the transformed data and not the transformation, hence it is not applicable to
real problems. Lastly, in the approach by Lods et al. [2017], new instances are transformed by
computing the distance from these new series to the learnt shapelets.

To end this section, a summary of the reviewed methods employing Embedded distance features
for TSC can be found in Table 3.

Table 3: Summary of embedded distance feature approaches

Authors Features Classifier Datasets

Mizuhara et al. [2006] DTW distance preserving vectors Linear classifiers ASL

Lei et al. [2017] DTWS similarity preserving vectors XGBoost 6 own

Lods et al. [2017] DTW distance preserving ST clustering 15 UCR

2.3 Distance kernels

The methods within this category do not employ the existing time series distances to obtain a
new representation of the series. Instead, they use them to obtain a kernel for time series. Before
going in-depth into the different approaches, a brief introduction to kernels and kernel methods
is presented.
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2.3.1 An introduction to kernels

The kernel function is the core of kernel methods, a family of pattern recognition algorithms,
whose best known instance is the Support Vector Machine (SVM) [Cortes & Vapnik, 1995]. Many
machine learning algorithms require the data to be in feature vector form, while kernel methods
require only a similarity function (known as kernel) expressing the similarity over pairs of input
objects [Shawe-Taylor & Cristianini, 2004]. The main advantage of this approach is that one can
handle any kind of data including vectors, matrices, or structured objects, such as sequences or
graphs, by defining a suitable kernel which is able to capture the similarity between any two
pairs of inputs. The idea behind a kernel is that if two inputs are similar, their output on the
kernel will be similar, too.

More specifically, a kernel κ is a similarity function

κ : X × X → R

(x, x′) → κ(x, x′)

that for all x, x′ ∈ X satisfies

κ(x, x′) = ⟨Φ(x), Φ(x′)⟩ (3)

where Φ is the mapping from X into some high dimensional feature space and ⟨, ⟩ is an inner
product. As equation (3) shows, a kernel κ is defined by means of a inner product ⟨ , ⟩ in some
high dimensional feature space. This feature space is called a Hilbert space and the power of
kernel methods lies in the implicit use of these spaces [Vapnik, 1998].

In practice, the evaluation of the kernel function is one of the steps within the phases of a
kernel method. Figure 7 shows the usage of the kernel function within a kernel method and the
stages involved in the process. First, the kernel function is applied to the input objects in order
to obtain a kernel matrix (also called Gram matrix), which is a similarity matrix with entries
Kij = κ(xi, xj) for each input pair xi, xj . Then, this kernel matrix is used by the kernel method
algorithm in order to produce a pattern function that is used to process unseen instances.

Data

Kernel matrix

Pattern function

Algorithm

Fig. 7: The stages involved in the application of kernel methods [Shawe-Taylor & Cristianini,
2004].

An important aspect to consider is that the class of similarity functions that satisfies (3), and
hence are kernels, coincides with the class of similarity functions that are symmetric and positive
semi-definite [Shawe-Taylor & Cristianini, 2004].
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Definition 1 (Positive semi-definite kernel) A symmetric function κ : X×X → R satisfying

n
∑

i=1

n
∑

j=1

cicjκ(xi, xj) ≥ 0 (4)

for any n ∈ N, x1, . . . , xn ∈ X , c1, . . . , cn ∈ R is called a positive semi-definite kernel (PSD)
[Schölkopf, 2001].

As such, any PSD similarity function satisfies (3) and (since it is a kernel) defines an inner
product in some Hilbert space. Moreover, since any kernel guarantees the existence of the mapping
implicitly, an explicit representation for Φ is not necessary. This is also known as the kernel trick
(see Shawe-Taylor & Cristianini [2004] for more details).

Remark 1 We will also refer to a PSD kernel as a definite kernel.

Remark 2 We will informally denominate indefinite kernels to non-PSD kernels which are em-
ployed in practice as kernels, even if they do not strictly meet the definition.

Providing the analytical proof of the positive semi-definiteness of a kernel is rather cumber-
some. In fact, a kernel does not need to have a closed-form analytic expression. In addition, as
Figure 7 shows, the way of using a kernel function in practice is via the kernel matrix and, hence,
the definiteness of a kernel function is usually evaluated experimentally for a specific set of inputs
by analysing the positive semi-definiteness of the kernel matrix.

Definition 2 (Positive semi-definite matrix) A square symmetric matrix K ∈ R
n×n satis-

fying

vTKv ≥ 0 (5)

for any vector v ∈ R
n is called a positive semi-definite matrix [Schölkopf, 2001].

The following well-known result is obtained from Shawe-Taylor & Cristianini [2004]:

Proposition 1 The inequality in equation (5) holds ⇔ all eigenvalues of K are non-negative.

Therefore, if all the eigenvalues of a kernel matrix are non-negative, this kernel function is
considered PSD for the particular instance set in which it has been evaluated. In this manner, the
definiteness of a kernel function is usually studied by the eigenvalue analysis of the corresponding
kernel matrix. However, a severe drawback of this approach is that the analysis is only performed
for a particular set of instances, and it cannot be generalized.

After introducing the basic concepts related to kernels, some examples of different types of
kernels are now presented. As previously mentioned, one of the main strengths of kernels is that
they can be defined for any type of data, including structured objects, for instance:

– Kernels for vectors: Given two vectors x,x′, the popular Gaussian Radial Basis Function
(RBF) kernel [Shawe-Taylor & Cristianini, 2004] is defined by

κ(x,x′) = exp

(

−
||x− x′||2

2σ2

)

(6)

where σ > 0 is a free parameter.

– Kernels for strings: Given two strings, the p-spectrum kernel [Leslie et al. , 2002] is defined
as the number of sub-strings of length p that they have in common.
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– Kernels for time series: Give two time series, a kernel for time series returns a similarity
between the series. There are plenty of ways of defining a similarity. For instance, two time
series may be considered similar if they are generated by the same underlying statistical
model [Rüping, 2001]. In this review, we will focus on those kernels that employ a time series
distance measure to evaluate the similarity between the series.

Therefore, in this category denominated Distance kernels, instead of using a distance to obtain
a new representation of the series, the distances are used to obtain a kernel for time series. As
such, the methods in this category aim to take advantage of the potential of time series distances
and the power of kernel methods. Two main approaches are distinguished within this category:
those that construct and employ an indefinite kernel, and those that construct kernels for time
series that are, by definition, PSD.

2.3.2 Indefinite distance kernels

The main goal of the methods in this category is to convert a time series distance measure into
a kernel. Most distance measures do not trivially lead to PSD kernels, so many works focus on
learning with indefinite kernels. The main drawback of learning with indefinite kernels is that
the mathematical foundations of the kernel methods are not guaranteed [Ong et al. , 2004]. The
existence of the feature space to which the data is mapped (equation (3)) is not guaranteed and,
due to the missing geometrical interpretation, many good properties of learning in that space
(such as orthogonality and projection) are no longer available [Ong et al. , 2004]. In addition,
some kernel methods do not allow indefinite kernels (due to the implementation or the definition
of the method) and some modifications must be carried out, but for others the definiteness is
not a requirement. For example, in the case of SVMs, the optimization problem that has to
be solved is no longer convex, so reaching the global optimum is not guaranteed [Chen et al.
, 2009]. However, note that good classification results can still be obtained [Bahlmann et al. ,
2002; Decoste & Schölkopf, 2002; Shimodaira et al. , 2002], and as such, some works focus on
studying the theoretical background about SVMs feature space interpretation with indefinite
kernels [Haasdonk, 2005]. Another approach, for instance, employs heuristics on the formulation
of SVMs to find a local solution [Chen et al. , 2006] but, to the best of our knowledge, it has
not been applied to time series classification. Converting a distance into a kernel is not a specific
challenge of time series and there is a considerable amount of work done in this direction in other
contexts [Chen et al. , 2009; Haasdonk & Bahlmann, 2004].

For time series classification, most of the work focuses on employing the distance kernels
proposed by Haasdonk & Bahlmann [2004]. They propose to replace the Euclidean distance in
traditional kernel functions, such as the Gaussian kernel in equation 6, by the problem specific
distance measure. They called these kernels distance substitution kernels. In particular, we will
call the following kernel Gaussian Distance Substitution (GDS) [Haasdonk & Bahlmann, 2004]:

GDSd(x, x
′) = exp

(

−
d(x, x′)2

σ2

)

(7)

where x, x′ are two inputs, d is a distance measure and σ > 0 is a free parameter. This kernel
can be seen as a generalization of the Gaussian RBF kernel presented in the previous section, in
which the Euclidean distance is replaced with the distance calculated by d. For the GDS kernel,
the authors in Haasdonk & Bahlmann [2004] state that GDSd is PSD if and only if d is isometric
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to an L-2 norm, which is generally not the case. As such, the methods which use this type of
kernel for time series generally employ indefinite kernels.

Within the methods employing indefinite kernels, there are different approaches, and for time
series classification we have distinguished three main directions (shown in Figure 8). Some of
them just learn with the indefinite kernels [Kaya & Gündüz-Öüdücü, 2015; Bahlmann et al. ,
2002; Shimodaira et al. , 2002; Pree et al. , 2014; Jeong et al. , 2011] using kernel methods that
allow this kind of kernels and without taking into consideration that they are indefinite; others
argue that the indefiniteness adversely affects the performance and present some alternatives
or solutions [Jalalian & Chalup, 2013; Gudmundsson et al. , 2008; Chen et al. , 2015b]; finally,
others focus on a better understanding of these distance kernels in order to investigate the reason
for the indefiniteness [Zhang et al. , 2010; Lei & Sun, 2007].

Indefinite distance kernels

◦ Employing indefinite kernels
Jalalian & Chalup [2013]
Gudmundsson et al. [2008]
Kaya & Gündüz-Öüdücü [2015]
Bahlmann et al. [2002]
Shimodaira et al. [2002]
Pree et al. [2014]
Jeong et al. [2011]

◦ Dealing with the indefiniteness
Jalalian & Chalup [2013]

◦ Regularization
Chen et al. [2015b]

◦ Analyzing the indefiniteness
Zhang et al. [2010]
Lei & Sun [2007]

Fig. 8: Different approaches taken with indefinite distance kernels

Employing indefinite kernels

Bahlmann et al. [2002] made the first attempt to introduce a time series specific distance
measure within a kernel. They introduced the GDTW measure presented in equation (1) as
a kernel for character recognition with SVMs. This kernel coincides with the GDS kernel in
equation (7), in which the distance d is replaced by the DTW distance, i.e., GDSDTW . They
remarked that this kernel is not PSD since simple counter-examples can be found in which
the kernel matrix has negative eigenvalues. However, they obtained good classification results
and argued that for the UNIPEN2 dataset, most of the eigenvalues of the kernel matrix were
measured to be non-negative, concluding that somehow, in the given dataset, the proposed kernel
matrix is almost PSD. Following the same direction, Jeong et al. [2011] proposed a variant of
GDSDTW which employs the Weighted DTW (WDTW) measure in order to prevent distortions
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by outliers, while Kaya & Gündüz-Öüdücü [2015] also employed the GDS kernel with SVMs,
but instead of using the distance calculated by the DTW, they explored other distances derived
from different alignment methods of the series, such as Signal Alignment via Genetic Algorithm
(SAGA) [Kaya & Gündüz-Öüdücü, 2013]. Pree et al. [2014] proposed a quantitative comparison
of different time series similarity measures used either to construct kernels for SVMs or directly
for 1-NN classification, concluding that some of the measures benefit from being applied in an
SVM, while others do not. Note that in this last work, how they construct the kernel for each
distance measure is not exactly detailed.

There is another method that employs a distance based indefinite kernel but takes a com-
pletely different approach to construct the kernel: the idea of this kernel is to, rather than use
an existing distance measure, incorporate the concept of alignment between series into the ker-
nel function itself. Many elastic measures for time series deal with the notion of alignment of
series. The DTW distance, for instance, finds an optimal alignment between two time series such
that the Euclidean distance between the aligned series is minimized. Following the same idea, in
DTAK, Shimodaira et al. [2002] align two series so that their similarity is maximized. In other
words, their method finds an alignment between the series that maximizes a given similarity (de-
fined by the user), and this maximal similarity is used directly as a kernel. They give some good
properties of the proposed kernel but they remark that it is not PSD, since negative eigenvalues
can be found in the kernel matrices of DTAK [Cuturi, 2011].

On the other hand, Gudmundsson et al. [2008] employed the DTW based similarity measures
they proposed (shown in equantion (1)) directly as kernels. Their method achieved low classifica-
tion accuracies and the authors claimed that another way of introducing a distance into a SVM
is by using the distance features introduced in Section 2.2.1. They compared the performance
of DTW based distance features and DTW based distance kernels, concluding that distance fea-
tures outperform the distance kernels due to the indefiniteness of these second ones.

Dealing with the indefiniteness

There is a group of methods that attribute the poor performance of their kernel methods
to the indefiniteness, and propose some alternatives or solutions to overcome these limitations.
Jalalian & Chalup [2013], for instance, proposed the use of a special SVM called Potential Sup-
port Vector Machine (P-SVM) [Hochreiter & Obermayer, 2006] to overcome the shortcomings of
learning with indefinite kernels. They employed the GDSDTW kernel within this SVM classifier
which is able to handle kernel matrices that are neither positive definite nor square. They carried
out an extensive experimentation including a comparison of their method with the 1-NN classifier
and with the methods presented by Gudmundsson et al. [2008]. They conclude that their DTW
based P-SVM method significantly outperforms both distance features and indefinite distance
kernels, as well as the benchmark methods in 20 UCR datasets.

Regularization

Another approach that tries to overcome the use of indefinite kernels consists of regularizing
the indefinite kernel matrices to obtain PSD matrices. As previously mentioned, a matrix is
PSD if and only if all its eigenvalues are non-negative, and a kernel matrix therefore can be
regularized by clipping all the negative eigenvalues to zero, for instance. This technique has
been usually applied for non-temporal data [Chen et al. , 2009; Wu et al. , 2005a,b] but it is
rather unexplored in the domain of indefinite time series kernels. Chen et al. [2015b] proposed

2 On-line handwritten digit data set [Guyon et al. , 1994]
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a Kernel Sparse Representation based Classifier (SRC) [Zhang et al. , 2012] with some indefinite
time series kernels and applied spectrum regularization to the kernel matrices. In particular,
they employed the GDSDTW , GDSERP (Edit distance with Real Penalty (ERP) [Chen & Ng,
2004]) and GDSTWED (Time Warp Edit Distance (TWED) [Marteau, 2009]) kernels and their
method checks whether the kernel matrix obtained for a specific dataset is PSD. If it is not, the
corresponding kernel matrix is regularized using the spectrum clip approach.

Regarding this approach, it is also worth mentioning that in the work by Gudmundsson et al.
[2008], the authors point out that they tried to apply some regularization to the kernel ma-
trix subtracting the smallest eigenvalue from the diagonal but they found out that the method
achieved a considerably low performance. Additionally, the authors added that matrix regular-
ization can lead to matrices with large diagonal entries, which may result in overfitting [Weston
et al. , 2003].

Finally, the consistent treatment of training and new unlabeled instances is not straightfor-
ward and is also a matter to bear in mind [Chen et al. , 2009]. When new unlabeled instances
arrive, the kernel between them and the training set has to be computed. If the kernel matrix
corresponding to the training set has been regularized, the kernel matrix corresponding to the
unlabeled set should also be modified in a consistent way, which is not a trivial operation. There-
fore, the benefit of matrix regularization in the context of time series is an open question.

Analyzing the indefiniteness

The last group of methods do not focus on solving the problems of learning with indefinite
kernels but, instead, focus on a better understanding of these distance kernels and their indef-
initeness. Lei & Sun [2007] theoretically analyze the GDSDTW kernel, proving that it is not a
PSD kernel. This is because DTW is not a metric (it violates the triangle inequality [Casacuberta
et al. , 1987]) and non-metricity prevents definiteness [Haasdonk & Bahlmann, 2004]. That is,
if d is not metric, GDSd is not PSD. However, the contrary is not true and, hence, the metric
property of a distance measure is not a sufficient condition to guarantee a PSD kernel. In any
case, Zhang et al. [2010], hypothesized kernels based on metrics give rise to better performances
than kernels based on distance measures which are not metrics. As such, they define what they
called the Gaussian Elastic Metric Kernel (GEMK), a family of GDS kernels in which the dis-
tance d is replaced by an elastic measure which is also a metric. They employed GDSERP and
GDSTWED and stated that, even if the definiteness of these kernels is not guaranteed, they did
not observe any violations of their definiteness in their experimentation on 20 UCR datasets.
In fact, these kernels are shown to perform better than the GDSDTW and the Gaussian kernel
in those experiments. The authors attribute this to the fact that the proposed measures are
both elastic and obey metricity. In order to provide some information about the most common
distance measures applied in this context, table 4 shows a summary of properties of the main
distance measures employed in this review. In particular, we specify if a given distance measure
d is a metric or not, if it is an elastic measure or not, and if the corresponding GDSd is proven
to be PSD or not.

Table 4: Summary of distance properties used in GDS

Distance metric elastic GDSd is PSD

Euclidean ✓ × ✓

DTW × ✓ ×

ERP ✓ ✓ ×

TWED ✓ ✓ ×
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To sum up, there are some results that suggest a relationship between the metricity of the dis-
tance and the performance of the corresponding distance kernel. However, it is hard to investigate
the contribution of metricity in the accuracy since several factors take part in the classification
task. The definiteness of a distance kernel seems to be related to the metricity of given distance
-metric distances seem to lead to kernels that are closer to definiteness than those based on
non-metric distances-, and the definiteness of a kernel may directly affect on the accuracy. In
short, the relationship between metricity, definiteness and performance is not clear and is, thus,
an interesting future direction of research.

To conclude, a summary of the reviewed methods of Indefinite distance kernels can be found
in Table 5.

Table 5: Summary of indefinite kernel approaches

Authors Kernel Classifier Datasets

Employing indefinite kernels

Bahlmann et al. [2002] GDSDTW SVMs 1 (UNIPEN)

Jeong et al. [2011] GDSWDTW SVDD3, SVMs 20 UCR

Kaya & Gündüz-Öüdücü [2015] GDS + alignment based distances SVMs 40 UCR

Pree et al. [2014] Unespecified similarity based kernels SVMs 20 UCR

Shimodaira et al. [2002] DTAK SVMs ATR

Gudmundsson et al. [2008] NDTW, GDSDTW SVMs 20 UCR

Dealing with the indefiniteness

Jalalian & Chalup [2013] GDSDTW P-SVM 20 UCR

Regularization

Chen et al. [2015b] GDSDTW , GDSERP , GDSTWED KSRC4 16 UCR

Analyzing the indefiniteness

Lei & Sun [2007] GDSDTW SVMs 4 UCR

Zhang et al. [2010] GDSERP , GDSTWED SVMs 20 UCR

2.3.3 Definite distance kernels

We have included in this section those methods that construct distance kernels for time series
which are, by definition, PSD. First of all, we want to remark that there are other kernels for
time series in the literature that are PSD but have not been included in this review. We have
only incorporated those kernels based on time series distances and, in particular, those which
construct the kernel functions directly on the raw series. Conversely, the Fourier kernel [Rüping,
2001] computes the inner product of the Fourier expansion of two time series, and hence, does
not compute the kernel on the raw series but on the Fourier expansion of them. Another example
is the kernel by Gaidon et al. [2011] for action recognition, in which the kernel is constructed
on the auto-correlation of the series. There are also smoothing kernels that smooth the series
with different techniques and then define the kernel for those smoothed representations [Troncoso
et al. , 2015; Kumara et al. , 2008; Sivaramakrishnan & Bhattacharyya, 2004; Lu et al. , 2008].
On the contrary, we will focus on those that define a kernel directly on the raw series. Regarding
those included, all of them aim to introduce the concept of time elasticity directly within the
kernel function by means of a distance, and we can distinguish two main approaches: in the
first, the concept of the alignment between series is exploited, while in the second, the direct
construction of PSD kernels departing from a given distance measure is addressed.

4 Support Vector Data Descriptor [Hochreiter & Obermayer, 2006; Tax & Duin, 2004]
4 Kernel Sparse Representation based Classifiers [Zhang et al. , 2012]
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Xue et al. [2017] proposed the Altered Gaussian DTW (AGDTW) kernel, in which, first, the
alignment that minimizes the Euclidean distance between the series is found, as in DTW. For
each pair of time series TSi and TSj , once this alignment is found, the series are modified to
this alignment resulting in TSi

′ and TSj
′. Then, if S is the maximum length of both series, the

AGDTW kernel is defined as follows:

κAGDTW (TSi, TSj) =

S
∑

s=1

exp

(

−
||TSi

′
s − TSj

′
s
||2

σ2

)

Since AGDTW is, indeed, a sum of Gaussian kernels, they provide the proof of the definiteness
of the proposed kernel.

There is another family of methods that also exploits the concept of alignment but, instead
of considering just the optimal one, considers the sum of the scores obtained by all the possible
alignments between the two series. Cuturi & Vert [2007] claimed that two series can be considered
similar not only if they have one single good alignment, but rather if they have several good
alignments. They proposed the Global Alignment (GA) kernel that takes into consideration all
the alignments between the series and provide the proof of its positive definiteness under certain
mild conditions. It is worth mentioning that they obtain kernel matrices that are exceedingly
diagonally dominant, that is, that the values of the diagonal in the matrix are many orders of
magnitude larger than those out of the diagonal. Thus, they use the logarithm of the kernel
matrix because of possible numerical problems. That transformation makes the kernel indefinite
(even if it is not indefinite per se), so they apply some kernel regularization to turn all its
eigenvalues positive. However, since the kernel they obtain is PSD and it is because of the
logarithm transformation that it becomes indefinite, it has been included within this section.
In Cuturi [2011], the author elaborates on the GA kernels, give some theoretical insights, and
introduce an extension called Triangular Global Alignment (TGA) kernel, which is faster to
compute and also PSD.

There is another kernel that takes a similar approach. In their work about periodic time series
in astronomy, Wachman et al. [2009] investigate the similarity between just shifted time series.
In this way, they define a kernel that takes into consideration the contribution of all possible
alignments obtained by employing just time shifting:

Kshift(TSi, TSj) =
n
∑

s=1

eγ⟨TSi,TSj+s
⟩

where γ ≥ 0 is a user-defined constant. In this way, the kernel is defined by means of a sum of
inner products between TSi and all the possible shifted versions of TSj with a shift of s positions.
The authors provided the proof of the PSD of the proposed kernel.

On the other hand, there are methods that, instead of focusing on alignments, address the
construction of PSD kernels departing from a given distance measure. These methods can be
seen as refined versions of the GDS kernel in which the obtained kernel is PSD. Marteau &
Gibet [2010] elaborate on the indefiniteness of GDS kernels derived from elastic measures, even
when such measures are metrics. As previously mentioned, metricity is not a sufficient condition
to obtain PSD kernels. They postulated that elastic measures do not lead to PSD kernels due
to the presence of min or max operators in their definitions, and define a kernel where they
replaced the min or max operators by a sum (

∑

). In Marteau et al. [2012], these same authors
define what they called an elastic inner product, eip. Their goal was to embed the time series
into an inner product space that somehow generalizes the notion of the Euclidean space, but
retains the concept of elasticity. They provide proof of the existence of such a space and showed
that this eip is, indeed, a PSD kernel. Since any inner product induces a distance [Greub, 1975],
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they obtained a new elastic metric distance δeip that avoids the use of min or max operators.
They evaluated the obtained distance within a SVM by means of the GDSδeip kernel, in order to
compare the performance of δeip with the Euclidean and DTW measures. Their experimentation
showed that elastic inner products can bring a significant improvement in accuracy compared
to the Euclidean distance, but the GDSDTW kernel outperforms the proposed GDSδeip in the
majority of the datasets.

They extended their work in Marteau & Gibet [2014] and introduced the Recursive Edit
Distance Kernels (REDK), a method to construct PSD kernels departing from classical edit or
time-warp distances. The main procedure to obtain PSD kernels is, as in the previous method, to
replace the min or max operators by a sum. They provided the proof of the definiteness of these
kernels when some simple conditions are satisfied, which are weaker than those proposed in Cuturi
& Vert [2007] and are satisfied by any classical elastic distance defined by a recursive equation.
Note that, while in Marteau et al. [2012] the authors define an elastic distance and construct
PSD kernels with it, in Marteau & Gibet [2014] the authors present a method to construct a
PSD kernel departing from any existing elastic distance measure. As such, the REDK can be
seen as a refined version of the GDS kernel which leads to PSD kernels. In this manner, they
proposed the REDKDTW , REDKERP and REDKTWED methods and compare their performance
with the corresponding distance substitutions kernels GDSDTW , GDSERP and GDSTWED. An
interesting result they reported is that REDK methods seem to improve the performance of
non-metric measures in particular. That is, while the accuracies of REDKERP and REDKTWED

are slightly better than the accuracies of GDSERP and GDSTWED, in the case of DTW the
improvement is really significant. In fact, they presented some measures to quantify the deviation
from definiteness of a matrix and showed that while GDSERP and GDSTWED are almost definite,
GDSDTW is rather far from being definite. This makes us wonder if metricity implies proximity
to definiteness, and in addition, if accuracy is directly correlated to the definiteness of the kernel.

Furthermore, they explored the possible impact of the indefiniteness of the kernels on the accu-
racy by defining several measures to quantify the deviation from definiteness based on eigenvalue
analysis. If Dδ is a distance matrix, GDSDδ

is PSD if and only if Dδ is negative definite [Cortes
et al. , 2004], and Dδ is negative definite if it has a single positive eigenvalue. In this manner,
the authors studied the deviation from definiteness of some distance matrices, and stated that
when the distance matrix Dδ was far from being negative definite, the REDKδ outperforms the
GDSδ kernel in general, while when the matrix is close to negative definiteness, REDKδ and
GDSδ perform similarly.

Recently, Wu et al. [2018a] introduced another distance substitution kernel, called D2KE,
that addresses the construction of a family of PSD kernels departing from any distance measure.
It is not specific for time series but in their experimentation they include a kernel for time series
departing from the DTW distance measure. Their kernel employs a probability distribution over
random structured objects (time series in this case) and defines a kernel that takes into account
the distance from two series to the randomly sampled objects. In this manner, the authors point
out that the D2KE kernel can be interpreted as a soft version of the GDS kernel, which is
PSD. Their experimentation on four time series datasets showed that their D2KEDTW kernel
outperforms other distance based approaches such as 1-NN or GDSDTW both in accuracy and
computational time.

To conclude this section, a summary of the reviewed methods on Definite distance kernels
can be found in Table 6.
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Table 6: Summary of definite distance kernels

Authors Kernel Classifier Datasets

Xue et al. [2017] AGDTW KSRC, SVMs 4 UCR

Cuturi & Vert [2007] GA SVMs TI465

Cuturi [2011] TGA SVMs 5 UCI

Marteau et al. [2012] GDSδeip SVMs 20 UCR

Marteau & Gibet [2014] REDKDTW , REDKERP , REDKTWED SVMs 20 UCR

Wu et al. [2018a] D2KE SVMs 3 UCI + 1 own

Wachman et al. [2009] Kshift SVMs Astronomy

3 Computational cost

An important aspect that has not been addressed in depth when presenting the taxonomy is the
computational cost of the methods included. The time complexity of the classification methods,
in general, is dominated by the learning phase and depends on the size of the dataset from
which the model is learnt; in distance based classification, in addition to the size of the dataset
-understood as the number of instances-, the complexity of both the learning and prediction
phases also depends on the computational cost of the employed distance measure. At the same
time, the cost of the distance measure also highly depends on the lengths of the series we are
working with. In this way, many time series distances, especially the most commonly employed
measures (DTW, ERP, TWED...), are characterized by a quadratic complexity on the length
of the series, which results in methods which are very time consuming for cases in which the
length of the series is large. In this context, many of the methods that employ common time
series distance measures usually turn out to be too time consuming for real world applications.
Even if this is so, and even if some of the reviewed works experimentally evaluate the running
times of their methods or aim at speeding up their learning processes, most of them do not even
address this issue. Thereby, in this section, a brief overview of the complexity of distance based
TSC methods is provided in order to review the computational specificities of the methods in
each category of the taxonomy.

First of all, it is important to highlight that one of the most significant differences between
distance based and non-distance based classification methods (from the point of view of the com-
putational cost) is the time complexity of the prediction phase. In non-distance based methods,
normally, the learning phase depends on the size of the training dataset but, once the model
is learnt, the prediction of unlabeled instances does not depend on this dataset and is usually
independent from the size of the dataset. In distance based classification, on the contrary, both
the learning and the prediction stages computationally depend on the size of the dataset and on
the chosen distance measure, so they must both be taken into account. Thereby, from now, we
are going distinguish between the computational cost of the learning and the prediction phases
of the reviewed methods. Note that we are going to provide a general computational time anal-
ysis of the methods but there are exceptions which do not exactly fit into the computational
characterization that we provide for each category.

5 TI46 speech dataset [Liberman, 1993].
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In the case of the methods based on the 1-NN classifier, there is no learning phase and the
computational cost of prediction is determined by the size of the dataset and the complexity of
the distance measure (which, in turn, depends on the lengths of the series). For instance, the
distances DTW, ERP or TWED have a complexity of O(n2), where n is the length of the longest
time series, while the cost of the Euclidean distance is O(n). As such, the computational cost of
predicting an unlabeled time series using the DTW distance, for instance, is O(n2m) (where m

is the size of the training dataset), since the m distances between the unlabeled series and the
series in the dataset have to computed. The approach adopted by most researchers to accelerate
this process is to speed up the computation of the employed distance measure, for example by
using the fast lower bound for the DTW [Keogh & Ratanamahatana, 2005], which reduces the
complexity of the distance to O(n) [Esling & Agon, 2012].

Regarding the methods that exploit distances as features, it is important to note that the
computation of the distances and the learning/prediction of the classifier are two independent
steps with their corresponding computational costs. In the learning stage, first, the pairwise
distances between all the series in the dataset are computed -as a preprocessing step- to obtain
the distance features, which are then used as input for learning the classifier. We focus only on
the complexity of the first step, which is specific for distance based methods: the computational
cost of this step depends on the complexity of the distance measure, as well as on the size of the
training dataset. For instance, computing the DTW distance matrix of the m series in a dataset
has a complexity of O(n2m2). For prediction, the distances from the new unlabeled series to
all the series in the training dataset have to be computed also as a preprocessing step. Then,
the obtained distance features are introduced into the classifier to predict the unknown label.
As in the previous case, the distance computation depends on the complexity of the distance
measure and the size of the dataset. As such, an important drawback is that, for cases with
large datasets or high time consuming distances, the prediction can become unrealistically time
consuming. In view of this, several approaches have been taken to mitigate the effect of these
two factors: Janyalikit et al. [2016] employed the fast lower bound to speed up the computation
of the distances (from quadratic to linear), while Iwana et al. [2017] and Jain & Spiegel [2015]
address the issue of reducing the dimension of the distance matrix that is used as input to learn
the model. The former proposed using time series prototypes and used the distances to them
instead of calculating the entire distance matrix, while the latter applied PCA in order to reduce
its dimensionality.

In the shapelet based approaches, there are some preprocessing steps in order to obtain the
features before the application of the classifier. In the learning phase, first, a shapelet discovery
stage is carried out in which the best shapelets are learnt and, then, the pairwise distances between
the series in the dataset and the obtained shapelets are computed. The initially proposed shapelet
discovery technique takes O(n4m2), which turns out to be very time consuming for real world
applications. As such, over the years, many methods have been proposed to speed up this search
[He et al. , 2012; Mueen et al. , 2011; Rakthanmanon & Keogh, 2013; Ye & Keogh, 2011]. Once
the shapelets have been discovered, the computational cost of calculating the pairwise distances
between series and shapelets depends on the complexity of the distance, the number of series
and the number of shapelets. The distance between a series and a shapelet is computed using the
Euclidean distance most of the times -which has a complexity of O(n)-, so, once the shapelets are
learnt, the distance computation has a complexity of O(nms), where s is the number of shapelets.
This number is determined in the shapelet discovery process, which usually involves techniques
such as candidate pruning or shapelet clustering in order to reduce the amount of shapelets [Hills
et al. , 2014; Ye & Keogh, 2009]. In the prediction phase, the shapelet based methods require a
preprocessing step that involves a distance computation between the new unlabeled series and the
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learnt shapelets, which has O(ns) complexity in the case of the commonly employed Euclidean
distance.

For the embedding based methods, the pairwise distances between the series in the dataset
have to be computed before they are embedded into another space. In the learning, this process
has O(n2m2) complexity (with the DTW distance, for example), while the complexity of the em-
bedding process depends on the specific technique employed. Hayashi et al. [2005] and Mizuhara
et al. [2006], for instance, applied multidimensional scaling, pseudo-Euclidean space embedding,
and Euclidean space embedding by the Laplacian eigenmap technique, but they do not specify
the computational cost of these methods so it is hard to draw conclusions. Lei et al. [2017] and
Lods et al. [2017], employed gradient descent based techniques, and, while the formers do not
specify the complexity of the method, the latter points out that the complexity of the learning
phase is quite high. Then, the obtained features are introduced into a classifier. In prediction, the
pairwise distances between the unlabeled series and the training dataset have to be computed,
which has a complexity of O(n2m) for cases using DTW [Hayashi et al. , 2005; Mizuhara et al.
, 2006].

In the methods that employ distance kernels, there is no preprocessing step and the series
are directly used as input to the given kernel method. However, the distance kernels are derived
from time series distances, so the computational cost of the kernel methods is mainly dominated
by the computation of the kernel matrix (analogous to the distance matrix). In particular, this
computation depends on the complexity of the distance measure from which the kernel is derived
as in [Bahlmann et al. , 2002; Jeong et al. , 2011; Chen et al. , 2015b] methods. As such, the
distance substitution kernels derived from DTW, ERP, EDR or TWED are computationally more
expensive (O(n2m2)) than the Gaussian RBF kernel (O(nm2)), for instance. In the prediction
phase, the kernel matrix -computed in the learning phase- is extended with the pairwise values
between the unlabeled series and the series in the dataset, which has the same complexity as the
previous 1-NN or global distance features methods.

Apart from the distance substitution kernels, the review includes other distance kernels that
are specific for time series and whose computational cost has to be analysed more in depth.
The kernel proposed by Cuturi & Vert [2007] considers all the alignments instead of only the
optimal one and, thus, has a complexity of O(n2m2) in the learning learning phase and O(n2m)
in prediction phase. In view of this, the same authors proposed another version of the kernel
[Cuturi, 2011], which, by means of adding additional constraints on the allowed alignments,
is faster than the original kernel but equally accurate. In the definite kernel derived from an
elastic inner product proposed by Marteau et al. [2012], the computational cost is evaluated
experimentally and the authors show that the proposed elastic kernel has a complexity of O(n).
As such, the learning phase takes O(nm2), while the prediction phase O(nm). In other words,
they obtained an elastic kernel for time series that is characterized by a linear complexity instead
of the quadratic complexity derived from the traditional elastic distances, which is a significant
improvement.

From a general point of view, it is hard to draw accurate comparative results between the
methods presented due to their variants and the lack of experimental computational time re-
sults available in the published works. Wu et al. [2018b] carried out the most comprehensive
evaluation of the computational cost of several distance based TSC methods until now. They
first compare their DFRF distance features method with two embedding methods: the method
proposed by Mizuhara et al. [2006], and the one by Lods et al. [2017], concluding that their
method outperforms the other two, both in accuracy and in computational time. In addition, two
variants of their method are also evaluated on 16 UCR datasets against other baseline distance
based TSC approaches (1-NN with DTW, the GA kernel [Cuturi & Vert, 2007] and DFDTW

[Kate, 2015]); the first variant of their method outperforms the other approaches in accuracy but
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involves a high computational cost, while the second variant achieves competitive accuracies,
significantly reducing the required computational time.

To summarize, distance based TSC methods have usually quadratic complexity both in the
length of the series and in the size of the dataset, due to the common use of elastic measures.
In this context, if the series are long enough or the size of dataset is large, the methods can
become too time consuming for real world applications. As such, it is an important aspect to
be considered. Some of the methods take this into account and evaluate the running time of
their method but, in general, in our opinion, it has not been addressed enough. There are some
attempts to speed up the distance based methods [Janyalikit et al. , 2016; Iwana et al. , 2017;
Jain & Spiegel, 2015; Cuturi, 2011; Marteau et al. , 2012] but it is still a direction in which there
is considerable room for improvement. In addition, we think that a comprehensive comparison
of the running times of the methods would be a great contribution as future work.

4 Discussion and future work

In this paper, we have presented a review on distance based time series classification and have
included a taxonomy that categorizes all the discussed methods depending on how each approach
uses the given distance. We have seen that from the most general point of view, there are three
main approaches: those that directly employ the distance together with the 1-NN classifier,
those that use the distance to obtain a new feature representation of the series, and those which
construct kernels for time series departing from distance measure. The first approach has been
widely reviewed, so we refer the reader to [Wang et al. , 2013; Ding et al. , 2008; Serrà & Arcos,
2014] for more details about the discussion.

Regarding the methods that employ a distance to obtain a new feature representation of
the series, these approaches have been considerably studied for time series as it bridges the
gap between traditional classifiers (that expect a vector as input) and time series data, taking
advantage of the existing time series distances. In addition, some methods within this category
have outperformed existing time series benchmark classification methods [Kate, 2015]. Note
that distance features can be seen as a preprocessing step, where a new representation of the
series is found which is independent of the classifier. Depending on the specific problem, these
representations vary and can be more discriminative and appropriate than the original raw series
[Hills et al. , 2014]. As such, an interesting point that has yet to be addressed is to compare the
different transformations of the series in terms of how discriminative they are for classification.

Nevertheless, learning with the distance features can often become cumbersome depending
on the size of the training set and a dimensionality reduction technique must be applied in many
cases in order to lower the otherwise intractable computational cost. Some of the methods [Iwana
et al. , 2017; Jain & Spiegel, 2015] reduce the dimensionality of the distance matrix once it is
computed. Another direction focuses on time series prototype selection [Iwana et al. , 2017],
that is, selecting some representative time series in order to compute only the distances to them
instead of to the whole training set. It is worth mentioning that there has been some work done
in this context in other dissimilarity based learning problems [Pȩkalska et al. , 2006] but it is
almost unexplored in TSC. Due to the interpretability of the time series and, in particular, of
their prototypes, we believe that this is a promising future direction of research.

Another feature based method consists of embedding. The embedded distance features have
only been employed in combination with linear classifiers [Mizuhara et al. , 2006] or the tree
based XGBoost classifier [Lods et al. , 2017], which, in our opinion, do not take direct advantage
of the transformation. The main idea of the embedded features is that if the Euclidean distances
of the obtained features are computed, the original time series distances are approximated. In
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this way, we believe classifiers that compute Euclidean distances within the classification task
(such as the SVM with the RBF kernel, for instance) will profit better from this representation.
In addition, in the particular case of kernel methods, the use of embedded features can be seen
as a kind of regularization; the RBF kernel obtained from the embedded features would be a
definite kernel that approximates the GDS indefinite kernel.

As already pointed out, the third way of using a distance measure is trying to construct kernels
departing from these existing distances. However, these distances do not generally lead to PSD
kernels. Both distance features and distance kernel approaches are not specific for time series, and
some work has been done to compare the benefits of each approach in a general context. Chen
et al. [2009] mathematically studied the influence of distances features and distances kernels
within SVMs in a general framework. In time series classification, Gudmundsson et al. [2008]
and Jalalian & Chalup [2013] address the problem of experimentally evaluating whether it is
preferable to use distance features or distance kernels. Both works assert that the indefiniteness
of the distance kernels negatively affects the performance, although their proposals are restricted
to the DTW distance. It would be interesting to comprehensively compare these two approaches
taking into account different distances, kernels and classifiers in order to draw more general
conclusions.

The problem of the definiteness of a kernel has been widely addressed within the methods in
this review. Note that the definiteness of a kernel guarantees the mathematical foundations of
the kernel method and, therefore, it seems natural to think that definiteness and performance
are correlated, which is the assumption of almost all the methods. Some authors confirm that
the performance is still good and do not care about the indefiniteness of the kernels, while, in
general, the research focuses mainly on trying to somehow deal with the indefiniteness of the
kernels. Isolating the contribution of the definiteness of a kernel to the performance is rather
challenging due to the many other factors (optimization algorithm or the choice of the kernel
function) that also affect it. However, since the relation between definiteness and accuracy is
a general matter -not specific for time series, and in fact, not specific for distance kernels-, a
promising future direction would be to evaluate whether there exists or not a direct correlation
between them.

Within the methods that try to deal with the indefiniteness there are two main directions.
The first uses kernel based classifiers that can handle indefinite kernels. This approach is almost
unexplored in time series classification, since only the P-SVM by Jalalian & Chalup [2013] has
been applied, achieving very competitive results. Indeed, there are some studies on learning with
indefinite kernels from a general point of view [Ong et al. , 2004], and considering that indefinite
kernels appear often within TSC, this approach may be interesting future work.

The second approach, called kernel regularization, aims to adapt the indefinite kernel to be
PSD. As in the previous direction, this is also an almost unexplored approach for time series. Only
eigenvalue analysis has been applied with ambiguous results. Chen et al. [2015a] used eigenvalue
regularization techniques but they do not evaluate the regularization itself, while Gudmundsson
et al. [2008] argued that the method after kernel regularization achieves lower performance than
the method with the indefinite kernel. One of the main shortcomings of this specific regularization
is that it is data dependent, and, in addition, the consistent treatment of new test samples is
not straightforward. As previously mentioned, it is not clear whether regularization is helpful or
whether the new kernel becomes so different from the initial one that the information loss is too
big; this is an open question which has not been studied in detail.

As previously mentioned, another direction focuses on a better understanding of the indefi-
niteness of these kernels. Concerning the GDS kernels, which are distance kernels valid for any
type of data, the first attempt in the time series domain was to define kernels departing from dis-
tances that are metrics. Although it has been proven that the metric property does not guarantee
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the definiteness of the induced GDS kernel, Zhang et al. [2010] argued that the performance
of metric distance kernels is significantly better than those defined with non-metric distances,
suggesting that kernels with metric distances are closer to definiteness. In addition, Marteau &
Gibet [2014] conjecture that the reason of the indefiniteness is the presence of min or max opera-
tors in the recursive definition of time series distance measures. An interesting observation is that
these discussions arise from time series distances but are, regardless, general issues concerning
the characteristics of a distance measure and the derived GDS kernel. Even if the mentioned
works address the relation between metricity and definiteness, this connection is not yet clear.
It is also an interesting future research direction due to the generalizability of the problem and
the possible applications.

Cuturi & Vert [2007], by contrast, focused on the specific challenge of constructing ad-hoc
kernels for time series. As such, they found a direct way of constructing PSD kernels that take into
account the time elasticity by defining a kernel that does not consider just the optimal alignment
between two series but, instead, considers all the possible alignments. Moreover, given an elastic
distance measure defined by a recursive equation, Marteau [2009] address the construction of
distance based PSD kernels. Their kernel can be seen as a particular case of GDS kernel for elastic
measures that become PSD by replacing the min or max operators in the recursive definition
of the distance by a sum. By using this trick, they obtain kernels for time series that take into
account time elasticity and are also PSD. Their comprehensive experimentation shows that SVM
based approaches which use these kernels clearly outperform the 1-NN benchmark approaches,
even for the DTW distance. Furthermore, they reported that the REDK kernel brings significant
improvement in comparison with the GDS kernel, especially when the kernel matrices of the GDS
kernels are far from definiteness, which in their particular case corresponds to the non-metric
measures. However, they experimented with just two metric and one non-metric measures which
is not enough to draw strong conclusions.

It is also worth mentioning that many methods introduced in the taxonomy are not specific
for time series, but become specific when a time series distance is employed. In particular, only
the methods that are based on shapelets and the methods that construct kernels for time series
considering the concept of alignment between series are specific for time series. The rest of the
methods are general methods of distance based classification for any type of data. An interesting
observation is that questions or problems arising for time series can be extrapolated to a general
framework. In the same manner, some of the presented approaches are specific for some classifiers
(1-NN, kernel methods), while others can be used in combination with any classifier. Also note
that many of the methods, such as those which employ global distance features, embedded features
or indefinite distance kernels, are directly applicable in the case of multivariate or streaming
time series, provided a suitable distance for this kind of series is defined. The extension of these
methods for multivariate or streaming time series could be a possible future direction. It would
be interesting also to extend other methods, such as the shapelet based methods or the ad-hoc
definite kernels, to these kind of time series, since, in these cases, the adaptation of the methods
by itself would be a great contribution.

To conclude, note that in contrast to the number and variety of existing kernels for other
types of data, there are rather few benchmark kernels for time series in current literature [Shawe-
Taylor & Cristianini, 2004]. Therefore, we would like to highlight the value of these kernels for
time series, especially those that are able to deal with the temporal nature of the series and are
PSD.
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Rüping, Stefan. 2001. SVM Kernels for Time Series Analysis. Tech. rept.
Sakoe, Hiroaki, & Chiba, Seibi. 1978. Dynamic Programming Algorithm Optimization for Spoken
Word Recognition. IEEE Transactions on Acoustics, Speech and Signal Processing, 26(1), 43–
49.

Schölkopf, Bernhard. 2001. Learning with kernels: support vector machines, regularization, opti-
mization, and beyond.

Senin, Pavel, Lin, Jessica, Wang, Xing, Oates, Tim, Gandhi, Sunil, Boedihardjo, Arnold P,
Chen, Crystal, Frankenstein, Susan, & Lerner, Manfred. 2014. GrammarViz 2 . 0 : A Tool
for Grammar-Based Pattern Discovery in Time Series. Pages 468–472 of: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases.
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