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Abstract We provide a review on the empirical likelihood method for regression type

inference problems. The regression models considered in this review include parametric,

semiparametric and nonparametric models. Both missing data and censored data are

accommodated.
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1 Introduction

It has been twenty years since Art Owen published his seminal paper (Owen, 1988) that

introduces the notion of empirical likelihood (EL). Since then, there has been a rich

body of literature on the novel idea of formulating versions of nonparametric likelihood

in various settings of statistical inference. There have been two major reviews on the

empirical likelihood. The first review was given by Hall and La Scala (1990) in the

early years of the EL method, which summarized some key properties of the method.

The second one was the book by the inventor of the methodology (Owen, 2001), which

provided a comprehensive overview up to that time.

The body of empirical likelihood literature is increasing rapidly, and it would be a

daunting task to review the entire field in one review paper like this one. We therefore

decided to concentrate our review on regression due to its prominence in statistical

S.X. Chen
Department of Statistics, Iowa State University, Ames, Iowa 50011-1210, USA and
Guanghua School of Management, Peking University, China
Tel.: 1-515-2942729
Fax: 1-515-2944040
E-mail: songchen@iastate.edu; csx@gsm.pku.edu.cn

I. Van Keilegom
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inference. The regression models considered in this review cover parametric, nonpara-

metric and semiparametric regression models. In addition to the case of completely

observed data, we also accommodate missing and censored data in this review.

The EL method (Owen, 1988, 1990) owns its broad usage and fast research de-

velopment to a number of important advantages. Generally speaking, it combines the

reliability of nonparametric methods with the effectiveness of the likelihood approach.

It yields confidence regions that respect the boundaries of the support of the target

parameter. The regions are invariant under transformations and behave often better

than confidence regions based on asymptotic normality when the sample size is small.

Moreover, they are of natural shape and orientation since the regions are obtained by

contouring a log likelihood ratio, and they often do not require the estimation of the

variance, as the studentization is carried out internally via the optimization procedure.

The EL method turns out appealing not only in getting confidence regions, but it

also has its unique attractions in parameter estimation and formulating goodness-of-fit

tests.

2 Parametric regression

Suppose that we observe a sample of independent observations {(XT
i , Yi)

T }n
i=1, where

each Yi is regarded as the response of a d-dimensional design (covariate) variable Xi.

The preliminary interest here is in the conditional mean function (regression function)

of Yi given Xi. One distinguishes between the design Xi being either fixed or random.

Despite regression is conventionally associated with fixed designs, for ease of presen-

tation, we will concentrate on random designs. The empirical likelihood analysis for

fixed designs can be usually extended by regularizing the random designs.

Consider first the following parametric regression model:

Yi = m(Xi; β) + εi, for i = 1, . . . , n, (1)

where m(x;β) is the known regression function with an unknown p-dimensional (p < n)

parameter β ∈ Rp, the errors εi are independent random variables such that E(εi|Xi) =

0 and Var(εi|Xi) = σ2(Xi) for some function σ(·). Hence, the errors can be het-

eroscedastic. We require, like in all empirical likelihood formulations, that the errors

ǫi have finite conditional variance, which is a minimum condition needed by the em-

pirical likelihood method to ensure a limiting chi-square distribution for the empirical

likelihood ratio.

The parametric regression function includes as special cases (i) the linear regression

with m(x;β) = xT β; (ii) the generalized linear model (McCullagh and Nelder, 1989)

with m(x; β) = G(xT β) and σ2(x) = σ2
0V {G(xT β)} for a known link function G, a

known variance function V (·), and an unknown constant σ2
0 > 0. Note that for these

two special cases p = d.

In the absence of model information on the conditional variance, the least squares

(LS) regression estimator of β is obtained by minimizing the sum of least squares

Sn(β) =:

n∑

i=1

{Yi − m(Xi; β)}2.

The LS estimator of β is β̂ls = arg infβ Sn(β). When the regression function m(x;β)

is smooth enough with respect to β, β̂ls will be a solution of the following estimating
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equation:
n∑

i=1

∂m(Xi; β)

∂β
{Yi − m(Xi; β)} = 0. (2)

Suppose that β0 is the true parameter value such that it is the unique value to

make E[
∂m(Xi;β)

∂β {Yi−m(Xi; β)}|Xi] = 0. Let p1, · · · , pn be a set of probability weights

allocated to the data. The empirical likelihood (EL) for β, in the spirit of Owen (1988)

and (1991), is

Ln(β) = max

n∏

i=1

pi, (3)

where the maximization is subject to the constraints

n∑

i=1

pi = 1 and (4)

n∑

i=1

pi
∂m(Xi; β)

∂β
{Yi − m(Xi; β)} = 0. (5)

The empirical likelihood, as conveyed by (3), is essentially a constrained profile like-

lihood, with a trivial constraint (4) indicating the pi’s are probability weights. The

constraint (5) is the most important one as it defines the nature of the parameters.

This formulation is similar to the original one given in Owen (1988, 1990) for the mean

parameter, say µ, of Xi. There the second constraint, reflecting the nature of µ, was

given by
∑n

i=1 pi(Xi − µ) = 0.

In getting the empirical likelihood at each candidate parameter value β, the above

optimization problem as given in (3), (4) and (5) has to be solved for the optimal

pi’s. It may be surprising in first instance that the above optimization problem can

admit a solution as there are n pi’s to be determined with only p + 1 constraints. As

the objective function Ln(β) is concave, and the constraints are linear in the pi’s, the

optimization problem does admit unique solutions.

The algorithm for computing Ln(β) at a candidate β is as follows. If the convex

hull of the set of points (depending on β) {∂m(Xi;β)
∂β {Yi−m(Xi; β)}}n

i=1 in Rp contains

the origin (zero) in Rp, then the EL optimization problem for Ln(β) admits a solution.

If the zero of Rp is not contained in the convex hull of the points for the given β, then

Ln(β) does not admit a finite solution as some weights pi are forced to take negative

values; see Owen (1988; 1990) for a discussion on this aspect. Tsao (2004) studied

the probability of the EL not admitting a finite solution and the dependence of this

probability on dimensionality.

By introducing the Lagrange multipliers λ0 ∈ R and λ1 ∈ Rp, the constrained op-

timization problem (3)-(5) can be translated into an unconstrained one with objective

function

T (p, λ0, λ1) =

n∑

i=1

log(pi)+λ0(

n∑

i=1

pi −1)+λT
1

n∑

i=1

pi
∂m(Xi; β)

∂β
{Yi −m(Xi; β)}, (6)

where p = (p1, · · · , pn)T . Differentiating T (p, λ0, λ1) with respect to each pi and set-

ting the derivative to zero, it can be shown after some algebra that λ0 = −n and by
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defining λ = −nλ1, we find that the optimal pi’s are given by:

pi =
1

n

1

1 + λT ∂m(Xi;β)
∂β {Yi − m(Xi; β)}

,

where, from the structural constraint (5), λ satisfies

n∑

i=1

∂m(Xi;β)
∂β {Yi − m(Xi; β)}

1 + λT ∂m(Xi;β)
∂β {Yi − m(Xi; β)}

= 0. (7)

Substituting the optimal weights into the empirical likelihood in (3), we get

Ln(β) =

n∏

i=1

1

n

1

1 + λT ∂m(Xi;β)
∂β {Yi − m(Xi; β)}

and the log empirical likelihood is

ℓn(β) =: log{Ln(β)} = −
n∑

i=1

log{1 + λT ∂m(Xi; β)

∂β
{Yi − m(Xi; β)} − n log(n). (8)

The computing intensive nature of the empirical likelihood is clear from the above

discussions. Indeed, to evaluate the EL at a β, one needs to solve the non-linear equation

(7) for the λ which depends on β. An alternative computational approach, as given in

Owen (1990) is to translate the optimization problem (3)-(5) with respect to the EL

weights {pi}n
i=1 to its dual problem with respect to λ.

The dual problem to (3)-(5) involves minimizing an objective function

Q(λ) =: −
n∑

i=1

log{1 + λT ∂m(Xi; β)

∂β
{Yi − m(Xi; β)},

which is the first term in the empirical likelihood ratio in (8), subject to

1 + λT ∂m(Xi; β)

∂β
{Yi − m(Xi; β)} ≥ 1/n for each i = 1, . . . , n. (9)

The constraint (9) comes from 0 ≤ pi ≤ 1 for each i, whereas the gradient of Q(λ) is

the function on the left hand side of (7). Let

D =
{
λ : 1 + λT ∂m(Xi; β)

∂β
{Yi − m(Xi; β)} ≥ 1/n for each i = 1, . . . , n

}
.

Then, the dual problem becomes the problem of minimizing Q(λ) over the set D. It can

be verified that D is convex, closed and compact. Hence, there is a unique minimum

within D. As suggested in Owen (1990), the set D can be removed by modifying the

log(x) function in Q(λ) by a log∗(x) such that log∗(x) = log(x) for x ≥ 1/n; and

log∗(x) = −n2x2/2 + 2nx − 3/2 − log(n) for x < 1/n, which is the quadratic function

that matches log(x) and its first two derivatives at x = 1/n.

We note that the profile likelihood
∏n

i=1 pi achieves its maximum n−n when all

the weights pi equal n−1 for i = 1, · · · , n. Thus, if there exists a β, say β̂, which solves

(7) with λ = 0, namely

n∑

i=1

∂m(Xi; β)

∂β
{Yi − m(Xi; β)} = 0, (10)
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then the EL attains its maximum Ln(β̂) = n−n at β̂. In the parametric regression we

are considering, the number of parameters and the number of equations in (10) are the

same. Hence, (10) has a solution β̂ with probability approaching one in large samples.

There are inference situations where the number of estimating equations is larger than

the number of parameters (strictly speaking, dimension of the parameter space), for

instance the Generalized Method of Moments in econometrics (Hansen, 1982). Here,

more model information is accounted for by imposing more moment restrictions, leading

to more estimating equations than the number of parameters in the model. In statistics,

they appear in the form of extra model information. In these so-called over-identified

situations, the maximum EL, still using the notation Ln(β̂), may be different from

n−n. See Qin and Lawless (1994) for a discussion on this issue.

Following the convention of the standard parametric likelihood, we can define from

(8) the log EL ratio

rn(β) = −2 log{Ln(β)/Ln(β̂)} = 2

n∑

i=1

log{1 + λT ∂m(Xi; β)

∂β
(Yi − m(Xi; β))}. (11)

Wilks’ theorem (Wilks, 1938) is a key property of the parametric likelihood ratio. If we

replace the EL Ln(β) by the corresponding parametric likelihood, say Lpn(β), and use

rpn(β) to denote the parametric likelihood ratio, according to Wilks’ theorem, under

certain regularity conditions,

rpn(β0)
d→ χ2

p as n → ∞. (12)

This property is maintained by the EL, as is demonstrated in Owen (1990) for the

mean parameter, Owen (1991) for linear regression, and many other situations (Qin and

Lawless, 1994, Molanes López, Van Keilegom and Veraverbeke, 2009). In the context

of parametric regression,

rn(β0)
d→ χ2

p as n → ∞. (13)

This can be viewed as a nonparametric version of Wilks’ theorem, and it is quite re-

markable for the empirical likelihood to achieve such a property under a nonparametric

setting with much less parametric distributional assumptions. We call this analogue of

sharing the Wilks’ theorem the first order analogue between the parametric and the

empirical likelihood.

To appreciate why the nonparametric version of Wilks’ theorem is valid, we would

like to present a few steps of derivation that offer some insights into the nonparametric

likelihood. Typically, the first step in a study on EL is considering an expansion for λ

defined in (7) at β0, the true value of β, and determining its order of magnitude. It

can be shown that for the current parametric regression,

λ = Op(n−1/2). (14)

Such a rate for λ is obtained in the original papers of Owen (1988, 1990) for the mean

parameter (which can be treated as a trivial case of regression without covariates),

in Owen (1991) for linear regression, and in Qin and Lawless (1994) and Molanes

López, Van Keilegom and Veraverbeke (2009) for the more general case of estimating

equations.
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With (14), (7) can be inverted (see DiCiccio, Hall and Romano, 1989, for more

details). To simplify the notation, define Zni =
∂m(Xi;β0)

∂β0
{Yi −m(Xi; β0)}. Then, (7)

can be inverted as

n−1
n∑

i=1

Zni(1 − λT Zni) + n−1
n∑

i=1

Zni
λT ZniZ

T
niλ

1 + λT Zni
= 0.

The last term on the left hand side (LHS) is Op(n−1), which is negligible relative to

the first term on the LHS. Therefore,

λ = S−1
n n−1

n∑

i=1

Zni + op(n−1/2),

where Sn = n−1∑n
i=1 ZniZ

T
ni. Applying a Taylor expansion of log(·) around 1, and

substituting this one-term expansion into the EL ratio rn(β0) in (11), we have for some

γi between 1 and 1 + λT Zni (i = 1, . . . , n) :

rn(β0) = 2

n∑

i=1

log(1 + λT Zni)

= 2

n∑

i=1

{λT Zni − 1
2 (λT Zni)

2 + 1
3

(λT Zni)
3

(1+γi)3
}

= 2λT
n∑

i=1

Zni − λT
n∑

i=1

ZniZ
T
niλ + Op(n−1/2)

=

(
n−1

n∑

i=1

Zni

)T

S−1
n

(
n−1

n∑

i=1

Zni

)
+ op(1), (15)

which leads to Wilks’ theorem as Sn
p→ Σ(β0) =: E{ZniZ

T
ni} and

n−1/2
n∑

i=1

Zni
d→ N(0, Σ(β0)) as n → ∞.

As commonly practiced in parametric likelihood, the above nonparametric version

of Wilks’ theorem can be used to construct likelihood ratio confidence regions for β0.

An EL confidence region with a nominal level of confidence 1 − α is

I1−α = {β : rn(β) ≤ χ2
p,1−α},

where χ2
p,1−α is the (1 − α)-quantile of the χ2

p distribution. Wilks’ theorem in (13)

ensures that

P{β0 ∈ I1−α} → 1 − α as n → ∞.

This construction mirrors the conventional likelihood ratio confidence regions except

that the EL ratio is employed here instead of the parametric likelihood ratio.

Note that equation (15) also shows that the EL method is (first order) asymptot-

ically equivalent to the normal approximation method. However, the normal method
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requires the estimation of the variance Σ(β0), whereas the EL method does not re-

quire any explicit variance estimation. This is because the studentization is carried out

internally via the optimization procedure.

In addition to the first order analogue between the parametric and the empirical

likelihood, there is a second order analogue between them in the form of the Bartlett

correction. Bartlett correction is an elegant second order property of the parametric

likelihood ratios, which was conjectured and proposed in Bartlett (1937). It was for-

mally established and studied in a series of papers including Lawley (1956), Hayakawa

(1977), Barndorff-Nielsen and Cox (1984) and Barndorff-Nielsen and Hall (1988).

Let wi = Σ(β0)
−1/2Zni = (w1

i , . . . , wp
i )T and for jl ∈ {1, · · · , p}, l = 1, · · · , k,

define α j1···jk = E(wj1
i · · ·wjk

i ) for a k-th multivariate cross moments of wi. By as-

suming the existence of higher order moments of Zni, it may be shown via developing

Edgeworth expansions that the distribution of the empirical likelihood ratio admits the

following expansion:

P{rn(β0) ≤ χ2
p,1−α} = 1 − α − a χ2

p,1−α gp(χ2
p,1−α) n−1 + O(n−3/2), (16)

where gp is the density of the χ2
p distribution, and

a = p−1
(

1
2

∑p
j,m=1 α j j m m − 1

3

∑p
j,k,m=1 α j k mα j k m

)
. (17)

This means that for the parametric regression both parametric and empirical like-

lihood ratio confidence regions I1−α have coverage error of order n−1. Part of the

coverage error is due to the fact that the mean of rn(β0) does not agree with p, the

mean of χ2
p, that is E{rn(β0)} 6= p, but rather

E{rn(β0)} = p(1 + an−1) + O(n−2),

where a has been given above.

The idea of the Bartlett correction is to adjust the EL ratio rn(β0) to r∗n(β0) =

rn(β0)/(1+an−1) so that E{r∗n(β0)} = p+O(n−2). And amazingly this simple adjust-

ment to the mean leads to improvement in (16) by one order of magnitude (DiCiccio,

Hall and Romano, 1991; Chen, 1993 and Chen and Cui, 2007) so that

P{r∗n(β0) ≤ χ2
p,1−α} = 1 − α + O(n−2). (18)

3 Nonparametric regression

Consider in this section the nonparametric regression model

Yi = m(Xi) + εi, (19)

where the regression function m(x) = E(Yi|Xi = x) is nonparametric, and Xi is

d-dimensional. We assume the regression can be heteroscedastic in that σ2(x) =

Var(Yi|Xi = x), the conditional variance of Yi given Xi = x, may depend on x.

The kernel smoothing method is a popular method for estimating m(x) nonpara-

metrically. See Härdle (1990) and Fan and Gijbels (1996) for comprehensive overviews.

Other nonparametric methods for estimating m(x) include splines, orthogonal series
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and wavelets methods. The simplest kernel regression estimator for m(x) is the follow-

ing Nadaraya-Watson estimator:

m̂(x) =

∑n
i=1 Kh (x − Xi)Yi∑n

i=1 Kh (x − Xi)
, (20)

where Kh(t) = K(t/h)/hd, K is a d-dimensional kernel function and h is a band-

width. The above kernel estimator can be obtained by minimizing the following locally

weighted sum of least squares:

n∑

i=1

Kh (x − Xi) {Yi − m(x)}2

with respect to m(x). It is effectively the solution of the following estimating equation:

n∑

i=1

Kh (x − Xi) {Yi − m(x)} = 0. (21)

Under the nonparametric regression model, the unknown ‘parameter’ is the re-

gression function m(x) itself. The empirical likelihood for m(x) at a fixed x can be

formulated in a fashion similar to the parametric regression setting considered in the

previous section. Alternatively, since the empirical likelihood is being applied to the

weighted average
∑n

i=1 Kh(x − Xi)m(x), it is also similar to the EL of a mean.

Let p1, . . . , pn be probability weights adding to one. The empirical likelihood eval-

uated at θ(x), a candidate value of m(x), is

Ln{θ(x)} = max

n∏

i=1

pi (22)

where the maximization is subject to
∑n

i=1 pi = 1 and

n∑

i=1

piKh (x − Xi) {Yi − θ(x)} = 0. (23)

By comparing this formulation of the EL with that for the parametric regression, we

see that the two formulations are largely similar except that (23) is used as the struc-

tural constraint instead of (5). This comparison does highlight the role played by the

structural constraint in the EL formulation. Indeed, different structural constraints

give rise to EL for different ‘parameters’ (quantity of interest), just like different den-

sities give rise to different parametric likelihoods. In gerenal, the empirical likelihood

is formulated based on the parameters of interest via the structural constraints, and

the parametric likelihood is fully based on a parametric model.

The algorithm for solving the above optimization problem (22) – (23) is similar to

the EL algorithm for the parametric regression given under (4) and (5), except that

it may be viewed easier as the ‘parameter’ is one-dimensional if we ignore the issue of

bandwidth selection for nonparametric regression. By introducing Lagrange multipliers

like we did in (6) in the previous section, we have that the optimal EL weights for the

above optimization problem at θ(x) are given by

pi =
1

n

1

1 + λ(x)Kh (x − Xi) {Yi − θ(x)} ,
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where λ(x) is a univariate Lagrange multiplier that satisfies

n∑

i=1

Kh (x − Xi) {Yi − θ(x)}
1 + λ(x)Kh (x − Xi) {Yi − θ(x)} = 0. (24)

Substituting the optimal weights into the empirical likelihood in (22), the empirical

likelihood evaluated at θ(x) is

Ln{θ(x)} =

n∏

i=1

1

n

1

1 + λ(x)Kh (x − Xi) {Yi − θ(x)}

and the log empirical likelihood is

ℓn{θ(x)} =: log{Ln{θ(x)}} = −
n∑

i=1

log[1 + λ(x)Kh (x − Xi) {Yi − θ(x)}] − n log(n).

(25)

The overall EL is maximized at pi = n−1, which corresponds to θ(x) being the

Nadaraya-Watson estimator m̂(x) in (20). Hence, we can define the log EL ratio at

θ(x) as

rn{θ(x)} = −2 log[Ln{θ(x)}/n−n] = 2

n∑

i=1

log[1+λ(x)Kh (x − Xi) {Yi − θ(x)}]. (26)

The above EL is not actually for m(x), the true underlying function value at x,

but rather for E{m̂(x)}. This can be actually detected by the form of the structural

constraint (23). It is well known in kernel estimation that m̂(x) is not an unbiased

estimator of m(x), as is the case for almost all nonparametric estimators. For the

Nadaraya-Watson estimator,

E{m̂(x)} = m(x) + b(x) + o(h2)

where b(x) = 1
2h2{m′′(x) + 2m′(x)f ′(x)/f(x)} is the leading bias of the kernel es-

timator, and f is the density of Xi. Then, the EL is actually evaluated at a θ(x),

that is a candidate value of m(x) + b(x) instead of m(x). There are two strategies to

reduce the effect of the bias (Hall, 1991). One is to undersmooth with a bandwidth

h = o(n−1/(4+d)), the optimal order of bandwidth that minimizes the mean squared

error of estimation with a second order kernel (d is the dimension of X). Another is

to explicitly estimate the bias and then to subtract it from the kernel estimate. We

consider the first approach of undersmoothing here for reasons of simplicity.

When undersmoothing so that n2/(4+d)h2 → 0, Wilks’ theorem is valid for the EL

under the current nonparametric regression in that

rn{m(x)} d→ χ2
1 as n → ∞.

This means that an empirical likelihood confidence interval with nominal coverage

equal to 1 − α, denoted as I1−α,el, is given by

I1−α,el = {θ(x) : rn{θ(x)} ≤ χ2
1,1−α}. (27)
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A special feature of the empirical likelihood confidence interval is that no explicit

variance estimator is required in its construction as the studentization is carried out

internally via the optimization procedure.

Define ωi = Kh(x − Xi){Yi − m(x)} and, for positive integers j,

ω̄j = n−1
n∑

i=1

ωj
i , µj = E(ω̄j) and Rj(K) =

∫
Kj(u)du.

We note here that the bias in the kernel smoothing makes µ1 = O(h2) while in the

parametric regression case µ1 = 0.

It is shown in Chen and Qin (2003) that the coverage probability of I1−α,el admits

the following Edgeworth expansion:

P{m(x) ∈ I1−α,el}
= 1 − α − {nhdµ2

1µ−1
2 + ( 1

2µ−2
2 µ4 − 1

3µ−3
2 µ2

3)(nhd)−1}z1−α
2
φ(z1−α

2
)

+O{nhd+6 + h4 + (nhd)−1h2 + (nhd)−2}, (28)

where φ and z1−α
2

are the density and the (1 − α
2 )-quantile of a standard normal

random variable.

The above expansion is non-standard in that the leading coverage error consists of

two terms. The first term, nhdµ1µ−1
2 , of order nhd+4 is due to the bias in the kernel

smoothing. The second term of order (nhd)−1 is largely similar to the leading coverage

error for parametric regression in (16). We note that in the second term, the effective

sample size in the nonparametric estimation near x is nhd instead of n, the effective

sample size in the parametric regression.

The next question is if the Bartlett correction is still valid under the nonparametric

regression. The answer is yes. It may be shown that

E[rn{m(x)}] = 1 + (nhd)−1γ + o{nhd+4 + (nhd)−1},

where

γ = µ−1
2 (nhdµ1)2 + 1

2µ−2
2 µ4 − 1

3µ−3
2 µ2

3. (29)

Note that γ appears in the leading coverage error term in (28). Based on (28) and

choosing h = O(n− 1
d+2 ), we have, with cα = χ2

1,1−α,

P
[
rn{m(x)} ≤ cα{1 + γ(nhd)−1}

]

= P
[
χ2

1 ≤ cα{1 + γ(nhd)−1}
]

−(nhd)−1γc
1/2
α {1 + γ(nhd)−1}1/2φ[c

−1/2
α {1 + γ(nhd)−1}1/2}] + O{(nhd)−2}

= P
(
χ2

1 ≤ cα

)
+ (nhd)−1γz1−α

2
φ(z1−α

2
) − (nhd)−1γz1−α

2
φ(z1−α

2
) + O{(nhd)−2}

= 1 − α + O(n− 4
d+2 ). (30)

Therefore, the empirical likelihood is Bartlett correctable in the current context of

nonparametric regression. In practice, the Bartlett factor γ has to be estimated, say by

a consistent γ̂. Chen and Qin (2003) gave more details on practical implementation;

see also Chen (1996) for an implementation in the case of density estimation.
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4 Semiparametric regression

We next consider the empirical likelihood method in the context of semiparametric

regression.

4.1 Partial linear regression model

Let us first consider the partial linear model, defined as follows :

Yi = βT Xi + g(Zi) + εi, for i = 1, . . . , n, (31)

where the response Yi and the explanatory variable Zi are one-dimensional, β and Xi

are p-dimensional (p ≥ 1), and g(·) is a continuous, but unknown nuisance function. It

is assumed that the error εi satisfies E(εi|Xi, Zi) = 0 and Var(εi|Xi, Zi) = σ2.

Our goal is to construct confidence regions or test hypotheses concerning the vector

β0 of true regression coefficients. For this, we first need to estimate the unknown

function g. Define for fixed β,

ĝβ(z) =

n∑

i=1

Kh(z − Zi)∑n
j=1 Kh(z − Zj)

(Yi − βT Xi),

where Kh(u) = K(u/h)/h, h = hn is a smoothing parameter and K is a (one-

dimensional) kernel function (probability density function). Instead of the above lo-

cal constant estimator, we could also use e.g. local polynomial estimators. The idea

is now to mimic the empirical likelihood method developed for parametric regression,

but considering Y − ĝβ(Z) as the new (artificial) response. This leads to the following

likelihood ratio function :

Rn(β) = max

n∏

i=1

(npi),

where the maximum is taken over all n-tuples (p1, . . . , pn) that satisfy

pi ≥ 0 (i = 1, . . . , n),

n∑

i=1

pi = 1,

n∑

i=1

pi

{
Xi +

∂ĝβ(Zi)

∂β

}
(Yi − βT Xi − ĝβ(Zi)) = 0.

Note that the latter constraint is equivalent to

n∑

i=1

piX̃i(Ỹi − βT X̃i) = 0,

where

X̃i = Xi −
n∑

j=1

Kh(Zi − Zj)∑n
k=1 Kh(Zi − Zk)

Xj and Ỹi = Yi −
n∑

j=1

Kh(Zi − Zj)∑n
k=1 Kh(Zi − Zk)

Yj

are estimators of Xi − E(X|Z = Zi) and Yi − E(Y |Z = Zi) respectively. Wang and

Jing (2003) showed that under certain regularity conditions, the following result holds

true :

rn(β0) = −2 log Rn(β0)
d→ χ2

p.
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This result shows that asymptotically, the estimation of the unknown function g has no

influence on the asymptotic limit, as we get exactly the same limit as in the parametric

case, i.e. as in the case where the function g would be known. This result is important,

as it shows that we can obtain empirical likelihood confidence regions for β0 without

estimating any variance.

When the interest lies in testing the validity of the whole partial linear model by

means of an EL approach (instead of testing only the value of the parameter vector

β0), one can use the method developed by Chen and Van Keilegom (2009) and Van

Keilegom, Sánchez Sellero and González Manteiga (2008). In the former paper the

authors developed a general smoothing based EL approach to test the validity of any

semiparametric model, whereas the latter paper considers the same testing problem,

but by using an EL approach based on marked empirical processes, which is quite

different in nature from the former approach. See also Section 7 for more details.

4.2 Single-index regression model

Let us now consider the case of single-index models. Suppose that the relation between

the (one-dimensional) response Yi and the p-dimensional vector Xi of explanatory

variables is given by

Yi = g(βT Xi) + εi, (32)

where g is an unknown but smooth nuisance function, and the error εi satisfies E(εi|Xi) =

0 and Var(εi|Xi) = σ2. Let β0 be the true parameter vector. In order to iden-

tify the model, we suppose that ‖β‖ = 1, where ‖ · ‖ denotes the Euclidean norm.

For any β = (β1, . . . , βp)T satisfying ‖β‖ = 1 and any 1 ≤ r ≤ p, let β(r) =

(β1, . . . , βr−1, βr+1, . . . , βp)T , and supposing that βr > 0, we can write β = (β1, . . . , βr−1, (1−
‖β(r)‖2)1/2, βr+1, . . . , βp)T . Now, let Jβ(r) be the p × (p − 1) Jacobian matrix, given

by

Jβ(r) =
∂β

∂β(r)
= (γ1, . . . , γp)T ,

with γs (s 6= r) a unit vector with sth component equal to one, and γr = −(1 −
‖β(r)‖2)−1/2β(r). Now, it can be easily seen that E[ξi(β

(r)
0 )] = 0 (i = 1, . . . , n), where

ξi(β
(r)) = [Yi − g(βT Xi)]g

′(βT Xi)J
T
β(r)Xi.

Hence, it seems natural to use the ξi(β
(r))’s as building blocks of the empirical likeli-

hood ratio. However, since they depend on the unknown functions g and g′, we first

replace them by suitable estimators. Let

ĝ(t; β) =

n∑

i=1

Wni(t;β, h)Yi∑n
j=1 Wnj(t; β, h)

,

ĝ′(t; β) =

n∑

i=1

W̃ni(t; β, h)Yi∑n
j=1 Wnj(t; β, h)

,

be local linear estimators of g(t) and g′(t), where Wni(t; β, h) = Kh(βT Xi−t)[Sn2(t; β, h)−
(βT Xi−t)Sn1(t; β, h)], W̃ni(t; β, h) = Kh(βT Xi−t)[(βT Xi−t)Sn0(t;β, h)−Sn1(t;β, h)],
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and Snk(t; β, h) = n−1∑n
i=1(β

T Xi− t)kKh(βT Xi − t) (k = 0, 1, 2). We are now ready

to define the empirical likelihood ratio. Define

Rn(β(r)) = max

n∏

i=1

(npi),

where the maximum is taken over all (p1, . . . , pn) that satisfy

pi ≥ 0 (i = 1, . . . , n),

n∑

i=1

pi = 1,

n∑

i=1

piξ̂i(β
(r)) = 0,

where

ξ̂i(β
(r)) = [Yi − ĝ(βT Xi; β)]ĝ′(βT Xi; β)JT

β(r)Xi.

Then, Xue and Zhu (2006) showed that under suitable regularity conditions,

−2 log Rn(β
(r)
0 )

d→ w1χ2
1,1 + . . . + wp−1χ2

1,p−1,

for certain weights w1, . . . , wp−1, and where χ2
1,1, . . . , χ2

1,p−1 are independent χ2
1 vari-

ables. Hence, Wilks’ theorem is not valid here. Since the weights are unknown, they

need to be replaced by suitable estimators, before we can apply the above limit to

construct confidence regions for the vector β
(r)
0 .

In order to circumvent this problem, one can also redefine the empirical likelihood

in the following way. Instead of working with the ξ̂i(β
(r))’s, we build the empirical

likelihood with the following adjusted quantities :

η̂i(β
(r)) = [Yi − ĝ(βT Xi; β)]ĝ′(βT Xi; β)JT

β(r) [Xi − Ê(Xi|βT Xi)],

where

Ê(Xi|βT Xi = t) =

n∑

i=1

Wni(t;β, h)Xi∑n
j=1 Wnj(t;β, h)

.

Now, let R̃n(β(r)) be the EL ratio obtained by replacing the ξ̂i’s by η̂i’s. Then, Zhu

and Xue (2006) showed that Wilks’ theorem holds, i.e.

−2 log R̃n(β
(r)
0 )

d→ χ2
p−1.

They also showed a similar result in the case where the model is a so-called partially

linear single-index model, i.e. when the regression function is the sum of a linear com-

ponent and a single-index component.

As for the partial linear model, the validity of the single-index model can be tested

by using the tests developed by Chen and Van Keilegom (2009) and Van Keilegom,

Sánchez Sellero and González Manteiga (2008). The above asymptotic results can also

be obtained from Hjort, McKeague and Van Keilegom (2009), who developed generic

conditions for the asymptotic theory of any EL ratio, built up using estimating equa-

tions depending on plug-in estimators of unknown nuisance parameters (see also Section

6.3).
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5 Regression with missing values

Often in statistical applications, the data collected for a regression analysis, say

{(XT
1 , Y1), . . . , (X

T
n , Yn)}T , contain missing values. The missing values can be either

in the responses Yi or in the covariates Xi. However, we do not allow any component

of Yi or Xi to be always missing, namely we rule out the case where some components

of the data are completely latent.

We start with the easier case of missing responses, and then we discuss the missing

covariates.

5.1 Missing responses

Assume the parametric regression model (1), given by Yi = m(Xi; β) + εi, where

Yi is one-dimensional, Xi is d-dimensional and β is p-dimensional, and assume the

data (XT
i , Yi)

T (i = 1, . . . , n) are i.i.d. Due to non-response or other reasons in the

data collection, Yi is subject to missingness. Here we assume that all Xi’s are always

observed.

Let δi be the missing indicator of Yi such that δi = 0 (1) for missing (observed) Yi.

The data we observe can be expressed as

{(Xi, Yiδi)}n
i=1.

The Strongly Ignorable Missing at Random mechanism (MAR) (Rubin, 1976 and

Rosenbaum and Rubin, 1983) is an important notion in missing data analysis. In the

case of missing responses, MAR means that the missingness of Yi is predictable by the

observable covariate Xi so that conditioning on the covariate Xi, the missingness of Yi

is independent of Yi itself. Put in mathematical terms,

P (δi = 1|Yi, Xi) = P (δi = 1|Xi) =: w(Xi). (33)

Here, w is called the missing propensity of Yi. A stronger form of missingness than

MAR is the so-called Missing Completely at Random (MCAR) since the latter implies

that the propensity w(x) is a constant function.

When the missingness is MAR but not MCAR, there is a selection bias in the

mechanism that generates the missing values. In this case, simply deleting missing

values will produce biased estimators and misleading inference.

Suppose that we have a parametric model for the missing propensity function

w(x; θ) where θ is a q-dimensional parameter. Without too much abuse of notation, let

f denote a generic probability “density” function. Here “density” should be interpreted

in a general sense with respect to the probability measure. Under the MAR, the full

likelihood of the observed data is

Ln =
∏

δi=1

f(Xi, Yi, δi = 1)
∏

δi=0

f(Xi, δi = 0)

=
∏

δi=1

f(Xi, Yi)p(δi = 1|Xi, Yi)
∏

δi=0

f(Xi)p(δi = 0|Xi)

=

n∏

i=1

w(Xi; θ)
δi{1 − w(Xi; θ)}1−δi

∏

δi=1

f(Xi, Yi)
∏

δi=0

f(Xi). (34)
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We have not specified the parameters that define the “densities” of (X, Y ) and X

since doing so is not important for our inference for regression. Let

LB(θ) =

n∏

i=1

w(Xi; θ)
δi{1 − w(Xi; θ)}1−δi

be the binary likelihood associated with the missing mechanism. It is reasonable to

assume that the missing propensity parameter θ is not involved in defining the just

mentioned “densities” f . In this case, the likelihood Ln in (34) can be partitioned

into two parts, one purely for θ and the other for the parameters that define the joint

density of (Xi, Yi). Hence, θ can be estimated by maximizing the binary likelihood

LB(θ). Let us denote this estimator by θ̂, i.e.

θ̂ = argmaxθLB(θ). (35)

A simple estimator of β is the so-called complete case based estimator. Define the

least square function of β:

LSc(β) =

n∑

i=1

δi{Yi − m(Xi; β)}2.

Minimizing LSc(β) leads to a complete-case based LS estimator β̂c which is the solution

of
n∑

i=1

δi
∂m(Xi; β)

∂β
{Yi − m(Xi; β)} = 0. (36)

The empirical likelihood for β can be constructed analogously to the formulation

from (4) to (5) without missing values. Specifically, the EL for β is

Lnc(β) = max

n∏

i=1

pi (37)

subject to

n∑

i=1

piδi = 1 and (38)

n∑

i=1

piδi
∂m(Xi; β)

∂β
{Yi − m(Xi; β)} = 0. (39)

Let rnc(β) = −2 log{Lnc(β)/n−n} be the log EL ratio. It can be shown that both

Wilks’ theorem and the Bartlett correction are valid in this case of missing values.

Another approach for constructing EL in the case of missing values is based on the

notion of imputation. Given the consistent estimator β̂c, we impute a missing Yi by

Y ∗
i = m(Xi; β̂c). The EL for β can be formed by

LnI(β) = max

n∏

i=1

pi (40)
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subject to
∑n

i=1 pi = 1 and

n∑

i=1

pi
∂m(Xi; β)

∂β

[
{Yi − m(Xi; β)}δi + {Y ∗

i − m(Xi; β)}(1 − δi)

]
= 0. (41)

The above EL formulation can be extended to other parameters. For instance, if

our interest is on inference for the marginal mean of Y , say µy = E(Y ), Wang and

Rao (2002) proposed the following EL for µy:

Ln(µy) = max

n∏

i=1

pi (42)

subject to
∑

pi = 1 and

n∑

i=1

pi{Yiδi + Y ∗
i (1 − δi) − µy} = 0.

Due to using the imputed values, the EL ratio statistic may not admit Wilks’ theorem.

When the regression function is nonparametric as specified in (19) instead of para-

metric, both the complete-case based method and the imputation method outlined

above for parametric regression can be extended to nonparametric regression.

The complete-case based empirical likelihood evaluated at θ(x), a candidate value

of m(x), is

Lnc{θ(x)} = max

n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and

n∑

i=1

piδiKh (x − Xi) {Yi − θ(x)} = 0. (43)

The nonparametric imputation of a missing Yi can be achieved by Y ∗
i = m̂c(x),

where

m̂c(x) =

∑n
i=1 δiKh (x − Xi) Yi∑n

i=1 δiKh (x − Xi)
.

An imputation based EL for m(x) is

LnI{m(x)} = max

n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and

n∑

i=1

piKh (x − Xi)

[
{Yi − θ(x)}δi + {Y ∗

i − θ(x)}(1 − δi)

]
= 0.

It can be shown that the complete-case based EL for m(x) will still enjoy Wilks’

theorem and the Bartlett correction. However, the imputation based EL may not be

so due to the fact that the imputed Y ∗
i does not have the same distribution as the

original Yi. Despite this, the imputed EL confidence regions will be smaller than those

based on the complete-case EL ratio, which is not surprising since the latter regions

are not using all the information available in the data.
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5.2 Missing covariates

A more challenging type of missing values is missing covariates where the covariate Xi

is subject to missingness.

Let XT
i = (X

(1)T
i , X

(2)T
i ) be a partition of Xi, where X

(l)
i is of dimension dl

(l = 1, 2), and d = d1 + d2. Without loss of generality, we assume that X
(1)
i is subject

to missingness, whereas X
(2)
i and Yi are always observable.

Redefine δi = 1 (0) if X
(1)
i is observed (missing). The MAR mechanism becomes

P (δi = 1|Xi, Yi) = P (δi = 1|X(2)
i , Yi) =: w2(X

(2)
i , Yi).

For parametric regression, the complete-case estimation that ignores missing values

is attained by minimizing
n∑

i=1

δi{Yi − m(Xi; β)}2

with respect to β, which is the same as (36). And, both the estimator for β and the

EL formulation are the same as those given in (37) – (39). This means that Wilks’

theorem and the Bartlett correction will be maintained for the EL in this case.

However, unlike the missing response case, the parametric imputation approach is

not straightforward to be implemented as the parametric regression does not specify

the conditional distribution of X
(1)
i given (X

(2)
i , Yi). If we assume a parametric model

for the missing propensity, say w2(X
(2)
i , Yi; θ), a more efficient formulation can be

achieved by inversely weighting the complete cases. Here, the efficiency means the size

of the confidence regions. In this case, the weighted least square function is

n∑

i=1

δiw
−1
2 (X

(2)
i , Yi; θ̂){Yi − m(Xi; β)}2

where θ̂ is the binary likelihood estimator which can be constructed in a similar fashion

to (35), and provided w2 is uniformly bounded away from 0.

The EL for β is

Ln2(β) = max

n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and

n∑

i=1

piδiw
−1
2 (X

(2)
i , Yi; θ̂)

∂m(Xi; β)

∂β
{Yi − m(Xi; β)} = 0.

The use of θ̂ can alter the standard asymptotic properties of the EL. To appreciate

this point, let

Zi(β, θ̂) = δiw
−1
2 (X

(2)
i , Yi; θ̂)

∂m(Xi; β)

∂β
{Yi − m(Xi; β)}.

Then, according to the EL algorithm as outlined earlier, the log EL ratio equals

rn2(β) = −2 log{Ln(β)/n−n} = 2

n∑

i=1

log{1 + λT Zi(β, θ̂)},
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where λ satisfies

n−1
n∑

i=1

Zi(β, θ̂)

1 + λT Zi(β, θ̂)
= 0. (44)

By carrying out expansions for λ first and then substituting these expansions into

rn2(β), we have

rn2(β0) = nZ̄T
n (β0, θ̂)S−1

n (β0, θ̂)Z̄n(β0, θ̂) + op(1),

where Z̄n(β0, θ̂) = n−1∑n
i=1 Zi(β0, θ̂) and Sn(β0, θ̂) = n−1∑n

i=1 Zi(β0, θ̂)ZT
i (β0, θ̂).

As θ̂ is
√

n-consistent to θ0, Sn(β0, θ̂)
p→ Σ(β0, θ0) =: E{Zi(β0, θ0)Z

T
i (β0, θ0)}. If

Z̄n(β0, θ̂) were asymptotically normal with mean zero and variance Σ(β0, θ0), then

the log EL ratio would be asymptotically chi-squared, hence Wilks’ theorem would be

valid. However, due to the use of the estimator θ̂, Z̄n(β0, θ̂) is asymptotically normal

with mean zero but a variance that is different from Σ(β0, θ0). Hence, the log EL ratio

no longer satisfies Wilks’ theorem; rather it will be distributed as
∑p

l=1 clχ
2
1,l, where

χ2
1,l (l = 1, . . . , p) are i.i.d. χ2

1 random variables and c1, . . . , cp are constants. As the

first order Wilks theorem is no longer available, there is no point of talking about

the second order Bartlett property. A general discussion on the first order behaviour

of the EL ratio with plugged-in nuisance parameter estimators is available in Hjort,

McKeague and Van Keilegom (2009).

5.3 Nonparametric imputation

For missing covariates, the imputation method can be employed as proposed in Wang

and Chen (2009), based on a nonparametric kernel estimate of the conditional distri-

bution of X
(1)
i given (X

(2)
i , Yi). To simplify our notation, we write (X

(2)
i , Yi) as Zi

which is dz =: d2 + 1 dimensional, and it is an always observable component of the

data.

Let F (x(1)|Zi) be the conditional distribution of X
(1)
i given (X

(2)
i , Yi), and W (·)

be a dz-dimensional kernel function of the q-th order satisfying
∫

W (s1, . . . , sdz
)ds1 . . . dsdz

= 1,

∫
sl
iW (s1, . . . , sdz

)ds1 . . . dsdz
= 0 for any i = 1, . . . , dz and 1 ≤ l < q

and
∫

sq
i W (s1, . . . , sdz

)ds1 . . . dsdz
6= 0. A kernel estimator of F (x(1)|Zi) is

F̂ (x(1)|Zi) =

n∑

l=1

δlW (Zl−Zi

h )I(X
(1)
l ≤ x(1))

∑n
l=1 δlW (Zl−Zi

h )
. (45)

Here h is the smoothing bandwidth and I(·) is the d1-dimensional indicator function.

The property of the kernel estimator when there are no missing values is well under-

stood in the literature, for instance in Härdle (1990). Its properties in the context

of missing values can be established in a standard fashion. For each missing X
(1)
i ,

we impute a missing X
(1)∗
i by randomly generating from the estimated conditional

distribution F̂ (x(1)|Zi). To control the variability due to the conditional distribution
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imputation, we make κ independent draws {X(1)∗
iν }κ

ν=1 from F̂ (x(1)|Zi). Specifically,

let

Z̃i(β) = δi
∂m(Xi; β)

∂β
{Yi − m(Xi; β)}

+ (1 − δi)κ
−1

κ∑

l=1

∂m(X
(1)∗
il , X

(2)
i ; β)

∂β
{Yi − m(X

(1)∗
il , X

(2)
i ; β)}.

be the pseudo-estimating function for the regression parameters.

The EL for β with the multiple imputed values for each missing X
(1)
i is now

Ln(β) = max

n∏

i=1

pi

subject to
∑n

i=1 pi = 1 and
∑n

i=1 piZ̃i(β) = 0.

As shown in Wang and Chen (2009), Wilks’ theorem is no longer valid for the

EL ratio. Rather it is a weighted chi-square distribution similar to the case revealed

in Wang and Rao (2002). A version of the bootstrap that reflects the missing value

mechanism can be used to approximate the distribution of the EL ratio, which leads

to likelihood based confidence regions and hypothesis testing.

6 Regression with censored data

The EL method for censored data has a long history. It goes back to Thomas and

Grunkemeier (1975), who proposed a method for constructing confidence intervals for

survival probabilities when the data are subject to random right censoring, which

directly motivates Owen’s invention of the EL as recalled in Owen (2001). The EL

method is in fact quite attractive for censored data, since its natural competitor, the

normal method, often leads to complicated variance formulas caused by the censoring

mechanism.

We focus here on the case of regression models where the response variable is

subject to random right censoring. In this section we will try to summarize the many

contributions that have been made in this context, making as before the distinction

between parametric, nonparametric and semiparametric models.

6.1 Parametric regression

Consider the accelerated failure time model Yi = βT Xi + εi, where E(εi|Xi) = 0,

Var(εi|Xi) = σ2, Yi is the logarithm of the survival time, and β is p-dimensional.

Instead of observing Yi we observe Ti = min(Yi, Ci) and ∆i = I(Yi ≤ Ci), where

Ci is a censoring variable, assumed to be independent of Yi given the d = (p − 1)-

dimensional vector Xi. The EL method for parametric regression described in Section

2 can be extended to censored data by replacing constraint (5), which is obtained from

the normal equations for least squares estimators, by a similar equation for censored

data. Many proposals exist in the literature for extending the least squares approach

to censored data. See e.g. Heuchenne and Van Keilegom (2007) for an overview of

these proposals. Two popular approaches are the ones proposed by Buckley and James
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(1979) and Koul, Susarla and Van Ryzin (1981). In Qin and Jing (2001a) and Li and

Wang (2003) the authors replace the normal equation (5) by the equation that lies

on the basis of Koul, Susarla and Van Ryzin (1981)’s approach. More recently, Zhou

and Li (2008) proposed an EL method, based on Buckley and James (1979)’s paper.

In particular, for any vector β, let ei(β) = Ti − βT Xi (i = 1, . . . , n), and for any

distribution function F , whose support is given by the set of uncensored ei(β)’s, define

the empirical likelihood by

Ln(β, F ) =

n∏

i=1

p∆i

i

(
1 −

∑

ej(β)≤ei(β)

pj

)1−∆i

,

where pi is the jump size of F at ei(β). Note that for fixed β, this likelihood is

maximized when F equals the Kaplan-Meier estimator F̂β based on (ei(β), ∆i) (i =

1, . . . , n). This motivates us to consider the following log EL ratio :

rn(β0) = −2 log
supF Ln(β0, F )

Ln(β̂, F̂
β̂
)

,

where β̂ is the Buckley-James’ estimator of β0, and where the supremum in the nu-

merator is taken over all distributions F that satisfy the estimating equation of the

Buckley-James’ estimator (see equation (4) in Zhou and Li (2008) for more details).

An important feature of this EL ratio is that it is defined in terms of the likelihood for

censored data, whereas other approaches (including Qin and Jing (2001a) and Li and

Wang (2003)) use the complete data likelihood and adjust the constraint under which

the numerator is maximized for the presence of censoring.

It can now be shown that rn(β0) converges in distribution to a χ2
p random variable.

Hence, this result can be used for doing inference for the vector β0 without having to

estimate the variance of the Buckley-James’ estimator, which is known to be quite

cumbersome. It is easy to see that when no censoring is present, the denominator in

the above expression equals n−n and the asymptotic result reduces to (13).

In survival analysis one often prefers to consider median regression, as opposed to

mean regression, since survival data are often skewed to the right and the nonparamet-

ric estimation of the right tail of the error distribution is inaccurate when the data are

subject to right censoring. Let us therefore consider the above linear regression model

Yi = βT Xi + εi, but assume now that the conditional median of εi given Xi equals

zero. In addition, assume that the censoring variable Ci is independent of the vector of

covariates Xi. For this model, Qin and Tsao (2003) considered the following EL ratio,

based on the likelihood for complete data :

Rn(β) = max

n∏

i=1

(npi),

subject to pi ≥ 0,
∑n

i=1 pi = 1 and

n∑

i=1

piXi

(
I(Ti − βT Xi ≥ 0)

1 − Ĝ(βT Xi)
− 1

2

)
= 0,

where Ĝ is the Kaplan-Meier estimator of the censoring distribution G. This constraint

is inspired by the normal approximation based method proposed by Ying, Jung and
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Wei (1995). It can now be shown that −2 log Rn(β0) converges in distribution to a

weighted sum of independent χ2
1 variables. Note that the weights are caused by the

estimator Ĝ, whereas in the case of Zhou and Li (2008) the censoring distribution

did not have to be estimated, since they work with the likelihood for censored data.

Moreover, Zhou and Li (2008) do not have to make the rather restrictive assumption

that Ci is independent of Xi.

6.2 Nonparametric regression

We now focus on the case where the relation between the response Y and a one-

dimensional continuous covariate X is completely unspecified (except for some smooth-

ness assumptions), and the censoring variable C is allowed to depend on X in any

(smooth) way. One is interested in doing inference for the conditional distribution

F (y|x) = P (Y ≤ y|X = x).

Let (Xi, Ti, ∆i)
T (i = 1, . . . , n) be an i.i.d. sample from the joint distribution of

(X, T, ∆), where T = min(Y, C) and ∆ = I(Y ≤ C). Li and Van Keilegom (2002)

considered the construction of EL confidence intervals for the survival probability

S(y|x) = 1 − F (y|x) for fixed x and y. They also considered EL confidence bands

when y runs over an interval. Their method is based on localizing the censored data

likelihood around the value x. In particular, we define the local log likelihood by

log Ln(S(·|x))

= nhn

n∑

i=1

Wi(x; hn){∆i log[S(Ti − |x) − S(Ti|x)] + (1 − ∆i) log S(Ti|x)},

= nhn

n∑

i=1

Wi(x; hn)
{

∆i log pi + (1 − ∆i) log
(
1 −

∑

Tj≤Ti

pj

)}
,

where

Wi(x; hn) =
Kh(x − Xi)∑n

j=1 Kh(x − Xj)

are Nadaraya-Watson weights (with kernel K and bandwidth h = hn), and 1 − S(·|x)

makes jumps of size pi at the uncensored Ti’s. In order to construct a confidence band

for S(y|x) we now define the EL ratio

Rn(p, t|x) =
sup{Ln(S(·|x)) : S(t|x) = p, S(·|x) ∈ Θ}

sup{Ln(S(·|x)) : S(·|x) ∈ Θ} ,

where Θ is the space of all survival functions supported on (0,∞). Then, Li and Van

Keilegom (2002) showed that for appropriate 0 < y1 < y2 < ∞, the process

−2
f̂(x)∫

K2(u) du
log Rn(S(y|x), y|x) (46)

(y1 ≤ y ≤ y2) converges weakly to the process {B0(u)/
√

u(1 − u)}2, where u =

σ2(y|x)/(1 + σ2(y|x)), σ2(·|x) is the asymptotic variance of the cumulative hazard

function of Y given X = x, f̂(·) is a kernel estimator of the density of X, and B0 is
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a Brownian bridge on [0, 1]. Also note that for fixed y, the marginals of the process

(46) converge to the marginals of the limiting process, which is a χ2
1 variable. Based

on this result, it is now possible to construct confidence intervals and bands for the

distribution S(y|x) (y1 ≤ y ≤ y2). For a similar result for the quantile function of Y

given X we refer to Li and Van Keilegom (2002).

6.3 Semiparametric regression

An important semiparametric regression model in the context of survival data is with-

out doubt the Cox proportional hazards model. The model is a special case of the

so-called linear transformation model, given by

H(Yi) = −βT Xi + εi, i = 1, . . . , n, (47)

where H is an unknown monotone increasing (nuisance) function, β a p-dimensional

regression parameter vector and εi the error term with a known continuous distribution

that is independent of the censoring variable Ci and the covariate vector Xi. Let Λ

denote the cumulative hazard function of εi, i.e. P (εi > t) = exp{−Λ(t)}. If Λ(t) =

exp(t), then (47) becomes the proportional hazards model. On the other hand, if Λ(t) =

log{1 + exp(t)}, then it becomes the proportional odds model. Let (XT
i , Ti, ∆i)

T (i =

1, . . . , n) be an i.i.d. sample coming from model (47). Lu and Liang (2006) showed how

inference for the vector β0 can be carried out using an EL approach. They base the

empirical likelihood on the following martingale integral equation (i = 1, . . . , n) :

E
(∫ ∞

0

Xi[dNi(t) − Yi(t) dΛ{H(t) + βT
0 Xi}]

)
= 0, (48)

where Ni(t) = ∆iI(Ti ≤ t) and Yi(t) = I(Ti ≥ t). They showed that the log EL ratio

associated with constraint (48), but with the unknown transformation H replaced by

an appropriate estimator, converges to a weighted sum of p independent χ2
1 variables.

Other semiparametric models with censored data have been analyzed using EL

methodology. See e.g. Qin and Jing (2001b) and Wang and Li (2002) for the analysis

of the partial linear model. The EL methodology for all these models can be seen as a

special case of the general method developed by Hjort, McKeague and Van Keilegom

(2009). For clarity of presentation, we do not explain their method in full generality,

but we focus instead on a somewhat more narrow class of models, which is sufficiently

large for the context of this paper. Consider a general semiparametric model depending

on a response vector Y , a covariate vector X, a p-dimensional parameter vector β and

a nuisance function g. The true value of β is denoted by β0. The goal is to do inference

for β0 using an EL approach. Suppose that β0 is the unique solution of the following

system of equations in β :

E[m(X,Y, β, g)] = 0, (49)

where m is a p-dimensional function, and suppose that an estimator ĝ of g is available.

For any β and g, and for any i.i.d. sample (XT
i , Y T

i )T having the same distribution as

(XT , Y T )T , define the EL ratio Rn(β, g) by

Rn(β, g) = max

n∏

i=1

(npi),



23

subject to pi ≥ 0,
∑n

i=1 pi = 1 and
∑n

i=1 pim(Xi, Yi, β, g) = 0. Consider now the

following four conditions :

P (Rn(β0, ĝ) = 0) → 0 as n → ∞;

n−1/2
n∑

i=1

m(Xi, Yi, β0, ĝ)
d→ N(0, V1);

n−1
n∑

i=1

m(Xi, Yi, β0, ĝ)mT (Xi, Yi, β0, ĝ)
P→ V2;

max
i=1,...,n

‖m(Xi, Yi, β0, ĝ)‖ = oP (n1/2).

Under these conditions, the limiting distribution of −2 log Rn(β0, ĝ) is a weighted sum

of p independent χ2
1 variables, where the weights are the eigenvalues of V −1

2 V1. When

the estimation of these weights is cumbersome, Hjort, McKeague and Van Keilegom

(2009) propose to approximate the limiting distribution by using a bootstrap approach,

and they give generic conditions under which this bootstrap is consistent.

7 Goodness-of-fit tests

We have seen that the EL can be used to construct likelihood ratio confidence regions

and hypothesis tests regarding regression parameters. In this section, we will show

that EL is a natural device to formulate goodness-of-fit test statistics regarding the

regression function m(x) = E(Yi|Xi = x), where Xi is d-dimensional.

We start with testing for a parametric regression model

H0 : m(·) = m(·; β0) for a β0 ∈ B, (50)

where B is a compact set in Rp. Later we will extend it to tests for semiparametric

models.

Naturally, goodness-of-fit tests can be constructed based on a distance between a

nonparametric kernel regression estimator m̂(·) and the parametric regression m(·; β̂),

where β̂ is an estimator of the finite dimensional parameter β under H0. Under the

null hypothesis H0, this distance would take a smaller value than under the alternative

H1. For instance the Härdle and Mammen (1993) test statistic is

THM,n = (nhd)1/2

∫
{m̂(x) − m̃(x; β̂)}2π(x)dx,

where π(·) is a weight function, m̂ is the kernel regression estimator (20) representing

the model-free regression estimation and

m̃(x; β̂) =

∑n
i=1 Kh(x − Xi)m(Xi; β̂)∑n

i=1 Kh(x − Xi)

is a kernel smoothed estimator of the parametric regression function under H0. The

purpose of applying the same kernel smoothing to the estimated parametric regression

is to make the biases in the kernel estimation cancel each other. Asymptotic normality

can be established for THM,n. Härdle and Mammen (1993) propose a wild bootstrap

procedure to profile the finite sample distribution of the test statistic.
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An EL formulation for testing (50) consists of two steps. We first construct the EL

for m(x) at m̃(x; β̂), which is

Ln{m̃(x; β̂)} = max

n∏

i=1

pi

subject to
∑

pi = 1 and
∑

piKh(x − Xi){Yi − m̃(x; β̂)} = 0. Let rn{m̃(x; β̂)} =

−2 log[Ln{m̃(x; β̂)}nn] be the log EL ratio. It may be seen by following similar steps

to those outlined in Section 2 that

rn{m̃(x; β̂)} = nhd{m̂(x) − m̃(x; β̂)}2V −1(x){1 + op(hd/2)}, (51)

where V (x) = R(K)σ2(x)/f(x), f(·) is the density of X, R(K) =
∫

K2(t)dt and

σ2(x) = Var(Y |X = x). We then formulate the final test statistic

Ln =

∫
rn{m̃(x; β̂)}π(x)dx,

which has a leading order term

∫
nhd{m̂(x) − m̃(x; β̂)}2V −1(x)π(x)dx. (52)

Hence, Ln is effectively a studentized L2-distance between m̂(·) and m̃(·; β̂). The EL

formulation provides a studentization by V −1(x) automatically without having to es-

timate it explicitly. This is an attractive feature of the EL. In the current univariate

regression situation, as shown in Chen, Härdle and Li (2003),

h−d/2{Ln − µ0} d→ N(0, σ2
0) as n → ∞

where σ2
0 = 2K(4)(0){K(2)(0)}−2

∫
π2(x) dx and µ0 = 1+hd/2

∫
V −1(x)∆2

n(x)π(x)dx.

Here ∆n(x) are uniformly bounded functions that define the difference between m(x)

and m(x;β) in that m(x) = m(x;β) + n−1/2h−d/4∆n(x). Therefore, Ln is asymptoti-

cally pivotal under H0.

The above EL formulation of the goodness-of-fit statistic can be extended to mul-

tiple regression curves with Yi being a k-variate response and Xi still being a d-

dimensional covariate. Let m(x) = E(Yi|Xi = x) = (m1(x), . . . , mk(x)) be the condi-

tional mean consisting of k regression curves on Rd and Σ(x) = Var(Yi|Xi = x) be a

k×k matrix whose values may change along with the covariate. Let m(·) = m(·, β, g) =

(m1(·, β, g), . . . , mk(·, β, g)) be a working regression model, of which we would like to

check its validity. Here, the form of m is known up to a finite dimensional parameter

β and an infinite dimensional nuisance parameter g where β ∈ B ⊂ Rp and g ∈ G
which is a complete metric space consisting of functions from Rd to Rq (q ≥ 1). This

semiparametric regression model includes a wide range of parametric, semiparametric

and nonparametric regression models as special cases. In the absence of g, the model

degenerates to a fully parametric model m(·) = m(·, β), whereas the presence of g cov-

ers a range of semiparametric models including the single or multi-index models and

partially linear single-index models considered in Section 4. Nonparametric regression

is also covered by taking the β-space as an empty set. The class also includes models

with qualitative constraints, like additive models and models with shape constraints.
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The goodness-of-fit hypotheses for the semiparametric regression are

H0 : m(·) = m(·, β0, g0) for some β0 ∈ B and g0 ∈ G versus

H1 : m(·) 6= m(·, β, g) for any β ∈ B and any g ∈ G.

Let β̂ be a
√

n-consistent estimator of β0 and ĝ be a consistent estimator of g0 under

a norm ‖ · ‖G defined on the complete metric space G. Any
√

n-consistent estimator of

β0 would be fine, for instance the pseudo-likelihood estimator that assumes the residual

distribution being normal. We suppose ĝ is a kernel estimator based on a kernel L of

order s ≥ 2 and a bandwidth sequence b, most likely different from the bandwidth h

(defined below) used to estimate m. We will require that ĝ converges to g0 faster than

(nhd)−1/2, the optimal rate in a completely d-dimensional nonparametric model. As

demonstrated in Section 4, this can be easily satisfied since g is of lower dimension

than the saturated nonparametric model for m.

Again to cancel the bias due to kernel estimation for each ml(x), we smooth

ml(x, β̂, ĝ) by the same kernel K and bandwidth hl as in the kernel estimator m̂l(x):

m̃l(x, β̂, ĝ) =

∑n
i=1 Khl

(x − Xi)ml(Xi, β̂, ĝ)∑n
t=1 Khl

(x − Xt)
.

for l = 1, . . . , k. Let m̃(x, β̂, ĝ) = (m̃1(x, β̂, ĝ), . . . , m̃k(x, β̂, ĝ))T .

The EL formulation of the goodness-of-fit tests follows a similar line as the uni-

variate parametric regression we have considered earlier in this section. We assume

throughout that hl/h → βl as n → ∞, where h represents a baseline level of the

smoothing bandwidth and c0 ≤ minl{βl} ≤ maxl{βl} ≤ c1 for finite and positive

constants c0 and c1 free of n.

Like our formulation for parametric regression shown above, we first conduct the

empirical likelihood ratio for m(x) evaluated at m̃(x, β̂, ĝ) and then globalize by inte-

grating the likelihood ratio to form the final test statistic.

Define at each fixed x,

Q̂i(x, β̂) =
(
Kh1

(x − Xi)
(
Yi1 − m̃1(x, β̂, ĝ)

)
, . . . , Khk

(x − Xi)
(
Yik − m̃k(x, β̂, ĝ)

))T
.

Let {pi(x)}n
i=1 be nonnegative empirical likelihood weights allocated to {(Xi, Yi)}n

i=1.

The minus 2 log empirical likelihood ratio for the multiple conditional mean evaluated

at m̃(x, β̂, ĝ) is

rn{m̃(x, β̂, ĝ)} = −2max

n∑

i=1

log{npi(x)}

subject to pi(x) ≥ 0,
∑n

i=1 pi(x) = 1 and
∑n

i=1 pi(x)Q̂i(x, β̂) = 0. By introducing a

vector of Lagrange multipliers λ(x) ∈ Rk, the optimal weights are given by

pi(x) =
1

n
{1 + λT (x)Q̂i(x, β̂)}−1, (53)

where λ(x) solves
n∑

i=1

Q̂i(x, β̂)

1 + λT (x)Q̂i(x, β̂)
= 0. (54)
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Integrating rn{m̃(x, β̂, ĝ)} over the weight function π gives

Ln =

∫
rn{m̃(x, β̂, ĝ)}π(x)dx,

which is our EL test statistic based on the bandwidth vector h = (h1, . . . , hk)T .

Define ˆ̄Q(x, β̂) = n−1∑n
i=1 Q̂i(x, β̂), R(t) =

∫
K(u)K(tu)du and V (x) is the prod-

uct of f(x) by a k × k matrix with (j, l)-element equal to β−d
j R(βl/βj)σlj(x). Note

that R(1) = R(K) =:
∫

K2(u)du and that β−d
j R(βl/βj) = β−d

l R(βj/βl) indicating

that V (x) is a symmetric matrix.

It may be shown that

Λn(h) = nhd

∫
ˆ̄QT (x, β0)V

−1(x) ˆ̄Q(x, β0)π(x) dx + op(hd/2),

where hd/2 is the stochastic order of the first term on the right hand side if d < 4r. Here

r is the order of the kernel K. Since ˆ̄Q(x, β0) = f(x){m̂(x) − m̃(x, β0, ĝ)}{1 + op(1)},
ˆ̄Q(x, β0) serves as a raw discrepancy measure between m̂(x) = (m̂1(x), . . . , m̂k(x)) and

the hypothesized model m(x, β0, ĝ). There is a key issue on how much each m̂l(x) −
m̃l(x, β0, ĝ) contributes to the final statistic. The EL distributes the contributions

according to nhdV −1(x), the inverse of the covariance matrix of ˆ̄Q(x, β0), which is

the most natural choice. The nice thing about the EL formulation is that this is done

without explicit estimation of V (x) due to its internal standardization. Estimating

V (x) when k is large can be challenging if not just tedious.

Let (γlj(x))k×k =
(
(β−d

j R(βl/βj)σlj(x))k×k

)−1

,

ωl1,l2,j1,j2(β, K) =

∫ ∫ ∫
β−d

l2
K(u)K(v)K{(βj2z+βl1u)/βl2}K

(
z + βj1v/βj2

)
dudvdz,

σ2(K, Σ) = 2

k∑

l1,l2,j1,j2=1

β−d
l2

ωl1,l2,j1,j2(β, K)

∫
γl1j1(x)γl2j2(x)σl1l2(x)σj1j2(x)π2(x)dx,

which is a bounded quantity under certain assumptions given in Chen and Van Kei-

legom (2009). Chen and Van Keilegom (2009) establish the following asymptotic nor-

mality of Ln under H0:

h−d/2{Ln − k} d→ N(0, σ2(K, Σ)) as n → ∞.

The convergence to the asymptotic normal distribution by the above two EL

goodness-of-fit test statistics is quite slow since the test statistics are effectively U -

statistics. This is the case for almost all goodness-of-fit statistics, EL or not. As a

result, one tries to avoid carrying out the goodness-of-fit tests based on the asymptotic

distribution. Rather, bootstrap resampling is used to better approximate the distribu-

tions of the test statistics. Chen and Van Keilegom (2009) outline a bootstrap algorithm

for practical implementation.
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8 Bibliographic notes

Owen (1988) and (1990) are the two original papers that formally launched the empir-

ical likelihood method. His work was motivated by the paper of Thomas and Grunke-

meier (1975) who used a profile likelihood to construct confidence intervals for survival

probabilities. Those authors showed that the confidence intervals have the desired prop-

erty of respecting range, which is not generally held by normal approximation based

methods. The idea of the empirical likelihood can be traced earlier, for instance Hartley

and Rao (1968) who applied the idea of the empirical likelihood in a survey sampling

context. There were a series of papers on the general properties of the empirical like-

lihood method, which includes DiCiccio, Hall and Romano (1989). Hall and La Scala

(1990) gave the first review on the empirical likelihood. Diciccio, Hall and Romano

(1991) showed the Bartlett correction for parameters that are defined by smooth func-

tions of means. A more general framework for empirical likelihood formulation than

the framework of smooth functions of means is that of estimating equations, which

includes parametric regression models as a special case. This framework allows the

number of estimating equations to be larger than the number of parameters, which

is a popular method in Econometrics, representing extra model information. Qin and

Lawless (1994) established Wilks’ theorem for the empirical likelihood in such context

and Chen and Cui (2006) and (2007) showed that the Bartlett correction works.

The first paper that considered the empirical likelihood method for linear regression

was Owen (1991). Chen (1993, 1994) established the Bartlett correction for linear

regression. For generalized linear models, Kolaczyk (1994) formulated the EL based

on the conditional mean aspect of the model; Chen and Cui (2003) considered adding

extra constraints based on the conditional variance information within the GLIM to

improve estimation efficiency.

Empirical likelihood for nonparametric regression was considered in Chen and

Qin (2000) with a local linear kernel estimator, and Chen and Qin (2003) with the

Nadaraya-Watson local constant kernel estimator. Both Wilks’ theorem and Bartlett

correction were established by carrying out undersmoothing to control the bias due to

the kernel estimation.

In the context of semiparametric regression, Shi and Lau (2000) considered a par-

tially linear regression with fixed design, and obtained a similar result as Wang and

Jing (2003) did for random design. They considered general weight functions satis-

fying certain regularity conditions. Lu (2009) considered the extension of Wang and

Jing (2003)’s paper to the context of heteroscedastic regression. Hu, Wang and Zhao

(2009) applied the empirical likelihood methodology to varying-coefficient partially

linear errors-in-variables models, and Liang and Qin (2008) showed Wilks’ theorem

when the covariate X is missing with probability depending on the response Y and the

covariate Z (whose effect on Y is modeled nonparametrically).

Using empirical likelihood for inference on the mean of the response variable when

the response is subject to missingness at random was considered in Wang and Rao

(2002) for a nonparametric regression model and Wang, Linton and Härdle (2004) for

a semiparametric partially linear regression model. See also Wang and Veraverbeke

(2006) for an approach based on auxiliary information. Chen, Leung and Qin (2003,

2008) considered inference when there are surrogates for the missing values. Qin and

Zhang (2007) considered missing responses in the context of observational studies.

Wang and Chen (2009) proposed the multiple nonparametric imputation for general
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estimating equations where the missing values can be either in the response or the

covariates.

The literature on the EL methodology for censored data is becoming very extensive.

For parametric mean regression, Zhou, Qin, Lin and Li (2006) proposed a generalized

linear model for modeling health care costs and studied an EL procedure for this model.

Zhao and Wang (2008) applied an EL approach to do inference for quality-adjusted

lifetime data. For parametric median regression we cite Whang (2006), who used a

smoothed EL approach to obtain better performance in practice than the classical

EL method. See also Zhao and Chen (2008). Zhou (2005) used an empirical likelihood

analysis of a rank estimator in the accelerated failure time model, whereas Zhou (1992)

proposed an M -estimation procedure. The EL methodology for the Cox model has been

first considered by Qin and Jing (2001c).

Using EL to test for goodness-of-fit of parametric time series regression was consid-

ered in Chen, Härdle and Li (2003). Fan and Zhang (2004) propose a sieve EL test for

testing a varying-coefficient regression model that extends the generalized likelihood ra-

tio test of Fan, Zhang and Zhang (2001). They demonstrate that ‘Wilks’ phenomenon’

continues to hold under general error distributions. Tripathi and Kitamura (2003)

propose an EL test for conditional moment restrictions. For testing semiparametric

regression models, Chen and Van Keilegom (2009) developed a smoothing based EL

approach, whereas Van Keilegom, Sánchez Sellero and González Manteiga (2008) use

an EL approach based on marked empirical processes.
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