A review on high temperature thermochemical heat energy storage

Pierre Pardo, Alexandre Deydier, Zoé Anxionnaz-Minvielle, Sylvie Rougé ...+4 more authors

Institutions: Centre national de la recherche scientifique, University of Toulouse

Published on: 01 Apr 2014 - Renewable & Sustainable Energy Reviews (Pergamon)

Topics: Renewable energy

Related papers:
- State of the art on high temperature thermal energy storage for power generation. Part 1—Concepts, materials and modelling
- Thermal energy storage technologies and systems for concentrating solar power plants
- The latest advancements on thermochemical heat storage systems
- Review of technology: Thermochemical energy storage for concentrated solar power plants
- Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage
Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: [http://oatao.univ-toulouse.fr/]
Eprints ID: 15979

To link to this article: DOI: 10.1016/j.rser.2013.12.014
URL: http://dx.doi.org/10.1016/j.rser.2013.12.014

To cite this version: Pardo, Pierre and Deydier, Alexandre and Anxionnaz-Minvielle, Zoé and Rougé, Sylvie and Cabassud, Michel and Cognet, Patrick A review on high temperature thermochemical heat energy storage. (2014) Renewable and Sustainable Energy Reviews, vol. 32. pp. 591-610. ISSN 1364-0321

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr
A review on high temperature thermochemical heat energy storage

P. Pardo a, A. Deydier a, Z. Anxionnaz-Minvielle a,b, S. Rougé a, M. Cabassud b,c, P. Cognet b,c

a CEA, LITEN, LETH, 17 rue des Martyrs, 38054 Grenoble, France
b Université de Toulouse; INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, F-31432 Toulouse, France
c CNRS, Laboratoire de Génie Chimique, F-31432 Toulouse, France

A B S T R A C T

Solar thermal energy represents an increasingly attractive renewable source. However, to provide continuous availability of this energy, it must be stored. This paper presents the state of the art on high temperature (573–1273 K) solar thermal energy storage based on chemical reactions, which seems to be the most advantageous one for long-term storage. The paper summarizes the numerical, experimental and technological studies done so far. Each system is described and the advantages and drawbacks of each reaction couple are considered.

Keywords:
Thermal Energy Storage (TES)
Thermochemical
Reversible reactions
Concentrated solar plant (CSP)

Contents

1. Introduction ... 591
2. Thermal energy storage: definitions 592
2.1. Energy density ... 593
2.2. Comparison of different TES systems 594
3. State-of-the-art on solar thermal energy storage based on chemical reactions 594
3.1. Technical disciplines and skills for developing a thermochemical TES system 594
3.2. Hydrogen systems: metallic hydrides 594
3.3. Carbonate systems ... 595
3.3.1. Calcite calcination/carbonation 595
3.3.2. Cerrusite calcination/carbonation 597
3.4. Hydroxide systems ... 597
3.4.1. Hydration/dehydration of magnesium oxide 597
3.4.2. Hydration/dehydration of calcium oxide 599
3.5. The REDOX system .. 600
3.5.1. Oxidation/decomposition of barium peroxide 600
3.5.2. Other oxidation/decomposition peroxide couples 601
3.6. Ammonia system ... 602
3.6.1. The ammonium hydrogen sulfate system 603
3.6.2. Dissociation/synthesis of NH₃ 603
3.7. Organic systems ... 604
3.7.1. Methane reforming .. 604
3.7.2. Cyclohexane dehydrogenation – benzene hydrogenation 605
3.7.3. Thermal dissociation of sulfur trioxide 608
3.8. Summary of case studies .. 608
4. Conclusion ... 608
References ... 608

* Corresponding author.
E-mail address: zoe.minvielle@cea.fr (Z. Anxionnaz-Minvielle).

http://dx.doi.org/10.1016/j.rser.2013.12.014
Nomenclature

- A: product A [dimensionless]
- B: Product B [dimensionless]
- C: product C [dimensionless]
- \(Cp \): specific heat of the media, kWh kg\(^{-1} \) K\(^{-1} \)
or kJ kg\(^{-1} \) K\(^{-1} \)
- \(D_m \): gravimetric energy density, kWh kg\(^{-1} \)
- \(D_v \): volumetric energy density, kWh m\(^{-3} \)
- \(K \): thermodynamic equilibrium constant [dimensionless]
- \(L \): latent enthalpy, kWh kg\(^{-1} \)
- \(M \): mass of media, kg
- \(n_A \): mol number of product A, mol
- \(P_u \): useful power, kW
- \(Q \): thermal energy stored, kWh
- \(T \): temperature of the system, K
- \(T^* \): turning temperature, K
- \(V \): volume of media, m\(^3 \)
- \(\Delta H_r \): reaction enthalpy, kWh mol\(^{-1} \) or kJ mol\(^{-1} \)
- \(\Delta t \): time difference, s
- \(\Delta T \): temperature difference, K
- \(S_i \): reaction entropy kJ K\(^{-1} \) mol\(^{-1} \)
- \(\eta \): thermal efficiency [dimensionless]
- +: advantages level of importance (+ + + high, + + medium, + low) [dimensionless]
- −: drawbacks level of importance (− − − high, − medium, − low) [dimensionless]

1. Introduction

The use of renewable energy is essential today to decrease the consumption of fossil resources and to decrease the production of carbon dioxide partly responsible for the greenhouse effect [1]. Solar energy constitutes an attractive source of energy because it is both free and endless. It can be converted into electricity by means of a concentrated solar plant (CSP) composed of four elements: a concentrator, a receiver, a transport media system and a power conversion machine. However, the major drawback of this energy is its intermittence. One solution is to develop thermal energy storage (TES) systems, which will store heat during the sunshine periods and release it during the periods of weak or no solar irradiation. A CSP equipped with a TES system would continuously supply electricity. Thus, the development of an efficient and cost-effective TES system is crucial for the future of this technology.

At the moment, three kinds of TES systems are known: the sensible heat storage, the latent heat storage and the thermochemical heat storage [1,2]. Sensible heat storage systems are the most mature technologies. They have been and are still being used in industrial plants, most notably in Spain, with the PS10 and PS20 projects (2007 and 2009) or the Andasol 1 and 2 plants (2008), but also in the USA, e.g. with Solar One (1982) [2]. Among the other techniques, thermochemical heat storage seems to be a valid option to be used as a TES system [3,4]. However, in order to be efficient and cost-effective, the appropriate reversible chemical reactions have to be identified [5]. Recently, two reviews focusing on low temperature (273–573 K) TES systems based on chemical reactions have been published. They respectively concern long-term sorption solar energy storage [6] and chemical heat pump technologies and their applications [7]. Cot-Gores et al. [8] also published a state-of-the-art on sorption and chemical reaction processes for TES application and some of the high temperature reactions are listed in the Felderhoff et al. article [9].

The purpose of this work is to provide a state-of-the-art of the thermochemical heat storage solutions, focusing on temperatures comprised between 573 K and 1273 K. General definitions as well as the disciplines involved in the development of a TES system are detailed. The experimental facilities at pilot or laboratory scales and their applications are reviewed and described. The systems have been classified according to their reaction family (carbontion, hydration, oxidation...) since they often share the same advantages and drawbacks. The main data have been compiled in 2 graphs (densities versus temperature) and a general table which summarizes the literature data about reversible reactions studied for thermochemical storage applications is given.

2. Thermal energy storage: definitions

Thermal storage systems have to be used to correct the existing mismatch between the discontinuous solar energy supply and the continuous electricity consumption [1]. They involve at least three steps: heat charging, storage and discharging. Three mechanisms of storing thermal energy exist. They are described below.

In sensible heat storage systems, during the charging step, solar energy is used to heat a fluid or a solid medium, thus, increasing its energy content. Then, the medium is stored at the charging step temperature. When this energy is released (discharging step), the medium temperature decreases. The sensible heat stored is associated with this increase or decrease of temperature. The thermal energy stored by sensible heat can be expressed as

\[
Q = m C_p \Delta T
\]

Where \(m \) is the mass of the material (kg), \(C_p \) is the specific heat over the temperature range operation (kJ kg\(^{-1} \) K\(^{-1} \)) and \(\Delta T \) is the temperature difference (K). Two reviews list the materials and the works done for high temperature thermal energy storage based on sensible heat [1,2].

In latent heat storage, during the charging step, solar energy can be used as the heat source that initiates a phase change. Then, the medium is stored at the charging step temperature into its new phase. When this energy is released (discharging step), the medium temperature changes into the first state. The latent heat stored is associated with this phase change. The thermal energy stored in phase change material can be expressed as:

\[
Q = m L
\]

Where \(m \) is the mass of the material (kg) and \(L \) is the latent heat of the material (kJ kg\(^{-1} \)). Many publications deal with latent TES systems. For instance, a review lists the materials, the heat transfer analysis and the applications [10]; another one lists both the materials and the works done for high temperature thermal energy storage based on phase change material (PCM) [11].

The reactions involved in the thermochemical heat storage system are reversible ones:

\[
A + \Delta H_r \rightleftharpoons B + C
\]

Heat is stored during the endothermic reaction step and released during the exothermic one. The thermochemical heat stored is linked to the reaction enthalpy. During the charging step, thermal energy is used to dissociate a chemical reactant (A), into products (B) and (C). This reaction is endothermic. During the releasing step, the products of the endothermic reaction (B and C) are mixed together and react to form the initial reactant (A). This reaction is exothermic and releases heat. The products of both
reactions can be stored either at ambient temperature or at working temperature. The thermal energy stored in thermochemical material can be expressed as:

\[Q = n_A \Delta H_r \]

Where \(n_A \) is the mol number of the reactant \(A \) (mol) and \(\Delta H_r \) is the reaction enthalpy (kWh mol\(^{-1}\)A). The simplified scheme of a TES system based on chemical reactions is presented on Fig. 1.

2.1. Energy density

In this paper, the energy density is assessed from the endothermic reactant \((A) \) mass or volume. The energy density can be defined in two ways. The first one and also the most used is the volumetric energy density, expressed as:

\[D_v = \frac{Q}{V} \]

Where \(D_v \) is the volumetric energy density (kWh m\(^{-3}\)), \(Q \) is the stored thermal energy (kWh) and \(V \) is the storage material volume (m\(^3\)).

In case of G/S reactions, if the \(A \) product is a gas, the temperature and pressure conditions have to be specified. If the \(A \) product is a solid, it is important to know which property among the true density, the apparent density or the bulk density is being used. True density is defined as the material density without porosity. Apparent density is defined as the average density of the material and includes the volume of pores within the particle boundary. Bulk density is defined as the density of the packed bed of particles. Once this property is known, the volume can be assessed. To be rigorous, the volumetric energy density should be calculated with the biggest volume or the installation volume.

The second definition is that of gravimetric energy density, expressed as

\[D_m = \frac{Q}{m} \]

Where \(D_m \) is the mass energy density (kWh kg\(^{-1}\)), \(Q \) is the stored thermal energy (kWh) and \(m \) is the storage material mass (kg).

Both energy densities are important in order to estimate the size and the cost of the TES system.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Characteristics and comparison of the thermal energy storage systems [1].</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensible heat storage system</td>
<td>Latent heat storage system</td>
</tr>
<tr>
<td>Energy density</td>
<td>Small – 50 kWh m(^{-3}) of material</td>
</tr>
<tr>
<td>Volumetric density</td>
<td>Small – 0.02–0.03 kWh kg(^{-1}) of material</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>Charging step temperature</td>
</tr>
<tr>
<td>Storage period</td>
<td>Limited (thermal losses)</td>
</tr>
<tr>
<td>Transport</td>
<td>Small distance</td>
</tr>
<tr>
<td>Maturity</td>
<td>Industrial scale</td>
</tr>
<tr>
<td>Technology</td>
<td>Simple</td>
</tr>
</tbody>
</table>

Fig. 1. Simplified scheme of a TES system based on chemical reactions.

Fig. 2. Technical disciplines necessary to the development of a TES system based on chemical reactions [4].
2.2. Comparison of different TES systems

To compare the three different TES systems, six parameters are considered: the energy density, the storage temperature, the storage period, the material transportation possibility, the maturity of the TES system and the complexity of associated technologies.

The characteristic data of each storage system are given in Table 1.

Thermochemical storage systems have several advantages. Their energy densities are 5 to 10 times higher than latent heat storage system and sensible heat storage system respectively. Both storage period and transport are theoretically unlimited because there is no thermal loss during storage, as products can be stored at ambient temperature. Thus, these systems are promising to store solar thermal energy during a long-term period. Nevertheless, unlike sensible and latent heat storage systems there is only little experience feedback on thermochemical storage.

3. State-of-the-art on solar thermal energy storage based on chemical reactions

3.1. Technical disciplines and skills for developing a thermochemical TES system

Thermochemical TES systems are still at a very early stage of development. Most of the studies are done at laboratory scale. Considerable amount of time, money and efforts are required before a commercially viable system becomes operational. The technical disciplines identified by Garg et al. [4] to develop a thermochemical TES system are updated and presented on Fig. 2.

Usually, the first step to develop a thermochemical TES system is the selection of the reaction and the study of its chemical characteristics such as the reversibility, the rate of reaction, the operating conditions (P and T) and the kinetic properties. Wentworth and Chen [5] reported that the following criteria ought to be respected for choosing the most suitable chemical reaction in the thermochemical TES system:

- The endothermic reaction used for heat storage should occur at a temperature lower than 1273 K.
- The exothermic reaction used to recover heat should occur at a temperature higher than 773 K.
- Large enthalpies of reaction and a product of small molar volume are required to maximize the storage capacity (~500 kWh m⁻³).
- Both reactions should be completely reversible, with no side reactions, and have high yields in order to use the materials over a long period of time.
- Both reactions should be fast enough so that the absorption of solar energy and heat release can be carried out rapidly.
- The chemical compounds of both reactions should be easily handleable.
- When stored, the chemical compounds should not react with their environment.
- Experiment feedback on the reaction is required to use a well-known chemical process.
- Low costs should be required.

Some papers list reversible reactions which can be used for a TES system [3–5,13]. Usually, their characteristics are reactant family, reaction enthalpy and turning temperature. For a reversible reaction of the type \(A + B \rightleftharpoons C + D \) and a given pressure, the turning temperature \(T^\circ \) is defined as the temperature at which the reaction rate constant \(K \) is equal to 1, and is approximated as \(T^\circ = \Delta H/\Delta S_r \).

As \(K < 1 \) when \(T > T^\circ \) and \(K > 1 \) for \(T < T^\circ \) [4,5]. The turning temperature \(T^\circ \) may help knowing the required temperature conditions to carry out both endothermic and exothermic reactions [4,5]. The study of chemistry properties allows the determination of the required operating conditions. Then, the chemical engineering work can start with the choice of the reactor technology, the material, the operating process plant design and the system analysis.

The following state-of-the-art underlines the different reactions which were or are studied for a thermochemical TES plant. These reactions are classified in six systems which are illustrated in Fig. 3.

3.2. Hydrogen systems: metallic hydrides

The general form of a reaction using a metal \(M \), is

\[
\text{MH}_n + \Delta H_r \rightleftharpoons M + n/2 \text{H}_2
\]

Usually, the reversible metallic hydride reactions are used to store hydrogen. In fact, one of the first research works were performed in the automotive industry for the hydrogen motor [14]. They led to the design of reactor before being used for heat pumps [15] and, in the beginning of the 90s, for the thermal energy storage [14].
Three metallic hydrides have been studied for the thermal energy storage in concentrated solar plants: lithium hydride (LiH) for the TES using its energy of phase change, calcium hydride (CaH₂) for heat storage at high temperature between 1223 and 1373 K and magnesium hydride (MgH₂) for both applications [16].

We only focus on the reaction involving magnesium hydride studied for a thermochemical TES application [17]. The reaction is written as

\[\text{MgH}_2(s) + \Delta H_r \leftrightarrow \text{Mg}(s) + \text{H}_2(g) \quad \text{with } \Delta H_r = 75 \text{ kJ mol}^{-1}. \]

The working temperatures range between 523 and 773 K with a hydrogen partial pressure between 1 and 100 bar. The knowledge of the H₂ dissociation (equilibrium) pressure as a function of temperature is of fundamental importance for the use of MgH₂/Mg couple as storage system (Fig. 4).

In the beginning of the 90s, the first research works start with the magnesium hydride [17] because of its high capacity of hydrogen storage (7.7 wt%) [16]. Nevertheless, using magnesium hydride involves major problems like slow kinetics and transfer limitations for large quantities of products. A paper reviews the works done for TES application [18]. In order to improve the rate of chemical reactions, the Mg powder was doped with a commercial Ni powder (4–10 wt%) and a Fe-powder (50 mol%). More than 1000 cycles were achieved with the Mg–Ni mixed powder, but a sintering phenomenon occurred. With the Mg₆FeH₆ powder, this phenomenon did not occur. 600 cycles were achieved without any drop in hydrogen capacity and the working pressure was lower than the working pressure for the pure material.

The Max-Planck institute designed and built three prototypes [18]: a steam generator (Fig. 5), a thermochemical solar plant (Fig. 6) and a solar cooking and cooling device.

The steam generator involves a MgH₂/Mg heat storage. The volume of the pressure vessel, closed to 20 L, is filled with a magnesium powder doped with a Ni powder (14.5 kg). A H₂ permeable tube set in the centre of the pressure vessel allows the hydrogen supply and the hydrogen recovery. Pressurized water flowing in a helical tube is set into the metallic hydride for the heat recovery and the vapour generation. The endothermic reaction can be implemented with a ribbon heater sealed around the pressure vessel. The hydrogen produced during the endothermic reaction is stored in six commercial vessels. The operating conditions are at a maximal pressure of 50 bar, a maximal temperature of 723 K and a maximal power of 4 kW.

The thermochemical solar plant is composed of a solar radiation concentrator, a cavity radiation receiver, a Stirling engine, a hydrogen tank pressure, a heat exchanger and a MgH₂/Mg storage device. The operating temperatures range between 623 K and 723 K. During the sunshine periods, electricity is produced and heat is stored by dissociating MgH₂. During the periods of weak or no solar irradiation, the hydrogen stored is supplied to the reactor to produce heat. Then, the heat is converted into electricity by the Stirling engine.

Table 2 presents the advantages and the drawbacks of the MgH₂/Mg system as a thermochemical TES system.

3.3. Carbonate systems

The general reaction form is

\[\text{MCO}_3(s) + \Delta H_r \leftrightarrow \text{M}(s) + \text{CO}_2(g) \]

Usually, these reactions occur at high temperature (\(T > 723 \) K). The calcination/carbonation reactions are driven by the CO₂ partial pressure and the temperature of the system. Two reversible reactions, the calcite and the cerasite calcination/carbonation, were studied for a TES application. Today, most studies focus on the CO₂ sequestration with calcium carbonate [19].

3.3.1. Calcite calcination/carbonation

The reaction is

\[\text{CaCO}_3(s) + \Delta H_r \leftrightarrow \text{CaO}(s) + \text{CO}_2(g) \quad \text{with } \Delta H_r = 178 \text{ kJ mol}^{-1}. \]

The reversibility of the reaction can be used for a TES system application, for CO₂ sequestration or for limestone production. The working temperatures range between 973 and 1273 K with CO₂ partial pressure between 0 and 10 bar.
In the mid 70s, Barker [20] suggests to use this reaction for energy storage. His work focuses on the reversibility of the reaction. Many problems are observed with a 10 μm particle size powder due to the loss of specific surface. Indeed, a passivation layer is created during the carbonation and leads to a reaction limitation by decrease of the CO₂ diffusion in the particles. In order to solve this limitation, submicron particles have been used to avoid diffusion problems and finally to improve the reaction reversibility. While the material conversion reaches 93%, another problem arises. The volumetric energetic density of the product does not exceed 10% of the theoretical value of 35.3 kWh m⁻³ CO₂.

In the mid 70s, Barker [20] suggests to use this reaction for energy storage. His work focuses on the reversibility of the reaction. Many problems are observed with a 10 μm particle size powder due to the loss of specific surface. Indeed, a passivation layer is created during the carbonation and leads to a reaction limitation by decrease of the CO₂ diffusion in the particles. In order to solve this limitation, submicron particles have been used to avoid diffusion problems and finally to improve the reaction reversibility. While the material conversion reaches 93%, another problem arises. The volumetric energetic density of the product does not exceed 10% of the theoretical value of 35.3 kWh m⁻³ CO₂ [21]. This huge decrease comes from the diminution of the density of the product in bulk.

At the beginning of the 80s, the calcination reaction is operated in two technologies of reactor: a fluidized bed in a batch mode (Fig. 7) and a continuous rotary kiln (Fig. 8) [22]. The fluidized bed works at a temperature between 873 and 1573 K with a solar furnace useful power of 1.4 kW. A total conversion of CaCO₃ is reached. The thermal efficiency, defined as the ratio between the sum of the sensible energy and the reaction energy over the useful power given to the material during Δt, is between 20 and 40%. It is expressed as

\[η = \frac{(mC_pΔT + nΔH)}{(ΔtP_u)} \]

Where η is the thermal efficiency, \(m \) is the initial mass of the reactant A (kg), \(C_p \) is the specific heat over the temperature range operation (kJ kg⁻¹ K⁻¹), ΔT is the temperature difference (K), \(n \) is the mol number of reactant A (mol), \(ΔH_r \) is the reaction enthalpy (kJ mol⁻¹), Δt is the time difference (s) and \(P_u \) is the useful power (kW).

The rotary kiln (see Fig. 8) works at a temperature between 873 and 1573 K with a solar furnace useful power of 1.4 kW and is inclined 5° to the horizontal. A maximal conversion of 60% of CaCO₃ is experimentally reached with thermal efficiencies ranging from 10% to 30% [22,23]. Here, the residence times reached in the reactor are included between 20 and 120 s for rotary speed from 4 to 25 tr min⁻¹.

In order to improve the energetic efficiency of the reactors, Flamant [22] identifies the main causes of thermal losses and suggests some technological improvements on both the fluidization distributor and the cooling system of the rotary kiln. According to these proposals, Foro [25] develops an annular continuous fluidized reactor with an electrical power of 3 kW and 1 kW of useful power. He also demonstrates the thermal decomposition feasibility in the fluidized bed.

After many years without surveys, Kyaw et al. [26] realise a thermogravimetric study and suggest some new concepts for the storage system [13]. A conceptual flow diagram of CaO–CO₂
energy storing system is evaluated [26]. Three ways are used to store CO₂:

- a compressor and a tank;
- a carbonation reaction with MgO; and
- an adsorption reaction with zeolite.

The CaO–CO₂–MgO system was the best system to convert heat energy at 773 K to temperatures around 1273 K. The CaO–CO₂ compressor system was the most suitable for storing and delivering thermal energy at the same temperature. The efficiency of CaO–CO₂–zeolite systems was strongly governed by the adsorption power of the zeolite.

Aiha et al. [27] improved the reversibility of the reaction by doping the material with titanium oxide (CaTiO₃). A thermogravimetric study was done and showed a stabilisation of the reversibility and no sintering. 10 cycles have been reached without loss of reversibility and with a global conversion rate of 65%. The operating conditions for the carbonation and the calcination were respectively 1023 K in nitrogen atmosphere and 1023 K with a gas mixture of N₂–CO₂ containing 20% of CO₂.

Meier et al. [24] developed a new solar reactor based on the technology of the rotary kiln (Fig. 8). The objective was to produce calcium oxide from limestone with an available power of 10 kW. The experiments have been done with 1 to 5 mm particles size and a conversion rate of 90–98% has been reached with a thermal efficiency of 20%.

Table 3 presents the advantages and the drawbacks of the CaO/ CaCO₃ system as the thermochemical TES system.

3.3.2. Cerrusite calcination/carbonation

The reaction scheme is

\[\text{PbCO}_3 + \Delta H_f \leftrightarrow \text{PbO} + \text{CO}_2 \quad \text{with } \Delta H_f = 88 \text{ kJ mol}^{-1}. \]

This reaction was studied for chemical heat pump applications [28–30] in order to combine with the CaCO₃/CaO system. The authors give operating temperatures from 573 to 1730 K with partial pressure of CO₂ included between 0 and 1 bar. A thermogravimetric analysis of the PbCO₃/PbO/CO₂ system was done to study the equilibrium relationship, the reaction reversibility (7 cycles of carbonation without loss of reactivity were achieved) and the kinetics of the reaction system [29]. The following mechanism of the decomposition reaction has been proposed:

Step A: \(2\text{PbCO}_3 \rightarrow \text{Pb} \cdot \text{PbCO}_2 \cdot \text{CO}_2 \)

Step B: \(3(\text{Pb} \cdot \text{PbCO}_2) = 2(\text{PbO} \cdot \text{PbCO}_3) + \text{CO}_2 \)

Step C: \(2\text{PbO} \cdot \text{PbCO}_3 = 3\text{PbO} + \text{CO}_2 \)

A packed bed reactor which combined PbO and CaO was built to study the thermal storage performance of the chemical heat pump [30]. The authors showed that the heat released by carbonation of CaO was measured experimentally up to 1143 K under a reaction pressure up to 1 atm.

Table 4 presents the advantages and the drawbacks of the PbO/ PbCO₃ system as thermochemical TES system.

3.4. Hydroxide systems

The general reaction scheme is

\[\text{Mg(OH)}_2\alpha + \Delta H_f \leftrightarrow \text{MgO}_\alpha + \text{H}_2\text{O}(g) \]

These reactions occur at medium temperature, usually 523 < T < 723 K. The H₂O partial pressure and the temperature drive the hydration/dehydration reactions. Fig. 9 shows some of couples which could be used for a thermochemical TES application. Two reversible reactions were studied for a TES application [3,4]. These reactions are MgO/Mg(OH)_2 and CaO/Ca(OH)_2 hydration/dehydration.

3.4.1. Hydration/dehydration of magnesium oxide

The reaction is

\[\text{Mg(OH)}_2\alpha + \Delta H_f \leftrightarrow \text{MgO}_\alpha + \text{H}_2\text{O}(g) \quad \text{with } \Delta H_f = 81 \text{ kJ mol}^{-1}. \]

The preliminary studies showed that the reaction rate (forward and backward reactions) is sufficient to be used for a TES application [3,4]. This reaction couple is proposed for chemical heat pump application to store and convert heat at temperatures of 370–440 K [32].

Ervin [3] made a cycling study over 500 cycles. He observed a conversion decrease from 95% to 60% within the fortieth cycle. It then stabilized for the next 460 cycles.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaCO₃ + ΔH_f ↔ CaO + CO₂</td>
<td>- No catalyst</td>
<td>- Agglomeration and sintering</td>
</tr>
<tr>
<td></td>
<td>- Industrial technology known for the limestone production</td>
<td>- Poor reactivity</td>
</tr>
<tr>
<td></td>
<td>- Material energy density (Theoretical: 692 KWh m⁻³)</td>
<td>- Change of volume (105%)</td>
</tr>
<tr>
<td></td>
<td>- No by-product</td>
<td>- CO₂ storage</td>
</tr>
<tr>
<td></td>
<td>- Easy product separation (gas-solid)</td>
<td>- Doping with Ti</td>
</tr>
<tr>
<td></td>
<td>- Availability and price of the product</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbCO₃ + ΔH_f ↔ PbO + CO₂</td>
<td>- No catalyst</td>
<td>- Poor reversibility</td>
</tr>
<tr>
<td></td>
<td>- Material energy density (Theoretical: 300 KWh m⁻³)</td>
<td>- Few experiment feedback</td>
</tr>
<tr>
<td></td>
<td>- No by-product</td>
<td>- CO₂ storage</td>
</tr>
<tr>
<td></td>
<td>- Product separation (gas-solid)</td>
<td>- Toxicity of the products</td>
</tr>
</tbody>
</table>
The following studies have been done in a Japanese laboratory of the Institute of Tokyo, the nuclear reactors laboratory. These researches aimed at developing chemical heat pumps. The first kinetic study of the hydration reaction was led by Kato et al. for 10 μm particles. A 4 steps mechanism between MgO(s) and H₂O(g) has been proposed: (i) containment of water as fixed structural, (ii) physical adsorption of water, (iii) chemical reaction with water producing Mg(OH)₂(s), and (iv) inert portion of water. The kinetic parameters have been assessed and the model shows a good accuracy with the experimental results.

Kato et al. led a reversibility study in a thermobalance with a 10 nm Mg(OH)₂ powder. In order to get a durable reversibility of the reaction, the authors concluded that the system temperature had to be between 363 and 383 K and the water partial pressure between 47.4 and 57.8 kPa. They observed a constant reversibility with a conversion rate of 50%.

Kato et al. have also developed a packed bed reactor used as a chemical heat pump. The packed bed (1.8 kg Mg(OH)₂) was suspended to a balance in order to measure the mass change of the bed during the reaction. An evaporator and a vacuum pump controlled the water partial pressure in the system. A heating tube controlled the temperature in the system. The operating conditions of dehydration reaction were a temperature of 703 K and a water partial pressure of 14.7 kPa. Regarding the hydration reaction, several water pressures were tested: 31.2, 47.4 and 70.1 kPa. The results showed the possibility to use the chemical heat pump to produce heat at 383 K.

In 2005, Kato et al. developed a new heat pump which is able to operate with partial steam pressure from 30 to 203 kPa. Higher pressures increase the return temperature during the hydration reaction. Here, 52 kg of Mg(OH)₂ are introduced in...
the reactor which is heated by an electrical resistor during the dehydration reaction. For the hydration reaction, the study of the influence of steam partial pressure underlines that for a steam pressure of 203 kPa, the temperatures in the reactor were close to 473 K. Later, the works [31,37–39] dealt with the shaping and the doping of the material in order to diminish the costs and the minimum temperature for dehydration. To reduce the price of Mg(OH)₂, the authors used magnesium hydroxide of sea water which they have purified and obtained a cost divided by 10. Concerning the doping, the authors used Ni and LiCl and a decrease of the dehydration temperature of Mg(OH)₂ (around 100 K) was observed.

Table 5 presents the advantages and the drawbacks of the MgO/Mg(OH)₂ system as thermochemical TES system.

3.4.2. Hydration/dehydration of calcium oxide

The reaction is [40]:

\[
\text{Ca(OH)}_2(s) + \Delta H_r \rightarrow \text{CaO(s)} + \text{H}_2\text{O(g)} \quad \text{with } \Delta H_r = 104 \text{ kJ mol}^{-1}
\]

The operating temperatures range from 623 to 1173 K with steam partial pressures from 0 to 2 bar. Many authors studied this reaction for many applications: heat pump, heat storage of concentrated solar plants, motors preheating or electrical generation on the moon. In the following sub-sections, these works are classified into two categories: the heat pumps and the thermal energy storage.

3.4.2.1. The heat pumps.

Matsuda et al. [41] studied the kinetics of both the Ca(OH)₂ dehydration and the CaO hydration in a thermogravimetric apparatus for heat pump applications. The study have been done with 5 μm Ca(OH)₂ particles and 10 mg of product. The following table lists the range of temperature and steam partial pressure for both hydration and dehydration reactions.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Temperatures (K)</th>
<th>Steam concentration (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration</td>
<td>693–723</td>
<td>1.5–6%</td>
</tr>
<tr>
<td>Hydration</td>
<td>356–611</td>
<td>2.0–15.7%</td>
</tr>
</tbody>
</table>

From the end of the 90s to the beginning of the 2000s, most of the studies have been carried out in a Japanese institute, the Kyushu Institute of Technology (KIT) ([41–47]). These works allowed developing and simulating the chemical heat pumps using the couple CaO/Ca(OH)₂. These heat pumps work in closed systems.

Table 5

Advantages and drawbacks of the MgO/Mg(OH)₂ system.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(OH)₂ + H₂O → MgO + H₂O</td>
<td>No catalyst ++</td>
<td>Change of volume -</td>
</tr>
<tr>
<td></td>
<td>Material energy density (Theoretical: 380 KWh m⁻³) +++</td>
<td>No industrial feedback -</td>
</tr>
<tr>
<td></td>
<td>Operating pressure (1 bar) +++</td>
<td>Product reactivity (50%) --</td>
</tr>
<tr>
<td></td>
<td>Good reversibility of the reaction +++</td>
<td>Doping</td>
</tr>
<tr>
<td></td>
<td>No by-product ++</td>
<td>Low thermal conductivity -</td>
</tr>
<tr>
<td></td>
<td>Product separation (gas-solid) ++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>No toxicity -</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Experimental feedback (10 years) +</td>
<td></td>
</tr>
</tbody>
</table>
system and Fig. 11 presents the principle and the operating schemes.

3.4.2.2. The thermal heat storage. Ervin [3] was the first to suggest using this reaction in a thermal energy storage plant. He achieved 290 cycles with an average conversion rate of 95%. Kanzawa and Arai [48] developed a fixed bed reactor. To increase the heat transfer during the Ca(OH)₂ dehydration, they proposed to use a reactor with copper fins. They made a 2D unsteady state model for the fixed bed and determined the optimal distance between the copper fins. Darkwa [49] aimed at developing an energy storage system for the preheating of motors. Experimental and numerical studies have been carried out and he underlined the fact that the heat transfer into the installation limits the reaction. Azpiazu et al. [50] studied the reversibility in a fixed bed reactor with copper fins and 20 cycles were achieved. They observed that using an air atmosphere causes the apparition of a side reaction: the calcium oxide carbonation.

The following studies focus on the development of a thermochemical storage system for applications in solar plants. Wereko-Brobby [51] worked on the feasibility of the storage system applied to a 1 MWh concentrated solar plant. He suggested using a fluidized bed reactor and he obtained a storage system yield of 45% with reactant storage temperature of 298 K. Brown et al. [52] carried out a technical-economic survey on the development of a thermochemical storage process. The results demonstrate the feasibility of the process for a solar plant with an energy efficiency of 80% and an initial price for the installation of 45 $ \text{kWh}^{-1}$. Fujii et al. [53] achieved a study on the kinetics of the particles of calcium hydroxide and calcium oxide as pellets and spheres. The work has been realized with pure products (spheres and pellets) and doped products (pellet) with copper, zinc and aluminum. The best results, for the reaction kinetics are obtained with aluminum doping for an optimal concentration of 15% in weight. Between 2010 and 2013, Schaube et al. [54,55] carried out a survey on the feasibility of the storage process in a thermodynamical solar plant. They used a fixed bed reactor and simulated a one dimensional chemical reactor in unsteady state. They concluded that the heat transfer between the bed and the wall was not a viable solution because the heat conductivity of the material is too low. To improve the heat transfer, they suggested using the circulating gas into the reactor as the heat transfer fluid. In 2012, Schaube et al. [56] worked on the physic-chemical characterization of the products. The authors determined the particles diameter, the specific heat, the reaction enthalpy and the kinetics of both hydration and dehydration with a thermogravimetric analysis. They achieved 100 cycles without reversibility loss. Later, Schabe et al. [57,58] led experimental and numerical studies on the technology of the fixed bed reactor. They used the reactor presented on Fig. 12 for the experimental part and achieved 25 cycles without reversibility loss. The numerical model in two dimensions and in unsteady state has been developed with the COMSOL software. The authors obtained a good accuracy between the simulated and the experimental results.

Table 7 presents the advantages and the drawbacks of the CaO/Ca(OH)₂ system as a thermochemical TES system.

3.5. The REDOX system

The general reaction form is

\[\text{M}_2 \text{O}_3(s) + \Delta H_r = x \text{M}_2 + y/2O_2(g) \]

These reactions occur at temperatures between 623 and 1373 K. Only few studies have been made on these materials. The first studied couple was BaO₂/BaO in 1978 [59] and after 30 years without survey, DLR is interested again in these systems for storage application in tower centrals.

3.5.1. Oxidation/decomposition of barium peroxide

The reaction is

\[2\text{BaO}_2(s) + \Delta H_r = 2\text{BaO}_3(s) + O_2(g) \quad \text{with} \quad \Delta H_r = 77 \text{kJ mol}^{-1} \]

This reaction occurs at temperatures between 673 and 1300 K for partial oxygen pressure between 0 and 10 bar. Preliminary thermogravimetric studies showed the potential of BaO/BaO₂ system for a thermochemical TES application [59,60]. Some difficulties arose when trying to achieve the complete conversion of reaction, because of mass transfer limitations and a crusting of the material surface [60]. The kinetic equations of both forward and reverse reactions were determined and the reaction reversibility had shown a decrease after the first cycle [59]. Recently, Wong et al. [60] studied this couple and compared it with other redox couples for a feasibility study in tower centrals.
Table 7
Advantages and drawbacks of the CaO/Ca(OH)$_2$ system.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(OH)$_2 + \Delta H_f \rightarrow$ CaO$ +$ H$_2$O</td>
<td>• No catalyst ++</td>
<td>• Agglomeration and sintering --</td>
</tr>
<tr>
<td></td>
<td>• Material energy density (Experimental: 300 KWh m$^{-3}$) ++</td>
<td>• Change of volume (95%) --</td>
</tr>
<tr>
<td></td>
<td>• Reversibility of the reaction (\sim 100 cycles) ++</td>
<td>• Low conductivity -</td>
</tr>
<tr>
<td></td>
<td>• No by-product +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Product separation (gas-solid) +++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Operating pressure (0 – 10 bar) +++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nontoxic product +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Experimental feedback (10 years) +</td>
<td></td>
</tr>
</tbody>
</table>

Table 8
Advantages and drawbacks of the BaO/BaO$_2$ system.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2BaO$_2 + \Delta H_f \rightarrow$ 2BaO$ +$ O$_2$</td>
<td>• Operating temperature (400–1300 K) +</td>
<td>• Incomplete conversion of both forward and reverse reactions ++</td>
</tr>
<tr>
<td></td>
<td>• O$_2$ reactant +</td>
<td>• No experiment feedback -</td>
</tr>
<tr>
<td></td>
<td>• No catalyst +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• No by product +</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Products separation (gas-solid) +++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Operating pressure (0–10 bar) +++</td>
<td></td>
</tr>
</tbody>
</table>

Table 9
Advantages and drawbacks of the Co$_3$O$_4$/CoO system.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Co$_3$O$_4 + \Delta H_f \rightarrow$ 6CoO$ +$ O$_2$</td>
<td>• High reaction enthalpy (\sim 205 kJ mol$^{-1}$) ++</td>
<td>• Few experiment feedback -</td>
</tr>
<tr>
<td></td>
<td>• O$_2$ as a reactant +</td>
<td>• Storage of O$_2$ --</td>
</tr>
<tr>
<td></td>
<td>• No catalyst +</td>
<td>• Toxicity of the products -</td>
</tr>
<tr>
<td></td>
<td>• No by product +</td>
<td>• Cost of the products -</td>
</tr>
<tr>
<td></td>
<td>• Reversibility (500 cycles) +++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Products separation (gas-solid) +++</td>
<td></td>
</tr>
</tbody>
</table>

Table 10
Advantages and drawbacks of the NH$_4$HSO$_4$/NH$_3$/H$_2$O/SO$_3$ system.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH$_4$HSO$_4 + \Delta H_f \rightarrow$ NH$_3$ + H$_2$O$ +$ SO$_3$</td>
<td>• Material energy density (Theoretical: 860 KWh m$^{-3}$) +++</td>
<td>• Corrosive products --</td>
</tr>
<tr>
<td></td>
<td>• No catalyst +</td>
<td>• Toxic products -</td>
</tr>
<tr>
<td></td>
<td>• Product separation (gas-liquid) +++</td>
<td>• No experiment feedback -</td>
</tr>
</tbody>
</table>

Table 8 presents the advantages and the drawbacks of the BaO/BaO$_2$ system as thermochemical TES system.

3.5.2. Other oxidation/decomposition peroxyde couples

More recently, a study about the potential of six oxide/peroxide couples for a thermochemical TES application has been investigated by Wong et al. [61]. To assess the relevance of various couples, a thermodynamic analysis, an engineering feasibility study and thermogravimetric measurements have been done. The relevant couples are: Co$_3$O$_4$/CoO, MnO$_2$/Mn$_2$O$_3$, CuO/Cu$_2$O, Fe$_2$O$_3$/FeO, Mn$_3$O$_4$/MnO and V$_2$O$_5$/VO$_2$. Nevertheless, for their application, the most promising reaction is:

$$2Co_3O_4$($s$) + $\Delta H_f \rightarrow 6$CoO(s) + $O_2(g)$ with $\Delta H_f = 205$ kJ mol$^{-1}$.

The decomposition occurs at 1123 K in a nitrogen atmosphere and the oxidation occurs at 973 K in an air atmosphere with partial oxygen pressure between 0 and 1 bar. This reaction has been implemented both in a thermogravimetric balance and in a fixed bed [62]. 500 cycles have been achieved and the morphologic study of the product showed a progressive magnification of the particles progressively during the cycles. Buckingham et al. [63] have done a numerical analysis of packed bed parameters and operating conditions. They
concluded that a packed bed design for metal oxide TES couple
not be economically competitive and recommended to study a
“moving bed” design, as a rotary kiln, to improve the TES process.

Neises et al. [64] used a rotary kiln based on the work of Buckingham
et al. [63] to implement the reaction which is heated through a solar
furnace of 22 kW. They carried out a reversibility study on three
samples: pure Co$_3$O$_4$ and two mixtures of doped Co$_3$O$_4$ with alumina
oxide. They achieved 30 cycles and demonstrated the feasibility of the
process with an energetic density in the reactor of 95 kWh m$^{-3}$.

Table 9 presents the advantages and the drawbacks of the
Co$_3$O$_4$/CoO system as the thermochemical TES system.

3.6. Ammonia system

Historically, two reactions using the “Ammonia system” have
been studied. The first one, studied by Wenthworth et Chen [5] is
the decomposition of NH$_4$HSO$_4$ but only few surveys have been
carried out. The second one, studied by the Australian National
University (ANU) since 40 years, is the decomposition/synthesis of
the ammonia for thermal energy storage.

Fig. 13. Installation of a parabolic through power plant with chemical energy
storage [49].

Fig. 14. Solar ammonia dissociation reactor (a) design of the cavity receiver with 15 kW$_{th}$ and its assembly on ANU’s 20 m2 dish without insulation fitted; and (b) reactor in
operation on the ANU’s 20 m2 dish [49].

Fig. 15. Design of the 10 kW$_{th}$ ammonia synthesis heat recovery [49].
3.6.1. The ammonium hydrogen sulfate system

The reaction is

\[\text{NH}_4\text{HSO}_4 (\ell) \rightleftharpoons \text{NH}_3 (g) + \text{H}_2\text{O}(g) + \text{SO}_3 (g) \quad \text{with } \Delta H_r = 336 \text{ kJ mol}^{-1}. \]

A preliminary study showed the potential of this system for TES application [5]. The reaction occurs at 690 K and 1.46 atm. No catalysts are required for both forward and reverse reactions. A process flowsheet was designed to carry out a thermochemical TES process based on ammonium hydrogen sulfur cycle [5]. Prengle et al. [5] defined the thermal efficiency as the ratio between the released heat energy and the required solar energy. The preliminary energy analysis of the cycle confirmed the engineering feasibility of the process with a thermal efficiency of 62% and a theoretical energetic density of 860 kWh m\(^{-2}\).

Table 10 presents the advantages and the drawbacks of the NH\(_4\)HSO\(_4\)/NH\(_3\)/H\(_2\)O/SO\(_3\) system as the thermochemical TES system.

3.6.2. Dissociation/synthesis of NH\(_3\)

The reaction is

\[2\text{NH}_3 (g) \rightleftharpoons \text{N}_2 (g) + 3\text{H}_2 (g) \quad \text{with } \Delta H_r = 66.9 \text{ kJ mol}^{-1}. \]

This reaction occurs at temperatures between 673 and 973 K and pressures between 10 and 30 bar. The Haber–Bosch process is based on this reaction for the NH\(_3\) production since 100 years. A lot of
studies (e.g.; kinetic studies by Temkin et al. [65]) have already been done for this application (NH₃ production). Fig. 13 shows the scheme of the installation developed and used by the Australian National University (ANU) for a thermochemical TES application.

Both forward and reverse reactions are catalysed. The catalyst materials used in the endothermic reactor and in the exothermic reactor are respectively the Haldor-Topsøe “DNK-2K” [66] and Haldor-Topsøe “KM1” [67].

The works on a thermochemical TES system using the ammonia system began with Carden [68] and Williams and Carden [69]. They assessed a theoretical energetic efficiency of 90% if the conversion rate of the ammonia into the reactor was higher than 60%. Later, the thermodynamic limitations associated with the use of the reversible reaction of the ammonia have been studied by Lovegrove et al. [70,71] thanks to a pseudo-homogeneous two dimensions model of reactor. The first solar driven high pressure ammonia reactor of 1 kW has been successfully tested in a closed loop system [67]. This reactor allowed the validation of a numerical model to predict the temperatures in the catalyst, on the wall and in the gas, and also the conversion rate and the product flowrates. A detailed study of a 10 MWₑ base load power plant in Australia, has indicated that levelled electricity costs lower than AUS § 0.15/kWh were potentially achievable [72]. A scale-up (Fig. 14) of the first solar driven ammonia reactor has been done in order to accept the full (=15 kW) input from the ANU’s 20 m² dish system [66].

Fig. 15 shows the design of the ammonia synthesis heat recovery reactor of 10 kWₑ in [66].

A new 500 m² parabolic dish solar concentrator has been built by the ANU in 2009 (Fig. 16). The receiver geometry was numerically optimized to improve the dissociation reaction [73]. This numerical model can then be applied to develop an ammonia receiver for the 500 m² SG4 dish concentrator.

ANU has done the most advanced works in this sector, by working for over 40 years on the thermochemical energy storage using the dissociation and synthesis of ammonia. ANU is also the first laboratory which continuously store and release energy during 24 h thanks to its closed loop system composed of a solar reactor of 15 kW for the dissociation reaction and a synthesis reactor of 10 kW [75].

Table 11 presents the advantages and the drawbacks of the NH₃/N₂/H₂ system as the thermochemical TES system.

3.7. Organic systems

3.7.1. Methane reforming

Reforming of methane using steam or carbon dioxide is industrially used for the H₂ production. These reactions have also been studied for heat transportation. There is no study about the TES system based on the methane reforming but this could be an application. Both reactions are catalysed by Ni-based or Ru-based catalysts [76].

3.7.1.1. Methane steam reforming. The reaction is

\[\text{CH}_4(g) + \text{H}_2\text{O}(l) + \Delta H_f \leftrightarrow \text{CO}(g) + 3\text{H}_2(g) \quad \text{with} \quad \Delta H_f = 250 \text{ kJ mol}^{-1}\text{CH}_4. \]

The side reaction is

\[\text{CO}(g) + \text{H}_2\text{O}(l) \leftrightarrow \text{CO}_2(g) + \text{H}_2(g) \quad \text{with} \quad \Delta H_f = -41.2 \text{ kJ mol}^{-1}\text{CO}. \]

This reaction occurs at temperatures between 873 and 1223 K and pressures between 20 and 150 bar. In 1975, Kugeizers et al. [77] suggested to use the reaction of methane steam reforming for the transport of the thermal energy coming from the nuclear plants. The authors made a feasibility survey and proposed a process flowsheet (Fig. 17) with energetic efficiencies between 60% and 73%. In order to study and understand the phenomena involved during the reaction, a first pilot plant, EVA I, was built by Fedders et al. [78]. An industrial-scale pilot plant EVA II/ADAM I of 300 kW was developed in 1979 at the Institut für Reaktorbauelemente in Germany. 850 operating hours have been investigated. They showed the feasibility of the energy transport system by means of the reversible reaction [79]. More recently, a new design process (ICAR: immediate catalytic accumulation of ionizing radiation energy) was developed by Aristov et al. [80]. The endothermic reactor is directly combined with the nuclear reactor to improve the process efficiency.

3.7.1.2. Methane reforming using carbon dioxide. Methane reforming using carbon dioxide presents an advantage for a TES

Table 12

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₄ + H₂O + ΔHₛ = 3H₂ + CO</td>
<td>- Industrial feedback</td>
<td>- H₂ storage</td>
</tr>
<tr>
<td></td>
<td>- High reaction enthalpy (~250 kJ mol⁻¹)</td>
<td>- Cost of CH₄</td>
</tr>
<tr>
<td></td>
<td>- Gas phase</td>
<td>- Side reactions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Use of catalyst</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Low reversibility</td>
</tr>
</tbody>
</table>

CH₄ + CO₂ + ΔHₛ = 2H₂ + 2CO

![Fig. 19. Schematic of the solar chemical receiver–reactor [64].](image)
application compared to the steam reforming process. It does not involve water evaporation [76].

The carried out reaction is
\[
\text{CH}_4(g) + \text{CO}_2(g) \rightarrow 2\text{H}_2 + 2\text{CO}(g) \quad \text{with } \Delta H_r = 247 \text{ kJ mol}^{-1}
\]

The side reaction is:
\[
\text{CO}_2(g) + \text{H}_2(g) \rightarrow \text{CO}(g) + \text{H}_2\text{O}(g) \quad \text{with } \Delta H_r = -41.2 \text{ kJ mol}_\text{CO}^{-1}.
\]

Fig. 18 shows the process flowsheet. During the endothermic reaction, methane and carbon dioxide are decomposed at a temperature between 973 and 1133 K and absolute pressure of 3.5 bar to form hydrogen and carbon monoxide. Edwards and Maitra [81] outlined the potential of this reforming for TES application. Edwards et al. [82] achieved a technical-economic survey in order to evaluate the energetic efficiencies of two different processes for a production of 100 MWe. The first one works in closed loop (Solar/Rankine cycle plant) and the second one in open loop (Solar/Gas turbine combined cycle). Both cases have energetic efficiencies of 33.6% and 44.6%.

Later, the DLR [83] developed a solar reactor of 300 kW to implement the reforming reaction (Fig. 19). This solar reactor has been used in a global test loop at the WIS (Weizmann Institute of Science) in Rehovot, Israel. Nevertheless, in spite of good conversion rate of methane, many problems of catalyst deactivation appeared due to a deposit of sodium.

Table 12 presents the advantages and the drawbacks of the \(\text{CH}_4/\text{C}_2\text{H}_6 \) and the \(\text{CH}_4/\text{H}_2\text{O} \) systems as thermochemical TES system.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Advantages</th>
<th>Drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CH}_4/\text{C}_2\text{H}_6) + (\Delta H_r \rightarrow \text{CH}_4 + 3\text{H}_2)</td>
<td>• Industrial feedback • Operating temperature (~580 K)</td>
<td>• (\text{H}_2) storage • Use of Catalyst • Secondary reaction • Toxic products • Reversibility</td>
</tr>
</tbody>
</table>

3.7.2. Cyclohexane dehydrogenation – benzene hydrogenation

The carried out reaction is
\[
\text{C}_6\text{H}_{12}(g) \rightarrow 3\text{H}_2 + \text{C}_6\text{H}_6(g) \quad \text{with } \Delta H_r = 206 \text{ kJ mol}^{-1}.
\]

This reaction is well known in the chemical industry and the reactor technologies to carry out both forward and reverse reactions are known. During the charging step, the cyclohexane is heated up to 566 K at 1 bar at which the endothermic reaction occurs. The decomposition reaction products are hydrogen (gas) and benzene (gas). During the storing step, benzene can be stored as a liquid at atmospheric pressure and hydrogen has to be compressed and stored. During the discharging step, benzene and hydrogen are mixed at 610 K and 70 bar to generate heat and the initial cyclohexane. Both forward and reverse reactions are catalysed [4]. Process simulations of chemical heat pumps were investigated to improve the coefficient of performance (COP) [80,84].

Table 13 presents the advantages and the drawbacks of the \(\text{C}_6\text{H}_{12}/\text{C}_6\text{H}_6 \) system as the thermochemical TES system.
<table>
<thead>
<tr>
<th>Reaction</th>
<th>Phase</th>
<th>Reaction enthalpy (kJ/mol)</th>
<th>Operating temperature conditions</th>
<th>Energetic density</th>
<th>Related works</th>
<th>Technology</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydride system</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 75$ kJ/mol</td>
<td>Heat Charge: 653 K; Heat Release: 503 K</td>
<td>- $580 \text{ kWh/}m^3_{\text{MgH}_2}$</td>
<td>- Kinetic study; Reversibility study; Reactor design; heat exchanger design; Review</td>
<td>Steam generator (3.6 kWh); Packed bed reactor; Solar power station; Solar cooking and cooling device; Heat exchanger</td>
<td>[17,18]</td>
</tr>
<tr>
<td>MgH$_2$ \rightarrow Mg + H$_2$</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 75$ kJ/mol</td>
<td>Heat Charge: 653 K; Heat Release: 503 K</td>
<td>- $800 \text{ kWh/}m^3_{\text{MgH}_2}$</td>
<td>- Kinetic study; Thermodynamics analysis; Process simulation</td>
<td>- 1 kW${\text{chem.}}$ Laboratory-scale ammonia dissociation and synthesis reactor; 10 kW${\text{chem.}}$ Laboratory-scale ammonia dissociation and synthesis reactor; Ammonia receiver design for a 500 m3 dish</td>
<td>[4,5]</td>
</tr>
<tr>
<td>Carbonate system</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 88$ kJ/mol</td>
<td>Heat Charge: 723 K; Heat Release: 573 K</td>
<td>- $303 \text{ kWh/}m^3_{\text{PbCO}_3}$</td>
<td>- Equilibrium relationship; Kinetics study</td>
<td>TGA (thermogravimetric analysis)</td>
<td>[28-30]</td>
</tr>
<tr>
<td>PbCO_3 \rightarrow PbO + CO$_2$</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 88$ kJ/mol</td>
<td>Heat Charge: 723 K; Heat Release: 573 K</td>
<td>- $692 \text{ kWh/}m^3_{\text{PbCO}_3}$</td>
<td>- Reversibility; Reactivity; Reactor design; Decarbonation reactor; CO$_2$ capture; Review</td>
<td>- TGA; Fluidised bed reactor; Packed bed reactor; Chemical heat pump; Horizontal rotary reactor</td>
<td>[13,19-27]</td>
</tr>
<tr>
<td>CaCO_3 \rightarrow CaO + CO$_2$</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 178$ kJ/mol</td>
<td>Heat Charge: 1133 K; Heat Release: 1153</td>
<td>- $692 \text{ kWh/}m^3_{\text{CaCO}_3}$</td>
<td>- Reversibility; Reactivity; Reactor design; Simulation; Heat transfer enhancement; Cost analysis</td>
<td>- TGA; Fluidised bed reactor; Packed bed reactor; Chemical heat pump; Horizontal rotary reactor</td>
<td>[3,4,40-58]</td>
</tr>
<tr>
<td>Hydroxide system</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 81$ kJ/mol</td>
<td>Heat Charge: 423 K; Heat Release: 373 K</td>
<td>- $388 \text{ kWh/}m^3_{\text{Mg(OH)}_2}$</td>
<td>- Equilibrium relationship; Kinetics study; Reactor design</td>
<td>TGA; Packed bed reactor; Chemical heat pump</td>
<td>[3,4,31-36]</td>
</tr>
<tr>
<td>Mg(OH)_2 \rightarrow MgO + H$_2$O</td>
<td>Solid-gas</td>
<td>$\Delta H_r = 81$ kJ/mol</td>
<td>Heat Charge: 423 K; Heat Release: 373 K</td>
<td>- $0.39 \text{ kWh/}m^3_{\text{Mg(OH)}_2}$</td>
<td>- Equilibrium relationship; Kinetics study; Reactor design</td>
<td>TGA; Packed bed reactor; Chemical heat pump</td>
<td>[3,4,31-36]</td>
</tr>
<tr>
<td>Ammonium system</td>
<td>Liquid-gas</td>
<td>$\Delta H_r = 336$ kJ/mol</td>
<td>Heat Charge: 1200 K; Heat Release: 700 K</td>
<td>- $800 \text{ kWh/}m^3_{\text{NH}_4\text{HSO}_4}$</td>
<td>- Theoretical analysis; Thermodynamics analysis; Process simulation</td>
<td>- 1 kW${\text{chem.}}$ Laboratory-scale ammonia dissociation and synthesis reactor; 10 kW${\text{chem.}}$ Laboratory-scale ammonia dissociation and synthesis reactor; Ammonia receiver design for a 500 m3 dish</td>
<td>[4,5]</td>
</tr>
<tr>
<td>NH_4HSO_4 \rightarrow NH$_3$ + H$_2$O + SO$_3$</td>
<td>Liquid-gas</td>
<td>$\Delta H_r = 336$ kJ/mol</td>
<td>Heat Charge: 1200 K; Heat Release: 700 K</td>
<td>- $0.81 \text{ kWh/}m^3_{\text{NH}_4\text{HSO}_4}$</td>
<td>- Process simulation; Technical and economic feasibility study; Reactor design study; Ammonia receiver design</td>
<td>- 1 kW${\text{chem.}}$ Laboratory-scale ammonia dissociation and synthesis reactor; 10 kW${\text{chem.}}$ Laboratory-scale ammonia dissociation and synthesis reactor; Ammonia receiver design for a 500 m3 dish</td>
<td>[4,65-74,87-89]</td>
</tr>
</tbody>
</table>
| System | Reaction | Phase | ΔH_r (kJ/mol) | T (K) | Heat Charge | Heat Release | Equilibrium Analysis | Kinetic Study | Mixed Oxide Reaction | Thermodynamic Analysis | TGA | Packed Bed Reactor | RGA | [Ref.]
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>REDOX system</td>
<td>$\text{3Co}_2\text{O}_4 \rightarrow 6\text{CoO} + \text{O}_2$</td>
<td>Solid-gas</td>
<td>-205</td>
<td>$1143–1173$</td>
<td>$295 \text{ kWh/m}^3\text{CoO}_4$</td>
<td>$0.24 \text{ kWh/kg CoO}_4$</td>
<td>Equilibrium analysis</td>
<td>Kinetic study</td>
<td>Mixed oxide reaction</td>
<td>Thermodynamic analysis</td>
<td>TGA</td>
<td>Packed bed reactor</td>
<td>[61,63]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2\text{BaO}_2 \rightarrow 2\text{BaO} + \text{O}_2$</td>
<td>Solid-gas</td>
<td>-77</td>
<td>$963–1053$</td>
<td>$328 \text{ kWh/m}^3\text{BaO}_2$</td>
<td>$0.13 \text{ kWh/kg BaO}_2$</td>
<td>Equilibrium analysis</td>
<td>Kinetic study</td>
<td></td>
<td></td>
<td>TGA</td>
<td>[59,60]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic system</td>
<td>$\text{CH}_4 + \text{H}_2\text{O} \rightarrow 3\text{H}_2 + \text{CO}$</td>
<td>Gas</td>
<td>250</td>
<td></td>
<td>Heat charge: 1223 K</td>
<td>Heat release: 803 K</td>
<td>Process simulation</td>
<td>Reactor design</td>
<td>Kinetic study</td>
<td>Energy transport</td>
<td>Laboratory pilot plant</td>
<td>Industrial size pilot plant</td>
<td>[76–80]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{CH}_4 + \text{CO}_2 \rightarrow 2\text{H}_2 + 2\text{CO}$</td>
<td>Gas</td>
<td>247</td>
<td></td>
<td>Heat charge: 1223 K</td>
<td>Heat release: 803 K</td>
<td>Technical and economical feasibility study</td>
<td>Reactor design</td>
<td></td>
<td>Energy transport</td>
<td>Design of the receiver reactor</td>
<td>200–300 kW (DLR)</td>
<td>[76,79,81–83]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{C}_6\text{H}_12 \rightarrow 3\text{H}_2 + 3\text{H}_2\text{O}$</td>
<td>Liquid-gas</td>
<td>206.7</td>
<td></td>
<td>Heat charge: $T = 590$ K</td>
<td>Heat release: $T = 670$ K</td>
<td>Process simulation analysis in chemical heat pump</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[4,80,84]</td>
<td></td>
</tr>
<tr>
<td>SO$_3$ system</td>
<td>$2\text{SO}_3 \rightarrow 2\text{SO}_2 + \text{O}_2$</td>
<td>Liquid-Gas</td>
<td>98</td>
<td>$1073–1273$ K</td>
<td>$646 \text{ kWh/m}^3\text{SO}_3$</td>
<td>0.34 kWh/kg SO_3</td>
<td>Process analysis to produce a continuous 100 MW electric power output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[4,85]</td>
<td></td>
</tr>
</tbody>
</table>
3.7.3. Thermal dissociation of sulfur trioxide

The reaction is

\[2\text{SO}_3(g) + \Delta H_f \leftrightarrow 2\text{SO}_2(g) + \text{O}_2(g) \quad \text{with } \Delta H_f = 98 \text{ kJ mol}^{-1}. \]

This reaction occurs at temperatures between 773 and 1373 K for pressures between 0.1 and 0.5 MPa. During the charging step, the liquid sulfur trioxide is heated up to vaporization. This phase change requires 43 kJ mol\(^{-1}\) of energy. The gas product is heated up to the decomposition temperature (1073–1373 K), at which the endothermic reaction occurs. The endothermic reaction has to be catalysed, generally with \(\text{V}_2\text{O}_5 \).[4,85]. The decomposition reaction products are sulfur dioxide (gas) and oxygen (gas). During the discharging step, the oxygen is added to the sulfur dioxide to regenerate the heat (773–973 K) and the initial sulfur trioxide. A process analysis has been done by Chubb [85] to use this reaction in a Solchem system to produce a continuous 24 h electricity output of 100 MW with a 72 h storage. A process simulation assessed the thermal efficiency to 58% [4].

Table 14 presents the advantages and the drawbacks of the \(\text{SO}_3/\text{SO}_2/\text{O}_2 \) system as the thermochemical TES system.

3.8. Summary of case studies

Several numerical, experimental and technological studies concerning thermochemical energy storage have been found in the literature. Fig. 20a and b plot the volumetric energy density and the gravimetric energy density versus the turning temperature of the studied reactions. To assess the volumetric energy density of the solid reactant, the bulk density with a packed bed porosity of 0.5 has been chosen. Usually, a packed bed porosity of spherical particle is between 0.4 and 0.5 [86]. The volume of pores inside a particle is considered to be equal to zero.

Fig. 20 is extremely useful to quickly screen the candidate reactions in the desired temperature and the energy density ranges. Each reaction system is detailed in Table 15. Table 15 lists the reversible reaction, the phase of the A reactant, the reaction enthalpy by mol of reactant A, the operating temperatures, the energy density and the related works and technologies.

4. Conclusion

This paper presents a state of the art of the current numerical and experimental researches on chemical reactions for high temperature thermochemical heat energy storage. Most of the described systems were only tested on laboratory scale until now. This paper has also offered an updated review of the high temperature (573–1273 K) thermochemical TES system which have the potential to become an important part of sustainable handling of energy in a close future. The following conclusions that can be drawn are

- The energy density of a thermochemical TES system (∼500 kWh m\(^{-2}\)) is 5 to 10 times higher than latent heat storage systems and sensible heat storage systems respectively.
- Thermochemical TES systems appear to be the most promising way to store solar thermal energy during a long-term period. Indeed, both storage period and transport distance are theoretically unlimited because there is no loss of thermal energy during storage as products can be stored at ambient temperature.
- Laboratory-scale experiments, numerical and technological studies have demonstrated the feasibility of several reaction systems for a TES application.
- The system involving the ammonia dissociation and synthesis is the most mature technology for a high temperature TES application with 40 years of researches and pilot-scale equipment.
- The dehydration/hydration of the Ca(OH)\(_2\)/CaO couple shows a high potential for TES application but future works need to focus on the intensification of heat and mass transfers inside the reactor.
- For a high temperature thermochemical heat storage (CSP application), the following chemical reactions seem to be the most interesting ones in terms of actual development, cost and temperature range:
 - MgH\(_2\) \(\rightarrow\) Mg + H\(_2\)
 - PbCO\(_3\) \(\rightarrow\) PbO + CO\(_2\)
 - Ca(OH)\(_2\) \(\rightarrow\) CaO + H\(_2\)O
 - NH\(_3\) \(\rightarrow\) N\(_2\) + H\(_2\)O

Nowadays, the storage system with the reaction couple NH\(_3\) \(\rightarrow\) N\(_2\) + H\(_2\) is the most mature one especially with the ANU works and their 40 years feedback. Nevertheless, recently the reaction couple Ca(OH)\(_2\) \(\rightarrow\) CaO + H\(_2\)O appears to be promising for thermochemical heat storage and many studies and projects contribute to develop this system. The main barriers to remove are linked to the reactor heat and mass transfers. As a consequence, the development of intensified heat exchanger/reactor could be interesting to study. Mass transfer issues have also to be addressed, especially if fast hydration and dehydration kinetics are expected. A compromise between particle diameter and mass transfer limitation will have to be found and future works could focus on the functionalization of the particles, supported particles or doping. Moreover, for C/S reactions in general, an effort should be done on the optimization of the particle size and the reaction bed structure to guarantee a constant heat output during the discharging step. This optimization must be done without compromising, as far as possible, the system compactness.

Another area of research is the optimization of the temperature level during charging/discharging steps. The objective is to diminish the difference of temperature between both steps to improve the efficiency and the ease to control the process and the downstream turbine for instance.

At present, only laboratory and pilot experiments have been done and scale-up is an important point to address. Large-scale experiments are necessary to prove the feasibility of the thermochemical TES system for both short and long-term storage. The process must be reversible with a constant conversion rate and without degradation after a large number of cycles. To support the scale-up procedure, numerical models of the storage process have to be developed. The objective is to insert them in the whole power plant scheme to assess the performances according to the application case (seasonal storage, 24 h electricity production, peak load, ...).

The future works should also allow the definition of a methodology to choose suitable materials for a given TES application. Technical-economic studies will be required to assess the profitability of the whole TES process. Thus, storage materials, storage equipment, control strategies of the system and applications cases are important points to address.

References

Foro R. Conception et caractérisation d’un réacteur solaire à lit fluidisé aménagé avec des carbures de décarbonation, Thèse de doctorat, Université de Perpignan, France, 1981.

