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Abstract: In recent times, metal oxide nanoparticles (NPs) have been regarded as having important
commercial utility. However, the potential toxicity of these nanomaterials has also been a crucial
research concern. In this regard, an important solution for ensuring lower toxicity levels and
thereby facilitating an unhindered application in human consumer products is the green synthesis
of these particles. Although a naïve approach, the biological synthesis of metal oxide NPs using
microorganisms and plant extracts opens up immense prospects for the production of biocompatible
and cost-effective particles with potential applications in the healthcare sector. An important area
that calls for attention is cancer therapy and the intervention of nanotechnology to improve existing
therapeutic practices. Metal oxide NPs have been identified as therapeutic agents with an extended
half-life and therapeutic index and have also been reported to have lesser immunogenic properties.
Currently, biosynthesized metal oxide NPs are the subject of considerable research and analysis for
the early detection and treatment of tumors, but their performance in clinical experiments is yet
to be determined. The present review provides a comprehensive account of recent research on the
biosynthesis of metal oxide NPs, including mechanistic insights into biological production machinery,
the latest reports on biogenesis, the properties of biosynthesized NPs, and directions for further
improvement. In particular, scientific reports on the properties and applications of nanoparticles
of the oxides of titanium, cerium, selenium, zinc, iron, and copper have been highlighted. This
review discusses the significance of the green synthesis of metal oxide nanoparticles, with respect to
therapeutically based pharmaceutical applications as well as energy and environmental applications,
using various novel approaches including one-minute sonochemical synthesis that are capable
of responding to various stimuli such as radiation, heat, and pH. This study will provide new
insight into novel methods that are cost-effective and pollution free, assisted by the biodegradation
of biomass.
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1. Introduction

The exquisiteness of nanomaterials was reflected upon by Feynman (1960) as “there
is plenty of room at the bottom” [1]. True to his speculation, the technology and science
behind miniaturization has opened up innovative avenues for dealing with the synthesis
and characterization of nanomaterials and their employment in society. The resulting
scientific interest in NPs can be attributed to the fact that these entities serve as bridges to
manage the gap between bulk constituents and atomic or molecular assemblies. Several
well-characterized bulk materials possess interesting properties at the nanoscale. NPs have
a high aspect ratio, facilitating improved reactivity as well as effectiveness compared to
the majority of materials. Over time, researchers have demonstrated their competency and
developed nano-sized complements for composites, along with exclusive nano-based mate-
rials [2–4]. Significant and important applications of nanotechnology include capturing
higher resolution images, many nano-sized sensors for ecological contamination, a high
quantity of optoelectronics strategies, and nano-engineered solar applications. Nanotech-
nology deals with the nanoscale range. There is evidence of the existence of nanostructures
dating from the beginning of life [5–7]. A significant need for nanotechnology has arisen
due to the cumulative claims for nanostructured materials in several fields such as catalysis.
In the past few centuries, materials experts have discovered carbon-based materials and
mineral elemental blends exhibiting potential optoelectronic and dimensional qualities that
are greater than the majority of their complements [8–11]. Organic NPs include carbon in
the arrangement of liposomes, fullerenes, dendrimers, and polymeric micelles, and inor-
ganic NPs consisting of magnetic, noble metal, and semiconductor NPs [12–15]. Metallic
NPs are important in research, due to the fact that their precise properties are not easily
accessible in isolated molecules [16]. The development of metallic NPs serves as an active
area in theoretical and, more importantly, “applied research” in nanotechnology [17]. This
review focuses on contemporary research activities that deal with the green synthesis of
inorganic NPs, which has advantages over traditional approaches that use chemical agents
that are detrimental to the environment. The current article looks at traditional synthetic
procedures, with a focus on recent developments of greener routes to manufacturing metal,
metal oxide, and other important NPs. It then goes on to discuss formation mechanisms
and the conditions that control the surface morphology, dispersity, and other properties of
these biosynthesized NPs. The report finishes with a discussion of the current situation
and future forecasts for nanoparticle production via various green techniques. Briefly,
nanomaterials used for various applications ranging from biomedical to bioenergy are in
very high demand, due to the fact that the nano size is accompanied by a high surface
area that can facilitate loading of the molecule of interest for various scientific applications
including drug delivery systems for various disease conditions, especially cancer. When
using nanomaterials as a drug carrier, it is very important to analyze the toxicity of the
carrier; this concept gave rise to the introduction of green synthesis, which can replace
the chemical methods that produce toxic nanocarriers. A synthesis of a metal oxide that
responds to multiple stimuli can be an effective way to target drug delivery to the required
site. Other than drug delivery applications, these nanomaterials can also be efficiently
used in bioremediation as they can degrade the pollutant without affecting the ecosystem,
since the nanocarriers are synthesized from natural products. This study mainly focuses on
the unique and advanced green synthesis methods for metal oxide nanoparticles that are
sensitive to many stimuli, resulting in cost-effective and prominent nanomaterials that can
be used for a wide variety of applications, along with their biodegrading capacity, which
serves as the novelty of this work. This green synthesis not only produces highly efficient
nanocarriers but also performs its specified work without disturbing living organisms or
the environment.

2. Synthesis of NPs via Bio/Green Synthesis

Earlier investigations provided two methods for the development of metallic NPs:
the top-down method and the bottom-up method. In top-down methods, the nanoscopic
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features are etched onto a substrate using electron rays, and subsequently by using appro-
priate engraving and deposition processes. The commonly adopted top-down approaches
are physical methods such as evaporation–condensation and the technique of laser ablation.

In this technique, the major resources, i.e., most of the initial metal materials are
evaporated using a radiator, and the evaporated vapor subsequently cools at a suitably
high rate with the assistance of the steep temperature gradient in the vicinity of the heater
surface. The rapid heating and cooling result in unstable NPs at high concentrations.
While evaporation–condensation methods are carried out employing an inert gas, the
laser ablation technique uses a laser to target a metallic material in solution. For exam-
ple, silver nano-spheroids (20–50 nm) can be produced by laser ablation in water with
femtosecond laser pulses at 800 nm. A major drawback is the inadequacy of the surface
construction. Such flaws can have a substantial influence on physical properties and the
exterior interactions of the metallic NPs, owing to the high feature relation [2–4]. The
most popular approach is chemical reduction utilizing a variety of carbon-based and
mineral-reducing mediators. In general, various reducing mediators such as sodium citrate,
ascorbate, elemental hydrogen, sodium borohydride (NaBH4), polyols, Tollen’s reagent, N,
N-dimethylformamide (DMF), and poly (ethylene glycol)-block copolymers are employed
for the reduction of metal ions in aqueous as well as non-aqueous solutions, leading to the
formation of zerovalent metal, followed by agglomeration into oligomeric clusters. These
clusters eventually form metallic colloidal particles. It is also notable that most of these
approaches employ protecting mediators (polymers) as stabilizers, to avoid the accumu-
lation of NPs. The presence of surfactants and polymers (e.g., thiols, amines, acids, and
alcohols) affects the functionalities for interactions within the particle surfaces, stabilizing
particle growth and protecting particles from agglomeration, sedimentation, or loss of
their surface properties. Most of these methods persist in the development stages, as the
extraction and purification of the produced NPs for further applications still represent
important hurdles [5–7]. Several mechanical and irradiation-assisted techniques have been
employed for the synthesis of metallic NPs. Recently, green synthesis of metal oxides by the
sonochemical method has gained popularity, as this is the only method that facilitates the
mixing of the chemical constituents at the atomic level, as a result of an unusual chemical
reaction caused by cavitation in aqueous media at a temperature of 5000 ◦C and a pressure
of 1800 kpa. In 2021, Pérez-Beltrán synthesized a magnetic iron oxide nanoparticle using
a high-energy sonochemical approach, considering an amplitude of 2826 J and time of
1 min as major factors. This novel one-minute green synthesis by sonochemistry produced
nanoparticles of 11 ± 2 nm particle size and was used for the biosensing of mercury in wa-
ter [8]. In another study, conducted by Goudarzi, it is stated that copper oxide nanoparticles
can be ultrasonically synthesized using Dactylopius coccus and can be further thermally
decomposed at 60 ◦C for drug release in breast cancer applications [9].

The sono-electrochemistry technique employs alternating sonic and electric pulses,
ultrasonic power, and electrolyte configuration for the mechanical manipulation of the
material. Recent advances in the synthesis of metallic NPs include photoinduced or
photocatalytic reduction methods [10,11]. Table 1 reviews some of the common traditional
approaches reported for the synthesis of metallic NPs.
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Table 1. Traditional approaches reported for the synthesis of metallic nanoparticles.

Method Characteristics Nanoparticle Size Morphology Advantages Disadvantages Reference

Physical Methods

Plasma Synthesis

Gas–liquid interfacial plasma is produced in
ionic liquid. Plasmas provide a rich source of
chemically active species that react with a surface
or react with each other to produce secondary,
short-lived chemical precursors needed for thin
film deposition.

Pd 20 nm Nanorods
Low-temperature operation,
non-destructive
materials treatment capability.

High-pressure limit.
Economic constraint. [12]

Ball Milling

Arc melting followed by grinding. The milling
process and handling of the starting powders
and the milled particles are carried out in an
oxygen-free inert environment.

FeCo 30 nm Nanorods Adaptable for toxic and
abrasive materials.

Contamination of
product. [13]

Pulsed Laser
Desorption

The precursor (liquid or gas) is ionized,
dissociated, sublimated, or evaporated using
a laser and then condensed.

Au 5.5 nm Nanorods
Fewer defects, Homogenous
chemical composition, narrow
size distribution.

Scale-up is difficult,
economic concerns. [14]

Lithographic
Techniques

Uses light or electron beam to selectively remove
micron-scale structures from a precursor material
called a resist.

Au 50 nm Nanorods Simple to implement, low cost.
Large surface patterning.

Patterning accuracy
and nanoparticle size
variation due to
diffraction effects.

[15]

Molecular Beam
Epitaxy

Ultra-pure elements are heated in separate
quasi-Knudsen effusion cells until they begin to
slowly evaporate. The evaporated elements then
condense on the wafer

Pa 250 nm Nanowires Precisely controllable
operating conditions.

Expensive,
complicated system. [16]

Chemical Methods

Electrodeposition

Deposition of metal nanoparticles on supported
material performed in acidic or basic baths
containing metal salts.
Nanoparticle synthesis is accomplished by
scanning between a few voltage ranges.

Pt NA Nanotubes

Porosity-free finished products.
Low initial capital investment.
High production rates with few
shape and size limitations.

Complex operational
conditions. [17]

Chemical Vapor
Deposition

Solid is deposited on a heated surface via
a chemical reaction from the vapor or gas phase. Ru 3.1 nm NA

Is self-cleaning—extremely high
purity deposits (>99.995% purity).
Conforms homogeneously to
contours of the substrate surface.

Chemical and parti-
cle contamination. [18]

NA—Not assessed.
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It can be seen that physical and chemical schemes for metallic NPs synthesis are
exceedingly diverse, and the findings show that process parameters such as temperature
and concentration, etc., greatly affect the morphology, stability, and physicochemical
properties of the NPs. Moreover, the synthesis of NPs employing conventional methods
involves expensive chemical and physical processes with the potential hazards of ecological
damage, cellular toxicity, and carcinogenicity [19,20]. These arise due to the use of harmful
materials such as organic solvents, reducing agents, and stabilizers for the prevention of
unwanted agglomeration of the colloids. Certain NPs are lethal, owing to features such
as their magnitude, chemical composition, form, and external interactions, resulting in
the incidence of lethal agents in the manufactured NPs possibly preventing their use in
clinical and biomedical applications. As a result, there is a requirement for evolving new,
biologically compatible, and eco-friendly green processes for manufacturing NPs [21–23].

Biological agents that have extensively been used for metallic NPs synthesis include
unicellular and multicellular organisms. A few notable examples are bacteria, fungi, plant
extracts, algae, diatoms, viruses, yeast, and a few higher organisms such as earthworms.
Numerous sources in the literature have elaborated on the various attempts to synthesize
metallic NPs in biofactories. The biological factories act as clean, non-toxic, and envi-
ronmentally friendly systems for synthesizing biocompatible NPs over a wide range of
sizes, shapes, compositions, and physicochemical natures. Most biological entities act
as templates that assist in the stabilization of the nanostructures with the aid of biologi-
cal polymers. The biopolymers enhance the biocompatibility of these NPs and prevent
their agglomeration into clusters. However, plant extracts provide a plethora of enzymes
and reducing agents that assist in the straightforward synthesis of NPs. Figure 1 shows
a schematic representation of the synthesis of NPs using plant extracts. Compared with mi-
croorganisms, the plant method is highly beneficial as it does not require separate, complex,
or numerous procedures such as isolation, culture development, and culture preservation.
In addition, synthesis using plants is quicker, more cost-effective, and easy to scale up for
the manufacture of bulk quantities of NPs.
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Figure 1. A schematic diagram for the production of reactive oxygen and hydroxyl radicals.

Table 2 shows a list of a few metal oxide nanoparticles synthesized from various
plants and having various applications. In a relatively new report, quantum dots have
been synthesized using the enzyme milieu in the midgut of earthworms. In summary, the
utilization of biological resources for metallic NPs synthesis has increased exponentially
over the past few years. The following sections elaborate on the interplay of operational
conditions in bio-systems for the synthesis of NPs [24–26].
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Table 2. Green synthesis of metal oxide nanoparticles using various plants, with applications.

Plant Source of
Nanoparticles

Metal
Oxide Size Application Reference

Ficus carica Leaf Fe3O4 43–57 nm Antioxidant activity [27]
Azadirachta indica Leaf CuO NA Anticancer property [28]
Peltophorum
pterocarpum Leaf Fe3O4 85 nm Rhodomine degradation [29]

Terminalia chebula Seed Fe3O4 NA Methylene blue degradation [30]
Punica granatum Peel ZnO 118.6 nm Antibacterial property [31]
Lactuca serriols Seed NiO NA Degradation of dye [32]
Vitis rotundifolia Fruit CoO NA Degradation of acid blue dye [33]

2.1. Influence of Various Parameters on the Synthesis of Nanoparticles

Several features control the nucleation and construction of stabilized NPs. A variety
of claims for properties such as antioxidant, antimicrobial, anticancer, larvicidal, and an-
tibiofilm properties have been made for crystalline NPs with different shapes and controlled
sizes. These features (form and magnitude) are mostly reliant on the process limitations of
the extract, along with the metal salt’s response, pH, time of reaction, temperature, and
ratio of plant extract to metal salts [34]. The following sections briefly discuss each of these
factors in detail for the growth phase of the organism. Experimental efforts to optimize and
enhance the synthesis of NPs have been reported by several authors. In 2011, Kalimuthu
studied the effect of the growth phase of biomass on the synthesis of Ag NPs [21]. It was
observed that during the stationary phase, the organism (Bacillus sp.) produced a relatively
high number of NPs compared with the biomass obtained from other phases. Sweeney et al.
demonstrated intracellular dense packing of NPs in E.coli in the stationary phase of bac-
terial growth [35]. According to the literature, the metal tolerance of fungus is enhanced
during the stationary phase due to the release of enzymes and other chemical metabolites
that reduce the metal stress. Furthermore, the metal tolerance capacity is reported to vary
with the type of microbe and the metal under consideration. For instance, the presence
of nickel in the growth medium has been shown to result in an extended mid-log phase
in Aspergillus sp. However, the presence of chromium in the medium was reported to
extend the stationary phase for the same organism [36]. Nevertheless, most of the stud-
ies in the literature suggest the preferential use of microbes in their stationary phase for
NPs synthesis.

2.2. pH and Precursor Concentration

The molar ratios of reactants have also been reported to be important parameters that
influence the NP size in chemical synthesis protocols. It is known that the concentration of
reactants can directly influence the products in chemical synthesis. In this regard, Perumal
Karthiga demonstrated that the shape of silver nanocrystals biosynthesized using silver
nitrate and citrus leaf extract can be controlled systematically by varying the reactant
concentration [37]. According to the authors, a AgNO3: citric acid ratio of 1:4 (vol:vol)
yielded spherical NPs. However, it was also reported that the production of bio-organics
from plant extract increased the particle size of Ag NPs. Although a definite relationship
between the precursor concentrations and the shape of the nanocrystal was not found,
it could be noted that precursors at a higher molar ratio had a significant effect on the shape
of the NPs. The pH was also stated to have a profound effect on the reduction reaction of
the metallic ions. Pandian analyzed the effect of varied pH conditions on the synthesis of
CdS nanocrystallites by Brevibacterium species [38]. The pH of the incubation mixtures was
subjected to adjustments using 1 M HCl and 1 M NaOH solutions. It was observed that the
size of the NPs varied greatly with pH. In general, an alkaline pH assisted the possibility of
accessible functional groups in the reaction mixture, which in turn aided nucleation and
NPs formation. The alkaline environment was previously found to aid the synthesis of
various NPs in association with protein molecules [25]. Kowshik checked the pH stability
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of the biosynthesized NPs. It was observed that acidification of the nanocrystallites from
pH 7 to 6 led to particle agglomeration [39]. In another study, Ag NPs synthesized from
extract of Cinnamon zeylanicum bark increased in number with cumulative concentrations
of bark extract and at greater pH values (pH 5 and above). Furthermore, pH values below
6 resulted in the precipitation of nanocrystals out of the solution. Due to their low toxicity,
lower production of pollutants, and energy conservation, biomanufacturing methods for
metal/metallic nanomaterials with ordered micro/nanostructures and programmable
functionalities is critical in both fundamental investigations and practical applications.
Microorganisms, as effective biofactories, have a significant ability to biomineralize and
bioreduce metal ions, which can be obtained as nanocrystals of varied morphologies and
sizes. The advancement of nanoparticle biosynthesis improves the safety and sustainability
of nanoparticle production [31].

2.3. Temperature

Numerous studies indicate the predominant influence of temperature in the mor-
phology and distribution of nanocrystals. Most of the studies in the literature report that
elevated temperature conditions result in a size reduction in NPs. For instance, researchers
reported a size reduction in biosynthesized Ag NPs from 35 nm to 10 nm when the reaction
temperature was increased from 25 ◦C to 60 ◦C [40]. The biosynthesis was initiated using
sweet orange peel extract. The reaction rate and particle formation rate increased with an
increase in reaction temperature, although the average particle size decreased and the par-
ticle change rate progressively increased on increasing the temperature. In this context, it is
also important to consider the temperature tolerance profile of the biological entity being
considered for the synthesis of the NPs. Many researchers have reported the production
of heat shock proteins by microorganisms at the elevated temperature conditions that aid
NPs synthesis [41].

3. Applications of Nanoparticles

NPs possess tremendous advantages for use in many areas of day-to-day activities.
Therefore, it is important to explore NPs in depth. Figure 2 shows a schematic represen-
tation of nanoparticle synthesis methods and the applications of NPs discussed in this
review. NPs for use in the human body include biosynthesized noble metal NPs, which
have many important applications. They make use of the molecular engine to address
medicinal difficulties, and molecular information is used to support and advance human
fitness at the molecular scale. This leads to the protection and development of human
health. Fernández-Llamosas biosynthesized selenium NPs, which have many benefits for
human health, using Azoarcus sp. CIB, [42]. The classification of different nanoparticle
synthesis methods and their applications is depicted in Figure 2.

Regarding uses in biomedical research, the medicinal field still has unsolved issues,
and NPs are the key to certain issues. The synthesis of NPs using extracts of leaves (plant)
and/or bark provides more extensive applications in biotechnology [43], sensors [44],
medicine [45], catalysis [46], optical devices [47], coatings [48], drug delivery [49], water re-
mediation [50], and agriculture [51]. The NPs have micro and/or nanomolar sensitivity and
can be detected via imaging instruments, which makes them suitable for imaging, therapy,
and the delivery of drugs [52]. NPs of different dimensions have different biomedical uses.
NPs have even been loaded onto TiO2 nanotube implants for use as orthopedic implant
materials. The NPs increase the biocompatibility of the implants, ultimately leading to
a longer life span and greater effectiveness of the implant.
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3.1. Anti-Inflammatory Properties of Nanoparticles

Nanoparticles have been developed as anti-inflammatory mediators in recent years.
NPs have a large surface-area-to-volume ratio and are used for obstructing substances
accompanying inflammation such as cytokines and inflammation-supporting enzymes,
associated with other complements. Numerous metal-based NPs have been reported
with excellent anti-inflammatory properties, such as those based on silver, gold, copper,
and iron oxide. In this review, we demonstrate the mechanism for constructing anti-
inflammatory properties in NPs. Figure 3 depicts the mechanism of nanoparticles in
anti-inflammatory systems. Swelling is the body’s instant response to interior damage,
contagion, hormone inequity, and failure in the interior structures or external features,
such as in an attack by pathogenic microorganisms or an external element. This leads to
overweight, food allergies, or interactions with ecological contagions. Distinctive resistant
cells possess antigen receptors capable of sensing biochemical signs. Swelling is caused
by cellular and tissue injury resulting from an imbalance in the signals controlling the
inflammation [53]. Upon injury or infection, muscles invoke an inflammatory response that
leads to the deployment of macrophages and killer cells [54,55]. Macrophages have the main
role in auto-modifiable inflammatory processes. Macrophages are large, mononucleated
phagocytes produced in the bone marrow and originate as moveable white blood cells
(WBCs) called monocytes in the bloodstream [56]. These monocytes then drift to various
locations in numerous tissues and form macrophages. Macrophages are of two kinds:
pro-inflammatory M1 macrophages whose manufacture encourages inflammation and
M2 macrophages that are alternatively activated as an anti-inflammatory response and
stimulate the remodeling of the swollen tissues and organs. Macrophages are able to sustain
the inflammatory process by inducing changes among the two phenotypes contingent on
the retarder’s disorder [57,58]. Through swelling, the macrophages overwhelm cellular and
tissue damage by phagocytosis and lead to inflammation via activation signals stimulating
the macrophages.



Catalysts 2022, 12, 459 9 of 24

Catalysts 2022, 12, x FOR PEER REVIEW 9 of 25 
 

 

the main role in auto-modifiable inflammatory processes. Macrophages are large, 
mononucleated phagocytes produced in the bone marrow and originate as moveable 
white blood cells (WBCs) called monocytes in the bloodstream [56]. These monocytes then 
drift to various locations in numerous tissues and form macrophages. Macrophages are 
of two kinds: pro-inflammatory M1 macrophages whose manufacture encourages 
inflammation and M2 macrophages that are alternatively activated as an anti-
inflammatory response and stimulate the remodeling of the swollen tissues and organs. 
Macrophages are able to sustain the inflammatory process by inducing changes among 
the two phenotypes contingent on the  retarder’s disorder [57,58]. Through swelling, the 
macrophages overwhelm cellular and tissue damage by phagocytosis and lead to 
inflammation via activation signals stimulating the macrophages. 

 
Figure 3. Anti-inflammatory mechanism adopted by various nanoparticles. 

3.2. In Therapeutics 
NPs are the ultimate platform for biomedical uses and therapeutic interventions. 

Cancer is a notorious and deadly disease and still stands as one of the principal health 
issues of the 21st century. Hence, there is an urgent need for anti-cancer medicine. The 
current advances in therapeutic options for cancer have lagged in differentiating between 
cancerous and normal cells, failing to produce a complete anti-cancer response [59]. In 
recent times, researchers have found that metal oxide NPs such as Zn and Ce oxide NPs 
hold considerable promise as anti-cancer medicines [60,61]. Cerium nanoparticles (CeO 
NPs) consisting of a cerium core enclosed by an oxygen lattice have shown extensive 
potential as a therapeutic agent [62]. Silver (Ag) NPs synthesized using Abelmoschus 
esculentus (L.) pulp extract have shown potential therapeutic uses and efficacy in killing 
Jurkat cells in vitro. The anticancer activity of Ag NPs was found to be strongly associated 
with higher levels of reactive oxygen species (ROS) and reactive nitrogen species, with a 
loss of integrity in the mitochondrial membrane [63]. More recently, the anti-cancer 
activity of Ag NPs synthesized from Punica granatum leaf extract (PGE) was investigated 
against a liver cancer cell line (HepG2). The results showed that the PGE-AgNPs showed 
greater efficacy in killing cancer cells. Figure 4 shows a schematic representation of the 
killing of cancer cells using AgNPs. Yet another report by Saratale showed that AgNPs 

Figure 3. Anti-inflammatory mechanism adopted by various nanoparticles.

3.2. In Therapeutics

NPs are the ultimate platform for biomedical uses and therapeutic interventions.
Cancer is a notorious and deadly disease and still stands as one of the principal health
issues of the 21st century. Hence, there is an urgent need for anti-cancer medicine. The
current advances in therapeutic options for cancer have lagged in differentiating between
cancerous and normal cells, failing to produce a complete anti-cancer response [59]. In
recent times, researchers have found that metal oxide NPs such as Zn and Ce oxide NPs
hold considerable promise as anti-cancer medicines [60,61]. Cerium nanoparticles (CeO
NPs) consisting of a cerium core enclosed by an oxygen lattice have shown extensive
potential as a therapeutic agent [62]. Silver (Ag) NPs synthesized using Abelmoschus
esculentus (L.) pulp extract have shown potential therapeutic uses and efficacy in killing
Jurkat cells in vitro. The anticancer activity of Ag NPs was found to be strongly associated
with higher levels of reactive oxygen species (ROS) and reactive nitrogen species, with
a loss of integrity in the mitochondrial membrane [63]. More recently, the anti-cancer
activity of Ag NPs synthesized from Punica granatum leaf extract (PGE) was investigated
against a liver cancer cell line (HepG2). The results showed that the PGE-AgNPs showed
greater efficacy in killing cancer cells. Figure 4 shows a schematic representation of the
killing of cancer cells using AgNPs. Yet another report by Saratale showed that AgNPs
synthesized from the common medicinal plant dandelion (Taraxacum officinale) had a high
cytotoxic effect against HepG2 [64]. It is clear that in the future, NPs could be personalized
for patient care. Furthermore, AgNPs developed using Olax scandens leaf extract showed
anti-cancer activities with respect to different cancer cells (B16: mouse melanoma cell line,
A549: human lung cancer cell lines, and MCF7: human breast cancer cells) [65].
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It was reported recently that iron oxide NPs have the dual capacity to act as both
magnetic and photothermal agents in cancer therapy. This dual action was found to yield
complete apoptosis-mediated cell death. Furthermore, these iron oxide NPs can be com-
bined with laser therapy, showing complete regression of tumor cells in vivo [66]. Studies
showed that photothermal therapy using green synthesized iron oxide nanoparticles loaded
with the drug temozolomide with near-infrared light irradiation resulted in the death of
glioblastoma cancer cells [67]. Bilici stated that superparamagnetic iron oxide nanoparticles
act as a highly efficient photothermal therapy agent. Indocyanine-green-coated iron oxide
nanoparticles were irradiated using laser treatment at 795 nm. This photothermal effect
efficiently reduced the breast cancer cell line MCF7 when the ICG was free [68]. Green
synthesized metal oxides play an important role in photothermal therapy as the metal
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oxide nanoparticles are irradiated by the light and can help in targeted drug release with
a controllable dose. In 2013, Geetha synthesized gold NPs from the flower of the tree
C. guianensis and explored their antileukemic cancer activity [69]. Fazal reported green
synthesized anisotropic and cytocompatible gold NPs without any capping agent and
studied its effectiveness along with photothermal therapy [70]. Their report found that the
anisotropic particles exhibited a good photothermal effect for femtosecond laser exposure
at 800 nm on A431 cancer cells, with low influence. Parida prepared metallic gold NPs,
stabilizing them with ethanolic extract of clove (Syzygium aromaticum) and studying their
anti-cancer potential and biomechanism using the human SUDHL-4 cell line. They found
that the gold NPs could decrease the growth and viability of the SU-DHL-4 cell line and
increase apoptosis [71]. The synthesis protocol and the important bio-reductants found in
plant extracts are shown in Figure 4b.

3.3. In Drug Delivery Systems

Management of infections of the frontal section of the eye using commercially ob-
tainable ocular drug delivery schemes has low efficiency. NPs have been designed for
employment in preparations for eye drops or injectable solutions. Drugs loaded with NPs
possess good drug pharmacokinetics, non-specific toxicity, pharmacodynamics, immuno-
genicity, and biorecognition, thereby improving the efficacy of the drugs [72]. Chitosan
based polymeric NPs can act as drug carriers, paving the way for the growth of numerous
dissimilar colloidal delivery vehicles. These NPs can cross biological barriers and protect
macromolecules such as peptides, oligonucleotides, proteins, and genes from the degrada-
tion of biological media, allowing the delivery of drugs or macromolecules to the target site
followed by precise release [73]. NPs are a promising strategy for the controlled delivery
of a drug against human immunodeficiency virus (HIV) named lamivudine, which acts
as a potent and selective inhibitor of type 1 and type 2 HIV [74]. Superparamagnetic iron
oxide NPs (SPIONs), together with the drug, have been used for site-specific delivery of
drugs. The drug can readily bind to the SPION surface and can be guided with an external
magnetic field to the desired site, where the NPs can enter the target cell and deliver the
drug [75]. The SPION is exposed to another cell once the drug is dissolved inside the target
cell, which can reduce the absorption time, the quantity of the drug, and the interaction of
the drug with non-target cells. Sripriya reported a sophisticated technique for the fabrica-
tion of multifunctional polyelectrolyte thin films in the loading and delivery of therapeutic
drugs. The Ag NPs biosynthesized from the leaf extract of Hybanthus enneaspermus were
found to be effective reducing agents with significant potential for remotely activated drug
delivery, antibacterial coatings and wound dressings [48].

3.4. Medical Diagnosis, Imaging, and Sensors

In recent times, NPs have played a vital role in multimodal and multifunctional
molecular imaging. Owing to the nanoscale sizes, high agent loadings, tailored surface
properties, and controlled release patterns, as well as the enhanced permeability and
retention effect, nanotechnology has emerged as a promising strategy for cancer diagnosis.
Magnetic NPs such as iron oxide have gained tremendous attention in drug delivery
systems and magnetic resonance imaging, as well as in magnetic fluid hyperthermia for
diagnosis and cancer therapy [76]. Critical information regarding the progress of a deadly
cancerous disease can be obtained readily via imaging of the sentinel lymph nodes (SLNs).
The naked carbon NPs obtained from food-grade honey can be effectively employed in SLN
imaging, which is attributed to their strong optical absorption in the near-infrared region,
smaller size, and rapid lymphatic transport. This has great potential for faster resection of
the SLN and also decreases complications in axillary investigations using low-resolution
imaging techniques [77]. Fluorescent carbon NPs were synthesized using grape juice via
chemical-free simple hydrothermal treatment with high water stability, lower toxicity, and
excellent stability. These NPs can be employed as excellent fluorescent probes for the
cellular imaging process and could be a promising alternative to traditional quantum
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dots [78]. The medicinal applications of green synthesized metal oxide nanoparticles are
shown in Figure 5.
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Fluorescent-nanoparticle-based imaging probes are equipped with current labeling
technology and are also expected to be used in new medical diagnostic tools, due to
their superior brightness and photostable properties compared to conventional molecular
probes [79]. Raja prepared Ag NPs using Calliandra haematocephala leaf extract for the
detection of H2O2. The results showed that the Ag NPs could be successfully used to
detect the concentrations of H2O2 present in various samples [80]. Zheng prepared Ag NPs
via a green biochemical method employing Corymbia citriodora leaf extract as an effective
reducing and stabilizing agent and also explored the application of biosynthesized zinc
oxide NPs in constructing an H2O2 biosensor [81]. The results showed that the fabricated
electrochemical H2O2 sensor could potentially be employed in the pharmaceutical field
and in clinical trials. In recent years, food adulteration has become a serious issue; for
instance, adulteration of milk makes it hazardous to drink. Varun synthesized Ag NPs
for sensing melamine in milk [82]. Monitoring aquatic ecosystems is important because
potentially toxic metal ions such as Cu2+ and Hg2+ can have severe effects on human health
as well as on the environment. Ag NPs synthesized using the juice extract of Citrullus lanatus
(watermelon) exhibited good ability to detect these ions in aqueous solutions [83]. Moreover,
biosynthesized Ag-NPs using Camellia sinensis (green tea) aqueous extract possessed good
properties for sensing Cu2+ and Pb2+ ions in aqueous solutions [84]. Gold NPs synthesized
from Osmundaria obtusiloba extract proved to be an excellent agent with good optical
properties that could be employed as a suitable candidate for sensor applications [85].
Polluted water is a major threat to both quality of life and public health. Ag NPs prepared
by green synthesis using Achyranthes aspera L. extract and protected by chitosan could be
employed as a sensor for removing thiocyanate ions present in contaminated water [86].

4. Environment and Energy

Nanomaterials are of prime importance in environmental remediation and green pro-
cesses. They have potential in cleaning hazardous waste sites as well as in the treatment of
pollutants. Figure 6. shows the photocatalytic degradation of Acid Blue-74 by the nanopar-
ticles. The self-cleaning nanoscale surface coatings can eliminate several chemicals for
cleaning purposes employed in maintenance routines. Fe NPs have gained interest owing
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to rapidly developing applications for the disinfection of water, as well as remediation of
heavy metals in the soil. NPs serve as alternatives to pesticides in the control and man-
agement of plant disease and act as effective fertilizers that are eco-friendly and capable
of increasing crop production. Magnetite (Fe3O4) and the siliceous material produced by
employing bacterial cells and diatoms have been successfully employed in coating optical
instruments for solar energy applications [87].
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Figure 6. (a–c) FESEM micrographs of green synthesized GGCo-NPs nanoparticles. (d) Effect of initial
catalytic dose. (e) Photocatalytic degradation of AB-74 by GCo-NPs under irradiation by sunlight.
(f) Pseudo-first-order reaction kinetic model for GCo-NPs as an NP photocatalyst. (g) Absorption
spectrum of photocatalytically degraded AB-74 at different time intervals. Photocatalytic degradation
of AB-74, with varying initial dye concentrations (10 mg/100 mL–80 mg/100mL) (h), pH (2–12) (i),
contact time (0–150 min) (j) [33].

4.1. Remediation and Degradation

Remediation solves the problem. “Bioremediation” refers to a process involving the
use of biological agents such as bacteria, fungi, protists, or their enzymes for the degradation
of environmental contaminants into less-toxic versions [88,89]. Bioremediation provides
many advantages over conventional treatments as it is more economically feasible, has
a high competence level, minimizes chemical and biological sludge, is selective to specific
metals, has supplementary nutrient requirements, and has the possibility of regeneration of
the biosorbent and metal recovery [90,91]. There are multiple reasons for the employment
of different NPs in bioremediation; for example, when materials are at the nanoscale,
the surface area per unit mass of the material increases, and as a result, a larger amount
of the material comes into contact with the surrounding materials, thereby affecting the
reactivity. NMs have the potential to exhibit a quantum effect with less activation energy
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for accessing the chemical feasibility of the reactions. Surface plasmon resonance is another
phenomenon that is exhibited by NPs, and this can be employed for the detection of
toxic materials [92]. Regarding shape and size, various metallic and nonmetallic NMs
with different morphologies have been employed in environmental clean-up processes.
For example, various single-metal NPs, carbon-based NMs, and bimetallic NPs can be
used. Bioremediation processes use agents in solid waste, groundwater and wastewater
management, petroleum and petroleum goods management, uranium remediation, soil
remediation, and remediation of heavy metal pollution. The study of the ability of NMs to
combat contamination is advancing and could potentially result in revolutionary changes
in the ecological field. The various uses of NPs include the following:

• Nanoscale zero-valent iron (nZVI) has been produced and verified for its ability to
efficiently remove As (III), which is an exceedingly lethal, mobile, and major arsenic
species in anoxic groundwater.

• Engineered polymeric NPs have been employed for the bioremediation of hydrophobic
contaminants.

• PAMAM dendrimers with special structures and properties have been employed in
water treatment, as they are efficient as well as innoxious as a water treatment agent.

• Engineered polymeric NPs have been employed for soil remediation.

NPs could have a deeper impact on biodegradation. With the increased development
of the textile trade, major anxieties have arisen regarding the pollution of the environ-
ment with dye contaminants, leading to serious conservational contamination as well as
detrimental consequences to health, given their variety, toxic nature, and ability to persist.
Most of these dyes have complex compositions and high chemical stability, facilitating
their persistence for extended distances in flowing water and thereby retarding photo-
synthetic action, inhibiting the development of aquatic biota by the blockage of sunlight,
and inhibiting the utilization of dissolved oxygen, leading to a decreased recovery rate of
the watercourse. Degradation of the dyes in the manufacturing wastewaters has gained
considerable attention due to the bulk production, less decoloration, slower biodegradation
and high toxicity. Metal oxides can adopt a huge number of physical geometries and have
an electronic assembly that can exhibit metallic, semiconducting, or insulating features
and can therefore perform efficient roles in many areas of science. In the past few decades,
enormous interest has been shown in heterogeneous photocatalysis technology with the
incorporation of metal oxides, owing to their possible applications in both ecology and
organic synthesis. Several attempts to study the photocatalytic activity of different metal
oxides such as ZrO2, SnO2, and CdS have been made. Titanium dioxide (TiO2) and zinc ox-
ide (ZnO) have been characterized as having chemical stability, eco-friendly properties, and
a lack of toxicity, and they can be produced relatively cheaply. They have been employed in
diverse areas of photochemistry ranging from large-scale products to more advanced appli-
cations. For instance, in the case of environmental remediation, they have been used in the
photoelectrolysis of water and in dye-sensitized solar cells. Sunlight is an abundantly acces-
sible resource that can be used to irradiate semiconductors in photon-based degradation of
polluting agents, and these techniques are economically relatively feasible [93]. Worldwide
soil contamination is severe, damaging normal ecological services and preventing human
activities Traditional approaches for dealing with dirty soils include excavation followed
by discarding or ex-situ action such as soil washing or thermal desorption. However, these
approaches can be expensive and time-consuming, and they lead to large quantities of
secondary contamination. Therefore, low-influence in situ actions such as inoculation with
NPs are increasingly preferred. Numerous effective NPs are stated to have better activity
over a wide range of contaminants including heavy metals and organic contaminants.

4.2. Wastewater Treatment

Water contamination is one of the key problematic issues faced by the world today,
as the survival of the species relies on the presence of water fit for consumption. Con-
tamination of water has highly detrimental consequences affecting the environment as
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well as human health, along with multiple impacts on socioeconomic progress. Many
commercial and non-commercial techniques are available for combatting this problem,
which is increasing due to technological progress [94]. Nanotechnology has also proved
to be one of the best and most advanced strategies for the treatment of wastewater. NPs
have high adsorption, interaction, and reaction capacities owing to their small size and
high proportion of atoms at the surface [95–98]. They can also be suspended in aqueous
solutions, to behave as colloids. These particles achieve energy conservation owing to their
small size, and this can ultimately lead to cost-effectiveness. NPs possess great advantages
for treating water at large depths and in any location that has not been cleared by the
available conventional technologies [10,96,99,100]. Green nanomaterials possess a wide
range of abilities for the treatment of water that is contaminated by toxic metal ions, organic
and inorganic solutes, and pathogenic microorganisms. Advanced research and commer-
cialization of various nanomaterials (nanostructured catalytic membranes, nanosorbents,
bioactive NPs, nanocatalysts, biomimetic membranes, and molecularly imprinted polymers
(MIPs)) has been undertaken, in order to eradicate toxic metal ions, pathogenic microbes,
and organic and inorganic solutes from water [101,102].

5. Nanosorbents

Nanosorbents possessing high and specific sorption potential are widely exploited
for the purification of water and for remediation purposes, as well as in treatment pro-
cesses, e.g., carbon-based nanosorbents such as Captymer™. Nanocatalysts, e.g., silver (Ag)
nanocatalyst, AgCCA catalyst, etc., have been widely employed as they can increase the
catalytic activity at the surface owing to their special characteristics of possessing a high
surface area with a shape-dependent property for the enhancement of the reactivity, as well
as the degradation of contaminants. Figure 7 shows the degradation of 4-nitrophenol by
the AgNPs. Nanostructured catalytic membranes are employed widely for the purpose
of treating contaminated water, and this is facilitated due to several advantages such as
high uniformity of the catalytic sites, the potential for optimization, the limited contact
time of the catalyst facilitating sequential reactions, and the ease of industrial scale-ups.
Examples include immobilization of the metallic NPs onto membranes such as cellulose
acetate, chitosan, polyvinylidene fluoride (PVDF), polysulfone, etc.
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spectra for reduction of 4-nitrophenol by NaBH4 in aqueous medium in presence of biosynthesized
AgNPs as catalyst. (e) Kinetic modeling of the 4-nitrophenol reduction in the presence of biosynthe-
sized AgNPs. (f) Mechanism of reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using
biosynthesized AgNPs catalyst. (g) Effect of adsorbent dosage on the degradation of 4- NP. (h) Effect
of initial dye concentration on the degradation of 4-NP (experimental conditions: H2O2: 40 mM;
AgNPs: 0.5 g/L; initial pH: 5.5). (i) Effect of initial pH on the degradation of 4-NP (experimental
conditions: 4-NP: 10 mg/L; AgNPs: 0.5 g/L; H2O2: 40 mM). (j) Effect of hydrogen peroxide (H2O2)
on the degradation of 4-NP (experimental conditions: 4-NP: 10 mg/L; AgNPs: 0.5 g/L; initial pH:
6. Effect of biosynthesized AgNPs on A549 lung carcinoma epithelial cells at 50–200 µg for 24 h [11].

Silver nanoparticles (AgNPs) with a very high antibacterial potential can be synthe-
sized extracellularly by employing the bacterium Bacillus cereus. Nanotechnologies have
facilitated several sophisticated solutions for counteracting issues of water contamination
and are likely to produce many strategies composed of enhancements in the future. Treat-
ments based on nanotechnology offer highly effective, durable, efficient and eco-friendly
approaches. These strategies are cost-effective, less time-consuming, and energy-efficient,
with much lower waste generation than conventional bulk-materials-based technolo-
gies. However certain precautions are necessary for avoiding threats to human health or
the environment [103].

6. Cosmetics and Food Industry

Applications of nanotechnology and nanomaterials are widely present in several
cosmetic products such as moisturizers, hair care products, makeup accessories, and
sunscreen. The main uses for nanotechnology in cosmetics are as follows. NPs are employed
in cosmetics as UV filters. TiO2 and ZnO are the key compounds used in these applications.
Organic substitutes for these have also been established. Nanotechnology is also used for
delivery. The cosmetic industry takes advantage of liposomes as vehicles for delivery. Novel
structures comprising solid lipid NPs and nanostructured carriers composed of lipids have
been reported to perform better than liposomes. NPs also enhance and facilitate penetration.
Encapsulation or suspension of the key ingredients in nanospheres or nanoemulsions
facilitates skin penetration. Regarding NPs in hair-related products, the employment of
nanoemulsions for the encapsulation of desired substances facilitates their delivery into the
deeper hair shafts. In sunscreen lotions, the employment of zinc and titanium micronized
NPs results in transparency, a less greasy texture, and less odor, and makes the lotions
highly absorbable into the layers of the skin [103].

Nanotechnology has emerged as an important strategy for several food-related appli-
cations. In these types of applications, NPs of a core type are introduced into a specified
food-related product for the development of certain desirable properties in the food. Nan-
otechnology has become an integral part of research and development for the large-scale
manufacturing of agricultural products and processed foods, as well as in food packag-
ing sectors across the world. In recent decades, the use of nanotechnology has increased
tremendously, revolutionizing technology in the food sector. The emergence of demands
from consumers concerning the quality of food and hygienic aspects of health have shifted
the focus of researchers to developing strategies for the enhancement of food quality with-
out any implications for the nutritional value. The demand for NP-based materials has
increased in the food industry, as most of them contain essential elements and are also
non-toxic and stable at high temperatures and pressures [104]. Nanotechnology can offer
a wide array of solutions at various stages ranging from the manufacturing of food to
processing and packaging. They have the potential to make a great difference not only
in terms of food quality and safety but also in the terms of the health benefits that the
food provides. Several research and industrial organizations are investigating novel tech-
niques, methodologies, and products involving a direct application of nanotechnology in
the food science sector. The applications of nanotechnology can be fitted into two main
groups: nanostructured food ingredients and the nanosensing of food. Nanostructured
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food ingredients are widespread, in areas from the processing of food to the packaging of
food. In the processing of food, these nanostructures are employed as additives for the
food, antimicrobial agents, carriers for the smart delivery of nutrients, anti-caking agents,
fillers that improve the mechanical strength and durability of the packaged material, etc. In
the case of food nanosensing, they are employed to achieve a better quality of food and
for safety evaluation purposes [104]. Several reports have stated that nanomaterials are
possible candidates for improving food safety by enhancing the efficacy of packaging and
the shelf life, with no alterations to the nutritional value, along with additives that do not
alter the taste and physical features of the food products. Although they have the potential
to help create innovative products along with the production processes prevailing in the
food sector, nano techniques face a major challenge regarding the employment of cost-
effective processing operations for the synthesis of edible and non-toxic nanoscale delivery
systems and the efficient development of effective formulations that are considered safe
for human consumption. Thus, owing to the increased employment of NSMs, mounting
apprehensions in terms of developing biocompatible, safe, and non-toxic nanostructures
from food-grade ingredients have emerged with respect to the use of the modest, greener
processes as well as the cost-effective processes utilizing layer-by-layer technology [37].
Despite the application of nanotechnology in terms of green synthesized NSMs for nu-
merous technologies in the food sector, the use of NSMs has led to controversies in a few
instances, as they are scientifically uncertain and could have a long-term detrimental effect
on human health, as well as on the environment. In this context, the complexity and the
limitations of nanotechnology in terms of toxicity and accumulation could be overruled
by the elucidation of the physiochemical and biological properties of the NSMs through
extensive large-scale research.

Unique CoNi2S4 nanoparticles have been synthesized using a one-step solvothermal
technique. When used as supercapacitor electrode materials, CoNi2S4 nanoparticles, with
their lower manufacturing costs, exhibit better electrochemical characteristics such as
higher specific capacitance, higher rate capability, and higher energy density, making this
a promising candidate electrode material for next-generation supercapacitors.

Porous carbon electrodes are ideal for energy storage systems. A simple in situ
reduction approach used gold nanoparticles to improve the electrochemical performance of
carbon materials. Scanning electron microscopy, transmission electron microscopy, and the
Brunauer–Emmett–Teller method all confirmed that the porous carbon microspheres coated
with gold nanoparticles had a 3D honeycomb-like structure with a high specific surface
area of roughly 1635 m2g−1. The electrochemical performance of the as-synthesized porous
carbon microspheres as electrode materials for supercapacitors was demonstrated; they
were shown to have a high specific capacitance of 440 F g−1 at a current density of 0.5 A g−1

and excellent cycling stability, with a capacitance retention of 100 percent after 2000 cycles
at 10 Ag−1 in 6 M KOH electrolyte. The method paved the way for the gold-nanoparticle-
decorated synthesis of porous carbon microspheres and could be used to create porous
carbon microspheres with a variety of nanoparticle decorations for a variety of applications
such as energy storage devices, enhanced absorption materials, and catalytic sites [105,106].

7. Summary and Conclusions

Apprehension over the secondary effects related to the development of NPs and an in-
creasing desire for greener technologies have arisen in the field of green and maintainable
remediation. The acceptance of green synthesis promises not only to avoid secondary
conservational contamination but also to reduce manufacturing costs. However, there
are still gaps in the research that should be addressed to assist the development of the
field. For example, an explanation of the precise mechanisms involved in green synthesis
remains essential to advance additional expected outcomes. Most studies rely on sensible
norms, but detailed assessments of the precise mechanisms remain subtle. The current
green synthesis research has produced NPs with several geometric structures, but methods
that can produce more composite forms with more detailed surface areas are still required.
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Moreover, varying the crystal-like construction of greener NPs, to discover innovative
properties that vary from their majority material is an additional future avenue for green
synthesis investigators. Nanotechnology has emerged as an attractive tool capable of
revolutionizing several fields. It is a technology that functions on the nanometer scale and
deals with atoms, molecules, and macromolecules approximately in the 1–100 nm range, to
synthesize and employ materials that possess novel properties. Nature is the best coach for
teaching us mechanisms for the synthesis of miniaturized functional materials. Despite
being a methodological approach, the synthesis of metal oxide NPs with microorgan-
isms or plant extracts, using biological mechanisms, opens up tremendous opportunities
to produce biocompatible and cost-effective particles with potential applications in the
healthcare sector.

Synthesizing of NPs via the bio-green route has attracted a great deal of attention as
it involves no harmful chemicals in its synthesis method. Hence, bio-green synthesized
NPs could be promising materials, opening up new prospects in clinical, energy, and
environmental research. One of the most important areas calling for attention is cancer
therapy and the use of nanotechnology to improve existing therapeutic practices. Can-
cer is a leading cause of mortality and morbidity worldwide, and the use of traditional
chemotherapeutics is often limited by the adverse side effects they cause. The need for
a novel strategy to combat this is important for effective cancer therapy. Recent progression
in the nanotechnology sector offers many strategies for combating cancer with innova-
tive and personalized treatments that are capable of overcoming the barriers encountered
with traditional drugs. Nanomaterials have been known to enhance the efficacy of food
processing and its nutritional value as additives, without changing the characteristics of
food products. They are also effective agents of bioremediation and have been used in
wastewater treatments. Nanotechnology has found applications in a variety of areas and
will form an important strategy for solving several problems.

8. Future Perspectives

• Nanotechnology is highly recommended for future perspectives since it replaces
dangerous solvents in green synthesis and process approaches, improves catalytic
efficiency and selectivity, is cost-effective, and involves less toxic waste disposal.

• The primary advantages of the greener techniques are low cost and the use of antimi-
crobial nanoparticle combinations, which allows for the use of local plant extracts
without harmful chemical reducing agents, as well as additional applications such as
antibacterial bandages.

• It is necessary to have a thorough understanding of a variety of microbial/biochemical
constituents as well as the various pathways involved in laboratory synthesis, includ-
ing the isolation and tracing of components that are precisely used in the reduction of
several metallic salts to the required materials.

• Future difficulties and current accomplishments linked with green perspectives for
nanomaterial production must be addressed, extending laboratory-based compliance
to an achievable industrial standard by considering current/past issues in terms of
health and environmental repercussions.

• However, a greener approach technique based on bio-derived materials or nanomate-
rials is required and will be widely used in the field of environmental remediation as
well as other broad fields such as the food, cosmetics, and pharmaceutical industries.

• Furthermore, biomaterials made from marine plants and algae found in specific
locations remain undiscovered. As a result, there are still many opportunities for the
development of novel green pathway strategies based on biogenic synthesis.

• To enable the industrial production of such green nanomaterials, a great deal of
scientific research is required. The eventual release of such nanomaterials into the
environment might cause odd behavior, and this is a concern that must be
investigated further.
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• Toxicity evaluation must be undertaken for nanoparticles and effective risk manage-
ment processes provided for their synthesis, materials handling, storage, and disposal.
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J Joule
M Molar
Zn Zinc
Pb Lead
As Arsenic
Se Selenium
Ag Silver
Cu Copper
Hg Mercury
Pd Palladium
Pt Platinum
Ru Ruthenium
Kpa Kilopascal
Nm Nanometer
Fe3O4 Iron oxide
NPs Nanoparticles
ZnO Zinc oxide
SnO2 Tin oxide
NiO Nickel oxide
CuO Copper oxide
CeO Cerium oxide
CoO Cobalt oxide
AgNO3 Silver nitrate
NMs Nanomaterials
TiO2 Titanium dioxide
ZrO Zirconium oxide
HCL Hydrochloric acid
WBCs White blood cells
NaOH Sodium hydroxide
H2O2 Hydrogen peroxide
SLN Sentinel lymph nodes
NaBH4 Sodium borohydrate
CoNi2S4 Cobalt nickel sulfite
KOH Potassium hydroxide
DMF N-Dimethylformamide
nZVI Nanoscale zero-valent iron
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PGE Punica granatum leaf extract
HIV Human immunodeficiency virus
SPIONS Superparamagnetic iron oxide
MIPs Molecularly imprinted polymers
NCMs Nanostructuured catalytic membranes
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