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This is a review of the previous work conducted on the double-diffusive effect in viscosity stratified systems. Two
configurations are considered which are supposed to be stablein the context of single-component flows. The flow inthese
configurations is shown to be unstable in the presence of double-diffusive effect. A new mode of instability due to the
double-diffusive effect was found, and arich variety of instability patterns are observed in the direct numerical simulations

of such flows.
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I ntroduction

Double diffusive (DD) convection is a phenomenon
frequently observed in the oceans and in many
industrial situations (Govindarajan and Sahu, 2014).
The “double-diffusive flow” means the flow in the
presence of two species, which are diffusing at
different rates. In this review, the instabilities that
arise dueto the double-diffusive effectsin conditions
which are supposed to be stable, according to our
intuition, are discussed. The review is restricted to
viscosity-stratified flows in two configurations,
namely, core-annular/three-layer, and displacement
flows. It is to be noted that the DD phenomena in
density-dratified systems have been very well studied
in the literature (see for example Turner, 1974), and
thisisnot the subject of thisreview. However, abrief
overview of double-diffusive phenomenain density
stratified systemsis given below, which will help us
inunderstanding the underlying physicsin the present
systems.

Let usfirst imagine two situations: (i) a solid
cone placed with its base on the ground, (ii) then the

cone is inverted and placed with its nose on the
ground. It is immediately obvious that the first
situation is stable, while the second one is unstable.
Similarly, alighter fluid layer overlying aheavier fluid
layer is stable, whereas if we invert it, the system
becomes unstable. Thisisindeed true, except when
thereare multiple species (diffusing at different rates)
inthe system. Now let usimagine the ocean, wherea
layer of salty and warmer water lying above a layer
of fresh and cold water, or the opposite. Since heat
diffusesmuch faster than salt in water, the difference
in diffusivity creates instabilitiesin the flow, which
is discussed below.

Consider awarm salty layer of water whichlies
above acold, fresh layer, and with anet density less
than that of the bottom layer. This situation at first
glance is “stable’. However, since heat diffuses away
faster, we will soon have asalty layer lying above a
freshwater layer, at nearly the sametemperature. This
now is top-heavy and unstable, and fingers of salty
water will start descending into the fresh layer. The
length of these fingersincreases at the rate at which
heat diffusesaway. Thisisthefingering mode of DD
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instability. Now, let’s consider the reverse, e.g. when
ariver hasdisgorged cold fresh water into the ocean.
Suppose the original ocean water, which now lies
below the cold fresh water from the river, is salty,
warmer and denser than the river water. If ablob of
river water is displaced downwards into the ocean
water, being lighter than its surroundings, it will feel
a buoyancy force pushing it back up, namely a
stabilising effect. However, heat will diffuse away
fast, and by thetimetheriver water comesback toits
original place, it will be warmer than it was before,
and so lighter than its surroundings. It will therefore
overshoot its original position, and this happening
repeatedly means an oscillatory motion of increasing
amplitude. Thisistermed the oscillatory mode of DD
instability.

Recently, Govindarajan and Sahu (2014)
reviewed the research work conducted on the
instability in viscosity stratified flows of miscibleand
immissiblefluids. Inthe present review, wewill only
discuss the instabilities due to the double-diffusive
effect in viscosity stratified flows of two miscible
fluids. The density is assumed to be the same
everywhere in the flow. Two configurations are
considered: (i) core-annular/three-layer flow, shown
in Fig. 1(a), and (ii) pressure-driven displacement
flow of onefluid by another one, shownin Fig. 1(b).
Let us first discuss what happens in the single-
component (SC) systems, i.e when the viscosity
stratification is achieved by varying one species. In
the first configuration, it is well known that the
laminar flow becomes unstable if the highly viscous
fluid occupiesthe near wall/annular region, whereas
ahuge stabilization occursif the highly viscousfluid
occupies the core region of the channel or pipe
(Govindarajan, 2004; Joseph et al., 1997; Malik and
Hooper, 2005; Sahu et al., 2009a, 2007; Selvam et
al., 2007, 2009). In the second configuration, it is
well established (Chouke et al., 1959; Saffman and
Taylor, 1958; Sahu and Matar, 2010; Tan and Homsy,
1986) that if the displacing fluid isless viscous than
the displaced one the interface separating them
becomes unstable and fingering pattern (Saffman-
Taylor instability (Saffman and Taylor, 1958))
developsat theinterface. However, the situation when
a highly viscous fluid displaces a less viscous fluid

is generally stable. In this context, the review of
instabilities observed in porous mediaand Hele-Shaw
cells was conducted by Homsy (1987).

In the sections to come, we will discuss the
effects of double-diffusive phenomena on these
systems when we expect the flow to be stable in the
context of single component systems. The equations
governing the flow studied in this review are
discussed inthe next section. Theresults arediscussed
in section 3. Some concluding remarks are presented
in section 4.

Formulation

The schematics of theflow configurations considered
are shown in Fig. 1(a) and (b). In the core-annular/
three-layer flow (shown in Fig. 1(a)) it can be seen
that the fluids “1” and *2” occupy the core and annular
regions of the channel, respectively, and a mixed
region of thickness, g, separatesthefluids, wherethe
concentration of the speciesand viscosity of thefluid
variesgradualy. InFig. 1(b), theinitial configuration
of the pressure-driven displacement is shown. Here
fluid ‘2’ is occupying the entire channel initially,
which is being displaced by another fluid (fluid “1°)
injected at the inlet of the channel. These fluids
contain two differently diffusing species, say Sand
F, indifferent proportions, wherein Sand F represent
theslower and faster diffusing species. Thediffusivity
ratio 6 = D,/ where D, and D; are the diffusion
coefficientsof the dower and faster diffusing species,
thus é > 1. The concentrations of Sand F in fluids ‘1’
and ‘2’ are S, Fi and S, F, respectively, such that
the net viscosity of fluids ‘1" and ‘2 are u, and u,,
respectively. The viscosity ratio, mis defined as u,/
u,. We use the Cartesian coordinate system (X, )
where x and y denote the horizontal and vertical
coordinates, respectively. The channel walls shown
in Fig. 1(a) and (b) are assumed to be rigid and
impermeable.

We assume an exponential dependence of the
viscosity, u on the concentration of the species:

_ S-S F-F
u= ulexp{&(—sz_sl} Ry (Fz_ Flﬂ’ (1)
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Fig. 1: Schematic of the three-layer configuration with the fluids ‘1’ and ‘2’ occupying the core and annular regions, respectively. The two
fluids are separated by a mixed layer of uniform thickness g, with fluid ‘1’ located in the region —h<y<h. (b) Schematic diagram
showing the initial flow configuration of the displacement flow: initially fluid ‘2’ occupies the entire channel, which is being displaced

by fluid 1’ (injected at the inlet of the channel)

where R, (=(S~S) d(Inu)/dS andR (= (F,-F,) d
(In w)/dF) are the log-mobility ratios of the scalars S
and F, respectively. Thus, R+ R, < 0 represents
situation when the annular fluid is less viscous than
the core fluid in the core-annular flow (shown in
figure 1(a)). In displacement flow (shownin Fig. 1(b))
it represents situation where the viscosity decreases
as we move in the positive x direction in the mixed
layer. The following scaling is used in order to non-
dimensionize the governing equations:

2
(xw=HﬁJqu=Hmﬁm=%5a

_Q . _pQ®
(u,V)—H(u,\),p— H2 P, W = iy o
§= S_S-L,-;Z-F_Fl’

5-5' R-R

where Q denotes the total volume flow rate per unit
distance in the spanwise direction, u = (u, V) isthe
velocity vector, u and v being its componentsin the x
and y directions, respectively, o is the constant
density, t istime and p denotes pressure. The tildes
here designate dimensionless gquantities, but are
dropped for convenience in the dimensionless
governing equations, given by

V-u=0, (©)]

_au 1 T

— -Vu |=-Vp+—V- Vu+V

_at+u u} p+Re [uw(Vu+Vu')],
(4)

_aS 1 2

—+u-Vs|=—V

_at+“ S} Pe S )

[ of S o

—4+u-Vf |=—V-f,

_8t+u } Pe 6)

where Re= 0Q/u,, Pe=Q/D_ and Sc = Pe/Re are the
Reynolds number, the Péclet number and Schmidt
number, respectively.

Linear Stability Analysis of Core-Annular Flow

In order to conduct alinear stability analysisin core-
annular flow (shownin Fig. 1(a)) onewould assume
an equilibrium basic state for the flow, which may
correspond to asteady, parallel, fully-devel oped flow,
such that V =0, U isafunction of y aloneand P is
linear in x. The flow is also considered to be
symmetrical about the channel centerline. Thus, only
top half of the channel is considered as a
computational domain. Herethebasic state quantities
are designated by upper-case letters. The basic state
concentration of the species s, and f,, are chosen to
be fifth order polynomials in the mixed layer, such
that the concentrations are continuous up to the
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second derivativeaty=handy=h+q.
So=f0=0, OSySh,
6 .
9="fo=Y,ay™ h<y<h+q,
i-1 (7)
$=Ff=L h+g<y<]

where a, (i = 1, 6) are given by

a = is(esh2 +15hq+109%), a, = 302 (h+a?),
q q

30h

ag = —?(h"' a)(2h+q),

8, =— 22 (6h? + 6hq+ o),
q
15 6

35=_$(2h+ a) andaﬁ=$- )

Knowing the basic concentration profile of the
species(givenin Eq. (7))) and the viscosity variation

with s, and f, as u,= g(Fs0*Rf f0) | one could solve
the steady, fully-developed version of Eg. (4), i.e.,

Re(szi ay
dx / dy Ho dy ) ©)

Thisissubject to no-slip and no-flux conditions
at the wall and the centerline of the channel,
respectively, one could obtain the basic state vel ocity
profile, U(y). The nondimensional pressure gradient
dP/dxisfixed by using constant volumetric flow rate

1
condition given by J.Udy =1
0

Thelinear stability equations are derived using
the standard approach (see e.g. Schmid and
Henningson, 2001), by usinganormal modesanalysis
and splitting the flow variables into basic state
quantities and two-dimensional perturbations,
designated by a hat:

v, p,s, £)(xy,1) = (U (y),0,P,5(y),
fo(Y) + (@0, .8 Hiyyetereo, (10

Here 1=./-1, o and w (= oc) are the
wavenumber and frequency of the disturbance,
respectively, wherein c is the phase speed of the
disturbance. In case of temporal stability analysis, o
and @ are assumed to be real and complex,
respectively, whereas in case of spatio-temporal
stability analysis both the quantities are treated as
complex. It isto be noted that agiven modeisunstable
if @ >0, stableif @ <0and neutrally stableif @ =0.
In EQ. (10), the perturbation viscosity is given by:

~ OlUg. Odg 2
n =a—S§s+aT§f . The amplitude of the velocity

disturbances are then re-expressed in terms of a
streamfunction ((4,V)=(y’,—loy)); the prime
denotesdifferentiation with respect to y. Substitution
of Eq. (10) into Egs. (3)-(6), subtraction of the basic
state equations, subsequent linearization and
elimination of the pressure perturbation yields the
following linear stability equations (Sahu and
Govindargjan, 2011,2012), where the hat notation is
suppressed:

To: Re| (v ~0: 4 )(U ~0)~U"Yy |
= oy " — 203y " +aly ) + 2uply 7 — oy )

oy +ahy) +U (" + o ’p) + 200 +U ",
(1)
I P (U —¢)s—y ] = (s~ ?s), (12)

T PU —c)f —y f] =8 (f”—a?f). (13)

Solutions of these equations are obtained
subject to the boundary conditions

y=y’'=s=f=0 a y=1 and (24)
y'=y”=5=f"=0 a y=0. (15)

Egs. (11)-(15) constitute an eigenval ue problem,
which is solved using a Chebyshev spectral
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collocation method (Canuto et al., 1987) on a
stretched grid (Govindarajan, 2004). In order to
understand the convective and absol ute instabilities,
a spatio-temporal stability analysis (Briggs, 1964;
Sahu et al., 2009a; Sahu and Matar, 2011) is
conducted. The procedureis briefly outlined below.

The linearised differential operator represents
a dispersion relation in complex (w, o) space. The
response of the linearised system to an impulse
perturbation is given by the corresponding Green’s
function, G(x, v, t). For a particular mode, the long-
time behaviour of G along different ‘rays’ for which
x/tisconstant, isthen analyzed. In order to determine
whether the flow is convectively or absolutely
unstable, one first determines the so-called “absolute
frequency,” @, = (o), where o is the “absolute
wavenumber,” may be complex and satisfies

510)
a—a(%) =0. (16)

Thiscorrespondsto theray x/t = 0 or zero group
velocity. The “absolute growth rate” (imaginary part
of absolute frequency, «,;) measures disturbance
growth or decay along the x/t = O ray, i.e.,, in a
stationary reference frame. The flow is then said to
(i) convectively unstableif ay; <0, and (ii) absolutely
unstable if a,; > 0.

Direct Numerical Simulation of Displacement Flow

In case of displacement flows (shown in Fig. 1(b)),
Eqgs. (3)-(6) aresolved directly viaan in-housefinite-
volume approach in a staggered grid using the no-
dlip and no-penetration conditions at the walls; the
Neumann boundary conditionisapplied at the outlet.
The velocity profile at the inlet of the channel is
assumed to be fully-devel oped.

Numerical Approach

A staggered grid finite-volume approach is used in
order to solve the system of Egs. (3)-(6), in which
the scalar variables (the pressure and concentrations
of the species) are defined at the center of each cell
and the velocity components are defined at the cell
faces. The discretized governing equations aregiven

517
by:
u* _un ~ 1 B E n _1 n-1
AL pn+1/2{ [2}[(”) 2:7-[(U )jl}

where u” is the intermediate velocity, and # and £
denote the discrete convection and diffusion
operators, respectively. At = t"™1 — t" and the
superscript n signifies the discretized nth step.

The intermediate velocity u* isthen corrected
to (n + Dth timelevel.

— Vpn+ll2. (18)

Here, in order to achieve second-order accuracy
in the temporal discretization, the Adams-Bashforth
and the Crank-Nicolson methods are used for the
advective and second-order dissipation termsin Eq.
(4), respectively.

The pressure distribution is obtained from the
continuity equation at time step n + 1 using

v.u

(19)
The discretized diffusion equations of the
slower and faster diffusing species are

§ Sn+1 —25" 4+ ; Sn—l 1
2 _ yv2gntl
At ReSc (20)

—2V-(u"s")+ V- (u"1s" ),

§fn+1_2fn+1fn—l 5
— sz n+1
At ReSc (21)

—2V-(u" ")+ V. ),

respectively. In Egs. (20) and (21), the weighted
essentially non-oscillatory (WENO) and the central
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difference schemes are used to discretize the
advectivetermsand the diffusive terms of Egs. (5)-

(6).

The readers are aso refereed to our previous
papers (Mishraet al., 2012; Sahu and Govindarajan,
2011, 2012) for details of the numerical approach
used and the validation of the present solver.

Resultsand Discussion
Core-Annular/Three-Layer Flow

1. Single-Component System

For unstratified flow in channel, itiswell known that
the critical Reynolds number, Re_, (Re at which the
flow becomeslinearly unstable) is3848.13, whichis
defined based on the average vel ocity profile and half-
width of the channel (Drazin and Reid, 1985). The
most unstable modeinthiscaseisknown asTollmein-
Schlichting (TS) instability wave.

Before discussing the DD effect on viscosity
stratified systems, let us first discuss the linear
instability characteristics of single-component (SC)
flows(i.e. whentheviscosity stratificationisachieved
only due to one species) in a channel. Govindarajan
et al. (2001), and Ranganathan and Govindarajan
(2001) werethefirst to study the linear instability of
viscosity-stratified three-layer SC channel flow. A

representative result fromthe study of Govindaragjan
(2004) is shown in Fig. 2(a), where the critical
Reynolds number, Re,, isplotted versusthe Schmidt
number Scfor different values of viscosity ratio. Here
m > 1 (m < 1) represents a situation where the
viscosity of the fluid decreases (increases) in the
mixed region aswe move away from thewall. It can
be seenin Fig. 2(a) that for all values of mlessthan
1thecritical Reynolds number ishigher than 3848.13
(shown by red dotted linein Fig. 2(a)), which means
that the flow stabilizeswhen the annular fluid isless
viscousthan the corefluid. The opposite happensfor
al values of m greater than 1 confirming that if the
annular fluid is more viscous then the core one, the
flow destabilizes. Thisisdueto the fact that for m>
1 the basic state velocity profile has tendency to
becomeinflectional (i.e. after some positive value of
m, U”” undergoes a sign change at some y location)
and by Rayleigh theorem of inviscid instability
criterion (Rayleigh, 1880) the flow becomes
inviscidly unstable. On the other hand, the basic state
velocity profile becomes “fuller’ (moves away from
inflectional) for m < 1 and the flow becomes
progressively more stable with decreasing viscosity
ratio.

In Fig. 2(b) the regions of convective and
absolute instabilities in a three-layer channel flow
are shown for two values of Scin viscosity ratio and
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Fig. 2. Re, versus Sc (reproduced with permission from Govindarajan, 2004). (b) Stability diagram showing the regions of convective and
absolute instability in m-Re space for h = 0.3 and q = 0.05 (reproduced with permission from Sahu et al., 2009a). Thered dotted line

(for m=1) in panel (a) represents Re_ = 3848.11.
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Reynolds number space. In a convectively unstable
flow, the disturbance grows as it advect in the
downstream direction of the flow. In contrast, when
the flow isabsolutely unstabl e the disturbance grows
locally and spreads in both the upstream and
downstream of the flow, which makes the entire
regime unstable eventually. Sahu et al. (2009a) found
that the flow becomes absolutely unstable when the
annular fluid hasamuch higher viscosity ascompared
to that of the core fluid. A similar analysis was also
conducted by Selvam et al. (2009) for acore-annular
pipe flow. The demonstration to identify the nature
of instability is provided in the next section.

Thus in summary, the dogmata in three-layer
flows are:

° If u,> Uy, i.e.,, m>1theflow is more unstable
than the corresponding unstratified case.

e Ontheother hand, if u, < Uy, i.,em<1theflow
is more stable than the corresponding
unstratified case.

2. Double-Diffusive Effect

Now let us consider asystem, wheretheannular fluid
isless viscous than that of the core fluid (u, < u,) in
the presence of double-diffusive effect (when both
the slower and faster diffusing species contribute to
the viscosity stratification). As discussed above, in
the context of single component flow this

2
Satble _ 5

8

1

0.8 L L 1 L ] L 1 L |
: 800 1600 2400 3200 4000
Re

configuration is more stable than the unstratified
channel flow.

InFig. 3(a), the neutral stability boundaries (o
versus Re) for different values of 8 (which represents
thediffusivity ratio of the species) are plotted. These
curves provide the minimum values of the Reynolds
number for which the flow is linearly unstable, Re,
for different values of 8. The boundaries ontheright
hand side of Fig. 3(a) corresponds to the Tollmien-
Schlichting (TS) mode, whereas the ‘egg-shaped’
boundaries on the left hand side correspond to the
double-diffuse (DD) mode. As expected, it can be
seen that for 6 = 1, the flow is dominated by the TS
mode only. For 6> 1 a new (‘egg-shaped’) mode of
instability dueto the double-diffusive effect appears
at lower Reynolds numbers. It can also be observed
that increasing d increases this region of instability
due to DD effect and Re,_, decreases with increasing
the value of 6.

InFig. 3(a), the mechanism of theinstability is
broadly analogous to the fingering instability of
gravity-driven convection. In this case the net
stratification is stabilising (R, + R, < 0) according to
our intuition, with slower-diffusing species (S)
destabilizing (R, > 0) and faster-diffusing species (F)
stahilizing (R; < 0). Consider a small parcel of fluid
from the annular region displaced vertically into the
region of core fluid. The resulting perturbation in F

T T
d TS mode

4000

Re

cr
2000

Fig. 3: (a) Effect of & on theneutral stability curves. The parameter valuesare Sc =30, h=0.7,9=0.1, R;=3and R,=-3.1. Note that the DD
mode s not present for & = 1 (shown by red line). (b) The stability diagram showing the effect of R; on the critical Reynolds number,
Re, for R,.=1,h=0.7,q=0.1and Sc=50. Thisfigureis reproduced with permission from Sahu and Govindarajan (2011)
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will diffuse away faster, leaving the destabilizing
effect of S which causes the DD mode.

Now intuitively less obviousisthe existence of
DD instability, where F is destabilizing (R, > 0) and
Sstabilizing (R, < 0). Asimilar ‘egg-shaped’ unstable
mode (not shown) is al'so observed when R, >0 and
R,<0for 6> 1. This caseisin broad analogy with
the diffusive regime in DD convection. A displaced
parcel would now tend to return to its old position
but, due to the diffusing away meanwhile of the F
perturbation and the corresponding decrease in
viscosity, would tend to overshoot itsoriginal location
resulting in an oscillatory instability. Sahu and
Govindaragjan (2011) also demonstrates that an
overlap of thecritical layer, y, (wherethe value of U
equalsto the phase speed (/) of the most unstable
disturbance with the stratified layer is necessary for
the DD mode to be destabilized effectively. In most
of the cases considered here y_~ 0.7. The region of
the TS and DD modes are presented in Fig. 3(b) for
different values of thelog-mobility ratio of thefaster-
diffusing species, R..

It is also noted here that the thickness of
stratification region, g plays asignificant rolein the
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stability behaviour. When g =0, i.e., in the presence
of sharp interface (for Sc — <), another mode,
commonly known as Yih mode, appears in viscosity
stratified flows, which is unstable at any Reynolds
number (Yih, 1967). For miscibleflows (with finite
Schmidt number) increasing the thickness of
stratification region has a stabilizing influence (Ern
et al., 2003).

However, the stability characteristicsof the TS
and DD modes in the single-component and double-
diffusive cases qualitatively remain unchanged for
0.05 < q < 0.2 (Govindarajan, 2004; Sahu and
Govindargjan, 2011).

Sahu and Govindarajan (2012) also conducted
the spatio-temporal stability analysisdiscussed inthe
previous section. In order to know whether the flow
isconvectively or absol utely unstable theisocontours
of @ isplotted in complex o plane. The value of @,
at the saddle point, @, ; decides the nature of these
instabilities, as discussed in Section 2. In Fig. 4, we
compare the isocontours of . for aDD case and the
equivalent SC system. Theequivalent SC system has
the same average diffusivity asthe DD system. Thus
Dy = (D, + Dy)I2; so the equival ent Schmidt number

Fig. 4: Isocontoursof e, in thecomplex wavenumber planefor (a) aDD system (Re=200, Sc=50, §=10,h=0.6,q=0.1, R,=4and R;=-0.5),
(b) single component system equivalent to the double-diffusive system shown in panel (a) (Re= 200, Sc=9.091,h=0.6,q=0.1,R,=3.5
and R; = 0). Themaximum temporal growths, @ in each caseispositive. Thefrequency at thesaddle point, @, are 1.156 + 0.041i and
1.265 - 0.266i. This shows that flow is absolutely unstable in panel (a), but convectively unstable in panel (b). This figure is reproduced

with permission from Sahu and Govindar ajan (2012)
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of the SC flow isgiven by 2Sc/(1 + ). It can be seen
in Fig. 4 that the value of a; for the DD case is
positive, onthe other hand, for the equivalent SC case
it is negative. This result confirms that DD effect
makesthe flow absolutely unstablefor the parameter
valuesconsidered in generating Fig. 4. Followingthis
procedure, Sahu and Govindarajan (2012) also
identify the convectively and absolutely unstable
regimesin the presence of DD effect (shown in Fig.
5).

Displacement Flow

Now |et us consider the second configuration (shown
inFig. 1(b)), wherein onefluid is displaced by another
one. Severa earlier studies (Chouke et al., 1959;
Saffman and Taylor, 1958; Tan and Homy, 1986) have
shown that if the displacing fluid isless viscousthan
thedisplaced fluid, theinterface separating thefluids
becomes unstable and finger like structures develop
at theinterface. Recently, this phenomenon has been
numerically investigated by Sahu and co-workers
(Redapangu et al ., 2012, 2013; Sahu et al., 2009a,b)
in pressure-driven displacement flow of onefluid by
another intwo and three-dimensional channelsusing
finite-volume and lattice Boltzmann approaches.
They also found that if the invading fluid is less
viscous than the resident fluid, the flow becomes

7T T T T T
/
[ Absolutely unstable
R
-
— 0.5
A s gl
Convectively unstable
0+ I r =
e
i Stable o i
- et =
T T S e m
0 100 200 300 400 500 600

Re

Fig. 5: Sability diagrams showing the regions of convective and
absolute ingtabilitiesin R-Re space for Sc = 50, d=10,h =
0.6 and q=0.1. Thehorizontal line show thelocation where
R+ R; = 0. Above this line, the aver age viscosity increases
as we move from the centerline of the channel towardsthe
wall. Thisfigureisreproduced with permission from Sahu
and Govindarajan (2012)

unstable and Kelvin-Helmholtz type instabilities
appear at the interface separating the fluids. On the
other hand, when a highly viscous fluid displaces a
less viscous one, it was found to be stable.

Mishra et al. (2010) ware the first to conduct
numerical simulation of displacement flow in porous
media in the presence of two species diffusing at
different rates. Solving the Darcy eguation and the
diffusion equations for both the species, they found
that thefingering patterns appear in the mixed region
even when a highly viscous fluid displaces a less
viscous one (shown in Fig. 6). Thisis an interesting
result. However, in porous media the inertia is
neglected and the flow dynamics is controlled by
diffusion only.

Thuswe ask aquestion: whether asimilar type
of instability due to the double-diffusive effect are
present in systemswhereinertiaalso playsan equally
important role as that of diffusion.

Fig. 6: Displacement flow of alessviscousfluid (shown by blue) by
a highly viscous fluid (shown by red) in porous media at
different time (timeincreasesaswe go down). Thisfigureis
reproduced with permission from Mishra et al. (2010).
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0 0.25 0.5

Fig. 7: Spatio-temporal evolutions of the concentration field of the
scalar sat successivetimes (from top to bottom in each panel:
t =20, 50 and 75). The color-map is shown at the bottom.
Therest of the parameter valuesare Re = 100, Sc = 100, R,
=3and R, =-3.6. This figure is reproduced with permission
from Mishra et al. (2012)

Thedirect numerical simulation of Egs. (3)-(6)
was conducted for pressure-driven channel flow of a
lessviscousfluid by ahighly viscous one, injected at
the inlet of the channel, shown in Fig. 1(b). One of
the main result of Mishra et al. (2012) showing the
spatio-temporal eval uation of the concentration field
of the slower diffusing speciesispresented in Fig. 7.
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In this configuration at t = O the log-mobility ratios
are specified such that the viscosity decreases
monotonically as we move in the downstream
direction. As discussed above this is a classically
stable configuration in the context of single
component flows. As expected, it can be seen that
for 8 =1 (SC flow) afinger of ahighly viscousfluid
penetrates inside the channel, which forms a “pure-
Poiseuille-diffusive’ structure. However, for é = 10
it can be observed that the finger of the highly viscous
fluid becomes unstable forming a “cap-like’ structure
at the tip of the finger, which grows with time, and
also at later times the Kelvin-Helmholtz type
instabilities at the interface separating the fluids are
also apparent at the top and bottom part of thefinger.
In this study, the diffusion coefficients of the species
are considered to be constant, although diffusivity is
afunction of viscosity when viscosity ratio is high.
Recently Sahu (2013) studied the influence of
variable diffusivity (Stokes-Einstein relationship, 0
= C/u on the flow dynamics and found that bigger
‘cap-like’ instability appears in the variable-
diffusivity case.

In order to understand the mechanism, they also
plotted the axial variation of the transverse averaged

1
viscosity, w= J. udy for different times (shown in
0

Fig. 8(a) and (b)) for 6= 1 and 10. It can be observed
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Fig. 8: Axial variation of transverse averaged viscosity H :J‘Mdy' The panels (a), and (b) represent the results for § = 1 and & = 10,

0
respectively. Therest of the parameter values arethe same asthose used to generate Fig. 7. Thisfigureisreproduced with permission

from Mishra et al. (2012)
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inFig. 8(a) that for 6=1, & decreasesmonotonically

for al the times. This shows that at any time in the
flow we have highly viscous fluid displacing a less

viscousone. For é = 10it canbeseenthat [t varies

non-monotonically in the axial direction at the later
times. Thiscreates|ocal maximain theflow domain.
Thus athough in theinitial configuration we have a
highly viscousfluid displacing theless viscousfluid,
one could locally have an opposite situation (less
viscousfluid displacing the highly viscousone). This
resultant flow isan unstabl e configuration, which has
been discussed above. This is the main reason why
dueto the DD effect we get instability inaclassically
stable configuration in the context of single
component flows.

Concluding Remarks

Inthis paper, the previouswork on theinstability due
to double-diffusive effect is reviewed. Two
configurations, namely core-annular flow with the
less viscous fluid occupying the annular region, and
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