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Abstract

In this paper, the analysis of recent advances in genetic algorithms is discussed. The genetic

algorithms of great interest in research community are selected for analysis. This review will

help the new and demanding researchers to provide thewider vision of genetic algorithms. The

well-known algorithms and their implementation are presented with their pros and cons. The

genetic operators and their usages are discussed with the aim of facilitating new researchers.

The different research domains involved in genetic algorithms are covered. The future research

directions in the area of genetic operators, fitness function and hybrid algorithms are discussed.

This structured review will be helpful for research and graduate teaching.

Keywords Optimization .Metaheuristic . Genetic algorithm . Crossover .Mutation . Selection .

Evolution

1 Introduction

In the recent years, metaheuristic algorithms are used to solve real-life complex

problems arising from different fields such as economics, engineering, politics, man-

agement, and engineering [113]. Intensification and diversification are the key elements

of metaheuristic algorithm. The proper balance between these elements are required to

solve the real-life problem in an effective manner. Most of metaheuristic algorithms are

inspired from biological evolution process, swarm behavior, and physics’ law [17].

These algorithms are broadly classified into two categories namely single solution and

population based metaheuristic algorithm (Fig. 1). Single-solution based metaheuristic

algorithms utilize single candidate solution and improve this solution by using local

search. However, the solution obtained from single-solution based metaheuristics may

stuck in local optima [112]. The well-known single-solution based metaheuristics are
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simulated annealing, tabu search (TS), microcanonical annealing (MA), and guided

local search (GLS). Population-based metaheuristics utilizes multiple candidate solu-

tions during the search process. These metaheuristics maintain the diversity in popula-

tion and avoid the solutions are being stuck in local optima. Some of well-known

population-based metaheuristic algorithms are genetic algorithm (GA) [135], particle

swarm optimization (PSO) [101], ant colony optimization (ACO) [47], spotted hyena

optimizer (SHO) [41], emperor penguin optimizer (EPO) [42], and seagull optimization

(SOA) [43].

Among the metaheuristic algorithms, Genetic algorithm (GA) is a well-known

algorithm, which is inspired from biological evolution process [136]. GA mimics

the Darwinian theory of survival of fittest in nature. GA was proposed by J.H.

Holland in 1992. The basic elements of GA are chromosome representation, fitness

selection, and biological-inspired operators. Holland also introduced a novel element

namely, Inversion that is generally used in implementations of GA [77]. Typically, the

chromosomes take the binary string format. In chromosomes, each locus (specific

position on chromosome) has two possible alleles (variant forms of genes) - 0 and 1.

Chromosomes are considered as points in the solution space. These are processed

using genetic operators by iteratively replacing its population. The fitness function is

used to assign a value for all the chromosomes in the population [136]. The

biological-inspired operators are selection, mutation, and crossover. In selection, the

chromosomes are selected on the basis of its fitness value for further processing. In

crossover operator, a random locus is chosen and it changes the subsequences

between chromosomes to create off-springs. In mutation, some bits of the chromo-

somes will be randomly flipped on the basis of probability [77, 135, 136]. The further

development of GA based on operators, representation, and fitness has diminished.

Therefore, these elements of GA are focused in this paper.

The main contribution of this paper are as follows:

1. The general framework of GA and hybrid GA are elaborated with mathematical

formulation.

2. The various types of genetic operators are discussed with their pros and cons.

3. The variants of GA with their pros and cons are discussed.

4. The applicability of GA in multimedia fields is discussed.

Metaheuristics

Evolutionary 
Algorithms

Population based 
Metaheuristics

Single-solution based 
Metaheuristics

Swarm-Intelligence 
Algorithms

Fig. 1 Classification of metaheuristic Algorithms

Multimedia Tools and Applications (2021) 80:8091–81268092



The main aim of this paper is two folds. First, it presents the variants of GA and their

applicability in various fields. Second, it broadens the area of possible users in various fields.

The various types of crossover, mutation, selection, and encoding techniques are discussed.

The single-objective, multi-objective, parallel, and hybrid GAs are deliberated with their

advantages and disadvantages. The multimedia applications of GAs are elaborated.

The remainder of this paper is organized as follows: Section 2 presents the methodology

used to carry out the research. The classical genetic algorithm and genetic operators are

discussed in Section 3. The variants of genetic algorithm with pros and cons are presented

in Section 4. Section 5 describes the applications of genetic algorithm. Section 6 presents the

challenges and future research directions. The concluding remarks are drawn in Section 7.

2 Research methodology

PRISMA’s guidelines were used to conduct the review of GA [138]. A detailed search has

been done on Google scholar and PubMed for identification of research papers related to GA.

The important research works found during the manual search were also added in this paper.

During search, some keywords such as “Genetic Algorithm” or “Application of GA” or

“operators of GA” or “representation of GA” or “variants of GA” were used. The selection

and rejection of explored research papers are based on the principles, which is mentioned in

Table 1.

Total 27,64,792 research papers were explored on Google Scholar, PubMed and manual

search. The research work related to genetic algorithm for multimedia applications were also

included. During the screening of research papers, all the duplicate papers and papers

published before 2007 were discarded. 4340 research papers were selected based on 2007

and duplicate entries. Thereafter, 4050 research papers were eliminated based on titles. 220

research papers were eliminated after reading of abstract. 70 research papers were left after

third round of screening. 40 more research papers were discarded after full paper reading and

facts found in the papers. After the fourth round of screening, final 30 research papers are

selected for review.

Based on the relevance and quality of research, 30 papers were selected for evaluation. The

relevance of research is decided through some criteria, which is mentioned in Table 1. The

Table 1 Selection criterion for shortlisted research papers

Sr.

No.

Parameters Selection criteria Elimination criteria

1 Duration Research papers published from 2007

to 2020

Research papers published before 2007

2 Analysis Research includes various operators

and modification in GA

Research includes operators of other metaheuristics

3 Comparison Research focuses on variants of GA Research focuses on variants of other

metaheuristics. GA included in some part of

research

4 Applications Research involves on multimedia,

operation management and wireless

networks

Research involves on engineering design, data

mining, software applications, and astronomy

applications

5 Study Research includes mathematical

foundation and experimental results

Research includes patent, case study, papers having

language other than English
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selected research papers comprise of genetic algorithm for multimedia applications, advance-

ment of their genetic operators, and hybridization of genetic algorithm with other well-

established metaheuristic algorithms. The pros and cons of genetic operators are shown in

preceding section.

3 Background

In this section, the basic structure of GA and its genetic operators are discussed with pros and

cons.

3.1 Classical GA

Genetic algorithm (GA) is an optimization algorithm that is inspired from the natural

selection. It is a population based search algorithm, which utilizes the concept of

survival of fittest [135]. The new populations are produced by iterative use of genetic

operators on individuals present in the population. The chromosome representation,

selection, crossover, mutation, and fitness function computation are the key elements of

GA. The procedure of GA is as follows. A population (Y) of n chromosomes are

initialized randomly. The fitness of each chromosome in Y is computed. Two chromo-

somes say C1 and C2 are selected from the population Y according to the fitness value.

The single-point crossover operator with crossover probability (Cp) is applied on C1

and C2 to produce an offspring say O. Thereafter, uniform mutation operator is applied

on produced offspring (O) with mutation probability (Mp) to generate O′. The new

offspring O′ is placed in new population. The selection, crossover, and mutation

operations will be repeated on current population until the new population is complete.

The mathematical analysis of GA is as follows [126]:

GA dynamically change the search process through the probabilities of crossover and

mutation and reached to optimal solution. GA can modify the encoded genes. GA can evaluate

multiple individuals and produce multiple optimal solutions. Hence, GA has better global

search capability. The offspring produced from crossover of parent chromosomes is probable

to abolish the admirable genetic schemas parent chromosomes and crossover formula is

defined as [126]:

R ¼ Gþ 2
ffiffiffi

g
p� �

=3G ð1Þ

where g is the number of generations, and G is the total number of evolutionary generation set

by population. It is observed from Eq.(1) that R is dynamically changed and increase with

increase in number of evolutionary generation. In initial stage of GA, the similarity between

individuals is very low. The value of R should be low to ensure that the new population will

not destroy the excellent genetic schema of individuals. At the end of evolution, the similarity

between individuals is very high as well as the value of R should be high.

According to Schema theorem, the original schema has to be replaced with modified

schema. To maintain the diversity in population, the new schema keep the initial population

during the early stage of evolution. At the end of evolution, the appropriate schema will be

produced to prevent any distortion of excellent genetic schema [65, 75]. Algorithm 1 shows

the pseudocode of classical genetic algorithm.
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Algorithm 1: Classical Genetic Algorithm (GA)

3.2 Genetic operators

GAs used a variety of operators during the search process. These operators are encoding

schemes, crossover, mutation, and selection. Figure 2 depicts the operators used in GAs.

3.2.1 Encoding schemes

For most of the computational problems, the encoding scheme (i.e., to convert in particular

form) plays an important role. The given information has to be encoded in a particular bit

string [121, 183]. The encoding schemes are differentiated according to the problem domain.

The well-known encoding schemes are binary, octal, hexadecimal, permutation, value-based,

and tree.

Binary encoding is the commonly used encoding scheme. Each gene or chromosome is

represented as a string of 1 or 0 [187]. In binary encoding, each bit represents the character-

istics of the solution. It provides faster implementation of crossover and mutation operators.

However, it requires extra effort to convert into binary form and accuracy of algorithm

depends upon the binary conversion. The bit stream is changed according the problem. Binary

encoding scheme is not appropriate for some engineering design problems due to epistasis and

natural representation.

In octal encoding scheme, the gene or chromosome is represented in the form of octal

numbers (0–7). In hexadecimal encoding scheme, the gene or chromosome is represented in

the form of hexadecimal numbers (0–9, A-F) [111, 125, 187]. The permutation encoding
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scheme is generally used in ordering problems. In this encoding scheme, the gene or

chromosome is represented by the string of numbers that represents the position in a sequence.

In value encoding scheme, the gene or chromosome is represented using string of some values.

These values can be real, integer number, or character [57]. This encoding scheme can be

helpful in solving the problems in which more complicated values are used. As binary

encoding may fail in such problems. It is mainly used in neural networks for finding the

optimal weights.

In tree encoding, the gene or chromosome is represented by a tree of functions or

commands. These functions and commands can be related to any programming language.

This is very much similar to the representation of repression in tree format [88]. This type of

encoding is generally used in evolving programs or expressions. Table 2 shows the compar-

ison of different encoding schemes of GA.

3.2.2 Selection techniques

Selection is an important step in genetic algorithms that determines whether the particular

string will participate in the reproduction process or not. The selection step is sometimes also

known as the reproduction operator [57, 88]. The convergence rate of GA depends upon the

selection pressure. The well-known selection techniques are roulette wheel, rank, tournament,

boltzmann, and stochastic universal sampling.

Roulette wheel selection maps all the possible strings onto a wheel with a portion of the

wheel allocated to them according to their fitness value. This wheel is then rotated randomly to

select specific solutions that will participate in formation of the next generation [88]. However,

Fig. 2 Operators used in GA
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it suffers from many problems such as errors introduced by its stochastic nature. De Jong and

Brindle modified the roulette wheel selection method to remove errors by introducing the

concept of determinism in selection procedure. Rank selection is the modified form of Roulette

wheel selection. It utilizes the ranks instead of fitness value. Ranks are given to them according

to their fitness value so that each individual gets a chance of getting selected according to their

ranks. Rank selection method reduces the chances of prematurely converging the solution to a

local minima [88].

Tournament selection technique was first proposed by Brindle in 1983. The individuals are

selected according to their fitness values from a stochastic roulette wheel in pairs. After

selection, the individuals with higher fitness value are added to the pool of next generation

[88]. In this method of selection, each individual is compared with all n-1 other individuals if it

reaches the final population of solutions [88]. Stochastic universal sampling (SUS) is an

extension to the existing roulette wheel selection method. It uses a random starting point in

the list of individuals from a generation and selects the new individual at evenly spaced

intervals [3]. It gives equal chance to all the individuals in getting selected for participating in

crossover for the next generation. Although in case of Travelling Salesman Problem, SUS

performs well but as the problem size increases, the traditional Roulette wheel selection

performs relatively well [180].

Boltzmann selection is based on entropy and sampling methods, which are used in Monte

Carlo Simulation. It helps in solving the problem of premature convergence [118]. The

probability is very high for selecting the best string, while it executes in very less time.

However, there is a possibility of information loss. It can be managed through elitism [175].

Elitism selection was proposed by K. D. Jong (1975) for improving the performance of

Roulette wheel selection. It ensures the elitist individual in a generation is always propagated

to the next generation. If the individual having the highest fitness value is not present in the

next generation after normal selection procedure, then the elitist one is also included in the next

generation automatically [88]. The comparison of above-mentioned selection techniques are

depicted in Table 3.

3.2.3 Crossover operators

Crossover operators are used to generate the offspring by combining the genetic

information of two or more parents. The well-known crossover operators are single-

Table 2 Comparison of different encoding schemes

Encoding

Scheme

Pros Cons Application

Binary Easy to implement

Faster Execution

No support for inversion operator Problems that support binary

encoding

Octal Easy to implement No support for inversion operator Limited use

Hexadecimal Easy to implement No support for inversion operator Limited use

Permutation Support inversion

operator

No support for binary operators Task ordering Problem

Value No need of value

conversion

Requires specific crossover and

mutation

Neural Network Problems

Tree Operator can easily

applied

Difficult to design tree for some

problems

Evolving Programs
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point, two-point, k-point, uniform, partially matched, order, precedence preserving

crossover, shuffle, reduced surrogate and cycle.

In a single point crossover, a random crossover point is selected. The genetic information of

two parents which is beyond that point will be swapped with each other [190]. Figure 3 shows

the genetic information after swapping. It replaced the tail array bits of both the parents to get

the new offspring.

In a two point and k-point crossover, two or more random crossover points are selected and

the genetic information of parents will be swapped as per the segments that have been created

[190]. Figure 4 shows the swapping of genetic information between crossover points. The

middle segment of the parents is replaced to generate the new offspring.

In a uniform crossover, parent cannot be decomposed into segments. The parent can be

treated as each gene separately. We randomly decide whether we need to swap the gene with

the same location of another chromosome [190]. Figure 5 depicts the swapping of individuals

under uniform crossover operation.

Partially matched crossover (PMX) is the most frequently used crossover operator. It is an

operator that performs better than most of the other crossover operators. The partially matched

(mapped) crossover was proposed by D. Goldberg and R. Lingle [66]. Two parents are choose

for mating. One parent donates some part of genetic material and the corresponding part of

other parent participates in the child. Once this process is completed, the left out alleles are

copied from the second parent [83]. Figure 6 depicts the example of PMX.

Table 3 Comparison of different selection techniques

Selection Techniques Pros Cons

Roulette wheel Easy to implement

Simple

Free from Bias

Risk of Premature convergence

Depends upon variance present in the fitness function

Rank Preserve diversity

Free from Bias

Slow convergence

Sorting required

Computationally Expensive

Tournament Preserve diversity

Parallel Implementation

No sorting required

Loss of diversity when the tournament size is large

Boltzmann Global optimum achieved Computationally Expensive

Stochastic Universal

Sampling

Fast Method

Free from Bias

Premature convergence

Elitism Preserve best Individual in

population

Best individual can be lost due to crossover and

mutation operators

Fig. 3 Swapping genetic information after a crossover point
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Order crossover (OX) was proposed by Davis in 1985. OX copies one (or more) parts of

parent to the offspring from the selected cut-points and fills the remaining space with values

other than the ones included in the copied section. The variants of OX are proposed by

different researchers for different type of problems. OX is useful for ordering problems [166].

However, it is found that OX is less efficient in case of Travelling Salesman Problem [140].

Precedence preserving crossover (PPX) preserves the ordering of individual solutions as

present in the parent of offspring before the application of crossover. The offspring is

initialized to a string of random 1’s and 0’s that decides whether the individuals from both

parents are to be selected or not. In [169], authors proposed a modified version of PPX for

multi-objective scheduling problems.

Shuffle crossover was proposed by Eshelman et al. [20] to reduce the bias introduced by

other crossover techniques. It shuffles the values of an individual solution before the crossover

and unshuffles them after crossover operation is performed so that the crossover point does not

introduce any bias in crossover. However, the utilization of this crossover is very limited in the

recent years. Reduced surrogate crossover (RCX) reduces the unnecessary crossovers if the

parents have the same gene sequence for solution representations [20, 139]. RCX is based on

the assumption that GA produces better individuals if the parents are sufficiently diverse in

their genetic composition. However, RCX cannot produce better individuals for those parents

that have same composition. Cycle crossover was proposed by Oliver [140]. It attempts to

generate an offspring using parents where each element occupies the position by referring to

the position of their parents [140]. In the first cycle, it takes some elements from the first

parent. In the second cycle, it takes the remaining elements from the second parent as shown in

Fig. 7.

Table 4 shows the comparison of crossover techniques. It is observed from Table 4 that

single and k-point crossover techniques are easy to implement. Uniform crossover is suitable

for large subsets. Order and cycle crossovers provide better exploration than the other

crossover techniques. Partially matched crossover provides better exploration. The perfor-

mance of partially matched crossover is better than the other crossover techniques. Reduced

surrogate and cycle crossovers suffer from premature convergence.

Fig. 4 Swapping genetic information between crossover points

Fig. 5 Swapping individual genes
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3.2.4 Mutation operators

Mutation is an operator that maintains the genetic diversity from one population to the

next population. The well-known mutation operators are displacement, simple inver-

sion, and scramble mutation. Displacement mutation (DM) operator displaces a

substring of a given individual solution within itself. The place is randomly chosen

from the given substring for displacement such that the resulting solution is valid as

well as a random displacement mutation. There are variants of DM are exchange

mutation and insertion mutation. In Exchange mutation and insertion mutation oper-

ators, a part of an individual solution is either exchanged with another part or inserted

in another location, respectively [88].

The simple inversion mutation operator (SIM) reverses the substring between any

two specified locations in an individual solution. SIM is an inversion operator that

reverses the randomly selected string and places it at a random location [88]. The

scramble mutation (SM) operator places the elements in a specified range of the

individual solution in a random order and checks whether the fitness value of the

recently generated solution is improved or not [88]. Table 5 shows the comparison of

different mutation techniques.

Table 6 shows the best combination of encoding scheme, mutation, and crossover

techniques. It is observed from Table 6 that uniform and single-point crossovers can

be used with most of encoding and mutation operators. Partially matched crossover is

used with inversion mutation and permutation encoding scheme provides the optimal

solution.

Fig. 6 Partially matched crossover (PMX) [117]

Fig. 7 Cycle Crossover (CX) [140]
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4 Variants of GA

Various variants of GA’s have been proposed by researchers. The variants of GA are broadly

classified into five main categories namely, real and binary coded, multiobjective, parallel,

chaotic, and hybrid GAs. The pros and cons of these algorithms with their application has been

discussed in the preceding subsections.

4.1 Real and binary coded GAs

Based on the representation of chromosomes, GAs are categorized in two classes, namely

binary and real coded GAs.

4.1.1 Binary coded GAs

The binary representation was used to encode GA and known as binary GA. The genetic

operators were also modified to carry out the search process. Payne and Glen [153] developed

a binary GA to identify the similarity among molecules. They used binary representation for

position of molecule and their conformations. However, this method has high computational

complexity. Longyan et al. [203] investigated three different method for wind farm design

Table 4 Comparison of different crossover techniques

Technique Pros Cons

Single point Easy to implement

Simple

Less diverse solutions

Two and K-point Easy to implement Less diverse solutions

Applicable on small subsets

Reduced Surrogate Better performance over small optimization

problems

Premature convergence

Uniform Unbiased Exploration

Applicable on large subsets

Better recombination potential

Less diverse solutions

Precedence Preservative

(PPX)

Better offspring generation Redundancy Problem

Order Crossover (OX) Better Exploration Loss of information from previous

individual

Cycle Crossover Unbiased Exploration Premature convergence

Partially Mapped (PMX) Better Convergence rate

Superior than the other crossovers

NA

Table 5 Comparison of different mutation operators

Operator Pros Cons

Displacement Mutation Easy to implement

Applicable on small problem

instances

Risk of Premature convergence

Simple-Inversion

Mutation

Easy to implement Premature convergence

Scramble Mutation Affects large number of genes

Applicable on large problem

instances

Disturbance in the population

Deterioration of solution quality in some

problems
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using binary GA (BGA). Their method produced better fitness value and farm efficiency.

Shukla et al. [185] utilized BGA for feature subset selection. They used mutual information

maximization concept for selecting the significant features. BGAs suffer from Hamming cliffs,

uneven schema, and difficulty in achieving precision [116, 199].

4.1.2 Real-coded GAs

Real-coded GAs (RGAs) have been widely used in various real-life applications. The repre-

sentation of chromosomes is closely associated with real-life problems. The main advantages

of RGAs are robust, efficient, and accurate. However, RGAs suffer from premature conver-

gence. Researchers are working on RGAs to improve their performance. Most of RGAs are

developed by modifying the crossover, mutation and selection operators.

Crossover operators The searching capability of crossover operators are not satisfactory for

continuous search space. The developments in crossover operators have been done to enhance their

performance in real environment. Wright [210] presented a heuristics crossover that was applied on

parents to produce off-spring. Michalewicz [135] proposed arithmetical crossover operators for

RGAs. Deb and Agrawal [34] developed a real-coded crossover operator, which is based on

characteristics of single-point crossover in BGA. The developed crossover operator named as

simulated binary crossover (SBX). SBX is able to overcome the Hamming cliff, precision, and

fixed mapping problem. The performance of SBX is not satisfactory in two-variable blocked

function. Eshelman et al. [53] utilized the schemata concept to design the blend crossover for

RGAs. The unimodal normal distribution crossover operator (UNDX) was developed by Ono et al.

[144]. They used ellipsoidal probability distribution to generate the offspring. Kita et al. [106]

presented a multi-parent UNDX (MP-UNDX), which is the extension of [144]. However, the

performance of RGAwith MP-UNDX is much similar to UNDX. Deep and Thakur [39] presented

a Laplace crossover for RGAs, which is based on Laplacian distribution. Chuang et al. [27]

developed a direction based crossover to further explore the all possible search directions. However,

the search directions are limited. The heuristic normal distribution crossover operator was developed

byWang et al. [207]. It generates the cross-generated offspring for better search operation. However,

the better individuals are not considered in this approach. Subbaraj et al. [192] proposed Taguchi

self-adaptive RCGA. They used Taguchi method and simulated binary crossover to exploit the

capable offspring.

Mutation operators Mutation operators generate diversity in the population. The two

main challenges have to tackle during the application of mutation. First, the proba-

bility of mutation operator that was applied on population. Second, the outlier

produced in chromosome after mutation process. Michalewicz [135] presented uniform

and non-uniform mutation operators for RGAs. Michalewicz and Schoenauer [136]

Table 6 Best combination of various operators under optimal Environment

Encoding Scheme Mutation Crossover

Binary Encoding Inversion Uniform, Arithmetic, 1-Point, N-Point

Permutation Inversion Partially Matched Crossover,

Cycle Crossover, Order Crossover

Value Displacement Uniform, Arithmetic, 1-Point, N-Point

Tree Scramble Uniform, 1-Point
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developed a special case of uniform mutation. They developed boundary mutation.

Deep and Thakur [38] presented a novel mutation operator based on power law and

named as power mutation. Das and Pratihar [30] presented direction-based exponential

mutation operator. They used direction information of variables. Tang and Tseng

[196] presented a novel mutation operator for enhancing the performance of RCGA.

Their approach was fast and reliable. However, it stuck in local optima for some

applications. Deb et al. [35] developed polynomial mutation that was used in RCGA.

It provides better exploration. However, the convergence speed is slow and stuck in

local optima. Lucasius et al. [129] proposed a real-coded genetic algorithm (RCGA).

It is simple and easy to implement. However, it suffers from local optima problem.

Wang et al. [205] developed multi-offspring GA and investigated their performance

over single point crossover. Wang et al. [206] stated the theoretical basis of multi-

offspring GA. The performance of this method is better than non-multi-offspring GA.

Pattanaik et al. [152] presented an improvement in the RCGA. Their method has

Table 7 Mathematical formulation of genetic operators in RGAs

Ref. Operator Mathematical Formulation

[34] Simulated Binary crossover
pi ¼

1

2
1−βð Þxi þ 1þ βð Þyi½ �

qi ¼
1

2
1þ βð Þxi þ 1−βð Þyi½ �

Here, two off-springs (Pand Q) are generated. X and Y are individuals. β

is a variable whose value lies in the interval of [0,∞)

[53] Blend crossover Offspring P is generated from parents X and Y from interval

[Min − ((Max −Min)δ),Max + ((Max −Min)δ)]where

Min =min(xi, yi) and Max =max(xi, yi). δ is a variable whose value
lies in the interval of [0, 1]

[135] Arithmetic crossover

Geometric crossover

Arithmetic crossover

pi ¼ δxi þ 1−δð Þyi
qi ¼ δyi þ 1−δð Þxi
Geometric crossover

pi ¼ xδi ⋅y
1−δð Þ
i

qi ¼ yδi ⋅x
1−δð Þ
i

[144] Unimodal normal distribution

crossover operator pi ¼ xP þ μd þ ∑
n−1

k¼1

ψkDek

qi ¼ xP−μd− ∑
n−1

k¼1

ψkDek

where ek, k = 1,…, n − 1 are orthogonal bases that perpendicular to d. xP
is the midpoint and d is difference vector. μ is a random vale taken

from normal distribution and ψk are n-1 random values follows a

normal distribution. D is the length from parent 3 to perpendicular

line.

[39] Laplace crossover pi ¼ xi þ β xi−yij j
qi ¼ yi þ β xi−yij j
Here,

β ¼
a−bloge uð Þ; u≤

1

2

aþ bloge uð Þ; u >
1

2

8

>

<

>

:

Where a and b are variables. The default values of a and b are 0 and 1,

respectively. u is random variable.
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better convergence speed and quality of solution. Wang et al. [208] proposed multi-

offspring RCGA with direction based crossover for solving constrained problems.

Table 7 shows the mathematical formulation of genetic operators in RGAs.

4.2 Multiobjective GAs

MultiobjectiveGA (MOGA) is themodified version of simpleGA.MOGAdiffer fromGA in terms

of fitness function assignment. The remaining steps are similar to GA. The main motive of

multiobjective GA is to generate the optimal Pareto Front in the objective space in such a way that

no further enhancement in any fitness function without disturbing the other fitness functions [123].

Convergence, diversity, and coverage aremain goal ofmultiobjectiveGAs. ThemultiobjectiveGAs

are broadly categorized into two categories namely, Pareto-based, and decomposition-based

multiobjective GAs [52]. These techniques are discussed in the preceding subsections.

4.2.1 Pareto-based multi-objective GA

The concept of Pareto dominance was introduced in multiobjective GAs. Fonseca and Fleming [56]

developed first multiobjective GA (MOGA). The niche and decisionmaker concepts were proposed

to tackle the multimodal problems. However, MOGA suffers from parameter tuning problem and

degree of selection pressure. Horn et al. [80] proposed a niched Pareto genetic algorithm (NPGA)

that utilized the concept of tournament selection and Pareto dominance. Srinivas and Deb [191]

developed a non-dominated sorting genetic algorithm (NSGA). However, it suffers from lack of

elitism, need of sharing parameter, and high computation complexity. To alleviate these problems,

Deb et al. [36] developed a fast elitist non-dominated sorting genetic algorithm (NSGA-II). The

performance of NSGA-IImay be deteriorated for many objective problems. NSGA-II was unable to

maintain the diversity in Pareto-front. To alleviate this problem, Luo et al. [130] introduced a

dynamic crowding distance in NSGA-II. Coello and Pulido [28] developed a multiobjective micro

GA. They used an archive for storing the non-dominated solutions. The performance of Pareto-

based approaches may be deteriorated in many objective problems [52].

4.2.2 Decomposition-based multiobjective GA

Decomposition-based MOGAs decompose the given problem into multiple subproblems. These

subproblems are solved simultaneously and exchange the solutions among neighboring subprob-

lems [52]. Ishibuchi andMurata [84] developed a multiobjective genetic local search (MOGLS). In

MOGLS, the random weights were used to select the parents and local search for their offspring.

They used generation replacement and roulette wheel selection method. Jaszkiewicz [86] modified

the MOGLS by utilizing different selection mechanisms for parents. Murata and Gen [141]

proposed a cellular genetic algorithm for multiobjective optimization (C-MOGA) that was an

extension of MOGA. They added cellular structure in MOGA. In C-MOGA, the selection operator

was performed on the neighboring of each cell. C-MOGA was further extended by introducing an

immigration procedure and known as CI-MOGA. Alves and Almeida [11] developed a

multiobjective Tchebycheffs-based genetic algorithm (MOTGA) that ensures convergence and

diversity. Tchebycheff scalar function was used to generate non-dominated solution set. Patel

et al. [151] proposed a decomposition basedMOGA (D-MOGA). They integrated opposition based
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learning in D-MOGA for weight vector generation. D-MOGA is able to maintain the balance

between diversity of solutions and exploration of search space.

4.3 Parallel GAs

The motivation behind the parallel GAs is to improve the computational time and

quality of solutions through distributed individuals. Parallel GAs are categorized into

three broad categories such as master-slave parallel GAs, fine grained parallel GAs,

and multi-population coarse grained parallel Gas [70]. In master-slave parallel GA, the

computation of fitness functions is distributed over the several processors. In fine

grained GA, parallel computers are used to solve the real-life problems. The genetic

operators are bounded to their neighborhood. However, the interaction is allowed

among the individuals. In coarse grained GA, the exchange of individuals among

sub-populations is performed. The control parameters are also transferred during

migration. The main challenges in parallel GAs are to maximize memory bandwidth

and arrange threads for utilizing the power of GPUs [23]. Table 8 shows the

comparative analysis of parallel GAs in terms of hardware and software. The well-

known parallel GAs are studied in the preceding subsections.

4.3.1 Master slave parallel GA

The large number of processors are utilized in master-slave parallel GA (MS-PGA) as

compared to other approaches. The computation of fitness functions may be increased by

increasing the number of processors. Hong et al. [79] used MS-PGA for solving data mining

problems. Fuzzy rules are used with parallel GA. The evaluation of fitness function was

performed on slave machines. However, it suffers from high computational time. Sahingzo

[174] implemented MS-PGA for UAV path finding problem. The genetic operators were

executed on processors. They used multicore CPU with four cores. Selection and fitness

evaluation was done on slave machines. MS-PGA was applied on traffic assignment problem

in [127]. They used thirty processors to solve this problem at National University of Singapore.

Yang et al. [213] developed a web-based parallel GA. They implemented the master slave

version of NSGA-II in distributed environment. However, the system is complex in nature.

Table 8 Analysis of parallel GAs in terms of hardware and software

Ref. Hardware No. of processors Language used API Application

[79] Cluster 130 JAVA – Data Mining

[174] Multicore CPU 8 JAVA Path Finding

[127] Cluster 30 Fortran MPI Road Traffic

[213] Cluster 48 JavaScript Node.JS Building Structure

[161] Multicore CPU 8 JAVA java.util.component Land Planning

[115] Multicore CPU 3 – – Job Scheduling

[209] Cloud 300 – MPI Internet of Things

[220] Cluster 100 – MPI Wireless Network

[158] GPU 448 – CUDA Scheduling

[182] – 240 – – Nanoscience

[170] GPU 512 – CUDA Electronics
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4.3.2 Fine grained parallel GA

In last few decades, researchers are working on migration policies of fine grained parallel GA (FG-

PGA). Porta et al. [161] utilized clock-time for migration frequency, which is independent of

generations. They used non-uniform structure and static configuration. The best solution was

selected for migration and worst solution was replaced with migrant solution. Kurdi [115] used

adaptivemigration frequency. Themigration procedure starts until there is no change in the obtained

solutions after ten successive generations. The non-uniform and dynamic structure was used. In

[209], local best solutions were synchronized and formed a global best solutions. The global best

solutions were transferred to all processors for father execution. The migration frequency depends

upon the number of generation. They used uniform structure with fixed configuration. Zhang et al.

[220] used parallel GA to solve the set cover problem of wireless networks. They used divide-and-

conquer strategy to decompose the population into sub-populations. Thereafter, the genetic operators

were applied on local solutions and Kuhn-Munkres was used to merge the local solutions.

4.3.3 Coarse grained parallel GA

Pinel et al. [158] proposed a GraphCell. The population was initialized with random values and one

solution was initialized with Min-min heuristic technique. 448 processors were used to implement

the proposed approach. However, coarse grained parallel GAs are less used due to complex in

nature. The hybrid parallel GAs are widely used in various applications. Shayeghi et al. [182]

proposed a pool-based Birmingham cluster GA. Master node was responsible for managing global

population. Slave node selected the solutions from global population and executed it. 240 processors

are used for computation. Roberge et al. [170] used hybrid approach to optimize switching angle of

inverters. They used four different strategies for fitness function computation. Nowadays, GPU,

cloud, and grid are most popular hardware for parallel GAs [198].

4.4 Chaotic GAs

The main drawback of GAs is premature convergence. The chaotic systems are incorporated into

GAs to alleviate this problem. The diversity of chaos genetic algorithm removes premature

convergence. Crossover and mutation operators can be replaced with chaotic maps. Tiong et al.

[197] integrated the chaotic maps into GA for further improvement in accuracy. They used six

different chaotic maps. The performance of Logistic, Henon and Ikeda chaotic GA performed better

than the classical GA. However, these techniques suffer from high computational complexity.

Ebrahimzadeh and Jampour [48] used Lorenz chaotic for genetic operators of GA to eliminate the

local optima problem. However, the proposed approach was unable to find relationship between

entropy and chaotic map. Javidi andHosseinpourfard [87] utilized two chaoticmaps namely logistic

map and tentmap for generating chaotic values instead of random selection of initial population. The

proposed chaotic GA performs better than the GA. However, this method suffers from high

computational complexity. Fuertes et al. [60] integrated the entropy into chaotic GA. The control

parameters are modified through chaotic maps. They investigated the relationship between entropy

and performance optimization.

Chaotic systems have also used in multiobjective and hybrid GAs. Abo-Elnaga and Nasr [5]

integrated chaotic system into modified GA for solving Bi-level programming problems. Chaotic

helps the proposed algorithm to alleviate local optima and enhance the convergence. Tahir et al.

[193] presented a binary chaotic GA for feature selection in healthcare. The chaotic maps were used
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to initialize the population andmodified reproduction operatorswere applied on population. Xu et al.

[115] proposed a chaotic hybrid immune GA for spectrum allocation. The proposed approach

utilizes the advantages of both chaotic and immune operator. However, this method suffers from

parameter initialization problem.

4.5 Hybrid GAs

Genetic Algorithms can be easily hybridized with other optimization methods for improving their

performance such as image denoising methods, chemical reaction optimization, and many more.

The main advantages of hybridized GA with other methods are better solution quality, better

efficiency, guarantee of feasible solutions, and optimized control parameters [51]. It is observed

from literature that the sampling capability of GAs is greatly affected from population size. To

resolve this problem, local search algorithms such as memetic algorithm, Baldwinian, Lamarckian,

and local search have been integrated with GAs. This integration provides proper balance between

intensification and diversification. Another problem in GA is parameter setting. Finding appropriate

control parameters is a tedious task. The other metaheuristic techniques can be used with GA to

resolve this problem. Hybrid GAs have been used to solve the issues mentioned in the preceding

subsections [29, 137, 186].

4.5.1 Enhance search capability

GAs have been integrated with local search algorithms to reduce the genetic drift. The explicit

refinement operator was introduced in local search for producing better solutions. El-Mihoub et al.

[54] established the effect of probability of local search on the population size of GA. Espinoza et al.

[50] investigated the effect of local search for reducing the population size of GA. Different search

algorithms have been integrated with GAs for solving real-life applications.

4.5.2 Generate feasible solutions

In complex and high-dimensional problems, the genetic operators of GA generate infeasible

solutions. PMX crossover generates the infeasible solutions for order-based problems. The distance

preserving crossover operator was developed to generate feasible solutions for travelling salesman

problem [58]. The gene pooling operator instead of crossover was used to generate feasible solution

for data clustering [19]. Konak and Smith [108] integrated a cut-saturation algorithm with GA for

designing the communication networks. They used uniform crossover to produce feasible solutions.

4.5.3 Replacement of genetic operators

There is a possibility to replace the genetic operators which are mentioned in

Section 3.2 with other search techniques. Leng [122] developed a guided GA that

utilizes the penalties from guided local search. These penalties were used in fitness

function to improve the performance of GA. Headar and Fukushima [74] used simplex

crossover instead of standard crossover. The standard mutation operator was replaced

with simulated annealing in [195]. The basic concepts of quantum computing are used

to improve the performance of GAs. The heuristic crossover and hill-climbing oper-

ators can be integrated into GA for solving three-matching problem.
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4.5.4 Optimize control parameters

The control parameters of GA play a crucial role in maintaining the balance between

intensification and diversification. Fuzzy logic has an ability to estimate the appropriate control

parameters of GA [167]. Beside this, GA can be used to optimize the control parameters of

other techniques. GAs have been used to optimize the learning rate, weights, and topology of

neutral networks [21]. GAs can be used to estimate the optimal value of fuzzy membership in

controller. It was also used to optimize the control parameters of ACO, PSO, and other

metaheuristic techniques [156]. The comparative analysis of well-known GAs are mentioned

in Table 9.

5 Applications

Genetic Algorithms have been applied in various NP-hard problems with high accuracy rates.

There are a few application areas in which GAs have been successfully applied.

5.1 Operation management

GA is an efficient metaheuristic for solving operation management (OM) problems such as

facility layout problem (FLP), supply network design, scheduling, forecasting, and inventory

control.

5.1.1 Facility layout

Datta et al. [32] utilized GA for solving single row facility layout problem (SRFLP). For

SRFLP, the modified crossover and mutation operators of GA produce valid solutions. They

applied GA to large sized problems that consists of 60–80 instances. However, it suffers from

parameter dependency problem. Sadrzadeh [173] proposed GA for multi-line FLP have multi

products. The facilities were clustered using mutation and heuristic operators. The total cost

obtained from the proposed GA was decreased by 7.2% as compared to the other algorithms.

Wu et al. [211] implemented hierarchical GA to find out the layout of cellular manufacturing

system. However, the performance of GA is greatly affected from the genetic operators. Aiello

et al. [7] proposed MOGA for FLP. They used MOGA on the layout of twenty different

departments. Palomo-Romero et al. [148] proposed an island model GA to solve the FLP. The

proposed technique maintains the population diversity and generates better solutions than the

existing techniques. However, this technique suffers from improper migration strategy that can

be utilized for improving the population. GA and its variants has been successfully applied on

FLP [103, 119, 133, 201].

5.1.2 Scheduling

GA shows the superior performance for solving the scheduling problems such as job-shop

scheduling (JSS), integrated process planning and scheduling (IPPS), etc. [119]. To improve

the performance in the above-mentioned areas of scheduling, researchers developed various

genetic representation [12, 159, 215], genetic operators, and hybridized GA with other

methods [2, 67, 147, 219].
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5.1.3 Inventory control

Besides the scheduling, inventory control plays an important role in OM. Backordering and

lost sales are two main approaches for inventory control [119]. Hiassat et al. [76] utilized the

location-inventory model to find out the number and location of warehouses. Various design

constraints have been added in the objective functions of GA and its variants for solving

inventory control problem [].

5.1.4 Forecasting and network design

Forecasting is an important component for OM. Researchers are working on forecasting of

financial trading, logistics demand, and tourist arrivals. GA has been hybridized with support

vector regression, fuzzy set, and neural network (NN) to improve their forecasting capability

[22, 78, 89, 178, 214]. Supply network design greatly affect the operations planning and

scheduling. Most of the research articles are focused on capacity constraints of facilities [45,

184]. Multi-product multi-period problems increases the complexity of supply networks. To

resolve the above-mentioned problem, GA has been hybridized with other techniques [6, 45,

55, 188, 189]. Multi-objective GAs are also used to optimize the cost, profit, carbon emissions,

etc. [184, 189].

5.2 Multimedia

GAs have been applied in various fields of multimedia. Some of well-known multimedia fields

are encryption, image processing, video processing, medical imaging, and gaming.

5.2.1 Information security

Due to development in multimedia applications, images, videos and audios are transferred

from one place to another over Internet. It has been found in literature that the images are more

error prone during the transmission. Therefore, image protection techniques such as encryp-

tion, watermarking and cryptography are required. The classical image encryption techniques

require the input parameters for encryption. The wrong selection of input parameters will

generate inadequate encryption results. GA and its variants have been used to select the

appropriate control parameters. Kaur and Kumar [96] developed a multi-objective genetic

algorithm to optimize the control parameters of chaotic map. The secret key was generated

using beta chaotic map. The generated key was use to encrypt the image. Parallel GAs were

also used to encrypt the image [97].

5.2.2 Image processing

The main image processing tasks are preprocessing, segmentation, object detection, denoising,

and recognition. Image segmentation is an important step to solve the image processing

problems. Decomposing/partitioning an image requires high computational time. To resolve

this problem, GA is used due to their better search capability [26, 102]. Enhancement is a

technique to improve the quality and contrast of an image. The better image quality is required

to analyze the given image. GAs have been used to enhance natural contrast and magnify

image [40, 64, 99]. Some researchers are working on hybridization of rough set with adaptive
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genetic algorithm to merge the noise and color attributes. GAs have been used to remove the

noise from the given image. GA can be hybridized with fuzzy logic to denoise the noisy

image. GA based restoration technique can be used to remove haze, fog and smog from the

given image [8, 110, 146, 200]. Object detection and recognition is a challenging issue in real-

world problem. Gaussian mixture model provides better performance during detection and

recognition process. The control parameters are optimized through GA [93].

5.2.3 Video processing

Video segmentation has been widely used in pattern recognition, and computer vision. There

are some critical issues that are associated with video segmentation. These are distinguishing

object from the background and determine accurate boundaries. GA can be used to resolve

these issues [9, 105]. GAs have been implemented for gesture recognition successfully by

Chao el al. [81] used GA for gesture recognition. They applied GAs and found an accuracy of

95% in robot vision. Kaluri and Reddy [91] proposed an adaptive genetic algorithm based

method along with fuzzy classifiers for sign gesture recognition. They reported an improved

recognition rate of 85% as compared to the existing method that provides 79% accuracy.

Beside the gesture recognition, face recognition play an important role in criminal identifica-

tion, unmanned vehicles, surveillance, and robots. GA is able to tackle the occlusion,

orientations, expressions, pose, and lighting condition [69, 95, 109].

5.2.4 Medical imaging

Genetic algorithms have been applied in medical imaging such as edge detection in MRI and

pulmonary nodules detection in CT scan images [100, 179]. In [120], authors used a template

matching technique with GA for detecting nodules in CT images. Kavitha and Chellamuthu

[179] used GA based region growing method for detecting the brain tumor. GAs have been

applied on medical prediction problems captured from pathological subjects. Sari and Tuna

[176] used GA used to solve issues arises in biomechanics. It is used to predict pathologies

during examination. Ghosh and Bhattachrya [62] implemented sequential GA with cellular

automata for modelling the coronavirus disease 19 (COVID-19) data. GAs can be applied in

parallel mode to find rules in biological datasets [31]. The authors proposed a parallel GA that

runs by dividing the process into small sub-generations and evaluating the fitness of each

individual solution in parallel. Genetic algorithms are used in medicine and other related fields.

Koh et al. [61] proposed a genetic algorithm based method for evaluation of adverse effects of

a given drug.

5.2.5 Precision agriculture

GAs have been applied on various problems that are related to precision agriculture. The main

issues are crop yield, weed detection, and improvement in farming equipment. Pachepsky and

Acock [145] implemented GA to analyze the water capacity in soil using remote sensing

images. The crop yield can be predicted through the capacity of water present in soil. The

weed identification was done through GA in [142]. They used aerial image for classification of

plants. In [124], color image segmentation was used to discriminate the weed and plant.

Peerlink et al. [154] determined the appropriate rate of fertilizer for various portions of

agriculture field. They GA for determining the nitrogen in wheat field. The energy
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requirements in water irrigation systems can be optimized by viewing it as a multi-objective

optimization problem. The amount of irrigation required and thus power requirements change

continuously in a SMART farm. Therefore, GA can be applied in irrigation systems to reduce

the power requirements [33].

5.2.6 Gaming

GAs have been successfully used in games such as gomoku. In [202], the authors shown that

the GA based approach finds the solution having the highest fitness than the normal tree based

methods. However, in real-time strategy based games, GA based solutions become less

practical to implement [82]. GAs have been implemented for path planning problems consid-

ering the environment constraints as well as avoiding the obstacles to reach the given

destination. Burchardt and Salomon [18] described an implementation for path planning for

soccer games. GA can encode the path planning problems via the coordinate points of a two-

dimensional playing field, hence resulting in a variable length solution. The fitness function in

path planning considers length of path as well as the collision avoiding terms for soccer

players.

5.3 Wireless networking

Due to adaptive, scalable, and easy implementation of GA, it has been used to solve the

various issues of wireless networking. The main issues of wireless networking are routing,

quality of service, load balancing, localization, bandwidth allocation and channel assignment

[128, 134]. GA has been hybridized with other metaheuristics for solving the routing prob-

lems. Hybrid GA not only producing the efficient routes among pair of nodes, but also used for

load balancing [24, 212].

5.3.1 Load balancing

Nowadays, multimedia applications require Quality-of-Service (QoS) demand for delay and

bandwidth. Various researchers are working on GAs for QoS based solutions.GA produces

optimal solutions for complex networks [49]. Roy et al. [172] proposed a multi-objective GA

for multicast QoS routing problem. GA was used with ACO and other search algorithms for

finding optimal routes with desired QoS metrics. Load balancing is another issue in wireless

networks. Scully and Brown [177] used MicroGAs and MacroGAs to distribute the load

among various components of networks. He et al. [73] implemented GA to determine the

balance load in wireless sensor networks. Cheng et al. [25] utilized distributed GA with multi-

population scheme for load balancing. They used load balancing metric as a fitness function in

GA.

5.3.2 Localization

The process of determining the location of wireless nodes is called as localization. It plays an

important role in disaster management and military services. Yun et al. [216] used GA with

fuzzy logic to find out the weights, which are assigned according to the signal strength. Zhang

et al. [218] hybridized GA with simulated annealing (SA) to determine the position of wireless

nodes. SA is used as local search to eliminate the premature convergence.
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5.3.3 Bandwidth and channel allocation

The appropriate bandwidth allocation is a complex task. GAs and its variants have been

developed to solve the bandwidth allocation problem [92, 94, 107]. GAs were used to

investigate the allocation of bandwidth with QoS constraints. The fitness function of GAs

may consists of resource utilization, bandwidth distribution, and computation time [168]. The

channel allocation is an important issue in wireless networks. The main objective of channel

allocation is to simultaneously optimize the number of channels and reuse of allocated

frequency. Friend et al. [59] used distributed island GA to resolve the channel allocation

problem in cognitive radio networks. Zhenhua et al. [221] implemented a modified immune

GA for channel assignment. They used different encoding scheme and immune operators.

Pinagapany and Kulkarni [157] developed a parallel GA to solve both static and dynamic

channel allocation problem. They used decimal encoding scheme. Table 10 summarizes the

applications of GA and its variants.

6 Challenges and future possibilities

In this section, the main challenges faced during the implementation of GAs are discussed

followed by the possible research directions.

6.1 Challenges

Despite the several advantages, there are some challenges that need to be resolved for future

advancements and further evolution of genetic algorithms. Some major challenges are given

below:

6.1.1 Selection of initial population

Initial population is always considered as an important factor for the performance of genetic

algorithms. The size of population also affects the quality of solution [160]. The researchers

argue that if a large population is considered, then the algorithm takes more computation time.

However, the small population may lead to poor solution [155]. Therefore, finding the

appropriate population size is always a challenging issue. Harik and Lobo [71] investigated

the population using self-adaption method. They used two approaches such as (1) use of self-

adaption prior to execution of algorithm, in which the size of population remains the same and

(2) in which the self-adaption used during the algorithm execution where the population size is

affected by fitness function.

6.1.2 Premature convergence

Premature convergence is a common issue for GA. It can lead to the loss of alleles that makes

it difficult to identify a gene [15]. Premature convergence states that the result will be

suboptimal if the optimization problem coincides too early. To avoid this issue, some

researchers suggested that the diversity should be used. The selection pressure should be used

to increase the diversity. Selection pressure is a degree which favors the better individuals in

the initial population of GA’s. If selection pressure (SP1) is greater than some selection
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pressure (SP2), then population using SP1 should be larger than the population using SP2. The

higher selection pressure can decrease the population diversity that may lead to premature

convergence [71].

Convergence property has to be handled properly so that the algorithm finds global optimal

solution instead of local optimal solution (see Fig. 8). If the optimal solution lies in the vicinity of an

infeasible solution, then the global nature of GA can be combined with local nature of other

algorithms such as Tabu search and local search. The global nature of genetic algorithms and local

nature of Tabu search provide the proper balance between intensification and diversification.

6.1.3 Selection of efficient fitness functions

Fitness function is the driving force, which plays an important role in selecting the fittest

individual in every iteration of an algorithm. If the number of iterations are small, then a costly

fitness function can be adjusted. The number of iterations increases may increase the compu-

tational cost. The selection of fitness function depends upon the computational cost as well as

their suitability. In [46], the authors used Davies-Bouldin index for classification of

documents.

6.1.4 Degree of mutation and crossover

Crossover and mutation operators are the integral part of GAs. If the mutation is not considered

during evolution, then there will be no new information available for evolution. If crossover is

not considered during evolution, then the algorithm can result in local optima. The degree of

these operators greatly affect the performance of GAs [72]. The proper balance between these

operators are required to ensure the global optima. The probabilistic nature cannot determine

the exact degree for an effective and optimal solution.

6.1.5 Selection of encoding schemes

GAs require a particular encoding scheme for a specific problem. There is no general

methodology for deciding whether the particular encoding scheme is suitable for any type of

Fig. 8 Local and global optima [149]
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real-life problem. If there are two different problems, then two different encoding schemes are

required. Ronald [171] suggested that the encoding schemes should be designed to overwhelm

the redundant forms. The genetic operators should be implemented in a manner that they are

not biased towards the redundant forms.

6.2 Future research directions

GAs have been applied in different fields by modifying the basic structure of GA. The

optimality of a solution obtained from GA can be made better by overcoming the current

challenges. Some future possibilities for GA are as follows:

1) There should be some way to choose the appropriate degree of crossover and mutation

operators. For example Self-Organizing GA adapt the crossover and mutation operators

according to the given problem. It can save computation time that make it faster.

2) Future work can also be considered for reducing premature convergence problem. Some

researchers are working in this direction. However, it is suggested that new methods of

crossover and mutation techniques are required to tackle the premature convergence problem.

3) Genetic algorithms mimic the natural evolution process. There can be a possible scope for

simulating the natural evolution process such as the responses of human immune system

and the mutations in viruses.

4) In real-life problems, the mapping from genotype to phenotype is complex. In this

situation, the problem has no obvious building blocks or building blocks are not adjacent

groups of genes. Hence, there is a possibility to develop novel encoding schemes to

different problems that does not exhibit same degree of difficulty.

7 Conclusions

This paper presents the structured and explained view of genetic algorithms. GA and its

variants have been discussed with application. Application specific genetic operators are

discussed. Some genetic operators are designed for representation. However, they are not

applicable to research domains. The role of genetic operators such as crossover, mutation, and

selection in alleviating the premature convergence is studied extensively. The applicability of

GA and its variants in various research domain has been discussed. Multimedia and wireless

network applications were the main attention of this paper. The challenges and issues

mentioned in this paper will help the practitioners to carry out their research. There are many

advantages of using GAs in other research domains and metaheuristic algorithms.

The intention of this paper is not only provide the source of recent research in GAs, but also

provide the information about each component of GA. It will encourage the researchers to

understand the fundamentals of GA and use the knowledge in their research problems.
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