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A review on high stiffness aluminum-based composites and bimetallics
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ABSTRACT

The Young’s modulus of aluminum-based materials is one of the most important mechan-
ical properties in controlling structural performance. The improvement of the Young’s
modulus of castable aluminum-based materials is essential for improving their competive-
ness in light weighting structural applications. Currently, there are limited options for cast
aluminum alloys with outstanding Young’s modulus. Also, for further stiffness improvement
and thereby weight lightening, in-depth understanding of the relevant mechanisms for
modulus improvement in aluminum alloys is necessary. This review focuses on the Young’s
modulus of cast aluminum-based composites, as well as aluminum alloys reinforced with
continuous metallic fibers (bimetallic materials). The effect of different chemical elements in
cast alloys, the constituents of in-situ and ex-situ formed aluminum matrix composites, and
the wire-enhanced bimetallic materials on the Young’s modulus of aluminum-based materi-
als are reviewed. The Young’s modulus of cast aluminum alloys can be improved by: (a)
introducing high modulus reinforcement phases – such as TiB2, SiC, B4C, and Al2O3 – into
aluminum by in-situ reactions or by ex-situ additions; and (b) forming bimetallic materials
with metallic wire/bar reinforcement in the aluminum matrix. The performance of a stiff alu-
minum alloy depends on the volume fraction, size, and distribution of the high modulus
phases as well as the interface between reinforcement and Al matrix. One of the major con-
cerns is the reduction of the ductility of castings after adding specific high modulus phases
to increase the Young’s modulus. Further research into the improvement of Young’s modu-
lus and the ductility of aluminum alloys is necessary through proper selection of reinforce-
ment, optimizing interface, and distribution of reinforcement.
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1. Introduction

Weight reduction through applying aluminum struc-

tural components in aerospace and automobile indus-

tries is one of the most promising ways to decrease

energy and fuel consumption.1,2 These structural com-

ponents, in particular shaped castings, are usually

designed on the criteria of either yield strength or

stiffness.3,4 When the yield strength is used as the

design criterion, aluminum alloys with much higher

strength than pure aluminum are commercially avail-

able and these can be selected for industrial applica-

tions.5,6 However, when the stiffness is used as the

design criterion, there are limited options for the alu-

minum alloys with significantly increased stiffness

than that of aluminum.7,8 There is a lack of thorough

understanding of the stiffness of aluminum alloys and

aluminum-based materials that can be used to make

castings. Moreover, some of the strengthening mecha-

nisms, which result in a significant improvement in

yield strength, have no obvious effect on the stiff-

ness.9,10 This has limited the applications of alumi-

num alloys in the shaped castings and components

that require high modulus to achieve further weight

reduction in the aluminum structures.

As the intrinsic property of materials, the Young’s

modulus of cast aluminum alloys can only be margin-

ally influenced by manipulating traditional metallur-

gical variables that can change the microstructure of

aluminum alloys significantly.11,12 Minor changes of

microstructure by alloying elements as well as deform-

ation and heat treatment processes cannot improve

the stiffness of Al-based materials. Lucena et al.13

studied the variation in the Young’s modulus of

AA1050 (>99.5% Al) with cold plastic deformation

(tension test). Young’s modulus decreased from

69GPa (initial material) to 63GPa (2.5% strain), then

increased to 65% (6% strain) and finally stabilized to

66GPa (13% strain). Villuendas et al.14 showed that

the Young’s modulus of AA2024 and AA7075 in solu-

tion treated, deformed, and aged alloys were slightly

lower (<2% reduction) than those of the undeformed

specimens. Despite of deformation and heat treatment,

chemical composition and phase constituents are two

main factors governing the stiffness properties of cast-

ing alloys.15 Processes that can change the microstruc-

ture significantly can alter the Young’s modulus. The

high concentration of alloying elements can have per-

ceptible influence through the contribution in bind

interaction. In fact, the high modulus phases can be

introduced into the aluminum matrix through major

addition of alloying elements and/or ceramic par-

ticles.16,17 The addition of ceramics into the aluminum

matrix to form aluminum matrix composites (AMCs)

has been the topic of numerous investigations,18,19 in

which the high modulus phases can be generated by

in-situ reactions with different metallic elements or

nonmetallic ceramic compounds, or by direct injec-

tion of foreign phases.20,21 In a similar way, bimetallic

materials such as wire-reinforced metallic structures

can be recognized as a special category of composites

in macroscale,22 which can be used for an effective

increase of Young’s modulus. In general, the Young’s

modulus of cast aluminum alloys is less sensitive to

alloying as compared to the stiffer reinforcement in

AMCs or bimetallic materials.

The understanding of the successes and challenges

in the stiffness of materials can serve as a guidepost

for where future work is needed in order to effectively

propel the technology development. Therefore, this

review focuses on the Young’s modulus of cast alumi-

num alloys, composites, and bimetallic materials and

their fabrication processes, aiming to provide a snap-

shot of the current progress on cast aluminum alloys

for improving their Young’s modulus. The paper is

outlined as follows. Section two summarizes the effect

of wire reinforcement on the Young’s modulus of alu-

minum-based bimetallic materials. The properties of

commonly used reinforcements are discussed in asso-

ciation with the merits and limitations of processing.

Section three focuses on the stiffness improvement by

in-situ and ex-situ composites. A discussion on the

processing, microstructure, and Young’s modulus of

the in-situ and ex-situ reinforcement – including TiB2,

TiC, AlN, ZrB2, and Al2O3 – in cast Al alloys is pro-

vided. Section five ends the paper with the summary

and future outlook.

2. Stiffness improvement in

bimetallic materials

Bimetallic materials can be considered as a special

type of composites, in which continuous metallic

wires/bars are used as skeletons or frames for over-

casting with conventional casting methods.23,24

Overcasting is casting process when liquid molten

metal is poured onto a solid-state metal/ceramic.25

The network structures, or skeletons or continuous

fibers, have been extensively used in polymer/ceramic

matrix composites,26,27 but the bimetallic materials are

particularly used in this review for the metal–metal

mixture made by casting, in which the metallic skele-

tons or frames made by high modulus reinforcement

are covered partially or completely by aluminum

alloys. The skeleton preforms not only provide a
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controlled and stable reinforcement, but also offer

new architectures and increase the Young’s modulus

and provide more effective load transfer.28

Compared with the reinforcements such as par-

ticles,29 whiskers,30 short fibers, and continuous

fibers31 used in AMCs, the metallic network structures

or skeletons are likely desirable to perform more effi-

ciently, especially in reinforcing the local area of a

cast component with relatively low cost and more

flexible in manufacturing through casting processes.

AMCs usually present low fracture toughness due to

the brittle nature of reinforcement, which restricts

their applications. The network structure fabricated by

metallic wires can be 1D, 2D, or 3D interconnected

structures with appropriate surface treatment, which

enhance the interface bonding during casting process

and improve the modulus without scarifying ductility

and toughness. The network structure and the inter-

face are two critical aspects for the manufacturing of

sound bimetallic materials. According to the nature of

metals, nickel and steel/iron are two popular options

for making network structure in the existing literature.

Limited studies for other potential metals have

been performed.

2.1. Al/Nickel Bimetallic Materials

The interconnected network made by continuous

wires of Inconel 601 (12 mm diameter) has been used

to reinforce aluminum alloys through sintering the

wires before infiltrating aluminum melt by squeeze

casting.32,33 Figure 1(a) shows the stress–strain curves

for pure Al and Al/Ni bimetallic materials.35 The

remarkable improvement of ductility is attributed to

the absence of defects in the microstructure of the Al/

Ni bimetallic materials. Figure 1(b) shows the vari-

ation of the Young’s modulus of Al/Ni bimetallic

materials as a function of the volume fraction of the

reinforced wires, in which the upper and lower curves

correspond to the ROM and IROM models computed

using EAl¼ 70GPa and EIn601¼ 206GPa. The Young’s

modulus increases in the bimetallic materials with

increasing the Ni volume fraction. Most of the results

are close to the average between the two bounds

defined by the ROM and IROM models. The Young’s

modulus can reach a level of 95GPa, while the elong-

ation is still more than 7% in the Al/30 vol.% Ni

wire-reinforced bimetallic materials.36 The deform-

ation has no significant effect on the Young’s modulus

of the Al/Ni bimetallic materials, as shown in

Figure 2. The Young’s modulus under as-cast condi-

tion is very similar to that under as-deformed condi-

tion,34 which is due to the fact that heat treatment

and metal forming do not change the volume fraction

of high modulus phases in the aluminum alloys and

thereby negligible change has been reported after

these processes.14

The interface between Al matrix and wire

reinforcement plays a critical role in stiffness
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Figure 1. (a) Tensile curves and (b) Young’s modulus of pure Al and Al/Ni bimetallic materials.34

Figure 2. Young’s modulus of as-cast and deformed Al/Ni
bimetallic materials.37
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enhancement in the bimetallic materials. Salmon

et al.38 investigated the influence of the oxidation of

Ni wire on the mechanical properties of Al/Ni bimet-

allic materials and found that an optimum stress and

ductility can be obtained with an appropriate oxida-

tion of the Ni alloy during sintering. The mechanical

properties can be justified as a result of compromise

between the sufficient oxide roughness to the desired

wire/matrix adhesion and the limited oxidation to

prevent an excessive degradation of the wires. The

tensile properties of Al/Ni bimetallic materials are

sensitively affected by the nature of the layer of oxide

barrier which protects the wires from the reaction

with the matrix during casting.39 The ductility of Al/

Ni bimetallic materials can be improved by tuning the

annealing conditions during the sintering process and

introducing a barrier layer into the Al/Ni interface. It

has been found that the partial conversion of the bar-

rier layer into a mixture of Al2O3þCr2O3 oxides

forms the precipitation of a layer of NiAl3 grains on

top of the oxide layer, as shown in Figure 3.41 When

the reduction process of Ni and Fe oxides by Al is

completed, Al can diffuse across the oxide layer to

form aluminide nodules by reacting with the constitu-

ents of the Ni wire. The formation of these nodules

can increase the flow strength and the ductility in Al/

Ni bimetallic materials.40,41

The matrix materials also affect the Young’s modu-

lus of the bimetallic materials. Boland et al.41 investi-

gated the stiffness of cast Al-13wt.% Si alloy reinforced

by Inconel 601 wires. As shown in Figure 4, the

Young’s modulus can be significantly increased with

the increment of Ni contents in the Al-13wt.% Si alloy.

Comparing the results shown in Figures 1–4, the

reinforcement is more effective in the alloys than that

in the pure aluminum.

Two parameters are important in the processing of

bimetallic materials. One is the initiation of a reaction

between the wires and the matrix, which is normally

controlled by the cooling rate during casting, and the

second is the stability of the oxide passivation barrier

at the surface of the wires. The stability of the oxide

barrier can be increased either by a pre-oxidizing

treatment for the reinforcement wires or by specified
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Figure 3. Mechanism of nucleation and growth of the intermetallic nodules in the Al/Ni bimetallic materials.40

Figure 4. Young’s modulus of Al-13wt.% Si alloy reinforced
with Ni wires.41
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alloying elements to decrease the melting temperature

of the matrix. The Cr-rich passivation layer on the sur-

face of IN601 can increase the refractoriness in oxidiz-

ing environments. This will reduce the reactivity of the

wires toward Al during overcasting. On the other

hand, when the matrix is Al-Si alloys, the Si platelets

tend to nucleate preferentially at the wire/matrix inter-

face. This phenomenon has been reported to occur

commonly in the composites with SiC, Al2O3, or TiB2
reinforcements with the particle pushing mechanism.40

Therefore, the presence of Si in Al induces a strong

reduction of the reactivity between the wires and the

matrix, which can result in the further improvement in

the Young’s modulus of the bimetallic materials. As

illustrated in Figure 5, no reaction compound in the

matrix could be detected in the bimetallic materials

processed using optimized pre-oxidized preforms.15 It

is necessary to note that the interface requirement is

different between the AMCs and the bimetallic materi-

als. In AMCs, the interface is preferred to be clean

without any reaction. However, a limited reaction layer

is preferred in the bimetallic materials for the better

mechanical properties.

2.2. Al/Stainless steel Bimetallic Materials

Fabrication of aluminum-based bimetallic materials

reinforced by 3D entangled stainless steel wires has

been successful using mono-filament annealed 304

stainless steel wires with 100 mm in diameter in a pre-

form structure.34,36 The continuous wire was firstly

coiled around a ø1.5mm rod to form spring-like seg-

ments, which were subsequently stretched and

entangled to form a pre-compacted sample for

squeeze casting. The nominal compressive stress–-

strain curves are shown in Figure 6. The yield

strength and the Young’s modulus of the bimetallic

material increase as the volume fraction of the steel

wires increases. The yield strength can reach 318MPa

for the bimetallic material reinforced with the 35.4

vol.% of entangled stainless steel preform. The

Young’s modulus of Al/26 vol.% stainless steel bimet-

allic material is 124GPa, which shows a significant

improvement in comparison with that of the

A356 alloy.

The microstructures of A356 matrix alloy rein-

forced by 3D entangled wires are shown in Figure 7.
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Figure 5. Optical micrograph of (a) Al/20 vol.% Ni, (b) Al/80 vol.% Ni, and (c) Al-13Si/20 vol.% Ni bimetallic materials.41

Figure 6. (a) Stress–strain curves for the bimetallic materials with different volume fraction of steel wires and (b) the correspond-
ing Young’s modulus.40
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The wire segments show different morphologies in the

matrix with homogeneous distribution. When the pro-

cess is properly controlled, the introduction of wires

has little influence on the microstructures of the

matrix. In optimum conditions, the cohesion between

the matrix and the wires is well obtained and no obvi-

ous traces of interface reaction can be observed

because of the prevention of the reaction by the oxide

barrier layer on the metallic wire,42 which offers the

best improvement of the Young’s modulus.

The network structure of stainless steel can also be

fabricated by sintering the wires before infiltrating the

aluminum alloys through casting. The improvement

of the Young’s modulus without significantly scarify-

ing the ductility is achievable in bimetallic materials

reinforced by an interconnected network of continu-

ous wires of stainless steel.41 Figure 8 shows the

Young’s modulus and the density of Al/steel cast

bimetallic materials versus the volume fraction of the

interconnected network of continuous wires. It is

obvious that the Young’s modulus increases with

increasing steel volume fraction. When the intercon-

nected structures are used to improve the Young’s

modulus, the selection of the desirable volume frac-

tion of the reinforcement and the structural design

should be considered as important criteria.

2.3. Al/Iron Bimetallic Materials

Interconnected wires in the form of three-dimensional

preforms are an approach to improve the Young’s

modulus by continuous steel/iron reinforcement in Al

alloys. Gupta et al.37,40 fabricated several types of 3D

preforms using the galvanized AISI 1008 wire of

0.8mm diameter coated by 10.8 vol.% zinc. The geo-

metries of the two types of reinforcement preforms

are shown in Figure 9.

The mechanical properties for the Al/Fe bimetallic

materials with AA1050 (99.5 wt.% Al) as the matrix

are shown in Table 1. The incorporation of 3–5 vol.%

of iron wires as reinforcement increases the Young’s

modulus, yield strength, and ultimate tensile strength,

but degrades the ductility. The Young’s modulus is

88GPa and the specific stiffness is 30.3GPa/(g/cm3)

for the Al/5 vol.% Fe bimetallic materials, which is

much higher than that of the monolithic Al alloys.

The measured Young’s modulus of the bimetallic Al/

Fe materials exceeds the ROM prediction. This has

been attributed to the combined effect of redistribut-

ing the fiber stress from the three-dimensional inter-

connected nature and the limited presence of the

intermetallics at the interface.45 Gupta et al.40 fabri-

cated aluminum-based bimetallic materials containing

titanium particles and iron mesh (continuous)

reinforcement. Ti particles and the galvanized iron

wire mesh (0.4 vol.% zinc and 0.8mm wire diameter)

are utilized as the continuous/interconnected
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Figure 7. Microstructures of the A356 alloys reinforced by
a preform with entangled 304 stainless steel wire at
17.7 vol.%.40

Figure 8. (a) Young’s modulus and (b) density of Al-Si/steel cast bimetallic materials with an interconnected network of
continuous wires of stainless steel.36,41
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reinforcement phase. The presence of reinforcement

results in the 7.6% reduction in the coefficient of ther-

mal expansion, the 10% increase in the Young’s

modulus, the 20% increase in the 0.2% yield strength,

and the 27% increase in the ultimate tensile strength.

As the critical characteristics in manufacturing the

bimetallic materials, the interface between steel/iron

and aluminum has been extensively studied through

different approaches due to the avoidance of forma-

tion of detrimental phases.46 The interfaces between

steel/iron and aluminum melt can be obtained by

immersing the steel/iron into aluminum melt or over-

casting aluminum melt onto the steel/iron surface.

Dezellus et al.47 studied the formation of the interface

layer, by immersing mild steel into Al-Si alloy melts,

and the mechanical properties of interface, by the

pushout test. The results showed that the Al5Fe2Si and

Al9Fe2Si2 phases are formed at the interface and the

crack initiation would occur in the intermetallic reac-

tion layer. The formation of the intermetallic layer

increases the mechanical properties of the bimetal-

lic materials.

Viala et al.43 and Manasijevic et al.45 prepared iron

base insert reinforced Al-Si alloys by gravity casting

and revealed that a continuous metallurgical bond at

the iron insert/Al-Si alloy interface can be achieved

via the formation of FeAl3 and Fe2Al5 intermetallic

phases on the interface. Bouayad et al.48 found that

several intermetallic compounds, including c-Al3FeSi,

g-Al5Fe2(Si), and b-Al5FeSi, can be formed at the

interface. The types of reaction products depend on

the times and temperatures. Kobayashi and Yakou49

reported that the common sequence to form the reac-

tion layer is Fe/Fe2Al5/FeAl3/Al, but Zhang et al.50

showed that the sequence of the reaction layer is Fe/

g-Al5Fe2(Si)/b-Al5FeSi/Al–Si. The experimental results

have confirmed that the surface modification of alu-

minizing can promote the formation of sound surface

and metallurgical bonding between steel and Al,

which can be achieved by compound casting.

Arghavani et al.51 found that the Zn coating on the

steel surface could enhance the wettability of bonding

surface between steel and A5052 Al alloy. Liu

et al.52,53 found that the intermetallic compounds

Al5Fe2Znx and Al3FeZnx are formed at the interface

between hot-dip galvanized steel and pure Al after

compound casting. Generally, the zincate must be at

an appropriate thickness for the reaction during over-

casting. If the thickness is more than the diffusion dis-

tance, the Zn layer will still exist in the final

microstructure after casting, which is detrimental to

the mechanical properties. This has been partially con-

firmed by Schwankl et al.54 showing that the interface

strength determined by zinc is the weakest part of the

compound castings. If the coating is too thin, there

are no sufficient compounds to provide bonding

strength. Therefore, the bonding interface between the

iron/steel and the aluminum alloy is the determining

factor for manufacturing the bimetallic materials.

2.4. Other Bimetallic Materials

The Young’s modulus of Al-based bimetallic materials

reinforced by other metals can be roughly estimated

by the ROM model and the results are shown in

Figure 10. Comparing with the Young’s modulus of

Fe and Ni at a level of �200GPa, the other continu-

ous reinforcement – such as W and Mo – has a

higher potential for the improvement of stiffness.

However, the cost and processing procedure will

remain an issue in its application.

3. Stiffness improvement in aluminum-

based composites

Aluminum matrix composites reinforced with par-

ticles, short fibers/whiskers, or continuous fibers have

received considerable attention over the past decades

due to the attractive properties resulting from the
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Table 1. Mechanical properties of aluminum reinforced with
galvanized iron.44

Materials

Young’s
modulus
(GPa)

Yield
strength
(MPa)

Ultimate
tensile
strength
(MPa)

Ductility
(%)

Density
(g/cm3)

Specific
stiffness
GPa/

(g/cm3)

Al (matrix) 7062 10166 12063 1769 2.7 25.9
Al/3vol.%Fe� 7662 10862 13164 563 2.92 26.1
Al/3vol.%Fe� 8162 15264 186615 564 2.81 28.8
Al/3vol.%Fe� 8162 15066 173616 362 2.80 28.9
Al/5vol.%Fe 8861 10565 13066 763 2.91 30.3

�With different wire arrangement.

Figure 9. Schematic diagram of two different reinforcement
preforms employed in Al/galvanized iron bimetallic materials.43
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combination of their constituents.55–57 Al/TiB2, Al/

TiC, Al/ZrB2, Al/SiC, Al/AlN, Al/Al2O3, and Al/Mg2Si

have been reported to be able to improve the Young’s

modulus of cast Al alloys.58–60 The improvement of

Young’s modulus in AMCs can be successfully

achieved through a variety of casting processes,

including gravity casting, stirring casting, investment

casting, die casting, vacuum-assisted casting, semi-

solid casting, and squeeze casting for manufacturing

shaped components, or making billets by direct chill

casting for further processing such as forging, extru-

sion or rolling.

The Young’s modulus of pure aluminum can be

enhanced from 70 to 240GPa by the reinforcement of

60 vol.% continuous fiber.[19] Similarly, the castings

of Al-9Si/20 vol.% SiCp composites significantly

improve the Young’s modulus with the wear resist-

ance equivalent or better than that of gray cast

irons.61 Discontinuously reinforced AMCs have been

demonstrated to offer essentially isotropic properties

with substantial improvements in stiffness and

strength. However, a 50% increase in the Young’s

modulus of Al alloys can be achieved by substituting a

discontinuous reinforcement with continuous ones in

AMCs.62 It is therefore capable of incorporating

appropriate reinforcement in suitable volume fractions

for casting aluminum components with improved

Young’s modulus and other technological properties

such as high thermal conductivity, high specific

strength, tailorable coefficient of thermal expansion,

improved strength, and low density, which is depend-

ent upon the composition, grain size, microstructure,

and fabrication process.

The stiffness property of some reinforcement

phases is listed in Table 2. These phases show the

much-increased Young’s modulus and melting point

in comparison with pure aluminum. In AMCs, the

reinforcement phase can be formed by in-situ reaction

or by ex-situ additions. In the specific condition, the

in-situ particles can act as nucleating sites for grain

refinement or as strengthening phases to hinder dis-

location motion.65,66 Currently, several fabrication

methods including liquid state processing, deposition

process, and solid-state processing have been devel-

oped for the manufacture of AMCs. Figure 11 shows

the detailed casting process routes for manufacturing

AMCs, which include infiltration techniques,67,68 stir-

ring techniques,69,70 and rapid solidification.71,72

Liquid state processing is usually involved with the

casting process, which is energy-efficient and cost-

effective for massive production. Products of complex

shape can be formed directly through the melt mix-

ture with reinforcement. It is very attractive to pro-

duce as-cast components of AMCs with a uniform

reinforcement distribution of individual particles and

structural integrity. However, during solidification, the

particles ahead of the interface may get pushed,

engulfed, or entrapped in the moving solidification

front. The other difficulties in the casting process are

the non-wettability of ex-situ particles by liquid metal,
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Table 2. Properties of typical reinforcements.63–64

Reinforcement
Melting
point (�C)

Young’s
modulus (GPa) UTS (MPa) Density (g/cm3)

Thermal conductivity
(W/m�K)

Coff. of thermal
expansion (10�6/K)

ZrB2 3246 350 6.09 140 7.4
AlN 2200 330 2,100 3.26 150 3.3
Al2O3 2043 380 2,070 3.15 30 7.0
TiC 3067 400 1,540 4.90 110 9.0
TiB2 3225 560 3,300 4.52 24 8.0
Mg2Si 1102 120 4.50 4.4 7.5
ZrO2 2715 350 2,070 4.84 3.3 7.0
B4C 2763 425 2,690 2.35 39 3.5
SiC 2730 450 2,280 3.21 120 3.4
VC 2810 430 5.77 4.1
WC 2870 640 500 15.52 60 5.1
Si3N4 1900 207 530 3.18 28 1.5

Figure 10. Young’s modulus of aluminum-based bimetallic
materials reinforced with different types of metallic wires esti-
mated by rule of mixtures.
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and the particle–Al interface interaction. Although the

addition of Ni, Mg, Li, Si, and Ca into Al melt can

improve wettability either by changing the interfacial

energy through some interfacial reaction or by modi-

fying the oxide layer on the metal surface,73–75 the dif-

ficulty to obtain uniform dispersion of reinforcement

particles is still an issue that hinders the adoption of

AMCs in industry.76,77

In order to effectively improve the Young’s modu-

lus of AMCs, the generation of high modulus phases,

the reinforcement phases with covalent and ionic

interatomic bonds in aluminum alloys are preferred

approaches according to the nature of stiffness.78,79

Therefore, the in-situ method is better than the ex-situ

method because the wettability between the in-situ

formed phases and the aluminum matrix is signifi-

cantly higher and is capable of forming clean and

strong interfacial bonding in between.80,81 However,

the in-situ method is suitable for particulate-rein-

forced AMCs because the in-situ techniques are not

capable of making continuous fiber-reinforced AMCs.

The Young’s modulus of composite materials can

be estimated by theoretical modeling, which depends

on the morphological arrangement of materials com-

ponents. The most frequently used mathematical

models include: (a) the rule of mixtures (ROM) and

the inverse rule of mixtures (IROM),82 (b) the

Halpin–Tsai model,83 (c) the Hashin–Shtrikman

model,84 and (d) the Tuchinskii model.85 The ROM

(upper bound) and IROM (lower bound) can be

obtained according to the equal strain assumption and

the equal stress assumption, respectively.16 The elastic

properties of all of the composites are usually located

between the ROM upper and IROM lower bounds.86

The Halpin–Tsai model has a more complicated

mathematical structure than that of the ROM or

IROM. In this model, the modulus of elasticity and

the volume fraction of the components and the aspect

ratio (ratio of the geometric dimensions) of the

reinforcement are taken into account. It has been

widely reported that Halpin–Tsai model is more

accurate for particulate metal matrix composites. In

the Hashin and Shtrikman (H-S) theorem,86 the upper

bound rigorously corresponds to the composites con-

taining the ‘soft’ inclusion matrix phase encapsulated

by a ‘stiffer’ reinforcement phase, while the lower

bound corresponds to the composites with a ‘stiffer’

inclusion reinforcement phase encapsulated by a

‘softer’ matrix phase. The H-S bounds are tighter than

the ROM bounds and have been regarded as the best

possible bounds on properties for isotropic two-phase

composites. The Tuchinskii model87 considers a two-

phase interpenetrating skeletal structure. The calcu-

lated value of modulus can be a good estimation of

experimental guidance. However, this review will not

focus the modeling approaches and principles. Some

existing results from modeling are used to review the

experimental data.

3.1. Al/TiB2 Composites

TiB2 is one of the most popular reinforcements for

high modulus AMCs because of its Young’s modulus

of 560GPa and its easy synthesis using an in-situ pro-

cess.87 The in-situ formed TiB2 offers a better inter-

face with the aluminum matrix than the ex-situ added

particles.88,89 The in-situ Al/TiB2 composites can be

synthesized using K2TiF6 and KBF4 salt reactions in

molten Al;90 through a self-propagating high-tempera-

ture synthesis (SHS) reaction via Al-Ti-B powder
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Figure 11. Schematic diagram of processing methods of AMCs.
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compact/preform added to molten Al;91–93 through

the reaction of TiO2-H3BO3-Na3AlF6 with Al;94 or via

chemical reactions among Al, TiO2, and B2O3 par-

ticles.95 It is generally believed that the presence of a

Al3Ti phase in Al/TiB2 composites is beneficial for

grain refinement but is detrimental to the mechanical

properties.96 The Al3Ti can be eliminated during syn-

thesis by the proper control of temperature, time, and

ratios of the raw materials.91,97 The presence of Si in

cast Al alloys can improve the dispersion of TiB2 par-

ticles,98 although the TiB2 particles are still partially

segregated in the eutectic regions because of the push-

ing mechanism during solidification.99–101 The typical

microstructure of Al/TiB2 composites is shown in

Figure 12. The Al-9Si-1Mg-0.7Cu/TiB2 composite can

be produced with clean, smooth, and well-bonded

interfaces between the aluminum matrix and TiB2
particles between 25 and 3,000 nm.103

The TiB2-reinforced AMCs can remarkably

improve the mechanical properties, in particular the

stiffness. The typical Young’s modulus and other

mechanical properties of particulate-reinforced Al/

TiB2 composites are summarized in Table 3. The

increase of the Young’s modulus of Al/TiB2 compo-

sites can be up to 40% higher than that of pure alumi-

num.106,107 The strength at elevated temperatures and

the wear and fatigue resistance can also have a signifi-

cant increase.108 Kumar et al.102 reported an increase

of 108% in hardness, 123% in yield strength, 43% in

UTS, and 33% in Young’s modulus of the Al-7Si cast

alloy with 10wt.% of TiB2, which provides a Young’s

modulus greater than 90GPa. Han et al.108 studied

the tensile properties of the Al-12Si alloy with 4wt.%

TiB2 particles and found that the improvement of the

Young’s modulus can be observed in the temperature

range of 25–350 �C. Amirkhanlou et al.102 reported

that Al-9Si-1Mg-0.7Cu/9 vol.% TiB2 can provide a

Young’s modulus greater than 94GPa and the yield

strength up to 235MPa by the formation of a-Al (Cu,

Mg), Si, and TiB2 phases in the microstructure. Lu

et al.95 investigated the Al/TiB2 composite and found

that the Young’s modulus reaches 107GPa by adding

15% TiB2 into the Al matrix. Obviously, the main rea-

son for high stiffness properties is formation of high

volume fraction TiB2 with 565GPa modulus.

3.2. Al/TiC composites

Titanium carbide (TiC) is a hard refractory ceramic

material with FCC crystal structures. The Young’s

modulus is approximately 400GPa and the shear

modulus is 188GPa for the TiC,109,110 which is a

good candidate as reinforcement for improving stiff-

ness of aluminum alloys111,112. Al/TiC in-situ compo-

sites can be synthesized by several techniques,

including: (a) the reaction of K2TiF6 salt and graphite,

(b) the direct reaction of Ti and C powders, (c) the

addition of Al-Ti-C powder into the Al melt, and (d)

the reaction of CH4 gas with the Al-Ti melt. The reac-

tions can be at a level of 1000 �C for 30minutes for

Al-4.5 Cu alloys.113,114 The in-situ formed TiC par-

ticles can be smaller than 1 mm in size or in a range

of several micrometers.115,116 The formation of other

phases, such as Al4C3 and Al3Ti phases, is considered

to be unfavorable in Al/TiC composites.116,117

On top of the enhancement of mechanical proper-

ties, the addition of TiC particles into aluminum melt

has a dramatic improvement on the Young’s modulus,

as shown in Figure 13. Samer et al.118 obtained the

Young’s modulus of 106GPa, the yield strength of

450MPa, and the elongation of 6% in the composites

containing 22 vol.% TiC in pure Al. Mohapatra

et al.119 confirmed that the Young’s modulus is

increased from 70GPa of pure aluminum to

88.78GPa after adding 20 vol.% TiC. The mechanical

properties of Al-4.5%Cu alloy reinforced with differ-

ent amounts of TiC are summarized in Table 4, in

which the addition of 10wt.% TiC increases the
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Young’s modulus to 99GPa.121 In addition, the

Young’s modulus of the Al/TiC composite is close to

the upper limit calculated from the Hashin–Shtrikman

model,122,123 suggesting that the in-situ synthesis of

TiC particles leads to strong interfacial bonding and

the attendant load transfer. Despite the high stiffness of

Al/TiC in-situ composites, the porosity level and other

oxide impurities in the melt are the main concerns

because of the high synthesis temperature of

1000–1200 �C. High temperature processing also results

in limitations for the industrial applications of in-situ

Al/TiC composites.

3.3. Al/SiC Composites

SiC reinforcements are usually added into Al melt

through ex-situ additions incorporating with stirring

or mixing.124,125 Casting routes can be gravity casting

and squeeze casting. Alternatively, the alloy is infil-

trated into a porous preform formed by SiC reinforce-

ments. The wettability between the SiC reinforcements

and the aluminum alloy is a crucial concern in associ-

ation with the optimum fluidity of the alloy. One of

the main problems during the processing and casting

of Al/SiC composites is that liquid aluminum attacks

SiC reinforcements through chemical reaction, form-

ing Al4C3 and Si.126,127 Particle clustering has greater

effects on the flow behavior and mechanical properties

of Al/SiC AMCs because the particle clustering micro-

structure experiences a higher percentage of particle

fracture than that with particle random distribu-

tion.127,128 The stirring casting is an effective way to

promote the distribution of ex-situ particles.129,130

Table 5 summarizes the Young’s modulus and

mechanical properties of ex-situ Al/SiC AMCs. The

Young’s modulus of the AMCs with cast aluminum

alloys can be enhanced to 114GPa when the reinforce-

ment is at a level of 20 vol.%. The castability is a sig-

nificant concern when the SiC addition is beyond this

level. For wrought aluminum alloys, the addition of

SiC reinforcement can be at a level of 25 vol.% for

casting and the subsequent plastic deformation process-

ing. The Young’s modulus can be 140GPa, which is

double the Young’s modulus of pure aluminum.

3.4. Al/AlN Composites

Aluminum nitride (AlN) has a Young’s modulus of

310GPa and therefore it can fairly increase the modu-

lus of aluminum castings.132,133 However, because of
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Table 3. Mechanical properties of Al/TiB2 cast composites synthesized by K2TiF6 and KBF4 salt reaction.
104,105

Materials Temperature (�C) Young’s modulus (GPa) 0.2% Proof stress (MPa) UTS (MPa) Elongation (%)

Al-7Si/5 vol.% TiB2 25 83.0 126 175 7.00
Al-7Si/10 vol.% TiB2 25 92.0 152 209 4.60
Al-12Si/4 wt.% TiB2 25 85.0 240 298 1.50
Al-12Si/4 wt.% TiB2 200 80.0 189 233 3.00
Al-12Si/4 wt.% TiB2 350 66.0 84 96 5.80
A356/2.1 vol.% TiB2 25 72.9 209 235 7.81
A356/4.7 vol.% TiB2 25 76.3 212 252 7.36
A356/8.4 vol.% TiB2 25 82.2 217 258 2.73
A356/2.1 vol.% TiB2 25 78.1 305 375 4.88
A356/4.7 vol.% TiB2 25 80.2 317 377 1.90
A356/8.4 vol.% TiB2 25 84.1 347 391 1.32
Al/5 vol.% TiB2 25 69.0 188 284 3.50
Al/10 vol.% TiB2 25 84.0 249 326 1.92
Al/5 vol.% TiB2 25 82.0 96 124 9.20
Al/10 vol.% TiB2 25 87.0 128 164 6.30
Al/15 vol.% TiB2 25 91.0 124 153 5.50
Al-Cu/10 vol.% TiB2 25 77.0 153 230 5.50
Al-Cu/10 vol.% TiB2 25 83.0 311 361 1.30
Al/15 vol.% TiB2 25 107.0 274 389 1.99
Al/15 vol.% TiB2 25 91.0 171 223 4.60
Al-Cu/15 vol.% TiB2 25 93.0 248 333 2.30

Figure 13. Effect of TiC on the Young’s modulus of Al/
TiC composites.
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the low thermal expansion and good thermal conduct-

ivity, Al/AlN is attractive in some specific applica-

tions. In-situ Al/AlN composites are usually made by

a direct reaction between N2 and/or NH3 gas with the

molten aluminum alloys.134,135 The nitridation of Al is

a thermodynamically exothermic process and is ener-

getically favorable over an extensive temperature

range. The formed AlN particles are smaller than 10

mm and show a hexagonal morphology.136,137 The

AlN particles can be less than 2 mm in the Al/AlN

composites synthesized by adding NH3 into the melt

in the temperature range from 1,100 to 1,270 �C.138 In

comparison with the purified N2 bubbling gas, NH3

can enhance the formation of the AlN phase in alumi-

num melt.137 Chedru139 studied ex-situ Al/AlN AMCs

with squeeze casting and found that Al/AlN

composites can significantly improve the mechanical

properties, as shown in Table 6. Balog139 studied Al/

AlN AMCs with cold isostatic pressing (CIP) and

extrusion, and the results are shown in Figure 14. The

Young’s modulus is significantly increased when

increasing the content of AlN in the AMCs. However,

the studies for castable materials are still very limited
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Table 4. Mechanical properties of Al matrix and Al-4.5Cu/TiC in-situ composites.120

Materials Vickers hardness (HV5) Young’s modulus (GPa) Yield strength (MPa) UTS (MPa)

Al-4.5%Cu 55.19 72.8 81.5 118
Al-4.5Cu/5wt.% TiC 61.12 83.4 95.7 134
Al-4.5Cu/7wt.% TiC 69.43 91.8 103.4 156
Al-4.5Cu/10wt.% TiC 75.76 98.7 117.3 179

Table 5. Young’s modulus and mechanical properties of ex-situ Al/SiC AMCs.67,131

Materials Reinforcement Casting method Young’s modulus (GPa) Yield strength (MPa) UTS (MPa) Elongation (%)

Al-10Si-3Cu-1Mg-1.25Ni 10 vol.% SiC Gravity 88 359 372 0.3
Al-10Si-3Cu-1Mg-1.25Ni 20 vol.% SiC Gravity 101 372 372 0.1
Al-9Si-0.5Mg 10 vol.% SiC Gravity 86 303 338 1.2
Al-9Si-0.5Mg 20 vol.% SiC Gravity 99 338 359 0.4
Al-10Si-1Fe-0.6Mn 10 vol.% SiC Pressure die cast 91 221 310 0.9
Al-10Si-1Fe-0.6Mn 20 vol.% SiC Pressure die cast 108 248 303 0.5
Al-10Si-3.25Cu-1Fe-0.6Mn 10 vol.% SiC Pressure die cast 94 241 345 1.2
Al-3.25Cu-1Fe-0.6Mn 20 vol.% SiC Pressure die cast 114 303 352 0.4
A356 10 vol.% SiC Casting 81 283 303 0.6
A356 15 vol.% SiC Casting 90 324 331 0.3
A356 20 vol.% SiC Casting 97 331 352 0.4
Al-12Si-Ni-Cu 20 vol.% SiC Squeeze casting 111 293 384
Al-7Si-Mg-Fe 15 vol.% SiC Gravity 98 183 280 1.0
Al-3Mg 20 vol.% SiC Gravity 105 377 408 1.4
Al-4.4Cu-Si-Mg 15 vol.% SiC Gravity 107 342 350 1.6
Al-7Si-0.3Mg 10 vol.% SiC Casting 82 287 308 0.6
Al-7Si-0.3Mg 15 vol.% SiC Casting 91 329 336 0.3
Al-7Si-0.3Mg 20 vol.% SiC Casting 98 336 357 0.4
A380 10 vol.% SiC Casting 95 245 332 1.0
A380 20 vol.% SiC Casting 114 308 356 0.4
AA6061 20 vol.% SiC Casting-forming 119 448 551 1.4
AA6061 20 vol.% SiC Casting-extrusion 108 414 545 2.0
AA6061 20 vol.% SiC Casting-hot rolling 104 402 550 4.5
AA2014 15 vol.% SiC Casting-forming 100 466 493 2.0
AA2024 20 vol.% SiC Casting-forming 110 465 620 2.0
AA2024 25 vol.% SiC Casting-forming 140 470 800 2.0
AA2024 15 vol.% SiC Casting-hot rolling 96 530 2.4
AA2024 15 vol.% SiC Casting-hot rolling 110 330 1.2
AA2618 12 vol.% SiC Casting-forming 98 460 532 3.0
AA2124 17.8 vol.% SiC Casting-forming 100 400 610 6.0
AA2124 20 vol.% SiC Casting-forming 105 405 560 7.0
AA2124 25 vol.% SiC Casting-forming 116 490 630 3.0
AA7075 15 vol.% SiC Casting-forming 95 556 601 3.0
AA7075 15 vol.% SiC Casting-forming 90 598 643 2.0
AA7075 20 vol.% SiC Casting-forming 105 665 735 2.0
AA8090 13 vol.% SiC Casting-forming 101 455 520 4.0
AA8090 13 vol.% SiC Casting-forming 101 499 547 3.0
AA8090 17 vol.% SiC Casting-forming 105 310 460 5.5
AA8090 17 vol.% SiC Casting-forming 105 450 540 3.5

Table 6. Young’s modulus and shear modulus of reinforced
and non-reinforced materials.138

Young’s modulus (GPa) Shear modulus (GPa)

Al-4Cu-1Mg 72.9 27.1
Al-4Cu-1Mg/45% AlN 146.3 56.5
Al-1Mg-0.5Si 72.5 27.1
Al-1Mg-0.5Si/42% AlN 141.3 54.6
Al-3Mg 71.3 26.6
Al-3Mg/48% AlN 149.5 58.2
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due to high temperature manufacturing methods for

in-situ Al/AlN composites.

3.5. Al/ZrB2-Al3Zr Composites

Al/ZrB2-Al3Zr composites use the hybrid reinforce-

ment phases of ZrB2 and Al3Zr. The Young’s modulus

is 350GPa for ZrB2 and 205GPa for Al3Zr. Al/ZrB2-

Al3Zr in-situ composites are usually synthesized by

the addition of K2ZrF6 and KBF4 salts to Al melt.141

Zhang et al.142 synthesized in-situ ZrB2 and Al3Zr par-

ticles in A356 alloy with K2ZrF6 and KBF4 salts. The

ZrB2 and Al3Zr particles are from 0.3 to 0.5 mm, as

shown in Figure 15. Zhao et al.144 reported that the

morphologies of Al3Zr are sensitive to the temperature

of the Al melt. When the temperatures change from

850 to 1000 �C, the morphologies of the Al3Zr par-

ticles can be spherical shape, tetragon shape, rod

shape, and fiber shape, but the ZrB2 particles show no

obvious diversity in morphology. The particulate-rein-

forced Al/ZrB2-TiB2 composites can also be formed

by the addition of KBF4, K2ZrF6, and K2TiF6 salts

into Al melt,145,146 by which the formed TiB2 and

ZrB2 particles are hexagonal with the average size less

than 2 mm.147

The Al/ZrB2-Al3Zr composites show valuable

improvement in stiffness, strength, and wear proper-

ties with the increase in ZrB2 contents.148,149 As

shown in Figure 16, Selvam and Dinaharan150 verified

the stiffness improvement of 7075/ZrB2 composite,

which is further attributed to ZrB2 that has a covalent

interatomic bond and high intrinsic modulus.

However, Gautam et al.151,152 found that the improve-

ment of the Young’s modulus in Al/ZrB2-Al3Zr

hybrid composite is insignificant when the volume

fraction of ZrB2 particles increases. The main

challenge for fabrication of high modulus in-situ

composites by casting processes is volume fraction of

reinforcement. In fact, it is difficult to form high

volume fraction of particles through salt reaction or

direct reaction between the gases with the molten

aluminum alloys.

3.6. Other Particulate-reinforced AMCs

The other typical reinforcements listed in Table 2 are

capable of being synthesized by in-situ reactions.

However, the compounds with high modulus are

more attractive. In addition to that described in the

previous section, Al2O3, WC, B4C, and VC are also

good candidates for improving the Young’s modulus

of aluminum composites. For example, the in-situ Al/

Al2O3 composites can be synthesized by: (a) the direct

melt oxidation of aluminum alloys at high tempera-

ture,153 (b) directly passing oxygen into the aluminum

melt to form Al2O3,
154 and (c) the displacement reac-

tions between metal oxides and aluminum to produce

Al2O3 particulate reinforcement. However, the experi-

mental evidence for the improvement of Young’s

modulus in those in-situ AMCs is not sufficient.

The manufacture and the properties of ex-situ

AMCs have been comprehensively reviewed by

Rohatgi et al.31 Al/SiC and Al/TiB2 have also been dis-

cussed in the present paper. The other ex-situ AMCs

processed by casting methods are shown in Table 7. It

is possible to combine up to 20 vol.% of A12O3 into

different aluminum alloys for improving the Young’s

modulus. The dominant factors in controlling the

Young’s modulus of ex-situ AMCs are the type, shape,

volume fraction, and distribution of reinforcement
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Figure 14. Ultimate tensile strength (UTS), yield strength, and
Young’s modulus of Al-AlN nanocomposites prepared by CIP
with subsequent extrusion.140

Figure 15. SEM image of the Al/ZrB2-Al3Zr hybrid
composite.143
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phases. The porosity and other microstructural char-

acteristics are also critical for property improve-

ment.155,156 The presence of matrix–particle

decohesion, particle cracking, and void growth can

decrease the load transfer capability of the interface

and, consequently, decrease the Young’s modulus of

the AMCs. The subsequent mechanical processes are

an effective approach to enhance the quality of the

interface between matrix and reinforcement in ex-situ

cast composites as well as the distribution of high

modulus particles, as shown in Table 7. Secondary

plastic deformation is not capable of altering the

Young’s modulus of AMCs;14 however, these proc-

esses can improve the toughness of the composites.

The main concern on the Young’s modulus of ex-

situ AMCs is their tendency to have relatively low

ductility and fracture toughness, as shown in Table 7.

The damage mechanism of ex-situ AMCs is mainly

the reinforcement fracture and decohesion at the

matrix/reinforcement interface. To achieve acceptable

ductility and toughness, the composition, heat treat-

ment process, size and shape distribution of the

reinforcement should be precisely controlled. Also,

secondary mechanical deformation will result in an

improvement of ductility. In the presence of strong

interfacial bonding, effective load transfer from the

matrix to the reinforcement is enhanced, leading to

good ductility and damage resistance.

3.7. AMCs with Continuous Reinforcement

Al alloys reinforced with continuous ceramic

reinforcement, such as SiC and Al2O3, can be consid-

ered as alternative materials to achieve outstanding

specific strength and modulus. The Al/SiCp and Al/

Al2O3 composites can be produced by the molten alu-

minum infiltration techniques, such as pressure-

assisted, vacuum-driven, and pressureless or capillar-

ity-driven processes. Aghajanian et al.67,157 reported

the pressureless infiltration technique, by which the

aluminum alloys infiltrated the reinforcement pre-

forms spontaneously in a nitrogen atmosphere. This

method is believed to be a cost-effective, nearly net

shape technique with the combined processing of
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Figure 16. Stress–strain graphs showing: (a) the effect of ZrB2 content in AA7075/ZrB2 in-situ composites and (b) the effect of
ZrB2 and Al3Zr content in AA5052/ZrB2-Al3Zr in-situ composites.149,150

Table 7. Young’s modulus and mechanical properties of Al-based particulate ex-situ composites.19,66,130

Materials Reinforcement Casting method Young’s modulus (GPa) YS (MPa) UTS (MPa) Elongation (%)

Al-12Si-Ni-Cu 20 vol.% Al2O3 Squeeze casting 95 210 297
Al-4.2Cu-1.4Mg-0.6Ag 25 vol.% Al2O3 Stir casting-forming 97 450 460 0.5
Al-4Cu-1Mg-0.5Ag 15 vol.% Al2O3 Stir casting-forming 90 414 510 1.3
A201 20 vol.% TiC Stir casting-forming 105 420 2.0
AA6061 10 vol.% Al2O3 Stir casting-forming 81 297 338 7.6
AA6061 15 vol.% Al2O3 Stir casting-forming 88 386 359 5.4
AA6061 20 vol.% Al2O3 Stir casting-forming 99 359 379 2.1
AA6061 15 vol.% Al2O3 Casting-forming 91 342 364 3.2
AA6061 15 vol.% Al2O3 Casting-forming 98 405 460 7.0
AA6061 20 vol.% Al2O3 Casting-forming 105 420 500 5.0
AA6061 25 vol.% Al2O3 Casting-forming 115 430 515 4.0
AA2014 10 vol.% Al2O3 Stir casting-forming 84 483 517 3.3
AA2014 15 vol.% Al2O3 Stir casting-forming 92 476 503 2.3
AA2014 20 vol.% Al2O3 Stir casting-forming 101 483 503 0.9
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materials and shaping of the components simultan-

eously. The basic problem encountered in the fabrica-

tion of these composites is the rejection of the

ceramic phase by the liquid metal due to their lack of

wettability.158 To improve the wetting of ceramics by

liquid metals, a possible approach is to apply a metal

coating on the ceramic particles, which essentially

increases the overall surface energy of the solid,

thereby promoting wetting by the liquid metal.

Although the continuous ceramic reinforcement/fibers

can provide 210GPa Young’s modulus,159 they usually

suffer from very low ductility – less than 0.2 –

restricting their applications. Moreover, it is difficult

to make shaped castings.

4. Summary and future outlook

The Young’s modulus of aluminum-based materials is

one of the most important mechanical properties in

controlling structural performance. The improvement

of the Young’s modulus of castable aluminum-based

materials is essential for increasing their competive-

ness in light weighting structural applications. The

capability of making complex shaped castings of these

materials is critical in considering the massive produc-

tion and the application in industry. The castability

depends on the introduction methods, processing

methods, volume fraction, size, and distribution of the

high modulus phases. The influence of alloying ele-

ments on the Young’s modulus depends on the state.

If the alloying elements are in a solid solution phase,

the magnitude of the Young’s modulus is determined

by the nature of the atomic interactions. If the alloy-

ing elements form second phases, the magnitude of

the Young’s modulus is determined by the volume

fraction and the intrinsic modulus of the second

phase. Overall, the increase of Young’s modulus in

conventional cast aluminum alloys is usually less than

15% through adding alloying elements for manufac-

turing complex shaped castings. Therefore addition of

ceramic particles and reinforcement is necessary for

significant improvement of the stiffness of Al alloys.

The improvement of the Young’s modulus through

introducing high modulus reinforcement phases as

AMCs is an effective approach because of their high

Young’s modulus. The most capable reinforcement

phases are TiB2 (E¼ 560GPa) and SiC (E¼ 480GPa)

for making shaped castings. Reinforcement phases can

be added by ex-situ or in-situ methods, in which the

in-situ method with particulate reinforcement is pre-

ferred for making castings with relatively complex

shape and cavity. The main factors governing the

Young’s modulus of AMCs are the volume fraction,

aspect ratio, and the interface. The bonding between

the matrix and the reinforcement is the most import-

ant factor in determining mechanical properties.

Strong interfacial bonding provides effective load

transfer from the matrix to the reinforcement for

improved Young’s modulus and other mechanical

properties. The main concern on the performance of

AMCs is their tendency to have relatively low ductility

and fracture toughness when the materials provide

high modulus. When using particulate-reinforced

AMCs, the castability should be considered due to

challenges in casting components with complex shape

and cavity. The balance of castability/processibility

and the improvement in Young’s modulus is the key

for further development.

Bimetallic materials, made by metal wires with cast

aluminum alloys, are effective for modulus improve-

ment. In fact, bimetallic materials can be considered a

special type of composite material. The preforms

made by continuous metallic wires as skeletons or

frames are a key step. The pretreatment of the surfa-

ces is needed before casting. The overcasting can be

any of the conventional casting methods. Knowledge

in this area has not been well established for the var-

iety of preform structures, pretreatments, and casting

conditions; so continued study is necessary.

Stiff aluminum alloys are potentially one of the

most promising materials for the significant reduction

of structural weight with satisfied mechanical proper-

ties, including the Young’s modulus. There are some

knowledge gaps and challenges for the further devel-

opment of high modulus cast aluminum alloys,

which include:

a. The Young’s modulus of aluminum alloys with

multiple components is not fully understood. The

development of complex Al-based alloys with the

addition of desirable alloying elements is needed to

ensure both high modulus and ductility properties.

b. Up to now, the main purpose for the addition of

high modulus phase/reinforcement into the Al

alloys has been to improve the wear resistance

and high temperature performance. It is very

important to carefully and specifically select the

type as well as the volume fraction of reinforce-

ment for modulus improvement.

c. Careful selection and combination of desirable

alloying elements and in-situ formed reinforce-

ment would possibly be the preferred option for

developing the material with dominant stiffness

properties, toughness, and good castability.
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d. In bimetallic materials, reactivity between the

reinforcement and the aluminum matrix must be

carefully controlled to avoid the formation of

brittle interface, which tends to lower the tough-

ness of the interface. Bimetallic materials can be

considered for local stiffness improvement of the

aluminum components.
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