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Abstract 

Accurate prediction of range of an electric vehicle (EV) is a significant issue and a key 

market qualifier. EV range forecasting can be made practicable through the application of 

advanced modelling and estimation techniques. Battery modelling and state-of-charge 

estimation methods play a vital role in this area. In addition, battery modelling is essential for 

safe charging/discharging and optimal usage of batteries. Much existing work has been 

carried out on incumbent Lithium-ion (Li-ion) technologies, but these are reaching their 

theoretical limits and modern research is also exploring promising next-generation 

technologies such as Lithium-Sulfur (Li-S). This study reviews and discusses various battery 

modelling approaches including mathematical models, electrochemical models and electrical 

equivalent circuit models. After a general survey, the study explores the specific application 

of battery models in EV battery management systems, where models may have low fidelity to 

be fast enough to run in real-time applications. Two main categories are considered: reduced-

order electrochemical models and equivalent circuit models. The particular challenges 

associated with Li-S batteries are explored, and it is concluded that the state-of-the-art in 

battery modelling is not sufficient for this chemistry, and new modelling approaches are 

needed. 

Keywords: Battery Modelling; Electric Vehicle; Lithium Sulfur; Equivalent Circuit; 

Electrochemical. 

1. Introduction 

Hybrid vehicles are well-established in the market, and electric vehicles are growing in 

popularity. This trend is likely to continue for the foreseeable future. There is a strong 

scientific consensus in the reality of human-made climate change [1],[2], which is reflected in 

national and international legislation on point-of-use emissions: in Europe, we are already 

seeing the introduction of stringent regulations.  The UK Government has estimated that by 

2030, average „new car‟ tailpipe emissions will need to fall to around 50-70 g/km – a rough 

halving from the present day [3]. In discussions with our international academic colleagues, it 

is clear that in the relatively new, rapidly expanding markets such of China and India, there is 

a strong consciousness of the need to develop sustainably and without over-dependence on 
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scarce foreign oil imports.  There have been many studies that have considered the use of 

renewable energy sources in next generation of transport systems, and various new 

technologies have been applied [4]-[6]. The powertrain of the future is likely to be 

increasingly hybridised, increasingly electrified, and increasingly dependent on high quality, 

effective and affordable traction batteries. 

In the UK, we have some uptake of electric vehicles, but EVs still represent a small 

market sector and there are challenges associated with their introduction [7]. Although it has 

been shown that in their present form, electric vehicles are suitable for the day-to-day needs 

of the typical urban motorist [8], consumers still have concerns about cost, longevity and 

range [7]. Charging times and safety are also well-known concerns.   

 Development of energy storage systems is at the heart of vehicle electrification process. 

Many new technologies for batteries, fuel cells, ultracapacitors, etc. have been developed for 

implementation in hybrid and electric vehicles. A good example is the Lithium-ion (Li-ion) 

battery, one of the most widely used technologies in advanced electrified vehicles. Li-ion 

batteries have been developed to meet different specifications, each with different chemical 

compositions. Key design objectives for automotive applications include battery energy 

density, safety and reliability [9]. Among the different types of Li-ion batteries used in EVs 

are Lithium Cobalt Oxide (LCO), Lithium Manganese Oxide (LMO), Lithium Iron Phosphate 

(LFP) and Lithium Nickel-Manganese-Cobalt Oxide (NMC) [10]. Table 1 shows some of the 

battery pack manufacturers and the EVs in which their batteries are used [11]. 

As Li-ion batteries have been developed to maturity, they have begun to approach their 

theoretical energy density limits (200-250 Wh/kg [12]). Ongoing electrochemical research on 

Li-ion batteries aims at increasing cycle life, safety, and other performance characteristics 

[13]. At the same time, researchers are investigating other types of electrochemical energy 

storage systems with higher energy density for use in EV applications. One such 

electrochemical system is the Lithium-Sulfur (Li-S) battery. The Li-S battery offers potential 

advantages over Li-ion, such as higher energy density, improved safety, a wider operating 

temperature range, and lower cost (because of the availability of Sulfur); this makes it a 

promising technology for EV application. However, Li-S technology has not been widely 

commercialized yet because it suffers from limitations such as self-discharge and capacity 

fades due to cycling and high discharge current [14]; research into these areas is ongoing. 

Battery modelling is a significant task within battery technology development, and is vital 

in applications. For example, EV range prediction is only possible through the application of 

advanced battery modelling and estimation techniques to determine current state and predict 

remaining endurance. In addition, battery modelling is essential for safe charging and 

discharging, optimal utilization of batteries, fast charging, and other applications. In this 

study, modelling of batteries is addressed with a focus on their EV applications. Different 

modelling approaches are reviewed and explained, considering three categories of models: 

mathematical models, electrochemical models and electrical equivalent circuit networks. The 

first part of the paper considers these techniques in general, and is potentially useful to a wide 

range of readers who are interested in understanding the breadth of techniques available for 

battery modelling, with many different possible applications. The paper then considers our 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

3 

 

specific application: hybrid and electric vehicles. This considers modelling approaches which 

are applicable in EV battery management systems: the discussions presented in this part are 

mainly focused on low-fidelity models which are fast enough for real-time applications. For 

this purpose, our review focuses on reduced-order (simplified) electrochemical models, and 

equivalent circuit network models. The last part of this study specifically considers Li-S 

battery technology which some researchers view as promising technology for the next 

generation of hybrid and electric vehicles. Previous studies about Li-S battery modelling are 

reviewed separately and the challenges of Li-S battery modelling for EV application are 

discussed.  

Table 1: Different Li-ion battery packs manufacturers and EVs in which battery is used [11] 

2. Battery Modelling Approaches 

There are many studies focused on battery modelling in the literature. Models in can be 

classified according to the different modelling approaches used. The major categories are 

mathematical models, electrochemical models and electrical equivalent circuit networks 

[15],[16]. The literature also contains examples of combined model types such as analytical-

electrochemical models [17],[18]. In addition, battery thermal models have been investigated 

in a number of studies [19]-[21]. Pure thermal models are not in the framework of this study 

but mixed thermal-electrochemical models are considered as a subset of electrochemical 

models.  Each of the three major categories will be considered in turn. 

Before starting the discussions, there is a point which should be noted about the words 

battery and cell throughout the text. The word „cell‟ stands for a single cell which consists of 

electrodes (anode and cathode), separators, terminals, electrolyte and a case. On the other 

side, the word „battery‟ is used here by its general meaning which can refer to a single cell, a 

battery module or battery pack. 

2.1. Mathematical Models 

Models in our first group, „mathematical models,‟ can be either analytical or stochastic. In 

an analytical model, different physical concepts can be utilized but the common thing in all 

models is that few equations are used to describe battery properties. As an example of an 

analytical model, one can refer to the Kinetic Battery Model (KiBaM) [22], which is 

developed from an understanding of a battery‟s chemical process kinetics. In this model, the 

total battery charge is modelled as liquid in two tanks by fraction ratios of c as depicted in 

Figure 1. The two tanks are the „available charge‟ tank, connected directly to the load, and 

the „bound charge‟ tank, which provides charge for the „available charge‟ tank. The 

parameter 
1h  represents the battery‟s state of charge and 

OR represents the battery‟s internal 
resistance. Supposing the two tanks are connected through a valve with coefficient value of k, 

the following differential equations describe that how charge changes in each tank.  
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2 1 1

2 1 2

( ) .

( ) .(1 )

di
I k h h where i h c

dt

dj
k h h where j h c

dt

                                     (1) 

When a load current (I) is drawn from the battery, the parameter 
1h  decreases rapidly and 

then difference between 
1h and 

2h causes a flow between the tanks until they become equal 

again. More details of this and other examples of analytical battery models can be found in 

[15]. 

Figure 1: Kinetic battery model (KiBaM) [22] 

Our second type of mathematical model is the stochastic model. Stochastic battery 

models, such as those developed by Chiasserini and Rao [23],[24], are fast compared to high-

fidelity electrochemical models but are still accurate [25]. This type of battery model works 

on the principle of the discrete-time Markov chain: a Markov process is a memoryless 

process that one can predict the future of the process based on its present state without 

knowing its full history. This method can be used to model a random system that its states 

change based on a transition rule that only depends on the current state of the system. 

The literature contains a stochastic version of Kinetic Battery Model, represented as a 

three-diomensional Markov process [25]. This model has three state parameters (i, j, t).  The 

parameters i and j are defined as depicted in Figure 1 and parameter t  is the time since some 

current was drawn from the battery before the present instant. The battery model moves from 

one state to the other – this is called a „transition‟ – and each transition has an associated 

probability. Figure 2 illustrates the different state transitions and their probabilities, 

summarized in the following equations: 

0

0

( , , 1) ( , , ) . ( )

( , , ) ( , , 1) ( , , ) .(1 ( ))

( , ,0)

r

nr

I

i Q j Q t with probability of p i j t q p t

i j t i j t with probability of p i j t q p t

i I J j J with probability of q

            (2) 

A fuller treatment of the stochastic modelling approach and simulation results for the 

Stochastic Kinetic Battery Model can be found in the original source [25]. 

 

Figure 2: State transition diagram of the Stochastic Kinetic Battery Model (KiBaM) [25] 

2.2. Electrochemical models 

Batteries, as electrochemical systems, can be modelled using physics-based methods. 

Electrochemical battery models [26],[27] can provide full information on the internal 

electrochemical dynamics of a battery. Electrochemical battery models consist of a set of 

coupled partial differential equations (PDEs). These equations explain how the cell‟s 
potential is produced and affected by the electrochemical reactions taking place inside the 

cell. For example, Fick‟s law of diffusion (equation 6 in Table 2) is used for obtaining solid 
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concentrations at each electrode and electrolyte concentration. Ohm‟s law is used to calculate 

of electrolyte and electrode potentials (equation 3 and 4 in Table 2).  

There can be little doubt that good electrochemical battery models are the most accurate 

among all battery models, as they explain key behaviours of battery at the microscopic scale 

based on the chemical reactions occurring inside the battery. Considering accuracy as the 

most important aspect of modelling, these models are excellent and can be used to 

complement experimental data for evaluation of other models: one advantage of 

electrochemical models over real data is that internal states are fully observable, allowing 

„virtual measurements‟ of quantities that cannot be measured in practice. The literature 
contains many examples of electrochemical battery modelling, and not all will be reviewed 

here: most of them are not directly applicable to our intended application in electric vehicles. 

Instead, the focus will be in a group of works which consider simplification (order reduction) 

of these electrochemical battery models. By way of an example, Figure 3 demonstrates a 

simple schematic of a Li-ion cell containing different parts which are negative and positive 

electrodes, electrolyte, separator and current collectors [28]. As shown in the figure, the X 

coordinate is used to determine the cell components‟ thicknesses. In addition, single particle 

concentration model is illustrated in a spherical coordinate. The corresponding equations and 

boundary conditions of this model are stated in Table 2. Model simplification will be 

discussed later in the paper. 

Thermal equations can also be coupled to electrochemical equations. In one source in the 

literature [29], a thermal-electrochemical model is developed for Li-ion 18650 battery packs. 

Models of this type are highly detailed, and of very high order. Without any simplification, 

models of this complexity can only be solved using powerful computational tools and 

methods such as Computational Fluid Dynamics (CFD) frameworks. One source [30] 

describes the use of a 313th order CFD model used as a basis for the validation of simpler 

models. As an alternative to CFD, multiphysics FEM-type modelling environments such as 

COMSOL Multiphysics can be used, as illustrated in [31] ] in which a Li-ion battery with 

thermal effects is modelled. 

Figure 3: Schematic of a Li-ion cell [28] 

Table 2: Governing equations of a Li-ion cell electrochemical model [28] 

2.3. Electrical equivalent circuit network models 

The complexity of the electrochemical models and limitations of the computers in the past, 

led researchers to investigate another modelling approach called electrical circuit modelling 

or equivalent circuit (EC) modelling. Nowadays, for many applications, it is important to 

strike a balance between model complexity and accuracy so that models can be embedded in 

microprocessors and provide accurate results in real-time [32]. In other words, it is important 

to have models that are accurate enough, and not unnecessarily complicated. EC modelling is 

one of the most common battery modelling approaches especially for EV application. Having 

less complexity, these models have been used in a wide range of applications and various 

types of batteries [33]-[35].  
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The EC models are constructed by putting resistors, capacitors and voltage sources in a 

circuit. The simplest form of an EC battery model is the internal resistance model [36]. The 

model consists of an ideal voltage source (
OCV ) and a resistance (

OR ) as depicted in Figure 4 

in which 
tV  is battery terminal voltage and 

LI  is load current. 

Figure 4: internal resistance battery model 

Adding one RC network to the internal resistance model can increase its accuracy by 

considering the polarization characteristics of a battery. Such models are called „Thevenin‟ 
models [37], illustrated in Figure 5; in this figure, 

tV  is the battery‟s terminal voltage, 
OCV  is 

its Open Circuit Voltage (OCV), LI  is the load current, OR  is the internal resistance, PR  and 

PC  are equivalent polarization resistance and capacitance respectively. The electrical 

equation of Thevenin model (1RC model) in the Laplace domain is as follows: 

( ) ( ) ( )
1

P
t OC L O

P P

R
V s V s I s R

R C s
                                   (7) 

 

Figure 5: One RC network battery model (Thevenin model) 

A review of different Thevenin-type battery models is presented in [38]. Adding more RC 

networks to the battery model may improve its accuracy but it increases the complexity too. 

So a compromise is needed when computational effort and time are vital. This subject is 

discussed with more details in the following parts. 

After selecting the structure of the EC model, parameters of the model need to be 

determined. A classical method for EC battery model parameterization is Electrochemical 

Impedance Spectroscopy (EIS) [39],[40]. In this method, an expression for the equivalent 

impedance of the model from the equivalent circuit is obtained in the frequency domain 

theoretically, then related to practical data: the electrochemical impedance is the response of 

an electrochemical system to an applied potential. So an AC voltage is applied to the system 

and the current is measured in order to calculate the impedance at that frequency. The 

electrochemical system should be under steady-state conditions during the test. The input‟s 
amplitude should be small to avoid nonlinearity effects. However, smaller currents should be 

avoided as they can be masked by noise. So the system is considered pseudo-linear in a 

limited range.  The frequency of the AC input slowly varies during the test from very small to 

very large values and the impedance spectrum is plotted as a function of the frequency. As an 

example, Figure 6 illustrates a system and its impedance-frequency plot. The equivalent 

impedance of this system is obtained using the following equation: 

1

1 11
e O

R
Z R

j R C
                                                    (8) 

where j  is the unit imaginary number,  is the frequency and other parameters are as 

depicted in the figure. This formula is easy to relate to the plots obtained in EIS tests, so the 
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model‟s parameters can be obtained by a good fitting between theoretical and experimental 
data. It should be noted that the parameters are obtained under steady-state conditions which 

means a fixed state of charge (SOC), temperature, etc., so it will be necessary to repeat tests 

over the range of conditions of interest: there are examples of such tests in the literature 

[41],[42]. 

Figure 6: Variation of impedance at different frequencies 

One common electric circuit model which is used in EIS tests was proposed by John 

Edward Brough Randles in 1947 [43]. The model, called Randles circuit model, is illustrated 

in Figure 7. In cell modelling using the EIS method, each component of the electrical circuit 

model is related to an electrochemical process in the cell. For example, in Randles model bR  

is the bulk resistance of the cell, standing for the electric conductivity of the electrolyte, 

separator and electrodes. ctR  and dlC  are the charge transfer resistance and double layer 

capacitance respectively and they represent the activation polarisation voltage drop. Finally 

WZ is the Warburg impedance and stands for the diffusion of the Lithium ions in the cell 

[44],[45]. 

Figure 7: Randles circuit 

At this stage, a simple visual understanding of the three modelling approaches is useful. 

Imagine a current impulse is applied to a battery and the battery responds as depicted in 

Figure 8. Different parts of the battery response should be taken into consideration and be 

constructed during the modelling process. As seen in the figure, battery voltage response 

consists of a sudden drop at the beginning and then it goes down through a curve and next, a 

linear decrease is observed. After the pulse, battery voltage jumps up and then it comes up 

slowly to reach to open circuit voltage again. Figure 9 demonstrates a schematic of how the 

different parts of battery response are shaped by different model parameters using each 

approach. 

 

Figure 8: Current impulse and battery voltage response 

Figure 9: Battery response modelling using different approaches 

3. Battery Modelling for EV Application 

Accurate prediction of range of an EV is a critical issue and a key market qualifier. EV 

range forecasting relies on the application of suitable modelling techniques. There are a 

variety of techniques, typically operating at different levels of fidelity and employing 

different modelling philosophies [46]. The battery model, as a part of the whole vehicle 

model, plays a significant role in the EV range calculation. Estimation of the EV range 

without the knowledge of accurate battery SOC is impossible. So in the specific case of 

battery modelling for EV application, battery SOC estimation is more important than 

explaining battery I-V characteristics.  
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In addition to SOC estimation, there are two other vital issues about the application of the 

battery models in EVs. The first issue is the time. Because of the need for real-time 

computations in a battery management system (BMS), fast models are preferred rather than 

complex and accurate models. The second issue is related to the high discharge rates which 

should be considered in EV battery modelling. Model simplification methods that work well 

at low discharge rates may not be suitable for EV application. There are two main groups of 

EV battery modelling studies in the literature. In the first group, electrochemical modelling 

approach is utilized by applying model simplification techniques and the second group is 

focused on the EC battery modelling approach.  

3.1. Reduced-order electrochemical battery models for EV application 

Although, electrochemical battery models are suitable for understanding the 

electrochemical reactions inside the battery, their complexity often leads to need for more 

memory and computational effort. So they may not be usable in fast computation and real-

time implementation that is needed for EV BMS. This problem has been addressed in many 

researches by investigating reduced-order models (ROM) that predict the battery behaviour 

with varying degrees of fidelity [47],[48]. To reduce the order of an electrochemical battery 

model, discretization techniques can be applied to retain only the most significant dynamics 

of the full order model [49]. Referring to Table 2, a full order electrochemical battery model 

consists of a number of nonlinear coupled PDEs. Various discretization techniques are 

utilized to simplify the full model‟s PDEs into a set of ODEs of the ROM while keeping the 

fundamental governing electrochemical equations. In [50], six different discretization 

methods (listed in Table 3) are addressed and compared for battery system modelling. 

Table 3: Battery model discretization methods 

Explaining an example of the model order reduction process would be helpful to make the 

subject clearer. In [56], a single particle model has been investigated for a Li-ion cell that 

consists of Lithium metal oxide (
2LiMO ) at positive electrode and Lithiated carbon (

xLi C ) 

at negative electrode. Referring to equation 6 in Table 2, the PDE related to the conservation 

of Lithium in a single spherical active material particle has been solved analytically. 

Considering the current and cell‟s terminal voltage as the input and output of the system 

respectively, the overall transfer function of the system is obtained as follows. The 

parameters are defined in Table 4 in which the + and - signs stand for positive and negative 

electrodes respectively. The model order reduction aims at simplifying this analytical solution 

with minimum deviation from it.  
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( ) 1 1
( )

( )

tanh( )1

tanh( )

tanh( )1

tanh( )

ct ct

S S

S

S S S

fS

S S S

R RV s
G s

I s a A a A

RU

c A a FD

RRU

c A a FD A

                           (9) 

S

S

s
R

D
                                                          (10) 

The above transfer function is infinitely differentiable and can be expanded in a power 

series at the origin. So in this case, the Padé approximation method is a good choice to 

discretize the transfer function in order to build a ROM. The order of Padé approximation is a 

key parameter which affects accuracy of the results. In proportion as the order is higher, the 

discretized model would be more accurate and complicated both. So the minimum order that 

get us satisfactory results is desired in each case. In [56], A third order Padé approximation 

model is developed for each particle transfer function as presented below: 

2 2

2 1 0 2 1 0

3 2 3 2

2 1 2 1

( )
b s b s b d s d s d

Z s K
s a s a s s c s c s

                            (11) 

where the coefficients are stated in Table 5 in which the two parameters C  and C  are 

defined as follows and K is the total resistance. 

, ,

21 , 21
s e s e

U U
C C

c c
                                         (12) 

1 1 fct ct

S S

RR R
K

a A a A A
                                        (13) 

So a ROM, that is ( )Z s , has been obtained for the analytical model presented by ( )G s  

transfer function. Performance of the proposed ROM is analysed in [56] which demonstrates 

validation of the model with a 10Hz bandwidth. More details of the model order reduction 

process are available in [62] in which a comprehensive study has been performed to develop 

reduced-order electrochemical models for a Li-ion battery using discretization methods.  

Table 4: Li-ion cell parameters 

Table 5: Coefficients of the discretized transfer function  

 

Although the ROMs have many advantages, they may have limitations due to the 

simplification process which should be considered carefully. For example, application of 

ROMs in hybrid electric vehicles (HEVs) might differ from the application in the pure EVs 
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because of the assumptions that used in a ROM. In [49], a seventh-order single particle model 

has been developed using Padé approximation method. In the model simplification process, 

linearization around an equilibrium point at 50% SOC is performed. The proposed model 

performs well but its accuracy is sensitive to the linearization process so that the maximum 

error increases very much by going far from the equilibrium point. The sensitivity of model 

to the range of SOC variation might be acceptable for HEVs but not for a pure EV in which 

SOC varies between zero and 100%. The above mentioned restriction is also found in other 

studies such as [30] and [56] in which a narrow range of SOC is assumed during the battery 

model simplification.  

In addition to the above mentioned techniques, the battery PDEs (such as presented in 

Table 2) can be solved using numerical methods. Application of the numerical methods to 

solve ODEs and PDEs can be found in many text book references. As an example, finite 

difference method (FDM) for solving PDEs is explained very well in [63]. FDM is not 

applicable for EV BMS because of the long solution time. But recently, spectral methods 

have been proposed as an alternative to FDM for solving battery PDEs. Spectral methods 

have been found to be 10 to 100 times faster than FDM which make them a possible choice 

for real-time EV BMS application [64]. 

3.2. Equivalent circuit battery models for EV application 

As mentioned before, EC modelling approach is also a good choice for EV applications. In 

comparison with the electrochemical ROMs which are obtained based on the fundamental 

equations of the cell, EC models cannot predict cell‟s internal variables such as the 

electrolyte potential. In addition, EC models are only available after a battery (or at least a 

good high-fidelity model) has been made and not during the design process because they 

need to be developed from test data. On the other hand, EC models have been used in many 

previous studies for real-time EV BMS application because of their simplicity, speed and 

acceptable accuracy. In many EV applications, prediction of the cell‟s internal variables is 

less important than the ability to get a useful estimate of a cell‟s SOC. However, it should be 
noted that a cell‟s internal variables may provide useful insights for model-based state of 

health (SOH) estimation of the battery [57]. Thus, the authors believe that both 

electrochemical ROMs and EC models have potential for EV applications.   

3.2.1. EC battery model identification 

In addition to EIS method described in section 2.3, system identification techniques are 

used for battery EC model parameterization. Because these methods are much faster than 

EIS, they can be utilized in real-time applications such as EV BMS. An identification 

procedure contains three main parts which are: 1) Model structure selection, 2) Experimental 

tests design and, 3) Fitness criterion and identification error minimization algorithm selection 

[65]. EC model structures have already been discussed (section 2.3). Experimental tests may 

vary however there are common types of test in the literature, notably the charge-discharge 

current impulse tests. In such a test, a battery is excited by a discharge or charge impulse and 

is left to rest. Then the battery model parameters are calculated using system identification 

techniques. For example, Figure 10 illustrates two discharge and charge current pulses 
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imposed to a single Li-S cell and cell‟s terminal voltage response. This sample test is 

performed under a specific condition but it should be noted that battery test procedures 

should be designed in a way that they cover all possible conditions such as different SOC, 

temperature, etc. 

Figure 10: Discharge and charge current pulses and cell‟s terminal voltage response 

 In the third part of the identification process, the model‟s parameters are determined so 
that the least difference between the experimental data and the model‟s output is achieved. 
Model parameterization can be performed using mathematical algorithms such as Prediction-

Error Minimization (PEM) algorithm [65]. In PEM algorithm, the parameters vector ( ) is 

determined so that the prediction error ( ), defined bellow, is minimized.  

1
ˆ( , ) ( ) ( ; )k k k kt y t y t t                                            (14) 

where ( )ky t  is the target output at time k and 1
ˆ( ; )k ky t t  is the predicted value of the 

output at time k using the parameters . Then an iterative minimization procedure has to be 

applied to find the best model parameters values. Because battery parameters are in a limited 

range and a good initial estimate of them is available, the Gauss-Newton search-scheme 

works well in this case. Consequently a scalar fitness function is minimized as follows: 

1

1
( ) det ( , ) ( , )

N
T

N k k

k

E t t
N

                                    (15) 

3.2.2. EC battery model types 

EC battery models can be classified with regard to various aspects such as: 1) Model 

structure, 2) Model representation, 3) Model adaptation, etc. Starting from the first of these,  

model structure, different electrical circuit architectures have been tried and tested for EC 

battery modelling in the literature. Some of these EC battery model structures were 

introduced in section 2.3. They are usually designed to be accurate as much as possible. This 

may achieved by adding more parameters to the model. However, an important issue for EV 

application of the model is simplicity. Indeed, the more parameters are used in the model, the 

more complex is the model and more computational effort is needed for system identification. 

So a compromise is essential between accuracy and complexity. As an example, the literature 

contains a study [66] to find the optimum number of RC networks in a battery model with 

enough precision and suitable complexity. In another study, hysteresis characteristics were 

also considered in the EC battery model and twelve different EC model structures including 

combinations of hysteresis effect and different RC networks were addressed and compared 

[67]. 

Going to the second criterion, model representation, battery EC models can be formulated 

so parameters variation over the operating points of interest is described either by look-up 

tables or by polynomial functions. In the look-up table representation, the battery model data 

(identified values of model‟s parameters) is stored in different tables. The look-up tables are 
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obtained offline from experimental test data. In the alternative representation, polynomial 

functions are fitted to the test data in order to obtain a number of unknown coefficients. 

Having the coefficients, the battery model then consists of a set of polynomial functions 

instead of look-up tables. A number of battery modelling studies in the literature are 

summarized in Table 6. 

Both look-up tables and polynomial functions are fixed because they are obtained offline. 

So, all operating conditions of interest must be considered during the model parametrization 

process. These conditions might include various SOC values, temperatures, current rates, etc. 

However, covering all different conditions needs massive test data and a complete model 

would contain large number of tables. In addition, consideration of other factors such as 

battery degradation (due to ageing) makes the problem more complex. A solution for this 

problem is the ability of adaptation inside the model. Consequently, battery EC models can 

be also classified with regard to their adaptation capability. An adaptive model can change by 

obtaining the parameters online using system identification techniques. Examples of such 

adaptive battery models can be found in [68] and [69]. 

3.2.3. EC battery model variables 

Battery model parameters are not fixed-value constants, and change under different 

operating conditions. Here the word „condition‟ stands for battery SOC, temperature, battery 
age, etc. So, with respect to the variation of conditions, these variables should be considered 

in the battery model. In the literature, different variables can be found in battery models. 

However, there are also fixed battery models that are used when a roughly approximating is 

needed. In  [70] a generic fixed battery model has been developed which is applicable for a 

variety of battery chemistries including Lead-Acid, Li-ion, Nickel-Cadmium (NiCd) and 

Nickel-Metal-Hydride (NiMH). Although this model may not be very accurate, its generic 

feature is an advantage that can be fitted to different battery chemistries. 

The most widely used variable in the battery models is battery SOC because it 

significantly affects battery behaviour. It means that each parameter of the model is 

considered as a function of SOC as follows: 

( ), 1,2,...,i ix f SOC i N                                          (16) 

where ix  is the ith parameter of the model, if  is the function which connects ix  to SOC, 

and N is the number of parameters. In the literature, the relationship between each parameter 

and SOC is usually presented using look-up tables or polynomial functions ([68] and [71] in 

Table 6). 

Another important variable that dramatically alters the battery performance is temperature. 

This effect is so much that can damage the battery so a temperature range is defined by 

battery manufacturers. Adding temperature as the second variable to if  function, each 

parameter of the battery model would be as follows ([72] in Table 6): 

( , ), 1,2,...,i ix f SOC T i N                                          (17) 
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Another factor which can affect the battery behaviour is the current rate. Experiments 

demonstrate that the whole energy got from the battery during discharging changes by 

applying different current rates while the other conditions are identical. This is happened 

because of internal changes that occur inside the battery. For example, higher current rates 

can increase the battery‟s internal resistance and consequently lead to more loss of energy. 
Considering this phenomenon, needs adding one more variable to the model as follows ([44] 

and [73] in Table 6): 

( , , ), 1,2,...,i ix f SOC T I i N                                          (18) 

Considering all SOC, temperature and current rate variables would give us a relatively 

perfect model. Although having such a model might be enough in some cases, there is still 

another issue which is not considered, battery ageing or cycling degradation. Because of the 

changes occur inside the battery due to ageing, its performance and consequently its model 

alters [7]. For example it is demonstrated in [74] that how the cycling can lead to battery 

internal resistance growth and capacity loss using Thevenin battery model. So, an ageing 

factor is also essential in a perfect battery model. More generally, battery degradation (due to 

ageing or whatever) can be considered in a parameter called battery state-of-health (SOH). 

Adding SOH to the model ([75],[76] and [77] in Table 6), we have: 

( , , , ), 1,2,...,i ix f SOC T I SOH i N                                 (19) 

A summary of different battery model variables in the literature is presented in Table 6. 

Temperature and current are measurable variables so their effects on the model can be 

easily applied in real-time. The condition is totally different for SOC which is not measurable 

directly and estimation techniques are required. The accuracy of SOC estimation is vital 

because battery model‟s parameters are functions of SOC. There are various techniques in the 
literature for battery SOC estimation [75],[78]. A conventional method which is also used as 

a benchmark for evaluation of other techniques, is called Coulomb-Counting (CC) method. In 

this concept, SOC is calculated by integrating the load current to know how much capacity is 

used and remained. Although CC method is very useful as a theoretical benchmark, it cannot 

be utilized in practice because it needs proper initial SOC value. In many applications, 

batteries do not begin to discharge from fully charged state due to self-discharging or being 

not originally fully charged [79]. There is also no mechanism to correct for divergence. So, 

CC method suffers from accumulated errors caused by wrong initial SOC value or noise and 

measurement errors [80]. Another problem is that the battery capacity can change under 

various conditions such as temperature variation which leads to an error in CC method. 

However, CC method can be used as an ideal reference to evaluate other SOC estimation 

techniques.  

Another conventional method for battery SOC estimation is the use of look-up tables or 

polynomials which relate SOC to the battery‟s parameters such as the open circuit voltage 

(OCV). This method also suffers from limitations such as: 1) all possible working conditions 

should be taken into consideration during the design process and the system would not be 

able to handle new conditions. So lots of test data is needed to cover all the variables such as 
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SOC, temperature, etc. 2) this method is not applicable for all battery types such as Li-S 

battery. The reason is the large flat region in OCV-SOC curve of this type of batteries. 

Another group of existing SOC estimation algorithms are recursive adaptive filters such as 

Kalman filter-based SOC estimators [81]-[83]. In this category, which is the most widely 

used technique of battery SOC estimation, the estimator works based on the error between the 

battery output (usually battery terminal voltage) and a battery model‟s prediction. The 
prediction error is usually large initially and it decreases gradually after a number of 

iterations. So, an accurate battery model is needed in this method that is able to predict 

battery terminal voltage well. The battery model contains the relationship between SOC and 

other parameters [84],[85]. Comprehensive reviews on the battery SOC estimation methods 

are available in the literature [86],[87]. 

Table 6: A summary of different battery model types, variables and parametrization techniques in 

the literature 

4. Lithium-Sulfur Battery: Properties, Modelling and Challenges 

The reason that a separate part of this article is allocated to Lithium-Sulfur (Li-S) battery, 

is the importance of this topic to the automotive industry in the near future. Indeed Li-S 

batteries with higher energy density, increased safety, wider temperature range of operation 

and lower cost because of the availability of Sulfur, is a promising technology for EV 

application. Considering just the first advantage, that is the higher energy density (theoretical 

capacity of 1675 mAh/g [12]), it would be very much valuable to increase the EV range to 

three times or more. Figure 11 depicts a good comparison between different battery 

technologies and the highest specific energy of Li-S cell [88]. 

Figure 11: Specific energy of Li-S battery in comparison with other types [88] 

4.1. Lithium-Sulfur Cell 

Li-S cell is a cell with Sulfur at the positive electrode and Lithium metal at the negative 

electrode. Different reactions may occur inside a Li-S cell, but generally speaking, the 

discharge process contains gradual reduction of Sulfur to various polysulfides and finally to 

the low order polysulfides and Lithium Sulfide, and oxidization of Lithium metal to Lithium 

ions. The opposite direction, that is charging, consists of reduction of the Lithium ions to 

Lithium, and oxidization of the Sulfide and low order polysulfides to the higher-order 

polysulfides and Sulfur. A schematic of a Li-S cell and the reactions taking place inside is 

illustrated in Figure 12 [89]. So the amount of polysulfides or sulphide exist inside the battery 

at each time depends on SOC. Consequently, the Li-S cell behaves differently from fully 

charged state to fully discharged state depending on the species inside the cell. This feature 

produces four distinct regions in the discharge curve of Li-S cell as shown in Figure 13. As 

seen in the figure, the cell‟s terminal voltage varies from 2.5 to 1.5 V during discharge and 

can be modified depending on the choice of cell components.  

Figure 12: Schematic of a Li-S cell and the reactions taking place inside [89] 
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Figure 13: Li-S cell terminal voltage during discharge at C/20 [89] 

4.2. Review of Li-S cell modelling 

Referring back to the battery model types presented in part 2, almost all Li-S models in the 

literature are electrochemical and analytical. That is because of the complexity and variety of 

electrochemical reactions that take place inside this type of battery. In fact, the 

discharge/charge chemical mechanisms of a Li-S cell are not yet fully understood because of 

its characteristic features such as the polysulfide shuttle phenomenon [14]. Actually, 

behaviour of the Sulfur active material in a Li-S cell is very sensitive to the physical and 

chemical characteristics of the cathode composition and the cell‟s assembly method both 

[12],[90]. A sensitivity analysis is performed in [91] for a Li-S mathematical model described 

in the following. 

In [92], a mathematical Li-S cell model is developed which is one of the best references in 

this area. Eight species are considered in the model which are Li , 
8( )l

S , 2

8S , 2

6S , 2

4S , 

2

2S , 2
S and A . The model includes electrochemical reactions, dissolution/precipitation 

reactions, multi-component transport in electrolyte, charge transfer within solid and between 

solid and liquid and change in cathode and separator porosity due to precipitation. All 

reactions are listed in Table 7. 

Table 7: Reactions in Li-S cell model during discharging [92] 

The model can predict the cell‟s discharge behaviour well with details of species‟ 
concentrations. Figure 14 depicts the average concentrations and the average volume fraction 

of 
2 ( )s

Li S  in the cathode as functions of discharge capacity in the low and high plateau 

regions. The above mentioned mathematical model is extended in [93] and [94] by simulating 

the model under different conditions due to various discharge currents and cycling.  

 

Figure 14: Average concentrations and the average volume fraction of 
2 ( )s

Li S  in the cathode as 

functions of discharge capacity [92] 

Mechanistic modelling presented in [14] includes the shuttle phenomenon which was not 

considered in the above mentioned model. „Shuttle‟ happens during charging when reduced 

polysulfides at the negative electrode migrate back to the positive electrode where they are 

oxidized again. As this phenomenon can affect the cell‟s cycle life and self-discharge rate, it 

should be considered in modelling. In [95], a constant is defined called the “shuttle constant” 
to determine how much of current goes into the shuttle effect. More details of the shuttle 

mechanism are considered in [14] in which the presented model contains precipitation of 

Lithium-Sufide on the anode too. Figure 15 illustrates a schematic of the shuttle mechanism 

and loss of active material in Li-S cell during charging. 
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Figure 15: Schematic of the shuttle mechanism and loss of active material in a Li-S cell during 

charging, Black, solid lines: Regular charge; blue, dashed lines: polysulfide shuttle; grey, dotted lines: 

Lithium Sulfide precipitation at the anode side [14] 

As explained in part 2, there is another group of battery models called electrical circuit 

models. Against Li-ion batteries, there are only a few studies focused on electrical circuit 

modelling of Li-S batteries. Searching the literature for Li-S cell modelling using electrical 

circuit approach led us to [96] and [97]. In these studies, the impedance spectroscopy method 

is utilized to investigate properties of a Li-S cell over the course of cycling. In that study, 

parameters of a second-order electrical circuit model are determined based on the spectrum 

results. Each model parameter is obtained as a function of the used capacity. Figure 16 

illustrates Li-S cell impedance spectra at different charge levels during discharging [97]. 

 

Figure 16: Li-S cell impedance spectra at different charge levels during discharging [97] 

4.3. Challenges of Li-S battery modelling for EV application 

As mentioned before, for EV application, a fast battery model which is accurate at 

different SOC levels, subject to various charge/discharge current amplitudes, in a wide range 

of temperature, etc. is needed. The results in the literature demonstrate that building such a 

fast and accurate model for a Li-S cell which can deal with different working conditions is 

difficult. This section is focused on addressing these challenges in Li-S cell modelling for EV 

application. Against Li-ion batteries, there are not enough studies in the literature in which 

the reduced-order electrochemical models or equivalent circuit models of Li-S cell are 

investigated.  

One of the most challenging issues in application of Li-S batteries in EVs, is rapid 

capacity fade due to battery cycling [13],[98]-[100]. The reasons of this phenomenon have 

been analysed in previous studies. A Li-S cell‟s capacity may decrease because of 

composition change on the surface of the Lithium electrode and formation of a layer of solid 

products on the surface of the sulphur electrode during cycling [96],[101]. Explaining in 

more details, while the polysulfides 2

8S , 2

6S , and 2

4S  are soluble in the electrolyte, the 

polysulfide ions 
2 2Li S  and 

2Li S  are relatively insoluble. So they may remain within the body 

of the positive electrode. The shuttling of polysulfide ions (
2 2Li S  and 

2Li S ) between the 

electrodes is a major technical issue limiting the self-discharge and cycle life of Li-S battery 

[89].  

As a solution for the above mentioned problem, a new effective method to directly 

measure shuttle current is presented in [89]. Using this technique, the rate of shuttling process 

in Li-S cell can be controlled and suppressed and consequently more cycle life is achieved. 

As another solution, adding Lithium nitrate to the electrolyte has been demonstrated by other 

researchers to be effective in suppressing the polysulfide shuttle [102]. But the additive 

Lithium nitrate is consumed over time and after it finishes the shuttle current could change 
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significantly. In [103], application of an additional carbon-coating onto Sulfur cathodes in Li-

S cells is investigated in order to decrease capacity fade. The (binder free) carbon (inter-) 

layer reduced interfacial resistance (at the cathode/separator interface) increasing capacity 

and reducing fade due to an increase in Sulfur utilisation, enhancement of electrical contact 

(with sulfur and polysulfides) and the decrease of active material loss (from the cathode) due 

to adsorption on the carbon coating. Figure 17 demonstrates battery capacity fade due to 

cycling with and without carbon-coating. A good summary on different approaches to solve 

Li-S problems, due to dissolution of polysulfide, is presented in [90] and different electrode 

and electrolyte materials which have been tested for investigation of Self-discharge 

characteristics of Li-S cell can be found in [104],[105]. 

Figure 17: Cycle life properties of Li-S cells tested at 100 mA/g: (a) no-coated, (b) coated for 4 s 

and (c) coated for 12 s [103] 

4. Conclusions 

This paper has reviewed techniques for modelling batteries, with a particular focus on 

three families of techniques: mathematical models, electrochemical models, and equivalent 

electrical circuit network models.  High-fidelity electrochemical models have the potential to 

offer extreme accuracy and insight, but they are not suitable for most real-time embedded 

applications.  For battery management and range prediction in electric vehicles, there are two 

families of models that can be used.  The first family are simplified „reduced-order‟ 
electrochemical models, which are essentially approximations of their higher-fidelity 

relatives: obtaining such a model comes at a cost – it requires the creation of an accurate 

high-fidelity model first – but can provide strong insights into internal variables needed to 

understand state of health.  The second family, the equivalent circuit network models, can be 

offers less immediate insight into internal state, but can be obtained from experimental data, 

either through EIS or through the application of system identification techniques.  These 

models can vary in complexity from simple voltage-plus-internal-resistance models, to 

networks with multiple dynamic elements.  Although equivalent circuit network models do 

not represent internal state directly, they can be parameterized at different operating points, 

and thereby used to estimate quantities such as state of charge. Many models have parameters 

which are fixed functions of state and operating point – either implemented as static lookup 

tables or polynomial functions – but there are families of models that are „self adapting‟ and 
can refine their parameters in response to slowly-changing conditions. 

This paper has considered the particular requirements of one „next generation‟ battery 
technology, Lithium-Sulfur.  This technology and its particular behaviours were introduced, 

and the Li-S battery models in the literature were reviewed: these are mostly electrochemical, 

and there is a lack of literature presenting simple and computationally fast models of Li-S 

batteries, mainly because the technical challenges associated with Li-S such as „shuttle‟ and 
capacity fade.  Further work is required to model and address these issues. 
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Table 1: Different Li-ion battery packs manufacturers and EVs in which battery is used [11] 

Cathode Material 

Types 

EVs battery Packs 

Manufacturers 

EVs Developers 

and EV Models 

Battery Packs 

Usable 

Capacity 

(kWh) 

Approx. Range 

under Normal 

Driving 

Conditions (miles) 

Lithium Cobalt 

Oxide (LCO) 

Panasonic, 

Tesla 

Tesla-Roadster 

Daimler Benz-

Smart EV 

56 

16.5 

245 

84 

Lithium Manganese 

Oxide (LMO)  

AESC, EnerDel, 

GS Yuasa, Hitachi, LG 

Chem, Toshiba 

Think-Think EV 

Nissan-Leaf EV 

23 

24 

99.4 

105 

Lithium Iron 

Phosphate (LFP) 

A123, BYD, GS 

Yuasa, Lishem, Valence 

BYD-E6 

Mitsubishi-iMiEV 

57 

16 

249 

99.4 

Lithium Nickle-

Manganese-Cobalt 

Oxide (NMC) 

Hitachi, LG Chem, 

Samsung 
BMW-Mini E 35 150 
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Table 2: Governing equations of a Li-ion cell electrochemical model [28] 

Description Equations and boundary conditions 

Charge  

Electrolyte phase ln 0eff eff Li

e D e
c j

x x x x
,  

0

0e e

x x Lx x
    (3) 

Solid phase 0eff Li

s
j

x x
,   

0

0

sep

sep

eff effs s

x x L L L

s s

x L x L L

I

x x A

x x

     (4) 

Species  

Electrolyte phase 

0( ) 1eff Lie e
e e

c t
D c j

t x x F
,  

0

0e e

x x L

c c

x x
            (5) 

Solid phase 
2

2

s s s
c D c

r
t r r r

,  
0

0,

s

Li

s s
s

r r R s

c c j
D

r r a F
               (6) 
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Table 3: Battery model discretization methods 

Discretization 

method 
Description References 

The Analytical 

Method 

Finding an exact solution using analytical approaches such as the 

eigenfunction series expansion or the Laplace transform. 
[49],[50] 

Integral 

Approximation 

Method 

Assuming a distribution across the cell for the distributed variable of 

interest and integrating the governing equations to convert the PDE to 

a single ODE. 

[49],[51], 

[52],[53] 

Padé 

Approximation 

Method 

Approximating the transfer function that is obtained using the 

analytical method to desired order exponentials. In other words, Padé 

approximation is utilized to expand the infinitely differentiable 

hyperbolic functions in a power series at the origin. 

[49],[54], 

[55],[56] 

Finite Element 

Method 

Approximating the response over subdomains and then developing 

transfer functions or state-space equations for the nodal dynamics. 

[30],[49], 

[57],[58] 

Finite Difference 

Method 

Similar to the Finite Element Method with more simplicity but no 

convergence guarantee. 

[26],[49], 

[58],[59], 

[60] 

Ritz Method 
Approximating the response by continuous functions over the whole 

domain such as Fourier series with the sinusoidal functions. 
[49] 
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Table 4: Li-ion cell parameters 

A  cell surface area ct
R  charge transfer resistance 

S
a  specific interfacial surface area f

R  contact resistance related to the 

physical connections 

S
c  concentration of Li+ ions S

R  particle radius 

S
D  solid phase diffusion coefficient U  equilibrium potential 

F  Faraday’s constant ( )V s  cell’s terminal voltage 

( )I s  Current  thickness 
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Table 5: Coefficients of the discretized transfer function  

Coefficient Value Coefficient Value 

0
b  

2

5

495
S

S S

C D

AFa R

 
0
a  0 

1
b  3

60
S

S S

C D

AFa R

 
1
a  

2

4

3465
S

S

D

R

 

2
b  

S S

C

AFa R
 

2
a  2

189
S

S

D

R

 

0
d  

2

5

495
S

S S

C D

AFa R

 
0
c  0 

1
d  3

60
S

S S

C D

AFa R

 
1
c  

2

4

3465
S

S

D

R

 

2
d  

S S

C

AFa R
 

2
c  2

189
S

S

D

R
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Table 6: A summary of different battery model types, variables and parametrization techniques in 

the literature 

Reference Model Variables Model type Parameterization technique 

[67] SOC Look-up table Recursive Least-Squares 

[70] SOC Polynomial functions Unspecified 

[71] SOC, Temperature Polynomial functions Extended Kalman Filter 

[43] 
SOC, Temperature, Rate of 

current 
Polynomial functions 

Electrochemical Impedance 

Spectroscopy 

[72] 
SOC, Temperature, Rate of 

current 
Polynomial functions Unspecified 

[74] 
SOC, Temperature, Rate of 

current, SOH 
Unspecified Extended Kalman Filter 

[75] 
SOC, Temperature, Rate of 

current, SOH 

Polynomial functions and 

correction factors 
Unspecified 

[76] 
SOC, Temperature, Rate of 

current, SOH 
Polynomial functions Unspecified 
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Table 7: Reactions in Li-S cell model during discharging [83] 

Reaction Description 

Li Li e  Oxidation at anode 

2

8( ) 8
1 1

2 2l
S e S  

2 2

8 6
3 2

2
S e S  

2 2

6 4
3

2
S e S  

2 2

4 2
1

2
S e S  

2 2

2
1

2
S e S  

Reduction at cathode 

8( ) 8( )l s
S S  Dissolution of Sulfur 

 2

8 2 8( )2
s

Li S Li S  

2

4 2 4( )2
s

Li S Li S   

2

2 2 2( )2
s

Li S Li S  

2

2 ( )2
s

Li S Li S  

Precipitation of Lithium 

Sulfides 

 

Table 7


