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ABSTRACT 

Evaluation metric plays a critical role in achieving the optimal classifier during the classification training. 

Thus, a selection of suitable evaluation metric is an important key for discriminating and obtaining the 

optimal classifier. This paper systematically reviewed the related evaluation metrics that are specifically 

designed as a discriminator for optimizing generative classifier. Generally, many generative classifiers 

employ accuracy as a measure to discriminate the optimal solution during the classification training. 

However, the accuracy has several weaknesses which are less distinctiveness, less discriminability, less 

informativeness and bias to majority class data. This paper also briefly discusses other metrics that are 

specifically designed for discriminating the optimal solution. The shortcomings of these alternative metrics 

are also discussed. Finally, this paper suggests five important aspects that must be taken into consideration 

in constructing a new discriminator metric. 
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1. INTRODUCTION 

In data classification problems, data can be divided into commercial data, texts, DNAs and 

images. This paper emphasizes on commercial data as the focus of discussion. Furthermore, data 

classification can be divided into binary, multiclass and multi-labelled classification [33]. In this 

paper, the study is aimed on binary and multiclass classification which focuses on the evaluation 

metrics for evaluating the effectiveness of classifiers. In general, the evaluation metric can be 

described as the measurement tool that measures the performance of classifier. Different metrics 

evaluate different characteristics of the classifier induced by the classification algorithm. 

From the literature, the evaluation metric can be categorized into three types, which are threshold, 

probability and ranking metric [2]. Each of these types of metrics evaluates the classifier with 

different aims. Furthermore, all these types of metrics are scalar group method where the entire 

performance is presented using a single score value. Thus, it makes easier to do the comparison 

and analysis although it could mask subtle details of their behaviours. In practice, the threshold 

and ranking metric were the most common metrics used by researchers to measure the 

performance of classifiers. In most cases, these types of metrics can be employed into three 

different evaluation applications [23].  

First, the evaluation metrics were used to evaluate the generalization ability of the trained 

classifier. In this case, the evaluation metric is used to measure and summarize the quality of 

trained classifier when tested with the unseen data. Accuracy or error rate is one of the most 
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common metrics in practice used by many researchers to evaluate the generalization ability of 

classifiers. Through accuracy, the trained classifier is measured based on total correctness which 

refers to the total of instances that are correctly predicted by the trained classifier when tested 

with the unseen data. 

Second, the evaluation metrics were employed as an evaluator for model selection. In this case, 

the evaluation metric task is to determine the best classifier among different types of trained 

classifiers which focus on the best future performance (optimal model) when tested with unseen 

data. Third, the evaluation metrics were employed as a discriminator to discriminate and select 

the optimal solution (best solution) among all generated solutions during the classification 

training. For example, the accuracy metric is employed to discriminate every single solution and 

select the best solution that produced by a particular classification algorithm. Only the best 

solution which is believed the optimal model will be tested with the unseen data. 

For the first and second application of evaluation metrics, almost all types of threshold, 

probability and ranking metrics could be applied to evaluate the performance and effectiveness of 

classifiers. Conversely, only few types of metrics could be employed as a discriminator to 

discriminate and select the optimal solution during the classification training. This paper 

emphasizes on the third application of evaluation metrics for Prototype Selection (PS) classifiers. 

Only relevant evaluation metrics which are associated with the latter application of metrics are 

discussed.  

In general, PS classifier is a generative type of classification algorithms that aim to generate a 

classifier model by applying sampling technique and simultaneously used the generated model to 

achieve the highest possible classification accuracy when dealing with the unseen data. Most of 

PS classifiers such as Monte Carlo Sampling (MCS) algorithm [32] genetic algorithm [22], 

evolutionary algorithm [10], and tabu search [38] were developed based on statistics, nature-

inspired, optimization methods or combination of these methods. Basically, all of these 

classification algorithms applied stochastic or heuristic search to locate the optimal solution (a set 

of prototypes) by transforming the searching and discriminating processes into optimization 

problem. In other words, these algorithms begin with constructing and searching a fixed number 

of prototypes (candidate solution). Then, every produced solution will be evaluated in order to 

determine the optimal solution that best represents the training data and simultaneously aim to 

achieve better generalization ability when dealing with the unseen data. In order to search and 

discriminate the optimal solution from the large space of solutions, the selection of proper metric 

is crucial in discriminating a bulk of generated solutions. Without a proper and suitable evaluation 

metric, a particular PS classifier may obtain poor generalization ability when tested with the 

unseen data. 

Typically, most of the PS classifiers employ the accuracy or the error rate (1-accuracy) to 

discriminate and to select the best (optimal) solution. However, using the accuracy as a 

benchmark measurement has a number of limitations. In [30, 37], they have demonstrated that the 

simplicity of this accuracy could lead to the suboptimal solutions especially when dealing with 

imbalanced class distribution. Furthermore, the accuracy also exhibits poor discriminating values 

to discriminate better solution in order to build an optimized classifier [17]. 

The purpose of this paper is to review and analyse all related evaluation metrics that were 

specifically designed for optimizing the PS classifiers. This paper begins with thorough reviews 

on commonly threshold type metrics and other metrics that are specifically used as a 

discriminator for discriminating the optimal solution for PS classifier. This section also discusses 

the limitations of these metrics as a discriminator in discriminating the optimal solution. This 

paper also recommends several important aspects in constructing a new discriminator metric for 

PS classifier. Finally, this paper ends with conclusions. 
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2. REVIEW OF DISCRIMINATOR METRICS 

In a typical data classification problem, the evaluation metric has been employed into two stages, 

which are training stage (learning process) and testing stage. In training stage, the evaluation 

metric was used to optimize the classification algorithm. In other words, the evaluation metric 

was employed as the discriminator to discriminate and to select the optimal solution which can 

produce a more accurate prediction of future evaluation of a particular classifier. Meanwhile, in 

the testing stage, the evaluation metric was used as the evaluator to measure the effectiveness of 

produced classifier when tested with the unseen data. 

As mentioned earlier, the interest of this paper is to review the use of evaluation metrics in 

discriminating and selecting the optimal solution in order to build optimized PS classifiers. In 

previous studies, there were various types of evaluation metrics that can be used to evaluate the 

quality of classifiers with different aims. On the contrary, there were little efforts have been 

dedicated to study and construct the metrics that are specifically designed to discriminate the 

optimal solution during the data classification training especially for Prototype Selection 

classifiers. On top of that, most of the previous studies were focused on binary classification 

problems as their main study domain [8]. Therefore, due to limited resources, this paper attempts 

to give the best reviews on the related studies as discussed below. 

2.1. Threshold Types of Discriminator Metrics 

For binary classification problems, the discrimination evaluation of the best (optimal) solution 

during the classification training can be defined based on confusion matrix as shown in Table 1. 

The row of the table represents the predicted class, while the column represents the actual class. 

From this confusion matrix, tp and tn denote the number of positive and negative instances that 

are correctly classified. Meanwhile, fp and fn denote the number of misclassified negative and 

positive instances, respectively. From Table 1, several commonly used metrics can be generated 

as shown in Table 2 to evaluate the performance of classifier with different focuses of 

evaluations. Due to multiclass problems, few of metrics listed in Table 2 have been extended for 

multi-class classification evaluations (see the last four metrics).  

Table 1. Confusion Matrix for Binary Classification and the Corresponding Array Representation used 

in this Study 

 Actual Positive Class Actual Negative Class 

Predicted Positive Class True positive (tp) False negative (fn) 

Predicted Negative Class False positive (fp) True negative (tn) 

 

As shown in the previous studies [3, 11, 16, 30], the accuracy is the most used evaluation metric 

in practice either for binary or multi-class classification problems. Through accuracy the quality 

of produced solution is evaluated based on percentage of correct predictions over total instances. 

The complement metric of accuracy is error rate which evaluates the produced solution by its 

percentage of incorrect predictions. Both of these metrics were used commonly by researchers in 

practice to discriminate and select the optimal solution. 

The advantages of accuracy or error rate are, this metric is easy to compute with less complexity; 

applicable for multi-class and multi-label problems; easy-to-use scoring; and easy to understand 

by human. As pointed out by many studies, the accuracy metric has the limitations in evaluation 

and discrimination processes. One of the main limitations of accuracy is it produces less 

distinctive and less discriminable values [18, 29]. Consequently, it leads to less discriminating 

power to accuracy in selecting and determining the optimal classifier. In addition, the accuracy 
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also powerless in terms of informativeness [25, 36] and less favour towards minority class 

instances [3, 9, 16, 30, 37]. 

Table 2. Threshold Metrics for Classification Evaluations 

Metrics Formula  Evaluation Focus 

Accuracy (acc) 
�� + ��

�� + �� + �� + �� 

In general, the accuracy metric measures the 

ratio of correct predictions over the total 

number of instances evaluated.  

Error Rate (err) 
�� + ��

�� + �� + �� + �� 

Misclassification error measures the ratio of 

incorrect predictions over the total number of 

instances evaluated. 

Sensitivity (sn) 
��

�� + �� 
This metric is used to measure the fraction of 

positive patterns that are correctly classified 

Specificity (sp) 
��

�� + �� 
This metric is used to measure the fraction of 

negative patterns that are correctly classified. 

Precision (p) 
��

�� + �� 

Precision is used to measure the positive 

patterns that are correctly predicted from the 

total predicted patterns in a positive class.   

Recall (r) 
��

�� + �� 
Recall is used to measure the fraction of 

positive patterns that are correctly classified 

F-Measure (FM) 
2 ∗ � ∗ �

� + �  
This metric represents the harmonic mean 

between recall and precision values  

Geometric-mean (GM) 	�� ∗ �� 

This metric is used to maximize the tp rate 

and tn rate, and simultaneously keeping both 

rates relatively balanced  

Averaged 

Accuracy 

∑ ��� + ������ + ��� + ��� +���
�

The average effectiveness of all classes   

Averaged 

Error Rate 

∑ ��� + ������ + ��� + ��� +���
�

The average error rate of all classes 

Averaged 

Precision 

∑ ������ + ���
���

�  
The average of per-class precision 

Averaged 

Recall 

∑ ������ + ���
���

�  
The average of per-class recall 

Averaged 

F-Measure 

2 ∗ �� ∗ ��
�� + ��

 The average of per-class F-measure   

Note: - each class of data; ���  - true positive for ��; ���  - false positive for ��;  ��� – false negative 

for ��;  ��� - true negative for ��; and � macro-averaging. 

 

 

Instead of accuracy, the FM and GM also reported as a good discriminator and performed better 

than accuracy in optimizing classifier for binary classification problems [20]. To the best of our 

knowledge, no previous work has employed the FM and GM to discriminate and select the 

optimal solution for multiclass classification problems.  

In contrast, the rest of metrics in Table 2 are unsuitable to discriminate and select the optimal 

solution due to single evaluation task (either positive or negative class). For discriminating and 

selecting the optimal solution during the classification training, the significance trade-off between 

classes is essential to ensure every class is represented by its representative prototype(s). The 

trade-off between classes becomes more crucial when imbalanced class data were used. The best 

selected solution turn out to be useless if none of the minority class instances were able to 

correctly predicted by the chosen representative(s) (prototype) or selected as the representative(s) 
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(i.e. if using randomly representative (prototype) selection method) during the classification 

training. 

2.2. Mean Square Error (MSE) 

Supervised Learning Vector Quantization (LVQ) [21] is one of the Prototype Selection 

classifiers. During the learning process, supervised LVQ uses MSE to evaluate its performances 

during the classification training. In general, the MSE measures the difference between the 

predicted solutions and desired solutions. The smaller MSE value is required in order to obtain a 

better trained of supervised LVQ. The MSE is defined as below: 

��� = 1
� ���� − ����

�

��
 (1) 

where Pj is the predicted value of instance j, Aj is real target value of instance j and n is the total 

number of instances. Through the learning process of LVQ, the solution that has minimum MSE 

score will be used as the final model (best solution). 

Similar to accuracy, the main limitation of MSE is this metric does not provide the trade-off 

information between class data. This may lead the discrimination process to select the sub-

optimal solution. Moreover, this metric is really dependent on the weight initialization process. In 

extremely imbalanced class problem, if the initial weights are not proper selected (i.e. no initial 

weight to represent the minority class data), this may lead the discrimination process ends up with 

sub-optimal solution due to lack information of minority class data although the MSE value is 

minimized (under-fitting or over-fitting). 

2.3. Area under the ROC Curve (AUC) 

AUC is one of the popular ranking type metrics. In [13, 17, 31] the AUC was used to construct an 

optimized learning model and also for comparing learning algorithms [28,29]. Unlike the 

threshold and probability metrics, the AUC value reflects the overall ranking performance of a 

classifier. For two-class problem [13], the AUC value can be calculated as below  

� � = �! − �!(�� + 1)/2
�!��

 
(2) 

where, Sp is the sum of the all positive examples ranked, while np and nn denote the number of 

positive and negative examples respectively. The AUC was proven theoretically and empirically 

better than the accuracy metric [17] for evaluating the classifier performance and discriminating 

an optimal solution during the classification training.  

Although the performance of AUC was excellent for evaluation and discrimination processes, the 

computational cost of AUC is high especially for discriminating a volume of generated solutions 

of multiclass problems. To compute the AUC for multiclass problems the time complexity is 

O(|C|n log n) for Provost and Domingos AUC model [28] and O(|C|
2
 n log n) for Hand and Till 

AUC model [13]. 

2.4. Hybrid Discriminator Metrics 

Optimized Precision is a type of hybrid threshold metrics and has been proposed as a 

discriminator for building an optimized heuristic classifier [30]. This metric is a combination of 

accuracy, sensitivity and specificity metrics. The sensitivity and specificity metric were used for 
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stabilizing and optimizing the accuracy performance when dealing with imbalanced class of two-

class problems. The OP metric can be defined as below 

&� = '(( − |*� − *�|
*� + *�  (3) 

where acc is the accuracy score, while sp and sn denotes specificity and sensitivity score 

respectively. In [30], the OP metric was able to discriminate and select a better solution and 

increase the classification performance of ensemble learners and Multi-Classifier Systems for 

solving Human DNA Sequences dataset. 

Optimized accuracy with recall and precision (OARP) is another type of hybrid threshold metrics 

that is specifically designed as a discriminator to train the Monte Carlo Sampling (MCS) 

classifier during the classification training. There are two types of OARP; the Optimized 

Accuracy with Extended Recall-Precision version 1 (OAERP1) [15] and Optimized Accuracy 

with Extended Recall-Precision version 2 (OAERP2) [14, 16]. 

In general, both hybrid metrics are a combination of accuracy with extended recall (rc) and 

extended precision (pr) metric. The difference between both metrics is their Relationship Index 

(RI). In OAERP1, the RI is calculated based on correlation from [34], while OAERP 2 adopted 

the correlation given by [24]. The OAERP1 is formulated as follows: 

&��+� = '(( − +,� (4) 

where  

+,� = |-�� + -��| − |-�� + -��|
|-�� + -��| + |-�� + -��| 

   (5) 

 

Meanwhile, the OAERP2 is formulated as follows: 

&��+� = '(( − +,� (6) 

 where  

+,� =
.-�� − -��-�� + -��

. − .-�� − -��-�� + -(�
.

2  

(7) 

For both RIs formula, the ep and er represent extended precision and extended recall respectively 

and the numbering denotes class 1 (positive class) and class 2 (negative class). 

As shown in [14, 15, 16], the RI value for both metrics have the possibility to return zero score. If 

this happens, the OAERP1 and OAERP2 score are presumed equivalent to accuracy score. 

Besides, the OAERP1 and OAERP2 score also can return a negative score. To avoid negative 

score, the RI score needs to be resized using decimal scaling method. Both metrics have 

demonstrated better performance than accuracy in terms of distinctiveness and discriminable of 

produced-value. However, the OEARP2 shows better discriminating power to choose an optimal 

solution and able to build a better trained of MCS classifier [14, 16].  
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The main limitation of these three hybrid metrics is its only limited for discriminating and 

evaluating the binary classification problems. In real-world dataset, the data available is not 

limited to two-class problem. Many datasets comprise more than two classes. To the best of our 

knowledge, no previous work has modified these metrics for evaluating the multiclass data. Thus, 

the effectiveness of these metrics is still questionable for multiclass classification problems. 

2.5. Other Metrics 

Instead of the abovementioned metrics, there are graphical-based metrics, which are better than 

accuracy, have been proposed to evaluate the performance of classifiers. As reported in [27], 

these metrics able to depict the trade-offs between different evaluation perspectives which 

allowing richer analysis of results. Although these metrics are better than accuracy or error rate, 

its graphical-based output limits a metric such as Receiver Operating Curve (ROC) [4], Bayesian 

Receiver Operating Characteristic (B-ROC) [1], Precision-Recall Curve [5], cost curve [6], lift 

and chart calibration plot [35] to be employed as a discriminator. 

Besides, there are few other metrics that were specifically designed for a particular classification 

algorithm. Information gain and entropy metrics are two probability types of metrics that were 

used for evaluating the utility of attributes of data in building the optimized decision tree 

classifiers [26]. Due to specific purpose, these metrics are unsuitable for adoption to discriminate 

and select the optimal solution. To the best of our knowledge, no previous work has exploited 

these metrics to discriminate a bulk of generated solutions during the classification training of PS 

classifiers. 

3. IMPORTANT FACTORS IN CONSTRUCTING NEW METRICS 

Through the reviews processed, this paper has figured out several factors that might help the 

researchers in designing and constructing a new metric or choosing the suitable metric for 

discriminating the optimal solution of PS classification algorithms. The lists of these important 

factors are briefly described as below. 

1. Issue on multiclass problem 

Many of current metrics were originally developed and applicable for binary classification 

problems with different tasks of evaluation. This is the major limitation that restricted many 

good metrics for widely used as a discriminator in discriminating the optimal solution. In 

reality, the data available are not limited to two-class problem. Most of data involves more 

than two classes. For example, the student grades can be categorized into A, B, C, D, E and F. 

Therefore, the future development of new metric or choosing a suitable metric should 

accommodate this issue into consideration. 

2. Less complexity and less computational cost 

Since data nowadays involve multiclass data the used of particular metric becomes more 

complex due to increasing classes that need to be evaluated. As the consequences, it produces 

high computational cost and affects the classification training speed. Due to this matter, most 

researchers simply applied accuracy or error rate to discriminate their produced solutions. 

Although, accuracy and error rate is less complex metric and easy-to-use score, the PS 

classifiers still require longer learning process or training process. Therefore, the biggest 

challenge of future development of a new metric is to design and construct a less complex 

metric with less computational cost and comprehensible enough to discriminate an optimal 

solution from a bulk of generated solutions. 
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 3. Distinctiveness and discriminable 

 

Less distinctiveness and discriminable value of produced solution is another drawback of 

accuracy metric [15]. As a result, this drawback will cause the discrimination and searching 

process of an optimal solution easily trapped at local optima (plateau). Thus, this drawback 

must be avoided by any discriminator. In other words, the development of future metrics must 

be able to produce a distinctive and discriminable value for better searching and 

discriminating the optimal solution in huge solution space. The details of this effect in 

discriminating the optimal solution are discussed in Table 3 and Table 5. 

4.  Informativeness 

Another drawback of many current metrics is there is no trade-off information between 

classes [24, 35]. For example, the most popular metric accuracy could not discriminate the 

good and bad (informative and non-informative) solutions especially when two or more 

solutions are equivalent or even contradict as shown in Table 3 and 4 respectively.  

From Table 3, the accuracy metric could not distinguish which solution is better due to non-

distinctiveness and non-discriminable produced value. Intuitively, solution a2 is better than a1 

since a2 can predict correctly all minority class members. In a1, there is none of the minority 

class member is correctly predicted, which conclude a1 is a poor solution. On the other hands, 

in Table 4, the accuracy metric concludes solution a1 is better than a2 through score 

comparison. However, a1 is a poor solution where none of minority class member is correctly 

predicted by a1. Intuitively, solution a2 shows better result although the score is lower than a1. 

In this case, solution a2 able to predict correctly all minority class members as compared to 

a1. 

From both examples, it shows that the informativeness aspect is essential feature for any 

metric in discriminating the informative and optimal solution. 

Table 3. Informativeness Analysis for Binary Classification Problem using 

Imbalanced Class Distribution (5:95) with Two Equivalent Solutions 

sol tp fp tn fn total accuracy 

a1 0 5 95 0 95 0.9500 

a2 5 0 90 5 95 0.9500 

 

Table 4. Informativeness Analysis for Binary Classification Problem using 

Imbalanced Class Distribution (5:95) with Two Contradictory Solutions 

sol tp fp tn fn total accuracy 

a1 0 0 95 5 95 0.9500 

a2 5 6 89 0 94 0.9400 

 

5.  Favour towards the minority class 

According to [11, 12, 19], the most popular accuracy metric is greatly affected by the 

proportion of majority class and less impact on minority class. Hence, it is important to 

employ a proper evaluation metric that could favor towards the minority class than the 

majority class. In other words, the more minority class instances are correctly predicted, the 

better solution is produced especially for extremely imbalanced class problems. From 

demonstrated example in Table 5, any good metric or discriminator should rank the solution 

as follow: a6→a5→a4→a3→a2→a1.  As demonstrated in Table 5, intuitively, the solution a6 
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is the most informative solution and more favor towards minority class, while a1 is the 

poorest solution since it has none of minority class members. Based on accuracy metric 

scores, none of these solutions could be ranked as suggested due to equivalent score among 

all solutions. Furthermore, Table 5 also shows that the accuracy metric produced less 

distinctive and less discriminable score which can cause the accuracy metric easily trapped at 

local optima during the searching of an optimal solution. 

Table 5. Favors towards Minority Class Analysis for Binary Classification Problem 

using Extremely Imbalanced Class Distribution (5:9995) 

sol tp fp tn fn total 

a1 0 0 9995 5 9995 

a2 1 1 9994 4 9995 

a3 2 2 9993 3 9995 

a4 3 3 9992 2 9995 

a5 4 4 9991 1 9995 

a6 5 5 9990 0 9995 

 

4. CONCLUSIONS 

The selection of suitable metric for discriminating the optimal solution in order to obtain an 

optimized classifier is a crucial step. The proper selection of metric will ensure that the 

classification training of generative type classifier is optimal. This paper hopes that with the 

reviews of some metrics for discriminating the optimal solution will sensitize the data mining 

researchers to the issue and encourage the researchers to think carefully, prior to select and apply 

the suitable metric for optimizing the classification training. Besides, this paper also suggested 

several important aspects in constructing a better metric for discriminating the optimal solution 

for generative type of classification algorithms. 
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