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ABSTRACT Smart electric vehicles (EVs) are attractive because of their clean, zero-emission, low impact
on the environment whilst providing a safer and smoother riding experience. To provide the latter, driving
control requires appropriate systems and algorithms to optimize smart vehicle performance, maximize
vehicle stability and protection, minimize accident probability, heighten driving comfort, and optimize
transportation costs. Despite advancements in these areas, the realization of optimal smart EVs still requires
considerable effort. This paper reviews driving control systems and algorithms for smart EVs, including the
advanced driving assistant system, implementation of sensors, vehicle dynamics, and control algorithms.
The major contribution of this review is to identify promising work to assist researchers with the most
advanced trends in this area for prospective regulations.

INDEX TERMS Smart Electric Vehicles (EVs), Driving Control Systems (DCS), Advanced Driving
Assistance System (ADAS), Algorithms.

I. INTRODUCTION

Electric Vehicles (EV) show significant potential in the re-
duction of greenhouse gas (GHG) emissions [1] as well as of-
fering other significant advantages. Unlike internal combus-
tion engine vehicle, an EV operates each wheel using an in-
dividually mounted motor producing independent power out-
put. This feature offers greater power density, greater safety
stability, and improved dynamic efficiency [2]. Integration of
EV technology and automatic control methodologies creates
a smart EV possessing visual, auditory, olfactory, and tactile
functions [3] allowing it to react faster and potentially more
accurately than a human driver.

A smart EV is capable of intelligently identifying and
evaluating a vehicle’s running and driving condition [4]. The
smart EV can also use a control system to automatically
detect road conditions and receive road traffic guidance,
resulting in environmentally friendly driving, efficient traf-
fic flow, automated traffic condition monitoring, and safe
control under erratic driving conditions, all of which reduce
the likelihood and severity of traffic accidents. Yang et al.

[5] presents several advanced control systems with control
modules for traffic accident avoidance and minimisation. The
Advanced Driving Assistance System (ADAS)is a conve-
nient option to increase driving safety and includes control
mechanisms such as adaptive headlights, blind-spot monitor-
ing (BSM) [6], obstacles and accident Warning, fixed-lane
driving, automatic emergency braking, and environmental
driving comfort.

Figure 1 shows Driving Control Systems (DCS) and algo-
rithms for a smart EV. DCS encompasses control methods
and control modes based on ADAS [7], including Adaptive
Cruise Control (ACC) [8], Automatic Emergency Braking
System (AEBS) [9], Lane Departure Warning (LDW) [10],
[11], Lane Change Assist (LCA) [12], Lane Keeping Assist
(LKA) [13], Night Vision [14], Traffic Sign Recognition
(TSR) [15], Pedestrian Detection [16], Automatic Parking
[17], and Traction control [18]. Traffic flow parameters,
driver behavior, and driving conditions can be detected and
shared with vehicles within their vicinity. To share this in-
formation and increase the efficient communication between
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vehicles, vehicular ad hoc networks (VANETs) have been
introduced [19], [20]. Multiple VANET surveys referring to
security and privacy schemes have been developed in recent
years [19]. To establish these security concerns, the smart EV
requires some security mechanisms like Access Control [21].
The majority of those approaches are discussed in this review.
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FIGURE 1. Driving control systems and algorithms

The control systems and algorithms depend on the infor-
mation generated by relevant vehicle sensors to determine the
vehicle’s condition and position, the surroundings, and sev-
eral other factors. Elementary sensors include Vision sensors,
lidar, radar, Ultrasonic sensors, and Time of Flight (TOF).
ADAS, for example, utilizes ambient sensors such as camera,
radar, lidar, night vision, and ultrasonic sensors to track,
sense, and evaluate the vehicle’s position and surroundings
[22]. The system fuses sensor information from multiple
sensors to avoid the sensory drawbacks and inconsistencies
of each individual sensor [23].

This review also discusses several kinematic and dynamic
models used for longitudinal control and lateral control sys-
tems, which are the main control methods for smart EV.
Longitudinal control is of acceleration and braking; lateral
control is of the steering mechanism. Both are essential.
Researchers have established several techniques to control
longitudinal and lateral dynamics including Proportional In-
tegral Derivative (PID), Model Predictive Control (MPC),

Feed-forward, Pure-Pursuit, and Stanley [24]–[28].
The major aims of longitudinal control is to maintain a

comfortable distance from the vehicle in front, to maintain
a relatively constant velocity with minimum use of the brake,
and to apply the brakes as quickly as possible in emergency
situations. Thus, longitudinal control aids in accident preven-
tion by providing sufficient time to apply breaking. Lateral
control holds the vehicle in the middle of the lane and steers
it into an adjacent lane while ensuring good comfort for
passengers. Lateral control requires lane-holding, reversing,
lane changing, and avoiding obstacles which might emerge
in front of the vehicle. By implementing a lane departure
warning system and advanced steering control, automatic
steering will minimize road accidents [29].

Table 1 shows a comparison of the current study and
previous surveys on DCSs and vehicle perception sensors.
This article presents all of the DCSs and sensors for those
control systems in Table 1. These control systems require
control algorithms to provide control over all the previously
mentioned systems; sensor performance; and longitudinal,
lateral, and actuation systems [30]. Some of the popular
algorithms researched in recent decades for precise and ac-
curate driving control systems are: machine vision, machine
learning, and deep learning [31].

Advanced vehicle control systems are of significant in-
terest in the automobile industry–see Table 1 for a brief
summary. In [32], a substantial variety of research papers
have reviewed the use of deep learning techniques to control
a vehicle, since vehicle control systems and perception are
related. This paper focuses mainly on the control system as-
pect, offering a comparative analysis identifying the strength
and limitations of available deep learning methods. Research
challenges are also discussed in terms of computation, archi-
tecture selection, goal specification, generalization, verifica-
tion, validation, and safety.

Path tracking control focuses on lateral and longitudinal
vehicle control to follow a predetermined path or trajectory.
In [33], This paper discusses path tracking control in terms
of the primary vehicle model that is usually used, the control
methods that are typically used in path tracking control,
and the performance measures that are used to calculate
the controller’s output. A nonlinear vehicle model is used
to construct an adaptive geometric controller, which is then
validated with hardware-in-the-loop.

Many active and passive sensors (such as cameras, laser
sensors, radars, ultrasonic sensors, and GPS sensors) can now
be used in autonomous vehicles using various AI techniques.
In [34], the authors provide a comprehensive overview of
an artificially intelligent vehicle, including the various ap-
proaches used, such as neural networks and fuzzy logic, as
well as the various modules and their benefits and drawbacks.
The paper also discussed how to make an autonomous car
more stable by using multiple sensors and creating maps.

Despite the existence of a number of surveys, most con-
centrate only on a single aspect of the vehicle control system
[9], [35], [36] or a small number of aspects such as in [33],
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[34], in which the authors discussed only sensor operation,
path control and vehicle control systems. No review presents
a holistic approach of smart EV technology.

The current state-of-the-art methods for improving the
efficiency of smart EV systems in local area or urban vehicle
environments are reviewed in this article. Indicatively, it
discusses on recent research that employs machine learning
techniques for vehicle perception, localization, and actuation
control (i.e, vehicle lateral and longitudinal control). The
main goal is to provide a detailed overview of the most
effective machine learning and control techniques in the
fields of DCSs, sensor technologies, and vehicle control for
smart EV.

Smart EV technology is being gradually introduced into
the current vehicles with leading automotive companies de-
veloping various control systems and algorithms for the
advancement of autonomous vehicles. It is therefore timely
to review the driving control issues for smart EV, including
DCS and algorithms, to provide a survey, discussion, and
comparisons. This review may help in terms of developing
smart EV by surveying research that develops DCS, identifies
appropriate sensors for perception, realizes vehicle dynamics
control for vehicle actuation to improve the vehicle’s sta-
bility, and reduces vehicular accidents. It should be noted,
however, that there has recently been a significant increase
in research in the automatic control of smart vehicles we do
not pretend to have conducted a comprehensive review of
the widely accessible driving control systems and algorithms
in the literature–rather we have focused on presenting major
work.

The remainder of the review is organized as follows:
Section II describes the driving control systems. Section
III presents a description of the control system algorithms.
Section III(A) and III(B) respectively discuss perception and
localization algorithms, and control algorithms. Section IV
provides a summary and Section V concludes and presents
the future scope of DCS.

II. OVERVIEW OF SMART EV

EV are based on an electric propulsion system and all
power is based on electrical power, such as a battery, super-
capacitor. There are two basic classifications of EV: Full
Electric vehicle (FEV) and Hybrid Electric Vehicle (HEV).
The main advantage of EV, through its electric motor system,
is the high efficiency of electricity conversion. The driver
simply turns on the power by choosing "Forward" or "Re-
verse" and steps on the throttle [40].

EV utilise several types of electric motors for EVs. Motors
can be connected directly to the wheel shaft in order to
reduce transmission loss and increase control ability. Hub
motors can control each wheel independently in an all-wheel
drive system, which reduces energy loss. Either approach
can easily incorporate anti-lock braking and electronic brake
distribution, so EV can incorporate several types of control
systems such as traction control, brake control, and vehi-
cle stability control. The implementation of these control

methodologies can make EV a smart vehicle which can im-
plement several DCS and several types of sensor to provide
driving safety and driving comfort. Smart control systems
include ACC, AEBS, LDW, automatic park parking, and
several driving assistance systems [41].

Smart EVs also comprise of smart Battery Management
System (BMS). The BMS system enhances the safety and
reliability of batteries and reduces the stress due to charge and
discharge. The system would help to avoid high discharge
rates by preventing sudden current abruption. BMS also
prevents single cells from overstressing by equalizing charge
on all cells to extends battery pack life [42]. The BMS should
cover important features like thermal management, electrical
management, thermal management, safety management, and
communication, driving range calculation. Smart energy de-
mand management enhances parameters including the state
of charge, the state of health, and the state of life. Several
studies show that BMSs will be more efficient integrating on
chips and will have capabilities to accurately estimate driving
ranges and smart adapting to load changes for better power
delivery. BMSs will also support: (i) different and adaptive
charging protocols, (ii) any battery cell number, sizes, and
configurations, and (iii) vehicle to grid capabilities, enabling
charging transactions or booking charging slots [43].

The powertrain of the smart electric vehicle is a simpler
and more efficient system, comprising far fewer components,
which makes it more compact and convenient. It enhances
the efficiency of power transmission of the system. There are
multi-objective powertrain control strategies that accomplish
operational objectives like energy consumption minimization
or increasing battery life. The choice of a control system
is always subject to certain constraints. These approaches
acknowledge physical component properties, such as speed
restrictions or battery state of charge limits. The practical
implementation of these strategies considers driving com-
fort. So that large torque gradients, frequent gear changes,
start and stop intervals can be avoided. Modern powertrain
control systems include a large number of different control
approaches and combinations of these [44].

III. DRIVING CONTROL SYSTEMS (DCS)

The driving control system (DCS) determines control meth-
ods and control modes based on the ADAS [7] which, in
recent years, has received considerable interest from re-
searchers and the automotive sector.

A. ADAS

ADAS is a well-known term in the vehicle industry for
advanced technologies, the popularity of which as the most
prominent road safety system is increasing day by day.
ADAS takes precautions to avoid road collisions by provid-
ing supportive information on incoming traffic in a range of
circumstances [45]. Johnson et al. [46] notes that most vehi-
cle drivers are more likely to commit potentially dangerous
actions due to lack of attention. ADAS provides real-time
observation and auditory risk warnings to improve the overall
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attentiveness of the driver and to optimize road safety [47].
ADAS is considered to be a prime characteristic of control
and safety in modern vehicles and fundamental technology
for the emergence of the autonomous vehicle [48].

ADAS was originally vision-based and GPS-based, but
object detection and position measurement (radar, lidar, and
Ultrasonic sensor), as well as other sophisticated-sensing
technologies are increasingly incorporated [48]. By supply-
ing additional knowledge from the vehicle’s surrounding
environment, ADAS assists a driver in taking important
decisions. The systemic output of a number of ADAS appli-
cations depends on the combination of the driver’s behavior
and environmental data [49]. In order to gain a greater un-
derstanding of the applications and functionality of existing
state-of-the-art sensors, this paper reviews ADAS currently
available on the market. The following subsections review
ten control systems of ADAS for smart EV: ACC [8], AEBS
[9], LDW [10], [11], LKA [13], LCA [12], Night Vision [14],
TSR [15], Pedestrian Detection [16], Automatic Parking
[17], Traction control [18].

1) Adaptive Cruise control (ACC)

The ACC system for longitudinal monitoring of the vehicle
offers improved driving comfort and convenience. It enables
the cruise control option to function for prolonged periods,
even during the presence of other traffic. Since human failure
causes more than 90% of highway incidents [50], the ACC
system promises improved highway protection.

ACC can replace Conventional Cruise Control (CCC).
By automatically controlling the accelerator and the brake,
ACC regulates vehicle speed velocity and contributes to safe
driving with the least distance to the previous vehicle [51]
aided by a range sensor (such as radar, lidar, or vision sensor)
that measures the relative velocity and distance of the two
successive vehicles [51]. See Figure 2 An ACC-equipped

Keep safe 

distance
Previous 

Vehicle

Without Previous 

Vehicle

Maintain Certain 

velocity

FIGURE 2. Adaptive Cruise Control [51]

vehicle moves at a user-set velocity in the absence of any
preceding vehicle. The system operates, just like CCC, by
regulating the throttle position. In presence of a preceding

vehicle, ACC determines and predicts whether or not the fol-
lowing vehicle can still drive safely at the fixed speed. When
the preceding vehicle is slow or near, the ACC switches
the power from the fixed speed control to the fixed forward
velocity control by regulating both the throttle position and
the braking pedal position [18]. ACC also has an extension
system called Cooperative-ACC (CACC) which provides
vehicle-to-vehicle (V2V) connectivity. Highway developers
are interested in CACC as it has the potential of organizing
cooperating vehicles to provide opportunities to enhance
traffic efficiency [52].

In [53], the study demonstrated a practical process to allow
ACC-CACC implemented vehicles to follow a preceding
vehicle free of collisions. The work introduced various com-
bined ACC-CACC systems to achieve longitudinal vehicu-
lar movement with driver actions. The study also showed
through simulation that the suggested models were collision-
free under standard traffic conditions and most security sit-
uations, testing the models for various vehicle states and for
several conditions.

In [54], the authors presented an adaptive neuro-fuzzy
predictor based control approach for cooperative ACC. That
study also offered a preceding vehicle estimation system for
future state prediction of the previous vehicle in which the
system would predict the future state by employing the fuzzy
model Takagi-Sugeno, depending on the vehicle information
including sensor data of the previous vehicle state. It work
also comprised the previous vehicle control law achieved via
V2V communication.

Zhang et al. [55] presented a control strategy on car
following process for EV ACC. The analysis described the
control structure for the ACC system, which includes the
upper and the lower level controller. The upper controller,
which optimizes the power consumption by implementing
the model predictive control (MPC) process, contributes to
safe driving, vehicle monitoring and comfortable ride. The
lower controller is used to recover the energy during braking.

ACC has a number of types of control operations:

1) Speed Control: A standard ACC system can control the
speed of the car at the desired level using throttling
input. The upper and lower level controller constitute
the centralized longitudinal control system architecture
for the ACC. see figure 3 The upper level controller
measures the predictive acceleration of the supported
(host) vehicle and the lower level controller controls
the input actuators to monitor the preceding vehicle
[56].
The upper level control model is:

p′′(x) =
1

τs+ 1
p′′(xdes) (1)

where x denotes the vehicle’s longitudinal position as
determined by a reference line. p′′(x) defines the accel-
eration of the vehicle and p′′(xdes) defines the desired
acceleration of the vehicle according to the preceding
vehicle dynamic states. The upper-level controller con-
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FIGURE 3. Speed control system design

trol input is therefore the desired acceleration from the
MPC strategy [56]. It is assumed that the real velocity
of the car would track the required velocity with the
τ time constant which is ensured by the lower-level
controller.

2) Vehicle Following: Vehicle following is part of the
ACC’s steady-state operation. The system includes two
significant terms that must be satisfied including the
stability of the single vehicle and the stability of the
string.
a) Vehicle Stability: The stability of a single vehicle is
provided by following the process of spacing control.
In Figure 4, let the position of i th car be di, deter-
mined from the point of comparison. The i th vehicle’s
spacing error is then defined as δi= di − di−1 + xdes.
The preceding vehicle runs at a steady velocity if
the spacing error stabilizes to zero. The discrepancy
between the previous vehicle’s actual spacing and the
intended spacing is the result of this spacing error. The
spacing error should be negligible when the previous
vehicle accelerates or slows down [57], [58].
The required space is xdes and the required length
of the previous vehicle is xi−1. Vehicle speed is de-
noted by ḋi and the optimal spacing of xdes could
be selected. If the following condition is met, the
ACC control regulations enhance the safety of single
vehicles.

d̈i−1 −→ 0 =⇒ δi −→ 0 (2)

b) String Stability: The stability of the string of the
group is a feature of the ACC vehicle. When errors
propagate to the end of the group, the stability of
the string constrains the spacing errors from diverging
[60]. String stability describes the relationship of a
vehicle in a group.

In [61], authors investigated the problems of L2 string
stochastic stability analysis. It also introduced a new al-
gorithm for stabilizing Vehicular Network Systems (VNS).
Feng et al. [62] defined the stability of the string and the
applicable analytical techniques by which the appropriate

xi-1

di+1

di

di-1

FIGURE 4. ACC vehicles string [59]

features of string stability are obtained. The study addressed
current issues and opportunities for research in this area, such
as general topology string stability, lateral string stability,
primary disturbance string stability, and nonlinear systems.

Spacing Policies for ACC. The Spacing Policy is of prime
importance in an ACC system. The design of the ACC starts
with the identification of an acceptable spacing policy [63]
such that the design meets several criteria [59]:

• Individual Vehicle Stability is a fundamental prerequi-
site for the spacing policy and the principle of control
associated with it.

• A conjunction ACC controller which maintains the sta-
bility of the string is needed for the selected spacing
policy.

• The selected spacing policy should ensure the stability
of traffic flow.

• The spacing policy must allow a host vehicle to avoid
potential conflicts with the preceding vehicle.

• The spacing policy should have equivalent driving char-
acteristics to human driving habits to prevent driver and
passenger discomfort.

[59] discussed the primary spacing policies of the current
ACC and also observed the advantages and disadvantages of
the spacing policies with a comparison study. That survey
reviewed five types of spacing policies and investigated their
performances. These spacing policies cannot ensure stability,
comfort, and safety at a time. The future of ACC systems
demands the implementation of a coordination strategy and
includes a real-world road network scenario for traffic grids.

2) Advanced Emergency Braking System (AEBS)

Autonomous Emergency Braking (AEB), also known as
AEBS, is a road vehicle safety device. Sensors are used
by AEBS to track the presence of vehicles in front of it.
It also defines conditions such as an impending accident
with relative motion and distance between host and target
vehicles [64]. The system automatically applies emergency
braking to prevent or mitigate the impact of a collision on an
approaching vehicle or a pedestrian [65].

[66] presents the functional requirement of AEBS to avoid
collision with a pedestrian (AEB-P) and to ensure the pedes-
trian’s safety by determining TTC (Time To Collision) and to
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brake at a safe distance. This work presents a Fuzzy Neural
Network (FNN) controller for a braking function to avoid
collision with a pedestrian. The research also presented a PID
controller for vehicle speed reduction. The control strategy
efficiently distributes advanced warning and stopping periods
to reduce pedestrian collisions.

AEBS systems are known as percipient assistance systems
and uses ACC sensor technology to assist drivers in avoiding
rear-end collisions with the approaching vehicle [67]. AEBS
is divided into three types:

1) Forward Collision Warning Systems (FCW) monitor
forward motion to identify and warn of approaching
conflicts. Emergency warning signals are activated
when the driver fails to act on the conflict warning.

2) Collision Mitigation Braking Systems (CMBS) are
part of the FCW system. CMBS immediately deploys
maximum braking when the conflict is imminent and,
furthermore, tries to mitigate the effects of the crash.

3) Unlike the CMBS and FCW systems, the Collision
Avoidance System (CAS) attempts to prevent an ac-
cident by employing the brakes until the impact is
certain. The CMBS and FCW systems can prevent
collisions below a particular speed but can only at-
tenuate the effects of the crash during higher velocity
movements.

Maximum Road accidents take place due to insufficient, late,
or no application of brakes by drivers to avoid an collision.
The AEBS is designed to work in a variety of road conditions
[68]. When the driver fails to react on time, the AEB device
can use an adaptive algorithm to apply various levels of
pressure to the emergency brakes, based on speed, direction,
momentum, and other variables, to prevent or mitigate the
impact of the collision. Some models will also begin to
tighten the restraint system ready for impact [9].

In [69], the study presents a new AEBS nonlinear MPC
technique based on an algorithm with more reliable inte-
grated performance in reducing collision uncertainty and
riding convenience and energy efficiency improvisation of
an intelligent vehicle similar to the current individual AEBS.
The work also presents a hierarchical control structure for
decoupling and coordinating the system in order to increase
vehicle stability and comfort.

Coordination requires measurement of the distance be-
tween the host and the preceding vehicle and object, com-
monly employing a radar sensor placed behind the grille to
calculate the distance from an object using radar reflections.
Metallic substances such as cars partially reflect radar pulses
and the system measures the return time of the radar echo
by examining the Doppler shifts in reflections from moving
objects [70] which allows the device to calculate the moving
object’s speed. Long-range sensing is also possible using
radar [71]. Some of the devices have a sensor module to
capture images in addition to radar tracking.

[72] presents a vehicle recognition technique based on
the information of radar and camera sensors for AEBS.

The commercial radar identifies the vehicles and road in-
frastructure and provides improved radar detection of the
nearest preceding vehicle on the road. The work discussed a
vehicle identification method for improvised detection based
on structure and acceleration characteristics.

[73] provides an improved AEBS with a potential field
(PF) risk management approach that limits nearby incidents.
In this process, the host vehicle produces the desired degree
of braking actuation, in accordance with the risk measure-
ment, that allows the vehicle to stop in time. The research
also showed the efficient implementation of AEBS and PF,
which aids the vehicle to moderate the effects of a impact
and assists in providing a safe distance from the obstruction
in front.

AEBS is bringing positive changes in collision avoidance
as an ADAS that helps prevent and mitigate crashes. With
continuopus improvement in capability, studies anticipate
that autonomous steering may prevent the effects of severe
head-on collisions and "run-off-road" strikes in the future,
resulting in lower road user deaths.

3) Lane Departure Warning (LDW)

The LDW system [11] provides warning for drivers when
the vehicle unintentionally leaves its present lane. During
the process, the system follows lane markings with forward-
looking vision systems, defining the area within the current
route, providing appropriate warnings [10]. Lane detection
is an essential component of LDW. [36] provides a detailed
description of some of the vision-based lane detection and de-
parture warning systems and highlighted the problem of lane
detection under different complex environmental conditions.

[11] presents an improvised novel LDWS model for image
processing, lane detection, and lane departure recognition.
The algorithm retains necessary portions of the road lane
and removes useless details during the image processing
stage, which minimizes the possibility of false warnings
caused by false lane detection. [74] presents Time-to-lane-
change (TLC) and Personalize driver model (PDM) methods
to reduce the false warning rate of LDR systems.

The computer vision based LDW system consists essen-
tially of a camera module, video recording device, computer
CPU, warning module, monitor facilities and several support-
ing items [75]. Tan et al. [76] presents a vision-based LDW
system with Deep Fourier Neural Network (DFNN) to assist
in lane departure prediction using an image processing unit
for making lane-departure decisions. For this purpose, the
system utilizes a camera and video storage device for a high-
speed running vehicle to provide photos of the road. The
image processing segment produces digital photos in order
to develop an understanding of left and right lanes in real
environments. If the car diverges or tends to diverge from the
initial lane, the device will transmit a warning message to
the display and alarm system. This warning would signal the
driver to take a different direction [11], [77].
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4) Lane Keeping Assist (LKA)

LKA, also known as lane departure prevention (LDP), is a
type of ADAS as it aims to avoid unintentional lane depar-
tures [13]. Numerous LKA model approaches are proposed
by the use of various types of actuators, such as electrical
power steering, automatic braking, and hybrid solutions.

Hu et al. [78] addresses an integrated control method for
LKA which also offers an improved Sliding mode control
(SMC) for rollover prevention during the lane-keeping oper-
ation. Modern advancements in LKA also involve learning-
based design approaches [74], [76] and dataset-based assess-
ment and testing procedures [79]. Bian et al. [80] present an
advanced LKA system utilizing self-learning MPC methods
and also present two switchable control function assistance
those are LDP function and lane-keeping co-pilot function.

Figure 5 provides a suggested LKA system structure which
focuses on five sections [80]:

HMI

Decision-

making  

strategy

LKAS  

controller 

Surrounding sensing 

and vehicle 

actuation 

Road 

tracking 

system

FIGURE 5. System structure for LKA [80]

The surrounding sensing and vehicle actuation section
collects environmental data from on-board sensors and dig-
ital maps and also obtains the speed, steering angle, and
lateral acceleration of the vehicle. The Human-machine in-
terface (HMI) section assists the driver in selecting the initial
assistance mode which implement different strategies and
controller algorithms. The decision-making strategy section
makes a decision if it is needed to provide assistance con-
trol. The decision-making strategy module commands the
vehicle’s LKA controller. The road tracking system section
understands the dynamics of the vehicle relative to the road
[80].

5) Lane Change Assist (LCA)

Lane change is a dynamic process which simplifies the
driving environment for the driver by allowing adjustable
driving behavior. Zhu et al. [81] offers a personalized LCA
framework for vehicles combined with a recognition strategy
for driver actions. The framework utilizes a neural network
of back-propagation (BP) optimized for driver behavior by a
particle swarm optimization (PSO) algorithm. The driver’s
actions are stimulated with information obtained from the
surroundings (including vehicle velocity, inter-vehicle space,
and lane lines) essential for the integral monitoring of longi-
tudinal and lateral movements of the vehicle [12].

The LCA system is a lateral control mode that engages
the steering assistance system (SAS). [82] approaches a pre-

dictive control mode implementation for SAS through both
Active Front Steering (AFS) and Electric Power Assisted
Steering (EPAS) systems. The system also utilizes a model-
predictive controller (MPC) to follow the intended lateral
path, maintaining the vehicle on track and improving lateral
stability. The LCA system employs short-range radar sensors
for improvised blind-spot detection [83].

LCA facilitates maneuverability of lane-change during ex-
ecution. The system alerts the driver in a hazardous situation
by scanning the neighboring lanes for vehicles in two broad
ways:

1) Blind Spot Monitoring (BSM) devices detect the host
driver’s blind spots for the presence of an approaching
vehicle and then propagates warning alerts to prevent
collisions. Cameras and radar systems are used by the
device to protect areas laterally and behind the side
mirrors. [6], as illustrated in the Figure 6. [84] presents
an improved BSM system using radar and camera
sensor on an IoT (Internet of Thing) based vehicle.

Blind Spot

FIGURE 6. Blind spot area detection

2) Lane Change Warning (LCW) is equivalent to Blind
Spot Monitoring (BSM). However, LCW can also help
with the traffic detection technique from behind. It
incorporates the host vehicle’s adjacent lanes from
behind up to a predefined limit [10]. For tracking, the
LCW system often makes use of a radar system. It also
sends out warning signals if a potentially dangerous
situation is observed [6].

Figure 7 depicts the entire design of the LCA scheme
based on the proposed approach. This strategy includes two
parts, one being the relative motion estimator and the other
is the supervisor. To estimate and re-examine the data, the
system employs an Extended Kalman Filter (EKF) as an
estimator. The estimator deals with relative motion in the
adjoining lane connecting the host vehicle and the approach-
ing vehicle. The system includes the supervisor to evaluate
protection measures and estimate essential dynamics for lane
change situations. The supervisor analyzed vehicle kinemat-
ics in both the longitudinal and lateral aspects. The analysis
defines the initialization conditions of the LCA system. Then
the supervisor will evaluate the safety measures and calcu-
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late an applicable longitudinal and lateral acceleration. The
calculation is necessary for collision prevention between the
host and threatening vehicle in adjoining paths [85].

Relative Motion 
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Measurement 

Update

Time Update

Safety 

assessment

Desired 

Dynamics

Longitudinal 

Acceleration
Vehicle motion

Camera

Radar Lateral 

Acceleration

FIGURE 7. The overall design of the LCA system [85]

6) Night Vision

The Automotive night vision scheme uses the infrared spec-
trum to provide vision beyond the scope of the vehicle’s
headlights using a thermographic camera to improve the
vision of a driver with an additional display in darkness or
bad weather. This system uses image recognition algorithms
to issue warnings whenever there are any pedestrians and an-
imals in the path of the vehicle [14]. A comparative analysis
was performed in [86] using a multi-resolution image fusion
algorithm for night vision system enhancement.

The primary functions of the night vision system are
pedestrian detection and crash warning, image view, and
audio warning. The pedestrian detection and collision warn-
ing utilises image processing, called a pedestrian detection
algorithm, to analyze pedestrian patterns to accurately detect
pedestrian detection of adults, children, and animals [87]
[88].

Image display is an essential function of pedestrian de-
tection. Symbols are used for detection and warning: each
time a pedestrian is detected, a yellow box symbol appears
on screen around the figure; a warning symbol is placed in
the upper part of the image when a pedestrian is detected in
the estimated collision area; after which the warning symbol
begins to flash when impact is imminent.

7) Traffic Sign Recognition (TSR)

As part of ADAS, TSR enables a vehicle to identify and
classify traffic signs (such as speed limits or children or
turn ahead) with image processing techniques applied to
camera data. Hatolkar et al. [89] offer a TSR system that
employs pre-processing methods and a fuzzy classification
module based on a Convolutional Neural Network (CNN) to
improve image frame quality. Detection range and accuracy
vary with the properties of the camera, and the algorithm
[90]. A good number of automotive suppliers have developed
this technology over time using key detection techniques that
are color-based, shape-based, and learning-based [15].

Image pre-processing is an essential part of TSR in order to
prepare the image for detection by eliminating low-frequency
ambient noise, simplifying the amplitude of individual par-
ticle images, removing reflections, and masking segments
of images. The following section describes some techniques
utilised in image pre-processing [90].

Shape Matching Based Identification: The general con-
cept for shape matching based identification is to use color
characteristics to detect the desired object, which accelerates
detection as it doesn’t require time-consuming processes
such as those used by model-based classifiers. The features
of the detected object are then filtered and analyzed and
the appropriate traffic sign is chosen on the basis of shape
matching [91].

In [92] presents a CNN for TSR that includes both text
and symbol-based signs. [93] also offers the LeNet-5 CNN
architecture that helps to recognize traffic signs through
training. These machine learning-based methods play a vital
role in automatic TSR.

8) Pedestrian Detection

The Pedestrian Detection system detects pedestrians and esti-
mates their risk. The PDS is an integral part of the AEBS sys-
tem which also applies full braking to counteract or moderate
possible collision with a pedestrian. This system generally
utilizes a radar-fused vision system to detect and categorize
objects to determine whether a pedestrian is present [94].
Various research shows that lidar-based systems are also
useful for pedestrian detection [16], but lidars are not broadly
used due to a shortage of those devices in the market. Night
vision systems can also be beneficial for pedestrian detection
in low-light conditions [14].

Extract 

Descriptive 

Features of 

pedestrian 

Classifier 

Detection

Input 

Image

Desired

Output

FIGURE 8. Pedestrian Detection Process

Traditional pedestrian detection methods are based on arti-
ficial feature extraction, which extract the main features that
describe pedestrians and then use them to form instructions
for classifiers to discriminate between pedestrians and other
structures, therefore fulfilling the goal of pedestrian detection
[95]. Figure 8 shows the procedure of pedestrian detection.

In [96], pedestrian detection systems are analyzed depend-
ing on their area of use, acquisition techniques, computer
vision methods, and classification techniques. The paper also
discussed Deep Learning methodologies, including CNNs
for pedestrian detection and tracking. The integration of Deep
Learning with classical Machine Learning models is the best
way of high precision and simple calculation for pedestrian
detection.

In [97], [98] and [95], a pedestrian detection system is
presented based on deep learning that Faster R-CNN obtains
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competitive output through multiple training on general ob-
ject detection. The authors also proposed the Caltech and city
persons method which collect data of city pedestrians. The
CityPersons dataset is based on the data from Cityscapes to
provide the pedestrian detection group with a new dataset
of importance. This algorithm plays an important role in
pedestrian detection.

9) Automatic Parking

Automated parking assistance is needed to reduce the like-
lihood of frequent vehicle park collisions. The initial park-
ing assist system assists the driver during parallel parking
chores by utilizing beeping warning noises generated by
side-mounted ultrasonic sensors that analyze the size of the
parking space. It notifies the driver if the parking spot is broad
enough and if the move is possible. It uses ultrasonic sensors
on both the front and back of the host vehicle to determine
the distance between it and other vehicles or obstacles. Some
parking assistance systems additionally use backward-facing
camera modules positioned at the rear end of the vehicle to
offer a visual inspection of the area behind the host vehicle.
The automated parking system enables the host car to park
itself with little or no driver intervention [17]. The automatic
car parking system is made possible by Android application
commands [99], which control the steering wheel while the
driver operates the throttle and brake pedal.
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FIGURE 9. Automatic Parking Process

Figure 9 depicts the principal parking assistant system
(PAS). To begin, the sensor takes data from the surroundings
and analyses information such as obstacle distance, current
vehicle speed, and parking space length. The next stage is to
create a map based on the evidence and estimate the relative
position of the vehicles. The algorithm produces a desired
trajectory and then, if there is enough parking space, con-
verts it to an intended steering angle principle. The steering
angle sensor and the speed sensor of the wheel provide the
desired data for position estimation. In the following phase,
the vehicle position changes in response to steering angle
changes, which are controlled by the steering motor. The
tracking controller controls the action of the steering motor

in accordance with the steering law’s variables of direction,
velocity, and time [100].

In [101], a literature review is conducted of automated
parking systems, describing the recent progress including
vision, ultrasonic and radar sensor technology, image pro-
cessing, path and trajectory planning, control algorithms,
and neural networks. In [102], proposes a technique for an
automated parking system for a self-driving car based on
lidar technology. The paper also discusses calculating the
minimum distance between two vehicles in a parking area
using dynamic theories of vehicles.

10) Traction control

Traction Control is the most important component of a con-
trol strategy because it regulates vehicle speed and can di-
rectly improve driving performance, protection, and stability
[18]. The vehicular propulsive force is defined as traction
which is the product of friction between the tire surface and
the road surface. The friction is dependent on factors such as
the type of tire, road surface, condition of the road surface,
and wheel slip ratio. Maximal torque from the propulsion
system is given by the slip ratio which makes it possible for
the vehicle to move forward so the slip ratio providing the
maximum coefficient of friction is required. Consequently,
traction control aims to operate vehicles with an adequate
wheel slip ratio. Compared with conventional internal com-
bustion engines, electric motors produce rapid and accurate
torques.

In [103], a maximum transmission torque estimation
(MTTE) method is presented based an open-loop disturbance
observer which requires input torque and wheel motion. In
the control rule, the estimated maximum transmission torque
was used as a limit to avoid the slip. A fault-tolerant solution
is suggested in [104] dependent on MTTE to prevent the
EV from sliding. To improve the steering efficiency of the
MTTE solution, a PI-type observator is proposed which was
expected to make a remarkable enhancement of the control
system in robustness.

In [105], a sliding-mode investigator was applied to deter-
mine the skidding and vehicle speed of the EV. The observer
is used to evaluate the average friction, dependent on the dy-
namic friction method of Lu Gre. The controller utilizes the
calculated maximum friction to calculate the acceptable max
torque for the tires. Sliding mode control (SMC) provides
robustness, which is why it is widely used in the control
of uncertain nonlinear systems. In [106], a PID sliding sur-
face dependent SMC control approach is suggested for the
tracking problem of nonlinear uncertain systems. Using the
Lyapunov stability principle, the stability and robustness of
the proposed control technique are proven.

For SMC, [107] suggested wheel slip control of EVs
based on a sliding-mode system. An active braking controller
configuration of a sliding-mode was presented in [108] who
merged the regulated parameter with wheel deceleration and
wheel slip. The existing traction control system discusses
torque control and SMC. In [109], a smart traction control
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system is developed using acoustic road surface estimation
which includes friction co-efficient and slip-ratio which is
important for input torque.

11) COMMUNICATION-VANETs

Information and communication technologies have influ-
enced some of the most significant innovations in the auto-
mobile sector. Intelligent transportation systems (ITS) play
a critical role in making citizens’ lives more comfortable in
every way in today’s digital society. The vehicular communi-
cation network (VANET) is an integral feature of an ITS. It
allows for vehicle-to-vehicle communication. A VANET is a
type of Mobile Ad Hoc Network (MANET) in which vehicles
equipped with wireless and computing capabilities can form
a network on the fly as they travel down the road [39].

VANETs are categorized into two kinds: vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nications [110]. VANET facilitates V2V communications
between neighboring vehicles and V2I and V2R communi-
cations from vehicles to other communication equipment.
A VANET system is shown in Figure 10. The principal
objective of VANETs is to facilitate successful communica-
tion. In general, nodes require specific qualities to acquire
information, communicate with neighbors, and then make
judgments based on the data collected via sensors, cameras,
GPS receivers, and omnidirectional antennas [111]. Multiple
VANET surveys referring to security and privacy schemes
have been developed in recent years [19], [20]. These studies
addressed the majority of the aspects of VANETs. However,
it covers a small portion of VANET security services and
contemporary state-of-the-art methods. C-V2X technology,
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FIGURE 10. VANET System.

a unified connectivity platform designed to support V2X
communications, was recently introduced [112]. C-V2X is
a robust communication technology that can conduct V2X
communications. It is an establishment that is a part of
the third generation partnership project (3GPP). It connects
each vehicle, allowing cooperative intelligent transportation
systems (C-ITS) to decrease traffic congestion and improve
traffic efficiency [113].

VANET security assures that outsiders do not inject or
corrupt the conveyed messages. In addition, the driver is
accountable for accurately updating the traffic conditions
within the time constraints. VANETs are more vulnerable
to hacking because of their unique properties. In particular,
security concerns need to be handled adequately. Otherwise,
secure communication in VANETs will be relatively limited
[114].

Comfort Applications: This VANET application is clas-
sified as a non-safety application that attempts to improve
the comfort of drivers and passengers. It can deliver updated
weather information, hotels, nearby restaurants, and petrol
stations [115]. Safety Applications: The VANET’s safety
applications are used to improve security. Vehicle-to-vehicle
and/or vehicle-to-infrastructure communications can be uti-
lized in this application to develop traffic safety, lane change
warning, emergency video streaming, collision avoidance,
and accident evasion. The primary goal of this application
is to ensure drivers, passengers, and pedestrians safe [115].

The fundamental issue with the VANET is communication
security. Because of the rapid growth of topology, small-
sized devices, and other factors, ad-hoc networks have more
security challenges than regular wireless communication.
Because of the dynamic nature of the topology, maintaining
security is complicated because there is no pre-existing in-
frastructure for ad-hoc networks, such as the cellular frame-
work, that can regulate the network’s security [116]. VANET,
like all other computing systems, confronts data security
constraints such as integrity, confidentiality, authenticity, and
availability [117].

Data Confidentiality in VANET: Confidentiality is known
as privacy. Its purpose is to keep sensitive information from
getting into the wrong hands. According to [118], there are
several challenges to VANET data confidentiality.

Data Authentication in VANET: Data Authenticity is the
process of confirming a person’s identity, which can be per-
formed using a user id and password. After passing through
the identification procedure, authentication is the evaluation
used to verify that only an authorized user enters the system.
Furthermore, this procedure is regarded as the primary course
of protection against illegitimate users [119].

Data Availability in VANET: Availability can be described
as the system’s ability to be used at all times. It is necessary
to do regular hardware equipment maintenance and keep the
system up to date with upgrades to avoid any ambivalence.

There are numerous hurdles concerning VANETs. The
unique characteristics of VANETs require alternative com-
munication paradigms, security, privacy techniques, and
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wireless communication technologies compared to MANETs
[120]. Network connections, for example, may not be steady
for an extended period. Researchers have looked to make the
most from existing infrastructure, such as roadside units and
cellular networks, to enhance communication performance.
Although some specific VANET issues have been overcome,
some significant research challenges remain partly resolved
[120].

Though existing algorithms have implemented some reso-
lutions to definite data dissemination difficulties in VANETs.
Due to the unique characteristics of VANETs, it is still
difficult to assess their performance and security. The end-
to-end communication path, for example, may not exist due
to non-persistent network connections. The authors of [121]
propose that using the carry-forwarding pattern, the oppor-
tunistic routing algorithm can overcome this problem. As a
result, advanced algorithms should be developed with a low
communication delay, communication overhead, and time
complexity in mind.

12) Security and Access Control

The Internet of Things has propagated to every domain
from wearable mobile gadgets, smart homes, manufacturing
units, and power grids. Artificially intelligent and connected
automobiles are essential for smart city envisioning and pro-
viding users with a comfortable, safe, and pleasurable driving
experience. These automobiles include sensors, electronic
control units (ECUs), software with about 100 million lines
of code, and internet connectivity. This ecosystem facilitates
inter communications between vehicles (V2V), vehicles and
infrastructure (V2I), vehicles and pedestrians (V2H), and,
ultimately, anything associated.

Security and privacy are the principal concerns in Smart
cars. These vehicles feature a large attack surface (TPMS,
keyless entry, smartphone, engine ECU, OBD ports, etc.)
also accessible external interfaces. As a result, attacks such
as sending false and unauthorized basic safety messages
(BSMs), controlling ECUs, accessing personal information,
and sensor spoofing are possible, as documented in various
publications [122]–[124]. To establish these security con-
cerns, the smart EV requires some security mechanisms like
Access Control.

Access Controls (ACs) are an essential security mecha-
nism. It ensures only authorized users have access to re-
sources. Smart automobiles also require similar controls
for security purposes. It secures trust among entities that
exchange BSM communications and also eliminates unau-
thorized system control. Outchakoucht et al. [125] develops
a global framework to address policy management and AC
models to achieve the fundamentals of Access Controls. It
also profoundly discusses the mechanisms that allow them to
fit so precisely. It leads to a smooth and uniform Machine
Learning (ML) integration, also highlights the requisite ML
algorithm and where they should perform.

Due to the fast growth of the smart automotive sectors,
there’s been a surge in interest in Internet of Vehicles (IoV)

technology. IoV was developed to improve the experience
of drivers and passengers by reducing traffic congestion,
enhancing traffic management, and assuring road safety.
Precise monitoring of the privacy of large data groups and
vehicles in IoV is one of the critical challenges. In [126], This
study performed a critical analysis using analytical modeling
for offloading mobile edge-computing decisions based on
machine learning and Deep Reinforcement Learning (DRL)
techniques for IoV. The study estimates a Secure IoV edge-
computing offloading paradigm with multiple data process-
ing and traffic flow scenarios. In offloading the decision
process of various task progress of the IoV network con-
trol cycle, the suggested analytical model acknowledges the
Markov decision process (MDP) and machine learning (ML).

The automatic identification of vehicle license plates is a
critical component of intelligent vehicle access control and
monitoring systems. Islam et al. [127] offer a method for
identifying license plates that aim to establish a balance
between these two objectives. An ANN classifier trained
on HOG characteristics identifies the segmented characters.
There are two stages there in the proposed method: detection
and identification. The image is evaluated in the detection
step to determine a region of interest, with a 99.3 % pre-
diction performance. In the identification step, the system
uses the HOG technique to extract features from the range
of interest, with a classification accuracy of 99.5%.

This study suggested an extended access control-oriented
(E-ACO) [21] architecture that addresses the access control
constraints in the smart car ecosystem and facilitates appro-
priate access control model selection at various layers. The E-
ACO architecture consists of four layers [128]. Object Layer
contains clustered objects (such as cars and traffic signals),
each of these, holds numerous individual objects like sen-
sors and in-vehicle applications. The Virtual Object Layer
addresses the concerns of heterogeneity and connectivity by
providing a cyber-twin of all physical items. In automobiles,
as mobility and location do not always guarantee internet
access, a virtual entity that maintains physical object status
information is required. Cloud Services and Application lay-
ers provide cloud infrastructure for data storage and process-
ing. The application layer contains end-user apps that utilize
data in the cloud to offer services to users. Entities within
and across neighboring levels interact with one another; for
example, a car can ’speak’ to other vehicles as well as its
virtual object. Users can also use their phones or remote keys
to issue commands to sensors within the car [128].

IV. ALGORITHMS

An algorithm is utilized to calculate a particular problem or
to perform a number of calculations. This part of the article
presents basic image analysis algorithms, information stor-
age, and decision algorithms used in the prototype construc-
tion of autonomous systems. Smart EV Usually have three
types of algorithms: perception, localization, and control.

• The sense of perception is used to perceive and re-
imagine one’s surroundings. It detects pedestrians, traf-
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TABLE 2. A summary of Driving control systems

Control
systems

Ref. Methods Highlights Performances Limitations

ACC
[53]

Realistic and
collision-free car-
following model for
ACC-CACC vehicles

• The model is for longitudinal vehicle motions.
• It underwent several tests regarding model performance and

collision possibilities.

Maximum
deceleration
time (MDT)
is 1s

The author verified
the model in simula-
tion only.

[54]
Adaptive neuro-fuzzy
predictor for CACC • Estimating the condition of the vehicle first and then follow-

ing the vehicle controller.
• The CACC method will help you save a lot of money on fuel.

Headway
time 0.9s

The model was veri-
fied in simulation only

[55]
Model predictive con-
trol

MPC optimizes various targets in the car-following system Spacing mar-
gin 5m

The strategy for
weight adjustment
was quite effective

AEBS
[66]

Fuzzy neural network
model with genetic al-
gorithm

• The upper-layer fuzzy neural network controller of the AEB-
P system was designed.

• PID controller base AEB-P system uses for the expected
speed reduction

Vehicle
stopped
within 3m at
high speed

The research of AEBS
is not applicable for
complex scenarios

[69]
Nonlinear Model Pre-
dictive Algorithm • Considering the nonlinearities of vehicle dynamics

• AEBS is designed based on the Non-singular Fast Terminal
Sliding Mode (NFTSM) control theory for quick track con-
trol

AEBS
function
slows down
after 2.5s.

The model was veri-
fied in simulation only

[73]
Potential Field (PF)
risk assessment strat-
egy

• When the frontal obstacle risk PF threshold is exceeded,
AEB provides active braking intervention.

• The proposed design reduces the possibility of colliding with
a stationary object.

Vehicle
maintain the
safe distance
of 2 m

The proposed design
can not mitigates the
collision risk with a
dynamic obstacle

LDW
[11]

Hough Transform
(HT)

HT is applied to detect lane boundaries and with Euclidean-
distance-related parameters it calculate vehicle’s position and mo-
tion.

True
Warning
Rate is 94%.

It is not feasible in
several real-time sce-
narios

[74]
Gaussian mixture
model and the hidden
Markov model

Establishing lane-departure and lane-keeping behavior and predict
preceding vehicle status

Reduce
the false-
warning rate
to 3.13%

The driver’s physio-
logical state was not
considered here.

LKA
[80]

Learning-based
model predictive
control (LBMPC)

Use extended Kalman filter to learn unmodeled dynamics. 0.5m space
between
vehicle
trajectory
and lane
center

Results are not well
defined.

LCA
[81]

Fuzzy c-means
(FCM) clustering
algorithm

Analysis driver’s behavior 85%
accuracy
to predict the
driving char-
acteristics

The precision of
driver behavior
identification is not
promising

[92]
CNN Extraction of traffic sign regions of interest (ROIs), ROI refinement

and classification, and data marking were all lacking.
Recognition
score of
86.75%

The system can’t pre-
process data at high
speed.

Automatic
Parking [102]

Rapidly-exploring
random tree algorithm
(RRT) algorithm

Automatic Parking with Lidar, Camera and ultrasonic sensors and
use fuzzy logic controller to control brake and accelerator

- It can not add camera
data for parking.

Traction
control [103]

Maximum transmissi-
ble torque estimation
(MTTE)

This estimator provides a good foundation for anti-slip control MTTE
applied
for slip
prevention.

The vehicle is not cal-
culated

[106]
Dynamic PID
sliding mode control
technique

Eliminating tracking error with this controller technique and the
system is robust and stable

Efficiency
and
feasibility

This technique is ap-
plied to an inverted
pendulum system.

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116353, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

fic signs/signals, and obstacles in the vehicle’s immedi-
ate vicinity.

• The term "localization" refers to the process of mapping
the surrounding area and determining the precise loca-
tion of a vehicle.

• The control section deals with low-level activities that
are driven by the perception algorithm’s planning and
sensor data. Low-level behaviors are determined by a
vehicle’s steering, acceleration, and braking systems.

Here, all the sensors used for perception and localization are
reviewed.

A. PERCEPTION AND LOCALIZATION

The perception algorithm combines and integrates the infor-
mation from the sensors using sensor-fusion algorithms that
help to detect static and dynamic objects while driving. Sen-
sors include ranging sensors (lidar, radar, Ultrasonic sensors)
and vision sensors (camera and night vision). Sensor-fusion
algorithms aids in overcoming the individual limitations of
ranging sensors and vision sensors. [38] reviewed limitations
of perceptions sensors, and also discussed fault detection and
recovery. [129] presents a review of sensor fusion algorithms
using deep learning for vehicle perception and localization.

Localization algorithms predict and determine the loca-
tion and behavior of the host vehicle on the map monitor
display using GPS or Vehicle on-board sensors. A smart
driving system demands an accurate determination of the
vehicle’s position and orientation requiring precise, effective
and stable localization techniques to support maneuvering,
prevent collisions and enforce the necessary driving actions.
Furthermore, the method of localization must be robust in
handling variant complex environments and a wide range
of weather conditions. In addition to supporting perception,
sensor fusion is also used for localization [129]. This paper
describes the sensors and sensor fusion used in perception
and localization. Table 3 summarizes the relevant algorithms.

This section discusses the sensors available for use in
automobiles, with a focus on those that detect and deal
with objects. Along with the calculations to condition the
necessity of a sensor set, they will also be addressed in
relation to the important prospects of autonomous driving.
Finally, the definition of sensor fusion is discussed including
the improvements over use of data from individual sensors.

1) Vision

A vision system forms image of the surroundings with a
light-sensitive sensors. Since only a few sensors can pick
up sections of the infrared spectrum that allow for night
vision, the vision system relies on the benefits of the visual
light spectrum to function [130]. It requires an unobstructed
sightline, which means the system needs to be mounted on
the windshield in the open air or on a clear surface.

Two types of vision systems are primarily available: mono-
scopic and stereoscopic. The monoscopic vision system uses
one optical sensor, while the stereoscopic one uses two with
a distance in between. Stereoscopic vision provides benefits

equivalent to a pair of human eyes allowing the ability to
measure differences in range. The accuracy varies with range,
as the difference is relatively smaller for points further from
the sensor [131].

To detect and classify images, the camera system depends
on image processing techniques for multiple functions, such
as positioning and routing, object identification, collision
avoidance, and to collect and extract data from images [131].

[132] presents a lane detection algorithm for street lane
detection based on the Kalman filter, which is also used in
[133] for precise lane detection on the highly curved road
applying parabolic and circular equations with a Kalman
filter.

In [134], a histogram of oriented gradient (HOG) fea-
tures and support vector machines (SVM) methods were
utilized for road surface detection. A CNN and supervised
learning were also used for road surface detection in [135].
In [136], HOG features and SVM-based techniques were
also proposed to detect the shadow of the preceding vehicle
(in daylight) with a camera module. The HOG and SVM
qualified vehicle classifier has good generalization ability and
can effectively exclude non-vehicle objects such as houses,
trees, flowers, fence, and pedestrians.

Vision systems are passive because they rely on external
lighting conditions. Incidents at night with inadequate light
can reduce a sensor’s functionality which may also be blinded
by light sources with sharp rays of high intensity (sun or
bright headlights). For vision sensors, environmental condi-
tions often play a prime role such that the effective range
of the image processing algorithm is also limited by heavy
rain, snow, and foggy conditions. Multi-purpose units have
the maximum number of sensors available at the current
time and come with a built-in image processor. The units
typically contain algorithms for various forms of detection
and classification purposes such as for pedestrian detection,
road surface detection, general object detection, traffic sign
recognition.

2) Lidar

Laser scanners, also known as lidar, are active sensors that
serve many applications such as blockage identification,
pedestrian and vehicle identification [137], host vehicle lane
detection [138], and describing the precise location of a
vehicle [139]. Using a laser, the lidar emits high-frequency
pulses. The amount of reflected light is determined by
whether the projected light reaches and reflects from an ob-
ject in its path. The delay between transmission and reception
determines the distance between the lidar and the subject.
However, lasers can only identify a single isolated spot, so
scanning at a high rate is required in order to develop a high-
resolution depth image. Scanning is achieved by reflection
from rotating mirrors or by rotating the whole sensor unit.
Lidar primarily scans horizontally in layers. A larger number
of layers compensates the pitch angle of the vehicle [140] and
minimizes the effects of blockades [141].

14 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3116353, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

The lidar produces a point cloud, where a single distance
measurement is described by each and every point. The point
cloud must be analyzed to collect object data. Classification
techniques may be utilized to categories the objects identified
[142]. At least two lidar reflections from each object are re-
quired to detect the object reliably [143]. The space between
the lidar positions d in Figure 11 can be determined utilizing
the following formula, including the angular resolution α and
the range r:

d = 2rsin(
α

2
) (3)

Since r >> d, so equation is:

d = αr (4)

To guarantee two outputs from the lidar, an object must be at

α d

r

FIGURE 11. Low lidar point at given range

least 2d wide to be seen from range r if a single layer scanning
is assumed. Lidar primarily has a high angular resolution that
helps in the detection of smaller objects. For an object of
size x from the range r, the equation for necessary angular
resolution is (5) [143]:

α =
x

2r
(5)

As it requires significant amounts of computation, lidar
sensors do not instantaneously output velocity data as a
tracking algorithm is required to provide velocity estimation
[144] relying on two or more lidar readouts to be com-
pared. [140]discusses a filtering method called gating which
minimizes the area linked between data readings and thus
eliminates unnecessary calculation steps. However, it also
implies that a quickly moving object might be regarded as
a new object as it could end up extending beyond the gated
area.

The quality of lidar data is based on algorithms for object
recognition–a supervised 3d CNN has been created in [145].
A CNN-based 3D object classification system in [146] uses
the lidar point cloud Hough space to resolve the computation
of a large volume of data and unstructured point cloud. Ini-
tially, a Hough transform is used to transform the object point
clouds to Hough space. Then the CNN classifier is trained to
identify four types of artifacts: walls, bushes, pedestrians, and
trees.

There are some difficulties with using lidar. Lidar lasers
are harmful to the eyes of humans and animals and are
therefore subjected to regulations defined by the laser safety

standard IEC 60825-1 [147]. During unfavorable weather and
lighting conditions, lidars are affected like vision systems
[148]. An NIR gated imaging system was used in [148] to
cope with poor weather conditions such as fog. The gated
camera exhibits much greater contrast and it is possible to
detect higher viewing distances. Table 3 summarises methods
for detecting an object using lidar.

3) Radar

Radar operates using high-frequency radio waves transmis-
sion and receives the reflected signals from any object within
the Field of View (FOV) of the sensor. Radar sensors will
automatically define the relative motion of the object which is
detected. Although radar systems may provide a wide range
of FOVs, a trade-off is required [149].

Automotive radar sensors primarily use two frequency
bands around 24 gigahertz and 77-81 gigahertz. 24 gigahertz
was once very common due to its rady the availability in
industry [150], however automotive radar requirements have
moved towards 77-81 gigahertz with many innovations due
to the shorter wavelength at that frequency, which improves
range, resolution, and precision. 77-81 gigahertz is therefore
more appropriate for pedestrian detection and vehicle detec-
tion [151].

A radar sensor’s detection area is separated into resolution
cells. The detection area of a RADAR sensor is divided into
resolution cells. The size of a resolution cell is determined
by the angular resolution and the range resolution. A cell’s
length remains the same but with range, the width increases
since the width ω of a radar cell is the multiplication of
angular resolution α and range r which can be defined by
the equation (6) [152].

ω = α ∗ r (6)

Elimination of Ghost target generation is another promis-
ing issue for the radar sensor. If the radar signal reflects
from several objects before the sensor device is received,
it can lead to false identification at random locations of
non-existing targets [153]. In order to eliminate a shadow
objective that is not a real entity, an artificial neural network
(ANN) is suggested in [154].

[155] proposes a deep-learning approach for the identi-
fication of vehicles running on an image-like tensor where
the radar data consists of a 3D tensor which is typically
processed by utilizing a Constant False-Alarm Rate (CFAR)
technique to obtain a sparse 2D point-cloud that separates
the targets of interest from the surrounding clutter. The paper
also suggested a new way to manage the 3D radar signal and
the Doppler dimension, which could enhance the accuracy of
detection. In addition, [156] designed a Doppler radar-based
vehicle detection and parking space detection system.

In [157], a radar-based pedestrian detection system is built
using the SVM and Micro-Doppler effects. SVM is designed
for pedestrian short-range detection and speed resolution
enhancement for micro-Doppler effects extraction. In [158],
a pedestrian detection system for the clutter area is also built
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using a 2D range-Doppler Frequency Modulated Continuous
Wave (FMCW) radar. A 2D Fast Fourier Transform (FFT)
with Fast-ramp based FMCW radar is a very helpful al-
gorithm for detecting slow-moving targets from unwanted
clutter.

Using ground penetrating radar (GPR), an automated road
surface crack detection method was built in [159]. GPR
detects cracks on the road by electromagnetic reflection. The
Singular Value Decomposition (SVD) algorithm analyzes
this GPR image to minimize noise from the image. A CNN
was also developed in [160] for the detection of road users
such as pedestrians, vehicles, bicycles using 3D radar cubes.

Radars are sensitive to interference by other surrounding
radars since signals could be selected from another nearby
radar which will trigger false detection and create noise.
Noise Radar Technology proposed in [161] eliminates inter-
ference effectively.

4) Ultrasonic

Ultrasonic sensor transmit high-frequency audio signals ob-
serving the time taken to receive the reflected signal to
measure the distance between the object and the sensor.
Ultrasonic sensors are now commonly used to assist in park-
ing [162]. An automated parking system based on a grid
projection to detect parking space is suggested in [162] using
an ultrasonic signal with grid projection to detect the edges
of the obstacle. A smart parking system is suggested in [163],
using ultrasonic sensors to detect the parking slots in the
parking area which are occupied by vehicles.

Like radars, ultrasonic sensors may suffer interference
from signals in the same frequency range, possibly from
other nearby ultrasonic sensors. A solution identical to that
for the radar problem is suggested in [164]. Stochastic coding
was used to distinguish the signal from other signals by the
use of an adaptive filter, efficiently solving the interference
problem.

A system for detecting and tracking moving objects is
suggested in [165], using an ultrasonic sensor around the
vehicle. EKF and Unscented Kalman filter (UKF) tracking
algorithms are designed for precise dynamic object tracking
using arrays of ultrasonic sensors which are cost-effective.
In [166], Bayesian Networks are suggested to predict the
velocity and size of the automobile detected by means of a
passive infrared sensor and an ultrasonic sensor.

In [167], a road surface monitoring technique is developed
using ultrasonic sensors and image processing. The paper
uses a dynamic time warping (DTW) technique and proposes
a HANUMAN algorithm for the ultrasonic sensor to enhance
the detection process of road track surface, crack road and
speed bumps.

A system for the identification of a vehicle road accident
using an ultrasonic sensor is suggested in [168]. It is a good
option to use an ultrasonic sensor for accident detection since
it operates on the concept of reflection of sound waves that
are capable of moving through all types of matter with less

environmental effects and other considerations, such as the
color of the colliding object.

5) Night Vision

There are two types of night vision sensors: near-infrared
(NIR) and far-infrared (FIR) sensors (FIR). NIR requires
active IR sources that are mounted in the headlights, which
implies that one NIR system in opposing traffic may be
blinded by another NIR system from a car. Additionally,
the NIR sensor could also be blinded by Xenon headlight
bulbs, since it absorbs a broad spectrum of light. FIR systems
are on the other hand, more passive taking advantage of the
emission of natural thermal radiation. That is, FIR systems
differentiate artifacts by temperature differences so that it
is possible to use these systems to track cyclists, pedestri-
ans and animals. However, the FIR device can not detect
an object if the temperature difference with respect to the
atmosphere or background is minimal [130], [169].

6) Time-of-Flight

Lidar can also be implemented by a time-of-flight (ToF) sen-
sor that utlizes photonic mixer devices (PMD). The amount
of time between pulse firing, pulse reflection and reception
at the sensor is calculated to determine the range to the
reflecting point. A large scale single pulse is more effective
that repetition of a small laser pulse because the reflection is
measured at the same time for the whole field-of-view of the
sensor instead of being measured for a particular point which
enables smoother operation and avoids moving components
[170].

Using the ToF camera, a pedestrian detection method is
suggested in [171] using an SVM classifier including Scale
Invariant Feature Transform (SIFT), Gradient Oriented His-
togram (HOG), and Extractors with Holistic Shape Feature
(GIST). Such extractors are used for the classification of
pedestrians and non-pedestrians.

In [172], a restriction and ramp identification method was
proposed for a smooth car park utilizing ToF. Ultrasonic
sensors for detecting these curbs and ramps are not that
useful, so this work introduces a robust algorithm for CC-
RANSAC to precisely detect the location of curbs and ramps
on the side of the road in a parking space.

ToF sensors are capable of detecting both light intensity
and detail information. The stereo camera can read informa-
tion in detail, but it requires heavy processing for analysis
of data and image processing. A review paper for ToF is
presented in [173] addressing ToF concepts, advantages and
challenges. ToF sensors are good for the protection of hu-
mans and animals as they are safe for the eyes.

7) Sensor Fusion

A combination of pieces of information gathered from vari-
ous sensors is called sensor fusion which is used to improve
the sensing capability of an automated vehicle. By integrating
the output of a number of sensors, any individual sensor
shortcoming or defect is offset by the strengths of one or
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more other sensors. The fusion of vision, radar, and lidar sen-
sors therefore enhances the efficiency of pedestrian detection
[16], [174] by utilising the strengths of each technique.

A pedestrian detection technique using lidar and single
camera fusion is provided in [175] by merging lidar and
vision spaces in a single vector classifier (FLDA, RBF-SVM,
and MCI-NN) improving detection efficiency. A pedestrian
detection system using Lidar-Camera Fusion is also intro-
duced in [16] and a faster R-CNN architecture was suggested
for more accurate detection.

A vehicle detection process is suggested using vision and
lidar sensor fusion in [137]. To accurately identify the vehi-
cle, the proposed technique is the YOLO v3 deep learning
algorithm. In [176], based on UKF using Sensor fusion, a
similar vehicle detection approach is suggested. In another
study [177], classifier-based vehicle detection is proposed
using SVM by radar and vision sensor fusion.

A parking space detection and safe parking method are
proposed in [178] using AVM and lidar sensor fusion. The
proposed method is simultaneous localization and mapping
(SLAM) through the suggested parked line, which can iden-
tify an empty parking space. For road detection, a fully CNN
(FCN) architecture is developed in [179] using lidar camera
sensor fusion. This FCN performs good and provides an
accurate road image.

B. VEHICLE CONTROL ALGORITHM

Vehicle control algorithms follow perception algorithms by
actuating the acceleration, braking and steering systems for
comfort and safe driving according to the DCS previously
discussed.

The factors related to longitudinal vehicle control are
discussed here to understand speed regulation of smart EV,
includng classical linear time-invariant control, development
of PID control law for a longitudinal vehicle model, and
combined feed-forward and feedback control for improved
desired speed tracking. Here the design of the longitudinal
speed control includes everything about vehicle performance
on the track, and is a key element of autonomous operation.

Lateral vehicle control is also discussed here including two
geometric paths that pursue control strategies built on the no-
slip assumption of kinematic modeling. Lastly, the review
focuses on the model predictive control system, for example,
an advanced control strategy in autonomous vehicles [189].

1) Vehicle Actuation

Vehicle actuation of the vehicle involves steering, accelera-
tion, and brake systems so the key objective of vehicle control
is to provide appropriate accelerator, brake and steering com-
mands to maintain the vehicle following a certain velocity
profile on a targeted route.

Considering the figure 12, in the lateral vehicle dynamics
system, the steering angle is the principal input. Similarly, in
longitudinal vehicle dynamics, the key inputs are the throttle
and the brake position.

Lateral 

Dynamics

Longitudinal 

Dynamics

Lateral 

Kinematics

Longitudinal 

Kinematics

Steering

Throttling

Braking

Lateral

Forces

Longitudinal

Forces

Yaw rate

Forward Velocity

FIGURE 12. Combination of both Lateral and Longitudinal dynamics

The inputs include the friction forces operating on the
vehicle which are fed into the ordinary differential equations
that are used to regulate the condition of the car. The lateral
forces and moments drive the lateral kinematics of the car
inducing the optimal lateral velocity rate of the vehicle. The
longitudinal forces drive the longitudinal kinematics. Both
the resultant forward velocity and displacement are defined.
It should be noted that lateral dynamics and longitudinal
dynamics impact one another.

• Steering
The steering translates the driver input by changing the
steering angle of the steered wheels. Here the driver
input is the turning action practiced by the driver on
the steering wheel. Simultaneously it provides hap-tic
feedback as information for the diver informing them of
the driving conditions and condition of the road.

Steering 

Angle, αs

Wheel 

Angle, α

Lateral 

Forces

α = kαs

FIGURE 13. Steering System

The steering model operates the vehicle by moving it
to the right or left. The operation follows the driver
input or autonomous system command and the steering
angle is converted into a wheel angle. The lateral force
provided by the intervening mechanisms and gear ratios
maintains the vehicle while riding on a curved path. The
wheel angle is considered proportional to the steering
angle, according to the general steering model which is
why the αs steering angle is linearly proportional to the
α steering angle, where k is the steering coefficient.
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TABLE 3. Algorithms for Environmental Recognition with Camera and sensors

Sensors Methods Reference Highlights Performance
Lidar Edge Based [180], [181] Artificial edge features for road line detection. 96% accuracy

Region Based [182] Self-adaptive Euclidean clustering for road surface
detection.

Error rate of
0.674%

[183] Plane fitting and RANSAC techniques for ground
detection and voxel-grid Model for identification of
stationary and moving road objects.

94% accuracy

Model Based [146] CNN based object classification algorithm using
Hough space.

93.3% accuracy

Graph Based [184] For segmenting ground road and objects, a graph-
based technique is used with CNN.

94% accuracy

Detection Based [185] SVM classification Clusters are classified into vehi-
cles, ground, pedestrians, buildings, power lines.

86% overall accu-
racy

[145] VoxNet implements 3D CNN to characterize the 3D
point cloud.

[186] Volumetric based 3D CNN has been enhanced
through the implementation of auxiliary learning
process on vehicle detection.

95% maximum re-
call

Vision Lane Line Marking De-
tection

[132], [133] A lane detection algorithm is presented for street
lane detection based on the Kalman filter.

96% Overall accu-
racy

Road Surface detection [134] HOG and SVM 91% accuracy
[135] A CNN algorithm is used to identify if it was a road

or not.
93.8% accuracy

Vehicle Detection [187] Faster-RCNN 60.4% average pre-
cision

[136] HOG and SVM 96.87% accuracy
Pedestrian Detection [188] Faster-RCNN 23% Miss Rate

Radar vehicle detection [155] Deep learning on Doppler tensor. 95.46% precision
[160] CNN F1 score 0.70

Road Surface detection [159] Singular Value Decomposition (SVD) Good accuracy
Ghost target detection [154] Artificial neural network (ANN) (multilayer per-

ceptron)
88% accurate

Pedestrian Detection [157] SVM and Micro-Doppler effects Improved Accuracy
[158] 2D Fast Fourier Transform (FFT) with Fast-ramp

based FMCW radar
From distance
15.82 m and
velocity ´6.59 m/s

[160] CNN 94% accuracy
Ultrasonic Parking space detection [162] Grid projection method 0.2m detection er-

ror
Road Surface detection [167] Dynamic Time Warping (DTW) technique and

HANUMAN algorithm
95.50% accuracy

moving object detec-
tion

[165] EKF and Unscented Kalman filter (UKF) tracking
algorithms

speed error <0.2
m/s

[166] Using Bayesian Networks estimate the speed and
size of the vehicle detected

99% accuracy

Time of Flight Parking space detection [172] CC-RANSAC algorithm uses for restriction and
ramp identification for Safe Parking.

Accurately
measure curbs
and ramps

Pedestrian detection [171] SVM classifier 95% accuracy
Sensor Fusion Parking space detection [178] Simultaneous localization and mapping (SLAM) 97% accuracy

Road Surface detection [179] Fully CNN (FCN) 96.03% accuracy
Vehicle detection [137] YOLO v3 deep learning algorithm 17% accuracy im-

provment
[176] Unscented Kalman filter (UKF) -
[177] SVM 96.5% accuracy

Pedestrian detection [175] FLDA, RBF-SVM, and MCI-NN vector classifier 82.9% accuracy
[16] Faster R-CNN architecture 99.16% accuracy
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• Throttling

Electric Motor 

(Power)

Transmission 

(Gear ratio)

Wheel 

torque

Throttle pedal 

position

FIGURE 14. Throttle system

The throttling system calculates the traction force re-
quired to move the vehicle in the desired direction.

• Braking

Brake 

Pressure

Braking 

Disk Force

Breaking 

Wheel torque

Brake pedal 

position

FIGURE 15. Brake system

The process of vehicle braking starts with a brake pedal
position that is commanded by the driver. An electronic
unit converts the position to brake pressure, the outcome
of which is the braking force that acts on the brake
disk or the brake drum. The braking forces are then
convert into a braking wheel torque on the wheel which
results in a reverse longitudinal force that slows down
the vehicle.
Basic Function of Brake system.

1) To stop the vehicle within the desired distance
while braking.

2) To maintain vehicle steerability while braking with
ABS (Anti-lock Braking System).

3) To maintain vehicle stability while braking to pre-
vent for overturning.

C. LONGITUDINAL CONTROL ALGORITHM

Vehicle and power-train dynamics are two main aspects of
the longitudinal model. Forward tire force, rolling resistance,
aerodynamic drag, and gravitational forces are all factors
that affect the vehicle dynamics system. The electric motor,
torque converter, transmission, and wheels are all part of the
car’s power-train dynamics system.

• Vehicle Dynamics:
From Figure 16 Vehicle longitudinal forces Equation:

mẍf = Fxr+Fxf−Fair−Rxr−Rxf−mgsinα (7)

Longitudinal 

Force   
FAir

Fxf
Fxr

Rxf

Rxr

mgsinα

Ѳ

FIGURE 16. Longitudinal forces of vehicle on inclined road

Here,in equation (7) Fxf denotes the front tire forces,
Fxr denotes the rear tire forces, Fair denotes the aero-
dynamic drag force, and the rolling resistance of front
tires is Rxf and back tires is Rxr. The gravitational
forces mgsinα act on the slope of the road.
The combination of these forces determines the acceler-
ation of the vehicle which is indicated by ẍf . Let, Fx be
the total longitudinal force that is:

Fx = Fxr + Fxf (8)

Let, Rx be the total rolling resistance that is:

Rx = Rxr +Rxf (9)

as α is small angle so:

sinα = α (10)

So, from equation (8),(9)and (10) we can find the sim-
plified equation:

mẍf = Fx −Rx −mgα− Fair (11)

• Power-train Dynamics:
The dynamic equations are constructed from power train
elements. The vehicle wheel is the junction between
the torques operating on the power train and the outer
resistance forces. See Figure 17.
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FIGURE 17. Power and Load transmission in Vehicle Power-train

Where from equation (12), we can say that Rx, mgα
and Fair are the resistance load for a vehicle.

Resistantload = Rx +mgα+ Fair (12)
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Where from equation (13), we can say that Fx is the
power that is generated by the EV’s electric motor.

Power = Fx (13)

In longitudinal vehicle modelling, equation (11) states
that, if a vehicle’s power is greater than the vehicle’s
load, then the vehicle will move forward.

In [190], a Deep kinematic model(DKM) is introduced which
estimates using convolutional neural networks (CNNs) accu-
rate position and acceleration and deceleration of a vehicle.
In [191], a connected and automated vehicle (CAV) longitu-
dinal controller is developed for driver safety, comfort and
operational efficiency of the vehicle. An information-aware
driver model (IADM) is also developed in this paper, which
provides local stability and string stability as well as driving
comfort for a range of autonomous driving.

In [192], neural networks with various architectures are de-
veloped as methods for modeling the longitudinal dynamics
of a vehicle. The difference in the modeling output of CNN
and RNN reveals that the convolutive design is more accurate
and stable for a comparable number of training parameters.
In [193], a predictive controller is also developed based on
the Deep Reinforcement Learning (RL) algorithm for the
longitudinal motion dynamics of autonomous cars.

The vehicle’s longitudinal control measures the vehicle’s
longitudinal velocity to govern the cruise velocity. This con-
trol system facilitates monitoring of the speed and acceler-
ation, and to follow a vehicle while driving on a highway.
Neural networks, PID, MPC, fuzzy control, and feedforward
control techniques have been commonly used in the longitu-
dinal drive control system.

1) PID

PID control is expressed using three types of mathematical
terminology, depending on the error function: proportional,
integral, and derivative. Each one is proportional to the mis-
take e. To manage longitudinal speed and provide adaptive
cruise control, a PID controller is used [24].
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FIGURE 18. Close-loop system of Cruise control

The cruise controller and plant vehicle model are shown
as a closed-loop system in the block diagram in Figure 18.
The goal of this system was to keep the vehicle velocity Vf
constant and near to the reference velocity Vr. The controller
has two levels: a high-level controller and a low-level con-
troller (although the low-level controller is not an essential

part of the control task). To reduce the disparity between the
set point speed and the actual speed of the vehicle, the high-
level controller provides vehicle acceleration.

With the vehicle acceleration, the low-level controller ini-
tiates a throttle or breaking actuation. This braking or throttle
actuation aids in the monitoring of the reference acceleration.
Each time, the top level controller calculates the required
acceleration. The calculation is based on the velocity error
as an input, with the required acceleration as the output. This
controller makes use of PID [18]:

ẍac = KP (ẋref−ẋ)+KI

∫ t

0

(ẋref−ẋ) dt+KD

d(ẋref − ẋ)

dt
(14)

Where ẍac is the desired acceleration, ẋref is the reference
velocity, and ẋ is the output velocity in equation (14). The
error’s current values are represented by KP . The error’s
previous values are represented by KI . According to the
current rate of change, KD represents the probable future
values of the error [194].

In [195], a novel approach using a self-adapting radial-
based function neural network PID (RBFNN-PID) was de-
veloped to improve longitudinal vehicle speed control with
precision and robustness. In [196], a control strategy based
on fuzzy adaptive control is proposed that can control PID
gain parameters using a genetic algorithm in order to control
brake actuators.

2) MPC

Model Predictive Control (MPC) focuses on optimal control
theory, usually described as receding horizon function, where
a plant model and a collection of predicted inputs are used
to predict future system states. The methods are focused on
the use of a model’s mathematical representation to forecast
a system’s future behavior within a finite time horizon. The
control action is obtained by minimizing a cost function that
may involve constraints [197].

In [198], a simple MPC is proposed for longitudinal mo-
tion, considering a motion planner based on estimated curved
path. In [25], a longitudinal collision avoidance control sys-
tem is proposed based on MPC applied to control the desired
deceleration and yaw moment for collision avoidance.

In [193], a predictive controller is presented on the basis of
a Deep RL algorithm for the longitudinal motion dynamics
of autonomous vehicles. Compared with a Nonlinear Model
Predictive Controller, this paper also presents a Deep Re-
inforcement Learning based controller, once trained, with
significantly low computation times, while achieving close-
to-optimal efficiency.

3) Feed-forward Control

The combination of feed-forward and feedback loops im-
proves controller performance. The main rationale for using
both of these controllers in a control system is because feed-
forward controllers give a predicted response by generating
reference output in order to achieve the appropriate tracking
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TABLE 4. Longitudinal vehicle control system

Control
Functions

Sensor Ref. Highlights Summary

Adaptive
Cruise Control
(ACC)

Vision sensor
and Radar

[59] ACC system with automatic throttle or brake ad-
justment, whether it sustains a particular cruising
velocity or a targeted distance from the previous
vehicle.

5 types of spacing policies are eval-
uated. among them CSF(Constant
Safety Factor) is comparatively
safe.

Traction
Control System
(TCS)

Wheel Speed
sensor

[109] TCS for EVs has great potential due to the simple
application of torque control systems. To obtain
excellent vehicle dynamics while ensuring vehicle
stability, TCS is an active safety control system that
avoids wheel skidding during driving.

Reducing the slip ratio by 75%
while conserving energy by de-
creasing the applied torque and im-
proving the TCS’s robustness.

Automatic
Emergency
Braking
System
(AEBS)

Vision and
Radar sensor

[67] AEBS is a safety feature for vehicles which uses
sensors to look at the proximity of previous vehi-
cles. It detects hazardous situations as an imminent
collision with relative speed and space between host
and target vehicles.

Cost effective AEBS

Anti-lock
Braking
System (ABS)

wheel speed
sensor or ABS
brake sensor

[199] ABS is used to avoid the loss of brake force cause
of tire force drops at high slips and to leave some
friction for steering and cornering.

The jerk RMS and the braking dis-
tance are reduced by 97.3% and
8.4%.

Electronic
Brake
Distribution
(EBD)

Speed sensors,
Steering wheel
angle sensors
and Yaw
sensors

[200] If the proportioning between the front and rear axle
braking is divided, then there is a risk to the over-
brake rear axle in high friction as the rear axle
is unloaded. Previously, when the control wasn’t
available, hydraulic valves were used to solve the
problem by limiting the brake pressure to the rear
axle if the pedal force became too high. Modern
cars provide electronic brake control due to the leg-
islation of ABS. So the software base function EBD
meets the requirements by balancing the amount of
braking force on each wheel.

The positive consistency of the data
between real and target pressures,
indicating the efficiency of the com-
pensation control for use in braking
force distribution.

response, which is especially important when the required
inputs are non-zero. The feedback controllers’ reactive re-
sponse eliminates any control faults that may have happened
as a result of the disruptions [201].

The feedback controller corrects mistakes caused by dis-
turbances or inaccuracies, while feed-forward control sup-
plies the required inputs as predicted to build a reference
trajectory to keep the vehicle on track. Because the vehicle
system requires a consistent radius turn, throttle and brake
command, and steering angle while driving for a comfort-
able riding experience, the previously reported combination
is widely employed in the advanced automobile industry.
The feed-forward control and the feedback control must be
coupled in order to develop the vehicle actuation system
[201]. In Figure 19, the input of the feed-forward controller

Feedback 

controller
Plant

Vref Vf

Feedforward 

controller

-+ +
+

Vref - V

Vref Vff

Vf

V=Vf +Vff

FIGURE 19. Combination of Feedback and Feed-forward controller

is reference velocity Vref and the input of the feedback or

PID controller is velocity error that is, Vref −V . The throttle
and braking commands are produced by these controllers.
The feedback controller’s primary function is to obtain the
desired acceleration. A mapping from accelerations is used
by the controller to build up the. The engine commands are
then handled by the feed-forward block.

In [26], for a vehicle model, a feedback and feed-forward
control technique is proposed. The vehicle’s desired speed
is maintained via the control algorithm. The throttle and
braking pedals are controlled by the feedback section. The
feed-forward section is in charge of the gear shift and clutch,
as well as the feedback signals. In [202], feedback-feed-
forward control architectures are also used for steering con-
trol systems.

D. LATERAL CONTROL ALGORITHMS

This section discusses dynamic control modeling for a four-
wheel vehicle. The model was created using the bicycle
modeling method. Side slip, yaw rate, lateral acceleration,
lateral speed, and lateral displacement are the key focuses of
lateral dynamics [18].

The longitudinal velocity v is considered to be constant in
lateral vehicle dynamics, as shown in Figure 20. The left and
right axles are united into a single wheel, allowing the four-
wheel vehicle to be classified as a bicycle. The debate also
ignores the effects of road slope and aerodynamics.

The fundamental context of this lateral vehicle model
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TABLE 5. Lateral Vehicle Control Systems

Control
Functions

Sensor Ref. Highlights Summary

Lane keeping
assist

Radar and Vision [80] LKA system is used to prevent unwanted or unintended
lane departures

Reduce driving burden.

LCA Radar and Vision [203] LCA informs the driver of the nearby circumstances
that the driver might miss around the vehicle. It provides
the host vehicle with the capability of tracking other
vehicles from behind and even within the blind spot for
the driver.

80% detection rate

Pedestrian De-
tection

Vision sensor, radar [95] Pedestrian detection systems are subordinates of the
AEBS system designed for pedestrian detection and risk
evaluation.

Center and Scale Prediction
(CSP) achieves MR

−2 of
4.5%.

Automatic
Parking

Ultrasonic sensor,
Brake sensor

[100],
[102]

During parallel parking activities, the initial parking
assist system was designed to assist the driver by pro-
viding a beeping warning sound. To calculate the range
from vehicles and objects, parking assist systems utilize
ultrasonic sensors.

The error in the simula-
tion and experimental re-
sults is around 5%, which
is mainly due to hardware
non-linearities.

Overtaking
Technique

Vision sensors,
Steering wheel
sensor

[204] Machine Learning based overtaking strategy is pre-
sented with accurate collision avoidance ability. This
paper provide a design method for desired trajectory.

The proposed neural-
network-based trajectory
design method has
been able to provide
an appropriate trajectory

af

ar

Fyr

Fyf

v

lr

lf

CGψ ̇̍ Φ
α

FIGURE 20. Lateral Vehicle dynamics

methodology is the modeling of the vehicle’s rotation rate.
The simulation was based on the events that occur while
the car is driving. During the development of the dynamic
model in this part, the vehicle’s center of gravity is used as a
reference point. This was done to make Newton’s second law
easier to apply.

Lateral acceleration equation:

ay = ÿ + ω2R (15)

Here, the total acceleration in the inertial frame denotes as
ay , the lateral acceleration in the body frame denotes as ÿ,
and the centripetal acceleration from rotation of the vehicle
denotes as ω2R.

Equation (15) can be rewritten as equation (16), where φ̇
is the slip angle rate of change and ψ̇ is the heading rate of
change.

we know, v=ωR and ω= ψ̇. So, the lateral acceleration
equation:

ay = vφ̇+ vψ̇ (16)

The lateral dynamic model equation is:

mv(φ̇+ ψ̇) = Fyr + Fyf (17)

here in equation (17), mass of the vehicle is m, v is the vehicle
longitudinal velocity. The lateral dynamic formula is formed
with the lateral forces on the front and rear tires. Fyr is the
rear tires force and Fyf is the front tires force.

The angular acceleration equation is:

Ivψ̈ = lfFyr − lrFyf (18)

here in equation (18), ψ̈ is the angular acceleration of the
vehicle and Iv is the vehicle inertia. lf and lr are the distance
between the CG(Center of Gravity) and the front and rear
axle.

Front and Rear tire forces Equations are:

Fyf = Cfaf = Cf (α− φ−
lf ψ̇

v
) (19)

Fyr = Crar = Cr(−φ+
lrψ̇

v
) (20)

In equation (19) and (20), af is front tire slip angle and
ar is rear tire slip angle. The linearized cornering stiffness
for both front and rear wheels are Cf and Cr respectively.
Cornering stiffness of a tire is its ability to resist deformation
in the shape of a tire while the vehicle corners. α is the
steering angle.

From equation (17), (18), (19) and (20) we can rearrange
the equations:

φ̇ =
−(Cr + Cf )

mv
φ+ (

Crlr − Cf lf
mv2

− 1)ψ +
Cf

mv
α (21)

ψ̈ =
Crlr − Cf lf

Iv
φ−

Crl
2
r + Cf l

2
f

Ivv
ψ +

Cf lf
Iv

α (22)
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As the resultant lateral dynamic model is linear, we can
define a state vector.

state vector:

Xstate =









y
φ
ψ

ψ̇









(23)

In equation (23), y is the lateral position , φ is side slip angle,
ψ is yaw angle and Dotψ is yaw rate.

Standard state space equation is:

˙Xstate = AstateXstate +Bstateα (24)

The dynamics matrices in this system are Astate and
Bstate. If the forward speed (V) is kept constant, both of
these are time-invariant. The main input of the system is
α, which is defined as the driver steering angle command.
While designing different control strategies, the state-space
representation is predicted as a necessity. As an example, PID
or MPC for lateral control. The model is suitable for state
estimation with Kalman filters, as it provides linearity.

In [205], a deep reinforcement learning (RL) based vehicle
lateral control model is proposed. This methodology devel-
oped a generalized RL model which is capable of controlling
a host vehicle from the previously unseen vehicle in an
unseen trajectory without additional training. In [204], an
ML-based trajectory design technique is presented for the
overtaking process on the road. The paper also proposed a
method of neural network trajectory design to determine the
desired trajectory.

The major goal of a smart vehicle is to ensure that the
vehicle can follow a specific path. To follow that desired
path, the vehicle must adjust the required steering angle
to correct the errors that accumulate. We have to calculate
the errors between position of vehicle and the co-ordinates
of the desired following path. We should choose a control
system that eliminates errors within steering angle limits. The
control system must recognize the tire forces and not exceed
the vehicle’s capability while removing such errors. There
are other options for reference paths, but you must choose
the easiest and most consistent approach for smooth riding,
which is continuous parameterized curves. These curves cre-
ate a continuous variable speed and smooth derivatives to
ensure error and error computation uniformity. The vehicle
eliminates the offset of the vehicle using the lateral controller
and aligns back to the reference path to follow the reference
path [27]. Some lateral control approaches are presented in
Table 5

There are two main controllers for lateral control:

1) Geometric Controller: This controller depends on the
geometry and coordinates of the reference trajectory
and the vehicle kinematic model.

2) Dynamic Controller: The most advanced type of con-
troller is the Model Predictive Controller or MPC.
MPC can identify the control commands that are ap-
plicable through finite-horizon optimization.

1) Geometric Lateral Control - pure pursuit

Pure pursuit and Stanley are the two types of geometric
lateral control. Geometric controller, also known as a geo-
metric path tracking controller, can track the reference path
using the reference trajectory’s geometry and the vehicle’s
kinematic model. The reference point on the reference path
was determined by the pure pursuit controller, whereas the
Stanley controller derives the same reference point as is
required for error computations. The pure pursuit method is
discussed here.

The pure pursuit method’s fundamental idea is to place a
reference point on the reference path at a given distance, and
then have the vehicle intercept the reference point using a
determined constant steering angle. As the car approaches the
point, the steering angle is reduced, and the vehicle arrives at
the location gently [27], [206]. The reference point in Figure

FIGURE 21. Pure Pursuit Geometry

21 is the vehicle’s rear wheel axle center, and the distance
between it and the targeted reference point highlighted in
red is d, which is known as the look-ahead distance. The
angle formed by the vehicle body and the look-ahead distance
line is called theta. We examine an instantaneous centre of
rotation in which the intended reference point and the rear
axle’s center form a triangle with R and d as the lengths
of the two sides. We’ll draw a non-linear/circular line from
the vehicle’s reference point to the desired reference point.
The angle formed on the center of the circle by the vehicle’s
reference point and the targeted reference point is called 2θ
[28], [207]. Now from the sine formula we get:

d

sin2θ
=

R

sin(π
2
− θ)

(25)

d

2sinθcosθ
=

R

cos(θ)
(26)

d

sinθ
= 2R (27)

now the path curvature is kc= 1

R
, so

kc =
2sinθ

d
(28)
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Now, from the bicycle model in figure 20 it can determine the
steering angle α that is:

α = tan−1kL (29)

α = tan−1 2Lsinθ

d
(30)

The equation (29), The length between the front and the back
axle is L. This is how we can calculate the steering angle α.

However, the cross-track error (e) must be taken into
account, which is the difference between the heading vector
and the intended reference point, see Figure 22. From this

FIGURE 22. Pure Pursuit Geometry with cross-track error

Fig. 22 :

sinθ =
e

d
(31)

so from the equation (28) and (31) we get:

kc =
2e

d2
(32)

From equation (32), we can say that if the error decreases, the
path curvature kc will also decrease, which brings the vehicle
smoothly to the target point.

We utilize a proportional controller with path curvature as
the output to eliminate this inaccuracy. The proportional gain
is 2

d2 , as calculated by equation (32). The look-ahead distance
is responsible for modifying the steering angle in this case,
but vehicle speed must also be taken into account; otherwise,
the steering angle will remain constant regardless of whether
the vehicle is traveling at 10 km/h or 100 km/h. Because they
are distinct lateral accelerations, we must take the vehicle’s
forward speed into account. To solve this issue, we’ll change
the controller.

We consider distance d is related with forward velocity vf
such that:

d = Kppvf (33)

Where Kpp is the pure pursuit proportional gain.
From the equation (30) and (34) we get:

α = tan−1 2Lsinθ

Kppvf
(34)

The controller chooses the steering angle that will produce
a curvature to the chosen reference point, and the faster the

vehicle goes, the faster the reference point changes and a
new curvature is created. Controlling steering is how the car
travels forward.

2) Geometric Lateral Control - Stanley

In the DARPA Global Challenge, Gabe Hoffman at Stanford
University designed the Stanley Controller, a geometric path
tracking control. It is essential for autonomous robotics and
cars, as it allows a car to maneuver at any speed while
remaining independent. The reference point is switched to the
front axle in this controller, and it considers both heading and
position error while advancing towards the intended point,
removing all mistakes without taking into account the look-
ahead distance [28].

FIGURE 23. Stanley control Geometry

For correcting the heading error, the steering angle α is
equal to the heading alignment ψ. see in equation (35)

α(t) = ψ(t) (35)

For correcting the cross-track error, it uses a proportional
controller whose gain is C:

α(t) = tan−1(
Ce(t)

vs(t)
) (36)

Where, the cross-track error is e(t) and vf is the forward
velocity of the vehicle.

The final equation can now be derived from (35) and (36)
for the steering angle α(t)ǫ[αmin, αmax] which is:

α(t) = ψ(t) + tan−1(
Ce(t)

vf (t)
) (37)

The equation (38), if the vehicle speed is quite low, tending
to zero, denominator value vf (t) will tend to zero. so to solve
this problem we use a constant ks to stabilize the system and
maintain a non-zero denominator. So the resultant equation
is:

α(t) = ψ/(t) + tan−1(
Ce(t)

ksvf (t)
) (38)

This controller could be enhanced by adding a feed-forward
controller to enhance the tracking of the reference path on the
curve.
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3) Advanced Steering Control - MPC

MPC is commonly used to find optimum solutions that
take into account future prediction mistakes in addition to
current errors, as well as its ability to operate with a wide
range of disciplines. MPC may improve the performance and
operating range of any controller, which is why it’s utilized
in traction control, steering control, speed control, and other
automotive applications. This control system has a number
of advantages, including the fact that it may be used for
both linear and nonlinear vehicle control approaches. The
controller, on the other hand, has a significant drawback in
that it is extremely expensive and demands more control re-
sources [208]. Here in Figure 24, the MPC structure consists

Optimizer Model

Reference

Trajectory Predictive 

Outputs
-+

Future 

Error

Current 

inputs

Cost 

function
Constraints Past inputs 

and states

FIGURE 24. MPC Structure

of two blocks that form a closed-loop feedback controller.
One is a dynamic model, which uses historical inputs and
states to generate predicted outputs, which are then compared
to the reference trajectory to generate a future error. The
optimizer, the second block, takes the future error and gives
the current inputs to the model while taking into account the
cost function and a number of restrictions.

• Linear MPC control design process:
Discrete State space formula:

xt+1 = Axt +Bwt (39)

where in (25), xt+1 is the future state, xt is the current
state and wt is the actuation command. A and B are the
time-invariant coefficient matrices.
Control policy is:

W = wt|t, wt+1|t, wt+2|t..... (40)

Optimize the cost function:

J(x(t),W ) =
t+T−1
∑

j=t

xTj |tQxj |t + wT
j |tRwj |t (41)

Optimized cost function for desired trajectory:

δxj |t = xj |t,des − xj |t (42)

J(x(t),W ) =
t+T−1
∑

j=t

δxTj |tQδxj |t +wT
j |tRwj |t (43)

Where in equation (43), Q and R are the weight metrics
of the cost function.

Now, Linear Quadratic regulator:

J(x(t),W ) = xTt +T |tQfxt+T |t +

∑t+T−1

j=t xTj |tQxj |t + wT
j |tRwj |t(44)

The state space solution is:

xj+1|t = Axt|t +Bwt|t t ≤ j ≤ t+ T − 1 (45)

The LQR solution specifies a control gain k, which is
computed using the state space functions A and B, as
well as the cost functions Q and R.

• Non-Linear MPC control:
Non-linear MPC (NMPC) incorporates a repeated so-
lution of the optimization problem at every sampling
moment in the receding horizon method. The NMPC
issue in terms of a non-linear optimization problem
is convenient to solve by numerical optimization. The
cost function and constraints set out the NMPC control
features and dynamic performance requirements. The
system utilizes these control methods in turning and
for the stability of wheeling calculation steering angles
[209].

Implementation of MPC controller for Vehicle lateral and
Longitudinal Control:

Model 

Predictive 

Controller

Low Level 

Controller

Reference

Trajectory

States (Calculated or predicted)

Vehicle

Fx

Fy

Throttle

Braking

Steering

FIGURE 25. Vehicle lateral and longitudinal control with MPC controller

As shown in Figure 25 MPC takes reference velocity,
reference route, and heading angle as inputs. The longitudinal
forces Fx and lateral forces Fy are outputs, and these forces
are inputs to the low-level controller. As previously stated,
the low-level controller’s outputs are the accelerator and
brake instructions for longitudinal control and the steering
instruction for lateral control.

In [210], a NMPC is also developed for speed and steering
control based on a genetic algorithm to construct the cost
function and constraints in a more precise, meaningful and
straightforward way. The vehicle under the guidance of the
advanced NMPC is capable of accurately and reliably fol-
lowing the center line of the lane, even at sharp edges.

V. SUMMARY AND COMPARISON

There is a considerable amount of research on driving control
system for smart EV, concerning ADAS. These studies sur-
vey and discuss ADAS and propose significant types of meth-
ods such as ACC, ABES, LCA, LKA, LDW, Night Vision,
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TSR, Automatic parking assistance, Pedestrian Detection,
Traction control, Communication VANETs, and Security and
access control. These systems are applied in a smart EV for
safe driving and driving comfort.

A comparison between current study and existing surveys
is shown in Table 1, on DCSs and vehicle perception sensors.
From this Table 1, this paper present all the DCSs and sensor
for those control system. Each of the control systems is
important enough in terms of security, comfort and ease of
implementation. The following systems of control are based
on lateral and longitudinal control of the vehicle. Several
types of control methods operate these control systems dis-
cussed in the ADAS section.

An analysis between the control systems of ADAS is
shown in Table 2, on findings, performances, and disadvan-
tages. In addition, this paper analyzed some research articles
on various control approaches, which are summarized in Ta-
ble 2. The extensive examination of driving control schemes
as well as performance measures are discussed in order to
identify the optimal control schemes in DCSs.

The investigation regarding algorithms is the key to DCS.
Various algorithms have been used to rectify the performance
of DCS, which are based on perception, localization, and
vehicle control. For perception and localization algorithms
this paper presents various types for sensor: Vision, lidar,
radar, Ultrasonic, Night vision, Time of Flight. These sensors
and sensor fusion are compared in Table 3 for road surface
detection, object detection, vehicle detection, parking space
detection, and so on.

We conduct a performance analysis of these sensors in
terms of their accuracy when used with a certain detection
method. From Table 3 we can understand that vision sensor
works well for vehicle detection. Fusion of vision and radar
sensor works well for road surface detection. The ultrasonic
sensor is ideal for detecting moving objects. Furthermore,
sensor fusion of camera and radar is the most effective for de-
tecting pedestrians. In addition, the LIDAR sensor performs
well in terms of detecting road lines but vision sensor has bet-
ter accuracy. Figure 26 shows the performance comparison
of sensors. The perception and localization algorithms are
used for understanding the vehicle environment and perform
accordingly.

The vehicle control algorithms are presented to perform
perception algorithms. To understand vehicle control, vehicle
control dynamics and actuation are presented in this paper.
Vehicle control dynamics are longitudinal and lateral dy-
namics are about acceleration, brake, and steering system.
This paper presents a comparison of Longitudinal and Lateral
vehicle control systems in Table 4, 5.

There are three controllers: PID, MPC, and feed-forward
for longitudinal control. PID has a moderate performance
for longitudinal control; MPC and feed-forward schemes
show better performances. For lateral control, there are also
two types of controller: geometric and dynamic. Geometric
control has two forms of pure pursuit and Stanley. The
geometric controller is a path tracking controller that uses

the reference path geometry and the vehicle’s kinematic
model to map the reference route. The reference point on
the reference path is derived from the pure pursuit controller,
while the Stanley controller derives the same reference point
as is used to measure errors. The MPC is the most advanced
sort of controller, as it can use finite-horizon optimization to
discover the control instructions that are appropriate.

All driving control systems and algorithms discussed ear-
lier for driving safety and driving conformity of smart EVs
need to be further enhanced with software that implements
AI techniques [211], [212]. To improve these control sys-
tems, the accuracy of the sensors must also be improved.
For vehicle longitudinal and lateral control, the emergence
of further improvements is also required. However, to gain
greater control, fault avoidance, and higher stability, all of
these control systems and algorithms need to be improved.

VI. CONCLUSION AND FUTURE SCOPE

Control methodologies for improving the performances of
smart EVs have been actively developed and implemented.
Furthermore, one of the most notable areas of growth in the
transportation business is road safety. As a result, automakers
are developing a variety of driver aid technologies to make
driving easier, reduce driver stress, and reduce the severity of
accidents.

This paper provides an overview of many control systems
and algorithms for control systems. Many of the control sys-
tems are used in the ADAS. Perception, localization, and ve-
hicle control is covered in the algorithms section. Perception
and localization include sensor metrics as well as the types of
sensors used in smart EVs. Vehicle dynamics, longitudinal,
and lateral control algorithms are among the vehicle control
algorithms, and these control system algorithms and sensor
styles are briefly discussed in a number of research papers.
There are, however, several methods and algorithms that can
be applied to smart EVs. For decades, the smart vehicle has
been an active research field.

Moreover driving control system for smart EV has numer-
ous research scopes including:

• The application of Big Data may entail interconnecting
multiple smart vehicles, i.e. connecting vehicle to vehi-
cle (V2V) and building the infrastructure.

• It is important to understand human behavior for per-
ception, information processing and decision making.
Human Machine Interaction (HMI) system can be im-
proved to increase dynamic interaction between people
and the controlled system.

• AI-driven algorithms for Vehicle-to-Everything (V2X)
applications can be developed and improved for greater
driving safety and vehicle stability.

We hope that this paper will provide some ground for re-
searchers wishing to conduct research on Smart Electric
Vehicle Technology.
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