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Introduction

Double diffusive (DD) convection is a phenomenon 
frequently observed in the oceans and in many 
industrial situations (Govindarajan and Sahu, 2014). 
The “double-diffusive flow” means the flow in the
presence of two species, which are diffusing at 
different rates. In this review, the instabilities that 
arise due to the double-diffusive effects in conditions 
which are supposed to be stable, according to our 
intuition, are discussed. The review is restricted to 
viscosity-stratified flows in two configurations, 
namely, core-annular/three-layer, and displacement 
flows. It is to be noted that the DD phenomena in 
density-stratified systems have been very well studied 
in the literature (see for example Turner, 1974), and 
this is not the subject of this review. However, a brief 
overview of double-diffusive phenomena in density 
stratified systems is given below, which will help us 
in understanding the underlying physics in the present 
systems.

Let us first imagine two situations: (i) a solid 
cone placed with its base on the ground, (ii) then the

cone is inverted and placed with its nose on the 
ground. It  is immediately obvious that the first 
situation is stable, while the second one is unstable. 
Similarly, a lighter fluid layer overlying a heavier fluid 
layer is stable, whereas if we invert it, the system 
becomes unstable. This is indeed true, except when 
there are multiple species (diffusing at different rates) 
in the system. Now let us imagine the ocean, where a 
layer of salty and warmer water lying above a layer 
of fresh and cold water, or the opposite. Since heat 
diffuses much faster than salt in water, the difference 
in diffusivity creates instabilities in the flow, which 
is discussed below.

Consider a warm salty layer of water which lies 
above a cold, fresh layer, and with a net density less 
than that of the bottom layer. This situation at first 
glance is ‘stable’. However, since heat diffuses away
faster, we will soon have a salty layer lying above a 
fresh water layer, at nearly the same temperature. This 
now is top-heavy and unstable, and fingers of salty 
water will start descending into the fresh layer. The 
length of these fingers increases at the rate at which 
heat diffuses away. This is the fingering mode of DD
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instability. Now, let’s consider the reverse, e.g. when
a river has disgorged cold fresh water into the ocean.
Suppose the original ocean water, which now lies
below the cold fresh water from the river, is salty,
warmer and denser than the river water. If a blob of
river water is displaced downwards into the ocean
water, being lighter than its surroundings, it will feel
a buoyancy force pushing it back up, namely a
stabilising effect. However, heat will diffuse away
fast, and by the time the river water comes back to its
original place, it will be warmer than it was before,
and so lighter than its surroundings. It will therefore
overshoot its original position, and this happening
repeatedly means an oscillatory motion of increasing
amplitude. This is termed the oscillatory mode of DD
instability.

Recently, Govindarajan and Sahu (2014)
reviewed the research work conducted on the
instability in viscosity stratified flows of miscible and
immissible fluids. In the present review, we will only
discuss the instabilities due to the double-diffusive
effect in viscosity stratified flows of two miscible
fluids. The density is assumed to be the same
everywhere in the flow. Two configurations are
considered: (i) core-annular/three-layer flow, shown
in Fig. 1(a), and (ii) pressure-driven displacement
flow of one fluid by another one, shown in Fig. 1(b).
Let us first discuss what happens in the single-
component (SC) systems, i.e when the viscosity
stratification is achieved by varying one species. In
the first configuration, it is well known that the
laminar flow becomes unstable if the highly viscous
fluid occupies the near wall/annular region, whereas
a huge stabilization occurs if the highly viscous fluid
occupies the core region of the channel or pipe
(Govindarajan, 2004; Joseph et al., 1997; Malik and
Hooper, 2005; Sahu et al., 2009a, 2007; Selvam et
al., 2007, 2009). In the second configuration, it is
well established (Chouke et al., 1959; Saffman and
Taylor, 1958; Sahu and Matar, 2010; Tan and Homsy,
1986) that if the displacing fluid is less viscous than
the displaced one the interface separating them
becomes unstable and fingering pattern (Saffman-
Taylor instability (Saffman and Taylor, 1958))
develops at the interface. However, the situation when
a highly viscous fluid displaces a less viscous fluid

is generally stable. In this context, the review of
instabilities observed in porous media and Hele-Shaw
cells was conducted by Homsy (1987).

In the sections to come, we will discuss the
effects of double-diffusive phenomena on these
systems when we expect the flow to be stable in the
context of single component systems. The equations
governing the flow studied in this review are
discussed in the next section. The results are discussed
in section 3. Some concluding remarks are presented
in section 4.

Formulation

The schematics of the flow configurations considered
are shown in Fig. 1(a) and (b). In the core-annular/
three-layer flow (shown in Fig. 1(a)) it can be seen
that the fluids ‘1’ and ‘2’ occupy the core and annular
regions of the channel, respectively, and a mixed
region of thickness, q, separates the fluids, where the
concentration of the species and viscosity of the fluid
varies gradually. In Fig. 1(b), the initial configuration
of the pressure-driven displacement is shown. Here
fluid ‘2’ is occupying the entire channel initially,
which is being displaced by another fluid (fluid ‘1’)
injected at the inlet of the channel. These fluids
contain two differently diffusing species, say S and
F, in different proportions, wherein S and F represent
the slower and faster diffusing species. The diffusivity
ratio Df /Ds where Ds and Df are the diffusion
coefficients of the slower and faster diffusing species,
thus > 1. The concentrations of S and F in fluids ‘1’
and ‘2’ are S1, F1, and S2, F2, respectively, such that
the net viscosity of fluids ‘1’ and ‘2’ are 1 and 2,
respectively. The viscosity ratio, m is defined as 2/

1. We use the Cartesian coordinate system (x, y)
where x and y denote the horizontal and vertical
coordinates, respectively. The channel walls shown
in Fig. 1(a) and (b) are assumed to be rigid and
impermeable.

We assume an exponential dependence of the
viscosity,  on the concentration of the species:
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where Rs ( (S2– S1) d(ln )/dS) and Rf (  (F2– F1) d
(ln )/dF) are the log-mobility ratios of the scalars S
and F, respectively. Thus, Rs + Rf < 0 represents
situation when the annular fluid is less viscous than
the core fluid in the core-annular flow (shown in
figure 1(a)). In displacement flow (shown in Fig. 1(b))
it represents situation where the viscosity decreases
as we move in the positive x direction in the mixed
layer. The following scaling is used in order to non-
dimensionize the governing equations:
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where Q denotes the total volume flow rate per unit
distance in the spanwise direction, u (u, v) is the
velocity vector, u and v being its components in the x
and y directions, respectively,  is the constant
density, t is time and p denotes pressure. The tildes
here designate dimensionless quantities, but are
dropped for convenience in the dimensionless
governing equations, given by
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where Re Q/ 1, Pe Q/Ds and Sc Pe/Re are the
Reynolds number, the Péclet number and Schmidt
number, respectively.

Linear Stability Analysis of Core-Annular Flow

In order to conduct a linear stability analysis in core-
annular flow (shown in Fig. 1(a)) one would assume
an equilibrium basic state for the flow, which may
correspond to a steady, parallel, fully-developed flow,
such that V = 0, U is a function of y alone and P is
linear in x. The flow is also considered to be
symmetrical about the channel centerline. Thus, only
top half of the channel is considered as a
computational domain. Here the basic state quantities
are designated by upper-case letters. The basic state
concentration of the species s0 and f0 are chosen to
be fifth order polynomials in the mixed layer, such
that the concentrations are continuous up to the

Fig. 1: Schematic of the three-layer configuration with the fluids ‘1’ and ‘2’ occupying the core and annular regions, respectively. The two
fluids are separated by a mixed layer of uniform thickness q, with fluid ‘1’ located in the region –h<y<h. (b) Schematic diagram
showing the initial flow configuration of the displacement flow: initially fluid ‘2’ occupies the entire channel, which is being displaced
by fluid ‘1’ (injected at the inlet of the channel)

(a) (b)
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second derivative at y = h and y = h + q.
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where ai (i = 1, 6) are given by
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Knowing the basic concentration profile of the
species (given in Eq. (7))) and the viscosity variation

with s0 and f0 as 0 = ( )0 0R s R fs fe
 , one could solve

the steady, fully-developed version of Eq. (4), i.e.,

0Re .
dP d dU

dx dy dy

          (9)

This is subject to no-slip and no-flux conditions
at the wall and the centerline of the channel,
respectively, one could obtain the basic state velocity
profile, U(y). The nondimensional pressure gradient
dP/dx is fixed by using constant volumetric flow rate

condition given by

1

0

1Udy  .

The linear stability equations are derived using
the standard approach (see e.g. Schmid and
Henningson, 2001), by using a normal modes analysis
and splitting the flow variables into basic state
quantities and two-dimensional perturbations,
designated by a hat:
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Here 1 1  ,  and ( c) are the

wavenumber and frequency of the disturbance,
respectively, wherein c is the phase speed of the
disturbance. In case of temporal stability analysis,
and  are assumed to be real and complex,
respectively, whereas in case of spatio-temporal
stability analysis both the quantities are treated as
complex. It is to be noted that a given mode is unstable
if i > 0, stable if i < 0 and neutrally stable if i = 0.
In Eq. (10), the perturbation viscosity is given by:
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denotes differentiation with respect to y. Substitution
of Eq. (10) into Eqs. (3)-(6), subtraction of the basic
state equations, subsequent linearization and
elimination of the pressure perturbation yields the
following linear stability equations (Sahu and
Govindarajan, 2011,2012), where the hat notation is
suppressed:
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Solutions of these equations are obtained
subject to the boundary conditions

0 at 1, ands f y      (14)

0 at 0.s f y         (15)

Eqs. (11)-(15) constitute an eigenvalue problem,
which is solved using a Chebyshev spectral



A Review on Double-Diffusive Instability in Viscosity Stratified Flows 517

collocation method (Canuto et al., 1987) on a
stretched grid (Govindarajan, 2004). In order to
understand the convective and absolute instabilities,
a spatio-temporal stability analysis (Briggs, 1964;
Sahu et al., 2009a; Sahu and Matar, 2011) is
conducted. The procedure is briefly outlined below.

The linearised differential operator represents
a dispersion relation in complex ( , ) space. The
response of the linearised system to an impulse
perturbation is given by the corresponding Green’s
function, G(x, y, t). For a particular mode, the long-
time behaviour of G along different ‘rays’ for which
x/t is constant, is then analyzed. In order to determine
whether the flow is convectively or absolutely
unstable, one first determines the so-called “absolute
frequency,’’ 0 = ( 0), where 0 is the “absolute
wavenumber,” may be complex and satisfies

0( ) 0.
 

 
 (16)

This corresponds to the ray x/t = 0 or zero group
velocity. The “absolute growth rate” (imaginary part
of absolute frequency, 0,i) measures disturbance
growth or decay along the x/t = 0 ray, i.e., in a
stationary reference frame. The flow is then said to
(i) convectively unstable if 0,i < 0, and (ii) absolutely
unstable if 0,i > 0.

Direct Numerical Simulation of Displacement Flow

In case of displacement flows (shown in Fig. 1(b)),
Eqs. (3)-(6) are solved directly via an in-house finite-
volume approach in a staggered grid using the no-
slip and no-penetration conditions at the walls; the
Neumann boundary condition is applied at the outlet.
The velocity profile at the inlet of the channel is
assumed to be fully-developed.

Numerical Approach

A staggered grid finite-volume approach is used in
order to solve the system of Eqs. (3)-(6), in which
the scalar variables (the pressure and concentrations
of the species) are defined at the center of each cell
and the velocity components are defined at the cell
faces. The discretized governing equations are given

by:
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where u* is the intermediate velocity, and H and L
denote the discrete convection and diffusion
operators, respectively. t = tn+1 – tn and the
superscript n signifies the discretized nth step.

The intermediate velocity u* is then corrected
to (n + 1)th time level.
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Here, in order to achieve second-order accuracy
in the temporal discretization, the Adams-Bashforth
and the Crank-Nicolson methods are used for the
advective and second-order dissipation terms in Eq.
(4), respectively.

The pressure distribution is obtained from the
continuity equation at time step n + 1 using
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The discretized diffusion equations of the
slower and faster diffusing species are
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respectively. In Eqs. (20) and (21), the weighted
essentially non-oscillatory (WENO) and the central
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difference schemes are used to discretize the
advective terms and  the diffusive terms of Eqs. (5)-
(6).

The readers are also refereed to our previous
papers (Mishra et al., 2012; Sahu and Govindarajan,
2011, 2012) for details of the numerical approach
used and the validation of the present solver.

Results and Discussion

Core-Annular/Three-Layer Flow

1. Single-Component System

For unstratified flow in channel, it is well known that
the critical Reynolds number, Recr (Re at which the
flow becomes linearly unstable) is 3848.13, which is
defined based on the average velocity profile and half-
width of the channel (Drazin and Reid, 1985). The
most unstable mode in this case is known as Tollmein-
Schlichting (TS) instability wave.

Before discussing the DD effect on viscosity
stratified systems, let us first discuss the linear
instability characteristics of single-component (SC)
flows (i.e. when the viscosity stratification is achieved
only due to one species) in a channel. Govindarajan
et al. (2001), and Ranganathan and Govindarajan
(2001) were the first to study the linear instability of
viscosity-stratified three-layer SC channel flow. A

representative result from the study of Govindarajan
(2004) is shown in Fig. 2(a), where the critical
Reynolds number, Recr is plotted versus the Schmidt
number Sc for different values of viscosity ratio. Here
m > 1 (m < 1) represents a situation where the
viscosity of the fluid decreases (increases) in the
mixed region as we move away from the wall. It can
be seen in Fig. 2(a) that for all values of m less than
1 the critical Reynolds number is higher than 3848.13
(shown by red dotted line in Fig. 2(a)), which means
that the flow stabilizes when the annular fluid is less
viscous than the core fluid. The opposite happens for
all values of m greater than 1 confirming that if the
annular fluid is more viscous then the core one, the
flow destabilizes. This is due to the fact that for m >
1 the basic state velocity profile has tendency to
become inflectional (i.e. after some positive value of
m, U’’ undergoes a sign change at some y location)
and by Rayleigh theorem of inviscid instability
criterion (Rayleigh, 1880) the flow becomes
inviscidly unstable. On the other hand, the basic state
velocity profile becomes ‘fuller’ (moves away from
inflectional) for m < 1 and the flow becomes
progressively more stable with decreasing viscosity
ratio.

In Fig. 2(b) the regions of convective and
absolute instabilities in a three-layer channel flow
are shown for two values of Sc in viscosity ratio and

Fig. 2: Recr versus Sc (reproduced with permission from Govindarajan, 2004). (b) Stability diagram showing the regions of convective and
absolute instability in m-Re space for h = 0.3 and q = 0.05 (reproduced with permission from Sahu et al., 2009a). The red dotted line
(for m = 1) in panel (a) represents Recr = 3848.11.
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Reynolds number space. In a convectively unstable
flow, the disturbance grows as it advect in the
downstream direction of the flow. In contrast, when
the flow is absolutely unstable the disturbance grows
locally and spreads in both the upstream and
downstream of the flow, which makes the entire
regime unstable eventually. Sahu et al. (2009a) found
that the flow becomes absolutely unstable when the
annular fluid has a much higher viscosity as compared
to that of the core fluid. A similar analysis was also
conducted by Selvam et al. (2009) for a core-annular
pipe flow. The demonstration to identify the nature
of instability is provided in the next section.

Thus in summary, the dogmata in three-layer
flows are:

 If 2 > 1, i.e., m > 1 the flow is more unstable
than the corresponding unstratified case.

 On the other hand, if 2 < 1, i.e m < 1 the flow
is more stable than the corresponding
unstratified case.

2. Double-Diffusive Effect

Now let us consider a system, where the annular fluid
is less viscous than that of the core fluid ( 2 < 1) in
the presence of double-diffusive effect (when both
the slower and faster diffusing species contribute to
the viscosity stratification). As discussed above, in
the context of single component flow this

configuration is more stable than the unstratified
channel flow.

In Fig. 3(a), the neutral stability boundaries (
versus Re) for different values of  (which represents
the diffusivity ratio of the species) are plotted. These
curves provide the minimum values of the Reynolds
number for which the flow is linearly unstable, Recr
for different values of . The boundaries on the right
hand side of Fig. 3(a) corresponds to the Tollmien-
Schlichting (TS) mode, whereas the ‘egg-shaped’
boundaries on the left hand side correspond to the
double-diffuse (DD) mode. As expected, it can be
seen that for = 1, the flow is dominated by the TS
mode only. For > 1 a new (‘egg-shaped’) mode of
instability due to the double-diffusive effect appears
at lower Reynolds numbers. It can also be observed
that increasing  increases this region of instability
due to DD effect and Recr decreases with increasing
the value of .

In Fig. 3(a), the mechanism of the instability is
broadly analogous to the fingering instability of
gravity-driven convection. In this case the net
stratification is stabilising (Rs + Rf < 0) according to
our intuition, with slower-diffusing species (S)
destabilizing (Rs > 0) and faster-diffusing species (F)
stabilizing (Rf < 0). Consider a small parcel of fluid
from the annular region displaced vertically in to the
region of core fluid. The resulting perturbation in F

Fig. 3: (a) Effect of  on the neutral stability curves. The parameter values are Sc = 30, h = 0.7, q = 0.1, Rs = 3 and Rf = –3.1. Note that the DD
mode is not present for = 1 (shown by red line). (b) The stability diagram showing the effect of Rf on the critical Reynolds number,
Recr for Rs = 1, h =0.7, q = 0.1 and Sc = 50. This figure is reproduced with permission from Sahu and Govindarajan (2011)
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will diffuse away faster, leaving the destabilizing
effect of S, which causes the DD mode.

Now intuitively less obvious is the existence of
DD instability, where F is destabilizing (Rf > 0) and
S stabilizing (Rs < 0). A similar ‘egg-shaped’ unstable
mode (not shown) is also observed when Rf  > 0 and
Rs < 0 for > 1. This case is in broad analogy with
the diffusive regime in DD convection. A displaced
parcel would now tend to return to its old position
but, due to the diffusing away meanwhile of the F
perturbation and the corresponding decrease in
viscosity, would tend to overshoot its original location
resulting in an oscillatory instability. Sahu and
Govindarajan (2011) also demonstrates that an
overlap of the critical layer, yc (where the value of U
equals to the phase speed ( / ) of the most unstable
disturbance with the stratified layer is necessary for
the DD mode to be destabilized effectively. In most
of the cases considered here yc ~ 0.7. The region of
the TS and DD modes are presented in Fig. 3(b) for
different values of the log-mobility ratio of the faster-
diffusing species, Rf.

It is also noted here that the thickness of
stratification region, q plays a significant role in the

stability behaviour. When q = 0, i.e., in the presence
of sharp interface (for Sc ), another mode,
commonly known as Yih mode, appears in viscosity
stratified flows, which is unstable at any Reynolds
number (Yih, 1967).  For miscible flows (with finite
Schmidt number) increasing the thickness of
stratification region has a stabilizing influence (Ern
et al., 2003).

However, the stability characteristics of the TS
and DD modes in the single-component and double-
diffusive cases qualitatively remain unchanged for
0.05 < q < 0.2 (Govindarajan, 2004; Sahu and
Govindarajan, 2011).

Sahu and Govindarajan (2012) also conducted
the spatio-temporal stability analysis discussed in the
previous section. In order to know whether the flow
is convectively or absolutely unstable the isocontours
of i is plotted in complex  plane. The value of i
at the saddle point, 0,i decides the nature of these
instabilities, as discussed in Section 2. In Fig. 4, we
compare the isocontours of i for a DD case and the
equivalent SC system. The equivalent SC system has
the same average diffusivity as the DD system. Thus
DSC = (Ds + Df)/2; so the equivalent Schmidt number

Fig. 4: Isocontours of i in the complex wavenumber plane for (a) a DD system (Re = 200, Sc = 50, = 10, h = 0.6, q = 0.1, Rs = 4 and Rf = –0.5),
(b) single component system equivalent to the double-diffusive system shown in panel (a) (Re = 200, Sc = 9.091, h = 0.6, q = 0.1, Rs = 3.5
and Rf = 0). The maximum temporal growths, max in each case is positive. The frequency at the saddle point, 0 are 1.156 + 0.041i and
1.265 – 0.266i. This shows that flow is absolutely unstable in panel (a), but convectively unstable in panel (b). This figure is reproduced
with permission from Sahu and Govindarajan (2012)



A Review on Double-Diffusive Instability in Viscosity Stratified Flows 521

of the SC flow is given by 2Sc/(1 + ). It can be seen
in Fig. 4 that the value of 0,i for the DD case is
positive, on the other hand, for the equivalent SC case
it is negative. This result confirms that DD effect
makes the flow absolutely unstable for the parameter
values considered in generating Fig. 4. Following this
procedure, Sahu and Govindarajan (2012) also
identify the convectively and absolutely unstable
regimes in the presence of DD effect (shown in Fig.
5).

Displacement Flow

Now let us consider the second configuration (shown
in Fig. 1(b)), wherein one fluid is displaced by another
one. Several earlier studies (Chouke et al., 1959;
Saffman and Taylor, 1958; Tan and Homy, 1986) have
shown that if the displacing fluid is less viscous than
the displaced fluid, the interface separating the fluids
becomes unstable and finger like structures develop
at the interface. Recently, this phenomenon has been
numerically investigated by Sahu and co-workers
(Redapangu et al., 2012, 2013; Sahu et al., 2009a,b)
in pressure-driven displacement flow of one fluid by
another in two and three-dimensional channels using
finite-volume and lattice Boltzmann approaches.
They also found that if the invading fluid is less
viscous than the resident fluid, the flow becomes

unstable and Kelvin-Helmholtz type instabilities
appear at the interface separating the fluids. On the
other hand, when a highly viscous fluid displaces a
less viscous one, it was found to be stable.

Mishra et al. (2010) ware the first to conduct
numerical simulation of displacement flow in porous
media in the presence of two species diffusing at
different rates. Solving the Darcy equation and the
diffusion equations for both the species, they found
that the fingering patterns appear in the mixed region
even when a highly viscous fluid displaces a less
viscous one (shown in Fig. 6). This is an interesting
result. However, in porous media the inertia is
neglected and the flow dynamics is controlled by
diffusion only.

Thus we ask a question: whether a similar type
of instability due to the double-diffusive effect are
present in systems where inertia also plays an equally
important role as that of diffusion.

Fig. 5: Stability diagrams showing the regions of convective and
absolute instabilities in Rs-Re space for Sc = 50,  =10, h =
0.6 and q = 0.1. The horizontal line show the location where
Rs + Rf = 0. Above this line, the average viscosity increases
as we move from the centerline of the channel towards the
wall. This figure is reproduced with permission from Sahu
and Govindarajan (2012)

Fig. 6: Displacement flow of a less viscous fluid (shown by blue) by
a highly viscous fluid (shown by red) in porous media at
different time (time increases as we go down). This figure is
reproduced with permission from Mishra et al. (2010).
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The direct numerical simulation of Eqs. (3)-(6)
was conducted for pressure-driven channel flow of a
less viscous fluid by a highly viscous one, injected at
the inlet of the channel, shown in Fig. 1(b). One of
the main result of Mishra et al. (2012) showing the
spatio-temporal evaluation of the concentration field
of the slower diffusing species is presented in Fig. 7.

Fig. 7: Spatio-temporal evolutions of the concentration field of the
scalar s at successive times (from top to bottom in each panel:
t = 20, 50 and 75). The color-map is shown at the bottom.
The rest of the parameter values are Re = 100, Scs = 100, Rs

= 3 and Rf = –3.6. This figure is reproduced with permission
from Mishra et al. (2012)

Fig. 8: Axial variation of transverse averaged viscosity

1

0

.dy    The panels (a), and (b) represent the results for  = 1 and = 10,

respectively. The rest of the parameter values are the same as those used to generate Fig. 7. This figure is reproduced with permission

from Mishra et al. (2012)

In this configuration at t = 0 the log-mobility ratios
are specified such that the viscosity decreases
monotonically as we move in the downstream
direction. As discussed above this is a classically
stable configuration in the context of single
component flows. As expected, it can be seen that
for  = 1 (SC flow) a finger of a highly viscous fluid
penetrates inside the channel, which forms a ‘pure-
Poiseuille-diffusive’ structure. However, for  = 10
it can be observed that the finger of the highly viscous
fluid becomes unstable forming a ‘cap-like’ structure
at the tip of the finger, which grows with time, and
also at later times the Kelvin-Helmholtz type
instabilities at the interface separating the fluids are
also apparent at the top and bottom part of the finger.
In this study, the diffusion coefficients of the species
are considered to be constant, although diffusivity is
a function of viscosity when viscosity ratio is high.
Recently Sahu (2013) studied the influence of
variable diffusivity (Stokes-Einstein relationship, D
= C/  on the flow dynamics and found that bigger
‘cap-like’ instability appears in the variable-
diffusivity case.

In order to understand the mechanism, they also
plotted the axial variation of the transverse averaged

viscosity,

1

0

dy    for different times (shown in

Fig. 8(a) and (b)) for = 1 and 10. It can be observed
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in Fig. 8(a) that for = 1,   decreases monotonically

for all the times. This shows that at any time in the
flow we have highly viscous fluid displacing a less

viscous one. For  = 10 it can be seen that   varies

non-monotonically in the axial direction at the later
times. This creates local maxima in the flow domain.
Thus although in the initial configuration we have a
highly viscous fluid displacing the less viscous fluid,
one could locally have an opposite situation (less
viscous fluid displacing the highly viscous one). This
resultant flow is an unstable configuration, which has
been discussed above. This is the main reason why
due to the DD effect we get instability in a classically
stable configuration in the context of single
component flows.

Concluding Remarks

In this paper, the previous work on the instability due
to double-diffusive effect is reviewed. Two
configurations, namely core-annular flow with the
less viscous fluid occupying the annular region, and

pressure-driven flow of a less viscous fluid by a highly
viscous fluid in a channel are investigated. These flow
configurations are known to be stable in the context
of single-component flows, but becomes unstable in
the presence of double-diffusive effects. Since these
DD instabilities take the form of Saffman-Taylor
instabilities as suggested in Fig. 8(b), the dogma in
single-component flows are not fundamentally
relevant in this case.
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