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Abstract: Significant growth has been observed in the research domain of dye-sensitized solar cells
(DSSCs) due to the simplicity in its manufacturing, low cost, and high-energy conversion efficiency.
The electrolytes in DSSCs play an important role in determining the photovoltaic performance of the
DSSCs, e.g., volatile liquid electrolytes suffer from poor thermal stability. Although low volatility liq-
uid electrolytes and solid polymer electrolytes circumvent the stability issues, gel polymer electrolytes
with high ionic conductivity and enduring stability are stimulating substitutes for liquid electrolytes
in DSSC. In this review paper, the advantages of gel polymer electrolytes (GPEs) are discussed along
with other types of electrolytes, e.g., solid polymer electrolytes and p-type semiconductor-based
electrolytes. The benefits of incorporating ionic liquids into GPEs are highlighted in conjunction
with the factors that affect the ionic conductivity of GPEs. The strategies on the improvement of the
properties of DSSCs based on GPE are also presented.

Keywords: DSSC; liquid electrolytes; solar cells

1. Introduction

Recently published market surveys suggest that the world’s energy demand will
increase by almost 50% from 2018 to 2050 [1]. Fossil fuels that supply an approximately
major percentage of the energy disbursed over the world are facing a rapid exhaustion of
these resources. As per the statistical review of world energy, the world resource reserves of
fossil fuels in 2016 were anticipated to last around 50 years and ~115 years for oil/natural
gas and for coal, respectively [2]. There are burgeoning requirements for environmentally
viable energy technologies compounded by the growing demand for energy, exhaustion
of fossil resources, global warming and concomitant climate fluctuations. Wind turbines,
wave and tidal power, hydropower, biomass-derived liquid fuel solar cells, solar thermal,
and biomass-fired electricity generation are among the most prevalent renewable energy
technologies; among these, photovoltaic technology is the most promising. Fortunately, the
sun’s energy supply to the globe is enormous: 1.25 × 1024 Cal per year, or few thousand
times more than the world’s current consumption. A simple calculation supports that solar
cells with an efficiency of 10% covering 0.1% of the earth’s surface can meet our present
energy needs [3].

The basic working principle of solar cells lies in the fact that it utilizes the energy
generated by the sun by converting solar radiation directly into electricity. The first practical
conversion of the radiation into electric energy was validated by Bell Telephone Labora-
tories in 1954, and produced 6% efficiency by using p–n junction-type solar cells [4]. The
photovoltaic cells made from semiconductor-grade silicon quickly became the power source
of choice for use on satellites, and were catalyzed by the initiation of the space program.
The common solar power conversion efficacies fall in the range of around 15–20% [5].
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However, the relatively high cost of silicon cells, as well as the usage of harmful chemicals
in their manufacture, are deterrents to their widespread adoption. These factors prompted
researchers to look for inexpensive, ecologically responsive solar cell alternatives.

Solid-state junction devices, which arose from semiconductor industry experience in
materials research, currently dominate the sector. On the other hand, the supremacy of
inorganic solid-state junction devices is being defied by a third generation of cells based
on nanocrystalline and conducting polymer films, for example. These novel materials
promise low-cost production and have appealing qualities that make market entry easier.
It is now possible to entirely abandon the traditional solid-state junction device and replace
the contacting phase with an electrolyte derived from liquids, gels, or solids, resulting
in the formation of a photo-electrochemical cell. However, the value of reporting power
conversion efficiency as a function of absorber material bandgap for the key new photo-
voltaic technologies: perovskite, organic, and dye-sensitized solar cells have been briefly
discussed [6,7].

The recent and impressive advances in the production and characterization of nanocrys-
talline materials have opened up a plethora of new possibilities. Devices based on interpene-
trating networks of mesoscopic semiconductors have shown astonishingly high conversion
efficiencies that rival those of conventional devices, contrary to expectations. Dye-sensitized
solar cells are the prototype of this class of devices, which achieve optical absorption and
charge separation by combining a sensitizer as a light-absorbing material with a wide
bandgap semiconductor with a nanocrystalline morphology [8].

Gratzel et al. originally described the dye-sensitized solar cells (DSSCs) made using
nanocrystalline TiO2 based on the principle of a fast regenerative photo-electrochemical
process in 1991 [8]. This novel type of solar cell had an overall efficiency of 7.1–7.9%
(under simulated solar light), which is comparable to amorphous silicon solar cells [3].
The separation of the functional-light-absorbing “dye” from the charge carrier transport
in the former is the fundamental distinction between this type of solar cell and ordinary
cells. This feature allows for the DSSCs to work with low- to medium-purity, ecologically
friendly materials while maintaining commercially viable energy conversion efficiency.

A translucent electrode coated with a dye-sensitized mesoporous layer of nanocrys-
talline particles of TiO2, an electrolyte containing an appropriate redox couple and a
Pt-coated counter-electrode are often used in Gratzel cells. Because the nanocrystalline
DSSCs are made up of many materials, the qualities of each component have a direct
impact on the kinetics and reactions, and hence the solar cell’s performance. As a result,
the device’s performance is influenced by the porous semiconductor film’s structure, mor-
phology, optical and electrical properties, as well as the dye’s chemical, electrochemical,
photophysical, and photochemical properties, the electrochemical and optical properties of
the redox couple and solvent in the electrolyte, and the electrochemical properties of the
counter-electrode [9].

DSSCs based on Ru-bipyridyl complexes and liquid electrolytes can have up to 11 per-
cent efficiency. However, there are certain apprehensions regarding the existence of the
liquid component, which necessitates proper sealing to avoid leakage. The cells’ shape
and steadiness are limited as a result of the sealing requirement. Many research groups
have concentrated on replacing liquid electrolytes with solid or gel-type electrolytes in
dye-sensitized solar cells to achieve reduced costs and easier construction [10]. Inorganic
or organic hole conductors, gel electrolytes, gel electrolytes generated with ionic liquids or
by the solidification of liquids, and polymer electrolytes are the principal alternative mate-
rials [10]. An overview of recent developments in dye-sensitized solar cells assembled with
polymer and gel electrolytes is presented in this review article, with a focus on the modifica-
tions made to improve the ionic conductivity and the mechanical stability of such materials,
as well as how such modifications affect the performance of polymer-based DSSCs.



Micromachines 2022, 13, 680 3 of 16

2. Dye-Sensitized Solar Cell Architecture and Basic Operation

A schematic of the interior shown in Figure 1 can be used to understand the operating
principle of a DSSC.
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Figure 1. Schematic of the interior components of a dye-sensitized solar cell on fluorine-doped tin
oxide (FTO) coated glass substrate.

The following is a typical DSSC configuration: the mesoporous oxide layer, which
is made up of a network of TiO2 nanoparticles sintered together to form the electronic
conduction channel, is at the heart of the device. The film thickness is normally around
10 µm and is made up of nanoparticles with diameters ranging from 10 to 30 nm. The
film’s porosity ranges from 50 to 60%. Atop a glass or plastic substrate, the mesoporous
layer is formed on a transparent conducting oxide (TCO) [10]. As shown in Figure 1, a
common substrate is glass-covered with fluorine-doped tin oxide (FTO). On the surface
of the nanocrystalline film, the charge-transfer dye is placed as a monolayer. When a dye
is photoexcited, an electron is injected into the oxide’s conduction band, leaving the dye
in its oxidised state. Electron transfer from the electrolyte, which is commonly an organic
solvent containing the iodide/triiodide redox system, returns the dye to its ground state.

The iodide intercepts the oxidised dye’s recapture of the conduction band electron,
causing the sensitizer to regenerate. The I−3 ions produced by the oxidation of I− diffuse a
short distance (<50 µm) through the electrolyte to the cathode, which is coated with a thin
coating of platinum catalyst, where electron transfer completes the regenerative cycle by
reducing I−3 to I−. The major steps for converting photons to current are as follows:

1. The incident photon is absorbed by the photosensitizers in the Ru complex that are
adsorbed on the TiO2 surface. From the ground state (S) to the aroused state (S*),
photosensitizers are excited.

S + hν → S∗ (1)

2. The excited electrons are injected into the TiO2 electrode’s conduction band. The
photosensitizer (S+) gets oxidised as a result of this interaction.

S∗ → S+ + e−(TiO2) (2)

3. The injected electrons in TiO2′s conduction band diffuse between nanoparticles, even-
tually reaching the back contact (TCO). Through the circuit, the electrons eventually
reach the counter-electrode.

4. The oxidized photosensitizer (S+) receives electrons from the I− ion redox mediator,
resulting in the ground state (S) being regenerated and the I− being oxidised to the
oxidised state, I3

−.
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S+ + e− → S (3)

5. The oxidized redox mediator, I3
−, diffuses toward the counter-electrode and then it is

reduced to I− ions.

I−3 + 2e− → 3I− (4)

O’Regan and Durrant [11] gave the following details on typical materials and rela-
tive concentrations of different species in the mesoporous system under regular working
conditions:

• Each TiO2 particle has roughly ~10 electrons in the operating conditions;
• In TiO2, more than 90% of electrons are restrained, with only <10% in the conduc-

tion band;
• On an 18 nm TiO2 particle, there are approximately 10,000 H+ adsorption sites;
• On the surface of a TiO2 particle (18 nm), there are approximately 600 dye molecules;
• Every second, a photon is absorbed by each dye molecule;
• Injection of electrons into TiO2 particles occurs at a rate of approximately 600 s−1;
• Under normal operating conditions, around 1 dye in every 150 TiO2 particles be-

comes oxidized;
• In the electrolyte, the total volume percentage of the solutes is approximately 10–20%;
• There will be approximately 1000 I− and 200 I−3 ions in the pore volume around the

TiO2 particle;
• Iodine, I2, has a concentration of <1 µM, or about one free iodine per 10,000 TiO2 particles.

The required turnover number for a DSSC to be durable for more than 15 years in
outdoor installations is 108, which can be met by ruthenium complexes [12]. The difference
in the electrochemical potential of the electron at the two contacts corresponds to the voltage
created under light. The difference between the Fermi level of the mesoporous TiO2 layer
and the redox potential of the electrolyte is the difference in DSSC. Overall, no permanent
chemical reaction is required to generate electric power. Figure 2 depicts the basic electron
transfer mechanisms in a DSSC, as well as the potentials for a cutting-edge device based on
N3 dye adsorbed on TiO2 and I−/I−3 as the redox couple in the electrolyte.
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Figure 2. Simple energy level diagram for a DSSC. The basic electron transfer processes are indicated
by numbers (1–7).

The loss reactions 1, 5, and 6 are shown in Figure 2 in addition to the desired pathway
of the electron transfer processes (processes 2, 3, 4, and 7 in Figure 2) described above.
The excited-state lifetime reflects a direct recombination of the excited dye in reaction 1.
The recombination of injected electrons in TiO2 with oxidized dyes or acceptors in the
electrolyte is numbered 5 and 6.
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In theory, electron transport to I−3 can happen at the interface between the nanocrys-
talline oxide and the electrolyte, or at exposed portions of the anode contact (typically a
fluorine-doped tin oxide layer on glass). In practice, the second channel can be blocked
by spray pyrolysis, depositing a dense blocking layer of oxide on the anode [13,14]. For
DSSCs that use one-electron redox systems or cells that use solid organic hole-conducting
mediums, blocking layers are required [15,16].

Hundreds of alternatives to the components utilized in traditional DSSCs have been
studied, as previously stated. When it comes to sensitizers, Ru-complexes have been the
most effective since the beginning. Other organometallic compounds, such as phthalo-
cyanines and porphyrins, as well as osmium and iron complexes, have been developed.
Metal-free organic dyes are trying to catch up, with indoline dyes demonstrating efficiencies
of around 10% [17,18]. Moreover, numerous groups have recently created chemically resis-
tant organic dyes with promising stability results [19–22]; the references also include recent
overviews of photoanode materials [23–25], TiO2, ZnO, SnO2, and Nb2O5 are the most
popular oxides. Nanoparticles, nanofibers and tubes, and core–shell structures all have
been used to create new morphologies. A platinized conducting glass is the most typical
counter-electrode. In addition, conductive polymers and carbon compounds were also
produced [26–28]. Further, it was observed that the introduction of π-extended dibenzo-
BODIPY into organic sensitizers improves the power conversion efficiency in DSSC [29].
BODIPY dyes have exceptional characteristics, particularly near IR sensitizers. Modifica-
tions to improve these dyes’ performance in other areas of the solar spectrum will make
them very promising as similar to the solar cell sensitizer dyes [30].

3. Electrolytes

Gratzel and O’Regan [8] published a report on a mixed solvent electrolyte system in
1991, consisting of 80:20 ethylene carbonate and acetonitrile by volume. A combination of
0.5 M tetrapropylammonium iodide and 0.04 M iodine was used as the redox component.
The study reported a conversion efficiency of 7.9%. The electrolyte composition was ad-
justed by adding low concentrations of lithium or potassium iodide without affecting the
conversion efficiency. After decades of intensive study employing a variety of alternate sol-
vents, redox couples, and various additions, the same categories of nanoparticles, dyes, and
electrolytes are now used. Although the corrosive and photochemical properties of iodine
are less than ideal, and new research on alternative redox couples is underway, the elec-
trolyte based on the I−/I−3 redox couple has been a preferred choice as the hole-conducting
medium. Alternative redox systems, such as cobalt-based systems, SCN−/(SCN)3− and
SeCN−/(SeCN)3−, have shown promising results in recent investigations. It is reported
that a tris(2,2′-bipyridine)cobalt(II)/(III)-based gel polymer electrolyte shows an excep-
tional energy conversion efficiency of 8.7% and 10% under 1 sun and 0.1 sun, respectively,
for a stable DSSC [31].

Furthermore, DSSCs of the Co(II)/Co(III) complex were fabricated through the in-situ
process and it was observed that the efficiency of power conversion had been exceeded up to
6.5% after 1800 h and up to 8.5% at low intensity [32]. As an alternative to (iodine-based) re-
dox systems, poly(oxyethylene)-imide-imidazolium selenocyanate (POEI-IS) has been used
for a versatile gel electrolyte DSSC. It contains various functions, viz. gelling agent, redox
mediator of SeCN−, and formed a chelate with potassium cations [33]. Another alternate
for the I−/I−3 redox in DSSC that offers an attractive alternate is [Co(bpy-pz)2]3+/2+(PF6)3/2.
It has a power conversion efficiency of more than 10% [34].

In comparison to other ionic liquids, 1-ethyl-3-methylimidazolium selenocynate
(EMISeCN) is said to have a low viscosity. As a result of the weakening of the van der
Waals forces associated with the highly polarizable iodide component, it retains better
conductivity due to its low cohesive energy [35,36]. Co-grafting on hexa-decylmalonic
acid (HDMA) was used to improve the photovoltaic performance in another study. When
the two amphiphiles are co-grafted, a varied monolayer is formed, which should be more
tightly packed than when the sensitizer is adsorbed alone, producing a more efficient
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insulating barrier for back-electron transfer [37]. Furthermore, the trends that enable
iodide-free redox couples as being the most successful, as well as their viability for use in
DSSCs, utilizing fresh and novel photosensitizer and counter-electrode materials briefly
discussed [38].

4. Liquid Electrolyte

The I−/I−3 redox system is dissolved in a suitable solvent to form a liquid electrolyte.
Diffusive mass movement of charge carriers in the electrolyte is a critical parameter for
stable cell operation and optimal solar power generation. The transport mechanism is
influenced by the ions’ diffusion coefficient, the solvent’s viscosity, and the porous film
electrode’s structure. The electrolyte’s solvent allows charge carriers to diffuse quickly and
prevents dye desorption from the oxide surface during the redox reaction. Acetonitrile,
ethyl carbonate, and some other carbonates, viz. dimethyl carbonates, diethyl carbonates,
ethylene carbonates, propylene carbonates to name a few, are the commonly used solvents
although their usage is fraught with issues of poor sealing, thermal degradation, and
safety as these small molecule solvents easily escape into air due to their high volatility.
A complete seal is necessary to prevent the loss of liquid solvents from the electrolyte
system due to leakage and/or evaporation. The liquid junction DSSCs in this case require
a flawless seal with a binder that is chemically resistant to the electrolyte [39]. These
disadvantages obstruct cell manufacturing; in particular, the use of liquid electrolytes
obstructs the large-scale application of DSSCs while also limiting the shape and stability of
the cells if a high-speed, roll-to-roll continuous manufacturing method is used for industrial
DSSC manufacturing [10,40].

Some research groups concentrated on replacing liquid electrolytes with inorganic
or organic whole conductors and polymer electrolytes, which reduces the cost of dye-
sensitized solar cells and makes construction easier. Solid polymer electrolytes and gel
polymer electrolytes are two types of polymer electrolytes (GPEs).

5. P-Type Semiconductors

The p-type DSSC is made up of a photoactive working electrode (cathode), a passive
counter-electrode (anode), and a redox electrolyte in a sandwich shape. In p-type DSSCs, the
dye absorbs visible light and then transfers electrons from the semiconductor’s valence band
to the dye. The dye is subsequently regenerated in the electrolyte by electron transfer from
the reduced dye to the oxidised species. It is possible that the decreased dye will reunite
with the hole in the semiconductor if it can’t react with the electrolyte within the charge
separated lifespan. The holes in the semiconductor migrate to the working electrode’s back
collector, while the electrolyte’s reduced species diffuse to the electrode. In the external
circuit, this charge collection causes a cathodic photocurrent. Solid-state electrolytes are
primarily thought of as materials that transmit holes (HTM). If a material with p-type
semiconducting activity absorbs holes from the dye cation, it can possibly replace the liquid
electrolyte in DSSCs. However, in liquid electrolyte-based DSSCs, the transport mode shifts
from ionic to electronic transport in HTM-based solid-state DSSCs. Traditional HTMs are
inorganic p-type materials with increased hole mobility, such as CuI and CuSCN. When
they are directly utilized in DSSCs, however, their crystallization rate is quick, and control
of crystal size and growth rate is challenging to maintain, resulting in incomplete filling of
TiO2 pores, as presented in Figure 3a. As a result, the efficiency may be less than 1% [41].
As shown in Figure 3b, molten salts such as 1-methyl-3-ethylimidazolium thiocyanate
and triethylaminehydrothiocyanate may effectively limit CuI crystal development and
facilitate filling of the pore of dyed TiO2 anode [42] resulting in a 3.8 percent boost in
light-to-electrical efficiency.



Micromachines 2022, 13, 680 7 of 16

Micromachines 2022, 13, x FOR PEER REVIEW 7 of 17 
 

 

Furthermore, naphthalene imides are reported as a novel p-type sensitizer for NiO-
based DSSC. These two DSSCs, namely S64 and S85 with prolonged π-conjugations and 
lengthy alkyl chains have good solubility in organic solvents. In a NiO-based p-type dye-
sensitized solar cells, these dyes have a high efficiency. Their exterior quantum efficiency 
measurements also revealed a reasonable efficiency in the visible range [43]. In another 
work, π-extended dibenzo-BODIPY sensitizer with triphenylamine and nitrothiophene 
synthesized, which showed an intense band of absorption at 730 nm. It was observed that 
the performance of this NiO-based p-type DSSC was low due to the very fast recombina-
tion of NiO and dye at the surface of the electrode [44]. 

 
Figure 3. SEM images of CuI crystals deposited on the dyed TiO2 porous film: (a) CuI without mol-
ten salt; (b) CuI/1-methyl-3-ethyl-imidazolium thiocyanate composite electrolyte, adapted from ref-
erence [42]. [Reproduced with kind permission]. 

The organic molecular solids and polymers provide attractive diversity comparable 
to inorganic HTMs and in conjunction are amenable to chemical modifications to fit dif-
ferent needs. Examples include polypyrrole, polythiophene, and polyaniline, to name a 
few, as shown in Figure 4. These materials exhibit a good balance of electrical, electronic, 
and optical properties of metals and semiconductors, and mechanical flexibility of con-
ventional polymers. Prior work demonstrated their applications in solid-state DSSCs [45]. 
Despite considerable progress, the low conversion efficiency of solid-state DSSCs remains 
a challenge. Solid conductive materials’ penetration into semiconductor porous films is 
still low, and organic HTM conductivity is limited by diffusion. 

 
Figure 4. Chemical structures of a few conducting polymers with hole transport properties. 

6. Solid Polymer Electrolytes 
The study of polymer electrolytes commenced in the 1970s after Wright and col-

leagues reported their studies on ionic conductivity in polymer–salt compositions [46]. 
Secondary batteries took advantage of these systems. After Wright’s work [46], Polyeth-
ers, such as poly(ethylene oxide) (PEO), in combination with a variety of inorganic salts, 
such as LiI, NaI, LiClO4, LiCF3SO3, LiSCN, NaClO4, or LiPF6, have become the standard 
systems for further investigation. The repeating unit (–CH2–CH2–O–) in PEO provides a 

Figure 3. SEM images of CuI crystals deposited on the dyed TiO2 porous film: (a) CuI without
molten salt; (b) CuI/1-methyl-3-ethyl-imidazolium thiocyanate composite electrolyte, adapted from
reference [42]. [Reproduced with kind permission].

Furthermore, naphthalene imides are reported as a novel p-type sensitizer for NiO-
based DSSC. These two DSSCs, namely S64 and S85 with prolonged π-conjugations and
lengthy alkyl chains have good solubility in organic solvents. In a NiO-based p-type dye-
sensitized solar cells, these dyes have a high efficiency. Their exterior quantum efficiency
measurements also revealed a reasonable efficiency in the visible range [43]. In another
work, π-extended dibenzo-BODIPY sensitizer with triphenylamine and nitrothiophene
synthesized, which showed an intense band of absorption at 730 nm. It was observed that
the performance of this NiO-based p-type DSSC was low due to the very fast recombination
of NiO and dye at the surface of the electrode [44].

The organic molecular solids and polymers provide attractive diversity comparable to
inorganic HTMs and in conjunction are amenable to chemical modifications to fit different
needs. Examples include polypyrrole, polythiophene, and polyaniline, to name a few, as
shown in Figure 4. These materials exhibit a good balance of electrical, electronic, and
optical properties of metals and semiconductors, and mechanical flexibility of conventional
polymers. Prior work demonstrated their applications in solid-state DSSCs [45]. Despite
considerable progress, the low conversion efficiency of solid-state DSSCs remains a chal-
lenge. Solid conductive materials’ penetration into semiconductor porous films is still low,
and organic HTM conductivity is limited by diffusion.
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6. Solid Polymer Electrolytes

The study of polymer electrolytes commenced in the 1970s after Wright and colleagues
reported their studies on ionic conductivity in polymer–salt compositions [46]. Secondary
batteries took advantage of these systems. After Wright’s work [46], Polyethers, such as
poly(ethylene oxide) (PEO), in combination with a variety of inorganic salts, such as LiI,
NaI, LiClO4, LiCF3SO3, LiSCN, NaClO4, or LiPF6, have become the standard systems for
further investigation. The repeating unit (–CH2–CH2–O–) in PEO provides a promising
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configuration for active interactions between the free electron pair in oxygen and the alkali
metal cations. Because the PEO chains are organized in a helical shape that are hollow, the
optimum distances for oxygen–cation interactions are created. At temperatures between
40 and 100 ◦C, PEO–salt complexes typically have conductivities in the range of 10−8 to
10−4 S/cm [8], restricting their use at room temperature. The solid-state nature of polymer
electrolytes is advantageous; however, the ionic conduction in the amorphous phase of
most polymer electrolytes is insufficient for photo-electrochemical cell applications. A
specific degree of disorder must be induced in the structure to minimize the degree of
crystallinity of the polymer at ambient temperature and, therefore, boost ionic mobility.
This can be accomplished by combining various polymers, copolymers, or cross-linked
networks to lower the glass transition temperature or diminish the crystallinity of the
polymer. A third component, which can operate as a plasticizer, can also be introduced
into the system [47]. Ionic mobility in polymer electrolytes is intimately linked to local
structural relaxations that occur in the amorphous phase. The ionic conductivity may easily
be modified to further increase gadget performance. In this context, adding inorganic
nanofillers, ionic liquids, ethylene oxide oligomers, plasticizers, and other additives to
create polymer (or gel) electrolytes with increased ionic conductivity qualities has become
a typical technique [10].

7. Gel Polymer Electrolytes (GPEs)

GPEs are made by trapping liquid electrolytes that contain organic solvents and
inorganic salts such as ethylene carbonate (EC), propylene carbonate (PC), or sodium
iodide (NaI), acrylonitrile (ACN), lithium iodide (LiI), and potassium iodide (KI). The
value of short-circuit density (Jsc) decreases in systems with GPEs due to gelation, but
the open-circuit voltage (Voc) rises due to the suppression of a dark current by polymer
chains covering the TiO2 electrode’s surface [48]. These tendencies combine to give DSSCs
with GPEs nearly the same efficiency (η) as those with liquid electrolytes. Quasi-solid-state
DSSCs are cells that were built utilizing GPEs.

8. The Advantages of GPE

The GPEs are made by encasing a liquid electrolyte in polymer cages. Some of the
benefits of GPEs are their low vapour pressure, superior wetting and filling properties
between the nanostructured electrode and counter-electrode, higher ionic conductivity
than typical polymer electrolytes, and outstanding thermal stability. As evidenced by the
wide range of applications, these characteristics lead to the remarkable long-term stability
of the DSSCs [49–51].

Because of their liquid state over a broad temperature range, non-flammability, and
low vapour pressure at room temperature, wide electrochemical windows, high ionic
conductivity, as well as excellent thermal and chemical stability, a large number of published
reports on GPEs in the last decade have focused on ionic liquids (ILs) [52,53]. Kubo et al. [49]
developed a DSSC based on room-temperature molten salt. These authors investigated
the physical–electrochemical properties of 1-hexyl-3-methylimidazolium iodide (HMImI)
and its mixtures with organic solvents, such as acetonitrile, and with other lower viscosity
ILs, such as 1-ethyl-3-methylimidazoliumtriflate (EMImTf). Furthermore, it was proposed
based on the data on diffusion coefficients of I−3 in pure HMImI that an electron exchange
via a Grotthus-type (hopping) charge carrier mechanism influenced the overall transport
with an increase of the iodine concentration. This is represented as by the scheme as
presented below:

I−3 + I− → I− . . . . . . I2 . . . I− → I− + I−3 (5)

Equation (5) demonstrates that when I2 is switched from I−3 to I−, I− and I−3 should be
in a close immediacy to one other. Because both reactants are negatively charged, collisions
between I− and I−3 are often problematic. Ionic liquids are made entirely of ions and have a
relatively high molar concentration. It was discovered that triiodide could be transported
to the counter-electrode not only by diffusion, but also by a non-diffusional hopping
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mechanism similar to that of Grotthus. Similar results were shown by Kawano et al. [54]
who observed an increase in apparent diffusion coefficient (Dapp) of I−and I−3 with an
increase in I2 concentration in ionic liquid compared to the normal solvent of the same
viscosity. Figure 5 indicates that Dapp depends on the concentration of the redox couple, and
the value is larger for EMImTFSI than for polyethylene glycol diglycidyl ether (PEGDE).
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9. Higher Ionic Conductivity

Enhancing the ionic conductivities of these GPEs is important and crucial for high
DSSC conversion efficiency. Due to the high crystallinity of the polymers, traditional (solid)
polymer electrolytes have relatively low ambient ionic conductivity. In this regard, the
majority of recent research has focused on the synthesis and characterization of GPEs
with increased ionic conductivity at room temperature. RTILs (room temperature ionic
liquids) are ion sources as well as plasticizers. Highly conductive polymer gels made
of a polymer matrix, plasticizer, and redox couple salts have been extensively explored
to improve ionic conductivity to a practical level (at least 1 mS/cm). By mixing 5 wt%
poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP) with methoxypropionitrile
(MPN)-based gel electrolytes, Wang et al. [37] created a series of quasi-solid-state DSSCs.
At 1 Sun illumination, the conductivities of these polymer gels approached 10 mS/cm,
and the cell efficiencies were over 6%. Cheng et al. [55] created a PVDF-based polymer
gel system with a cross-linking reinforced network of polyethylene glycol dimethacrylate
(PEGDMA), which had good ionic conductivity and mechanical toughness.

10. Excellent Thermal Stability

GPEs have exceptional thermal stability, and the DSSCs built on them have excep-
tional heat treatment stability. Ionic liquid-based electrolytes of poly(1-oligo (ethylene
glycol) metha-crylate-3-methyl-imidazolium chloride) (P(MOEMImCl) containing 1-hexyl-
3-methylidazolium iodide (HMImI) or a binary mixture of HMImI and 1-ethyl-3-methyl-
imidazoliumtetrafluoroborate) (EMImBF4) showed minor weight loss at temperatures
< 200 ◦C. The effect of heat treatments on DSSC performance based on this GPE showed
drops in conversion efficiency of about 2.1 percent and 3.9 percent after heat treatments at
100 ◦C for 30 and 120 min, respectively, compared to the optimal efficiency of 6.1 percent
at 30 ◦C for 5 min. This degradation during heat treatment was caused by iodine evap-
oration at elevated temperatures, which was confirmed by detecting evaporated iodine
in an analyzer using wet starch paper during the heat treatment at 100 ◦C [56,57]. Dye
desorption can also lead to a loss in cell performance at high temperatures according to
the findings. Adsorption and desorption of dyes on TiO2 surfaces are in equilibrium, and
this adsorption/desorption equilibrium alters with temperature [58]. In another work, an
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amphiphilic ruthenium sensitizer, cis-RuLL’(SCN)2, with a gel polymer electrolyte used
to enhance the performance of a DSSC under thermal stress and light-soaking. It was
observed that it produced an efficiency greater than 6% under full sunlight. In this scenario,
heteroplastic ruthenium plays a key role in high temperature stability. In addition, it was
observed that the cell maintained 94 percent of its initial functionality after 1000 h of heating
at 80 ◦C. In a solar simulator (100 mW/cm2) equipped with a UV filter, the gadget also
exhibited good stability after 1000 h of light soaking at 55 ◦C [59].

11. Outstanding Long-Term Stability

DSSCs containing the GPE have better long-term stability than DSSCs using liquid
electrolytes. This is owing to the rapid devolatilization of liquid electrolytes and electrolyte
leaks observed during their long-term operation. The results from prior work [60], as shown
in Figure 6, shows that the efficiency of DSSC with the GPE PMMA–EC/PC/DMC–NaI/I2
declines by 8% after 5 days, while the efficiency of DSSC with liquid electrolyte drops by
nearly 40%. After 40 days, the DSSC with a polymer gel electrolyte retains 83 percent of its
initial light-to-electrical energy conversion efficiency, compared to only 27 percent for the
DSSCs with liquid electrolytes [60].
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12. Factors Influencing the Ionic Conductivity of GPE and the Photovoltaic
Performance of Their DSSCs

The charge carrier transfer and diffusion efficiency of the redox couple resulting from
its own ingredients, such as various types of polymers, the concentration of polymers with
various molecular weights and conductivities, and the concentration and property of iodide
salts are factors that influence the ionic conductivity of GPEs. Conductivity is influenced
by external elements, such as organic solvents and temperature, to some extent. All of the
aforementioned parameters influence the photovoltaic performance of DSSCs based on
GPEs [61].

13. Approaches for the Enhancement in the Properties of GPE and Their DSSCs

Although utilizing GPEs increased the stability of DSSCs, the photovoltaic perfor-
mance of GPE-based quasi-solid-state DSSCs was found to be lower than that of liquid-
electrolyte-based DSSCs. Although some polymers may successfully gelate liquid elec-
trolytes, they have a negative impact on photovoltaic performance and DSSC stability.
For example, the gel network may obstruct charge transport in the gel electrolyte to some



Micromachines 2022, 13, 680 11 of 16

extent. Furthermore, the gelators may react with electrolyte components. To increase the
ionic conductivity of GPEs and hence the performance of GPE-based DSSCs, the following
procedures have been used.

(a) Thixotropic gel state: An appropriate mechanical tension can be used to convert
thixotropic gels into sols. These thixotropic gel electrolytes should be useful for
building DSSCs without leakage and giving efficient photovoltaic output that is stable
over time [62].

(b) Incorporation of proton donors: Due to their high proton conductivity, chemical
and electrochemical stability, and ease of processing of polymer matrices, polymer
electrolytes doped with proton donors have recently gained a significant amount of
attention. The proton donor effectively increases the ionic conductivity of GPEs, re-
sulting in increased I−/I−3 mobility, short-circuit current density, open-circuit voltage,
stability, and energy conversion efficiency of DSSCs [63,64].

(c) Introduction of inorganic nanoparticles: Because the 3D network of the normal gel elec-
trolyte hinders charge transport to some extent, adding inorganic nanoparticles could
reduce charge combination at the interface of the dyed TiO2 electrode/electrolyte
and increase the diffusion coefficient of I−3 because the introduction of inorganic
nanoparticles reduces this negative effect [49].

(d) Addition of pyridine derivatives: To improve the open-circuit photovoltage and
therefore efficiency of DSSCs, additives in the electrolytes, such as pyridine derivatives,
especially N-methylbenzimidazole, and tetrabutylammonium phosphate, are always
added to the electrolytes [65,66].

14. Recent Developments in GPE-DSSC

The safety issues faced by the liquid electrolytes can be solved through the enhanced
GPEs. Nonetheless, its efficiency of power conversion (η) can be improved through the
betterment of the following parameters, viz. open-circuit voltage (VOC), short-circuit cur-
rent (JSC) and fill factor (FF). Some research activities aim to improve GPEs. Saidi et al. [67]
used a different concentration of 4-tert-butyl-pyridine (TBP) in a gel polymer (GP) for the
performance improvement of DSSC and found that the quasi-fermi level of the TiO2 photo-
anode shifted towards higher potential. The presence of 7% of TBP by weight increased
VOC by 21.31%. It is also noted that the addition of TBP showed a reduction in the JSC of
DSSC, while 3% of the TBP by weight showed the highest η of 8.11%. In another work,
Praveen et al. [68] used chitosan dissolved in formic acid as an electrolyte for ZnO/ZnS-
based DSSC, and reported a higher VOC and η. This enhancement was attributed to higher
ionic mobility, where ZnS overwhelms the charge combination rate, and chitosan helped in
the phototronic effect as well as activating charge carrier for enhancing the ionic mobility
and visible light absorption.

The PAN-co-PBA copolymer used as a gel electrolyte offers the following attributes: a
carboxylate group preset in a PBA chain behaved as a superabsorbent to organic liquid,
which impacted the ionic properties and long-life stability of the electrolyte. These proper-
ties provided support to the charge transportation between the electrolyte and conduction
layer [69]. In another work, Chai et al. [70] used polyurethane acrylate (PUA) with tetra-
butylammonium iodide (TBAI) as a gel-polymer electrolyte and found that there was an
increment in electrolyte conductivity due to the high mobility and the number of densities
of the charge carriers.

Abisharani et al. [71] obtained a high performance with better stability for DSSCs
through the incorporation of the additives of the N, S, and O groups with GPE. The corre-
sponding calculations of the DFT revealed that the anchoring groups of the additives play
an important role in the charge transfer mechanism, and the TiO2 surface contained strong
covalent/non-covalent bonds. In another work, Lobregas et al. [72] used potato starch
modified with grafting 1-glycidyl-3-methylimidazolium chloride (GMIC) as a gel-polymer
electrolyte, and obtained 0.514% efficiency and relative stability due to the good filling
contact between the electrodes. Figure 7 shows the photocurrent–voltage curve charac-
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teristics of liquid and a modified gel–polymer electrolyte. Table 1 lists the performance
characteristics of different modified gel polymers in DSSCs.
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Table 1. List of performance characteristics of various modified gel-polymer DSSCs.

S. No Author Electrolyte VOC
(V)

JSC
(mA cm−2) FF (%) η (%)

1 Praveen et al. [68] Chitosan 0.8 1.6871 44.59 1.6

2 Shah et al. [69] 7% PAN-co-PBA 0.646 ± 0.03 13.16 ± 0.71 61.5 ± 2 5.23 ± 0.28

3 Chai et al. [70] 67.94%PUA–30.00% TBAI–2.06% I2 0.55 ± 0.01 7.15 ± 0.74 1.97 ± 0.21

4 Rao et al. [74] PEO/PEGDME/0%acetamide 0.79 11.35 0.55 5.03

5 Abisharani et al. [71] SAA/I−/I3
−/Gelatin 0.79 14.1 0.52 5.8

6 Gunasekaran et al. [73] 0.6-Guar gum 0.787 10.65 0.46 4.96

7 Manafi et al. [75] PVDF– HFP/PEO/BMIMBF4 (60/40
wt%) 0.685 15.65 60.4 6.47

8 Balamurgan et al. [76] Co2+/3+[bnbip]2/HEC/BNBIT 0.795 10.7 0.53 4.50

9 Khannam et al. [77] Gelatin/Graphene
Oxide/LiI/TBP/MPI/NMP 0.75 7.68 0.7 4.02

10 Sharma et al. [78] Gelatin/MWCNT/LiI/I2/TBP/MPI/NMP 0.93 8.14 0.18 1.35

11 Farhana et al. [79] P(VB-co-VA-co-VAc)/NaI 0.61 12.52 51.8 4.01

12 Farhana et al. [80] P(VB-co-VA-co-VAc)/TPAI 0.678 13.585 50.1 4.615

13 Careem et al. [81] 50%Ki-50%TPAI-PVA 0.630 8.0 62 5.51

14 Zulkifi et al. [82] PhCh:EC:DMF:KI/I2 0.37 20.33 65 3.57

15 Kesavan et al. [83] Au97.5 Pt2.5/C NPoS 0.686 13.09 56.8 5.1

16 Suzuka et al. [84] Indolines
(2,3-benzo-4,5-dihydroindoles) 0.93 15.5 70 10.1

17 Lin et al. [33] POEI-IS 0.825 13.85 71 8.18

18 Xiang et al. [31] [Co(bpy3)] 3+ 0.817 1.54 ± 0.01 80 10

15. Conclusions

This article presented a review of the research on the development of electrolytes in
general and the use of ionic liquids in particular for DSSCs. Though liquid electrolytes pro-
vide higher photovoltaic performance, the leakage and volatilization of the solvent reduced
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the enduring stability, making them impractical for large installations. Due to their stability,
polymer electrolytes (solid and GPEs) and p-type semiconductors were chosen for study.
The solid polymer electrolytes had low ionic conductivity and the p-type semiconductor
had less efficiency and showed poor electrode contact. These made gel polymer electrolytes
a suitable replacement over liquid electrolytes because of their higher ionic conductivity,
enduring stability, and outstanding thermal stability of the DSSCs established on them.
Furthermore, the ionic conductivity of GPE and the DSSCs performance can be improved
through the concentrations of the iodide salts. However, in comparison to liquid electrolyte
and GPE DSSCs, GPE persist lower ionic conductivity, photovoltaic performance (Voc), and
energy conversion efficiency. Furthermore, the properties related to GPEs, viz. photovoltaic
and ionic conductivity, can be improved by using strategies such as the thixotropic gel
states, fusion of the proton donors, the addition of the pyridine derivatives GPEs, and the
introduction of inorganic nanoparticle.

These strategies, combined with the unique properties of ionic liquids incorporated
into GPEs, have the potential to expand the scope of GPE to obtain higher efficiency, high
ionic conductivity, and continuous industrially manufactured DSSCs.
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