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Abstract: As the development of robotics technologies for collaborative robots (COBOTs), the ap-
plications of human–robot collaboration (HRC) have been growing in the past decade. Despite the
tremendous efforts from both academia and industry, the overall usage and acceptance of COBOTs
are still not so high as expected. One of the major affecting factors is the comfort of humans in
HRC, which is usually less emphasized in COBOT development; however, it is critical to the user
acceptance during HRC. Therefore, this paper gives a review of human comfort in HRC including
the influential factors of human comfort, measurement of human comfort in terms of subjective and
objective manners, and human comfort improvement approaches in the context of HRC. Discussions
on each topic are also conducted based on the review and analysis.

Keywords: human comfort; human–robot collaboration; comfort measurement; comfort improvement;
wearable sensing

1. Introduction

In modern manufacturing, robots have become a critical and irreplaceable role which
greatly reduces human physical labor as well as lowers the cost of factory operation. How-
ever, even though the automation industry technology has made enormous breakthroughs
in the past few decades, most of today’s industrial robots are still used inside heavy fence
guarding and safety peripheral equipment that is costly, inflexible, and bulky; normally,
they have configured fixed infrastructure and have to use extra floor space [1]. Light
curtains are commonly used for emergency protection; the entire system will shut off
immediately as the human worker gets into the working area. Undoubtedly, a protection
system like such is clumsy and inefficient in guaranteeing the safety of the human worker.

The Human–Robot Collaboration (HRC), known as “the state of a purposely designed
robotic system and operator working in a collaborative workspace” [2], has gained growing
attention in its research field during the past few years. It is an interdisciplinary field that
focuses on the collaboration of humans and robots as they achieve shared goals [3].

Collaborative robots, also known as COBOTs, provide prospective and great solutions
to complex hybrid assembly tasks, especially in smart manufacturing contexts [4]. Based on
the concept of HRC, robot manufacturers have released different collaborative robots into
the market, including some popular models like ABB Yumi, UR3, Kuka IIWA, etc. Through
human–robot interaction, the tasks can be split between humans and robots based on their
capabilities to leverage their unique advantages [5,6].

Even though these COBOTs have been proved to be highly capable and efficient in
human–robot collaboration scenarios in many real-world applications, their usage and accep-
tance in the real world still remain very limited and have huge space for further improvement.
The promotion of collaborative robots does not depend merely on the efficiency, flexibility,
and intelligence of the robots. User acceptance is also an important factor. Currently, the
user acceptance of collaborative robots is still low due to a list of concerns from different
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perspectives [7,8]. Among the factors which may affect user acceptance such as safety, trust
and robot performance, human comfort is usually less emphasized in COBOT development
but however critical to the user acceptance during HRC.

Better comfort perceived by the user can benefit the overall user acceptance of collabo-
rative robots from a user perspective [9]. The comfort of humans plays such a critical role
that it not only affects user acceptance but also has a significant impact on the efficiency
of manufacturing [10–12]. Therefore, this paper gives a review of human comfort in HRC
including the influential factors of human comfort, measurement of human comfort, and
improvement approaches of human comfort.

Human comfort has been studied for decades from different fields, primarily in
psychology. Webster Dictionary (1981) gave the definition of comfort as a “state or feeling
of having relief, encouragement, and enjoyment”. Slater [13] proposed a more scientific
definition of comfort in his book “Human Comfort”, which also includes the influence of
environment. Slater defined comfort as a pleasant state of physiological, psychological,
and physical harmony between a human being and its environment. Some researchers
perceived comfort as two discrete states: comfort presence and comfort absence, where
comfort is simply considered as the complete opposite side of discomfort, or in other
words, the absence of discomfort. However, some other researchers held a contrasting
opinion against the discrete state theory. They claim that comfort and discomfort are
two opposites on a continuous scale, ranging from extreme discomfort through a neutral
state to extreme comfort [14,15]. There are also some researchers disagreeing with this
single-dimension continuous scale idea of comfort definition. Kamijo et al. [16] claimed
that comfort and discomfort are affected by distinctly different variables. There are also
some researchers who view comfort as an optimal state in which the person stops taking
action to avoid discomfort [17].

Despite all the arguments and debates in the field, some consensus has been achieved
on several points of view: (1) comfort is subjectively determined by each individual’s
personal nature; (2) comfort can be affected by a wide variety of factors from multiple
natures such as physical, physiological or psychological; and (3) comfort is affected by
one’s reaction to the environment stimulus. This review paper focuses on human comfort
defined as a feeling of ease in human–robot collaboration contexts. It can been seen that
comfort is really a complex topic. A review to understand human comfort in the context
of HRC is going to be very helpful to facilitate the research and development of HRC and
their applications in the real world.

The rest of this review paper is structured into the following sections: Section 2 will
introduce the influential factors on comfort in human–robot interaction; Section 3 will
introduce the measurement approaches of human comfort including both subjective and
objective approaches; Section 4 will introduce the improvement approaches of human
comfort; and Section 5 will give the conclusions.

2. Review on Influential Comfort Factors

To better understand and study human comfort, it is crucial to know what factors
could have impacts on comfort and how these factors affect human subjective feelings both
qualitatively and quantitatively. Generally, the human comfort factors under HRC scenarios
can be divided into several categories such as ergonomic factors, robot motion-based factors,
anthropomorphism and robot sociability factors, etc.

2.1. Ergonomic Factors

Ergonomic factors studied in traditional factory working scenarios will maintain
their influences in human–robot collaboration tasks. In a factory working environment,
specifically speaking, under HRC scenarios, the two most critical ergonomic factors are
noise and thermal.
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2.1.1. Noise

In a typical manufacturing plant packed with operating machines on the production
lines, noise is one of the major health risks and also a major influential factor on workers’
comfort. Noises not only induce unpleasant feelings in humans but can also cause a
variety of health issues, both auditorily and non-auditorily. Constantly being exposed to
noise of above 85 dBA can lead to acoustic trauma, tinnitus, hearing loss, cardiovascular
disease, etc. [18,19].

The two most critical parameters contributing to noise occupational health issues are
the sound pressure level and the exposure time [18]. Either extremely high-pressure level
with short duration noise, or relatively high-pressure level but long-term exposure noises
could cause health issues. In order to eliminate or reduce the noises to improve human
comfort, the main noise sources need to be localized, and the noise propagation needs
to be analyzed before taking any actions to decrease exposure time and sound pressure
level. This is the process of establishing a complete noise model, while all the interactions
such as sound reflection and absorption between noise sources and the environment
should be considered. Guarnaccia et al. [18] used the acoustic predictive software RAP-
ONE to establish the noise map of the indoor testing environment. In Ouis’s review
paper [20], annoyance is considered the major discomfort component induced by noises.
Many research efforts have been put into building models to predict how annoyance varies
with respect to noise exposure. Hall et al. [21] created a model demonstrating how activity
interference affects the probability of annoyance. Izumi and Yano [22] developed a ‘path
analysis’ to explain the annoyance responses obtained from questionnaires. The U.S. Air
Force conducted a study on the relationship between the percentage of the population that
is highly annoyed (% HA) and the day-night average sound level (DNL), and eventually
formulated an equation that quantitatively describes this relationship. Pennig et al. [23]
found human subjective pleasant level decreases in a linear pattern with respect to noise
pressure level in an aircraft cabin environment. To improve acoustic comfort, annoying
noises should be eliminated.

2.1.2. Thermal

In order to quantitatively evaluate thermal comfort and analyze the heat transfer pro-
cess between the human body and the surrounding environment, the definition of thermal
comfort is given by ASHRAE Standard 55 as “the condition of mind that expresses satisfac-
tion with the thermal environment and is assessed by subjective evaluation” [24]. Thermal
comfort is a subjective attribute based on the net heat transfer between the human body and
the environment. To quantitatively describe this thermal model, the ASHRAE Handbook
of Fundamentals has also proposed an energy balance equation for the human body [25].

M − W = (C + R + Esk) + (Cres + Eres) + (Ssk + Scr), (1)

where

M = rate of metabolic heat production, W/m2;
W = rate of mechanical work accomplished, W/m2;
C + R = sensible heat loss from skin, W/m2;
Esk = total rate of evaporative heat loss from skin, W/m2;
Cres = rate of convective heat loss from respiration, W/m2;
Eres = rate of evaporative heat loss from respiration, W/m2;
Ssk = rate of heat storage in skin compartment, W/m2;
Scr = rate of heat storage in core compartment, W/m2.

This energy balance between the human body and the environment affects human
subjective feelings of thermal comfort [26].

In terms of comfort evaluation methods, Ormuz et al. [27] developed a thermal
mannequin equipped with a great number of sensors along the entire body, specifically
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used to assess the physical properties necessary to calculate the variables in the energy
balance Equation (1).

Tiller et al. [28] studied the combined effects of noise and temperature on human
comfort and performance by collecting subjective ratings from test subjects under multiple
acoustical and temperature conditions and implementing statistical analyses. Tiller et al.
found that the most preferred temperature range is within 72–76 °F, while other temperature
conditions can create discomfort feelings. Huda [29] studied how thermal conditions’
change of the working environment affect the factory workers’ comfort and productivity.
Huda calculated the Heat Stress Index (HSI) around the working area and analyzed worker
productivity before and after the cooling system was installed, revealing that HSI and
the percentage of dissatisfaction dropped by 70% and 60%, respectively, after the cooling
system was installed. Ye et al. [12] also explored the influence of thermal comfort and
worker productivity in factories, revealing that productivity reaches its maximum when
the thermal sensation vote (TSV) of the subject is slightly cool instead of neutral or warm.

2.2. Robot Motion-Based Factors

In recent years, tremendous research efforts have been spent on human comfort eval-
uation and adaptation in HRC manufacturing tasks. The experiment task designs are
usually based on robot motion-based factors, which include robot moving speed, the final
position of object delivery, human–robot proximity, interaction time cost, robot movement
trajectory, etc. Different individuals can have huge differences in their preferences. For
example, some people prefer close-proximity interaction; others might prefer farther dis-
tances. Weitian et al. [30] proposed a computational Human Comfort Model (HuCoM)
approach to model and quantify human comfort under HRC scenarios. To verify the
proposed HuCoM model, Weitian et al. designed a series of model car assembly tasks
based on four robot motion-based factors: robot speed, the position of object delivery,
human–robot proximity, and left/right robot arm. The four primitive independent factors
were adjusted to evaluate their influences on human comfort. Ross et al. [31] found that
human comfort has a direct and immediate influence on the collaboration quality between
the robot and its human partner and is also a significant factor for the robot to be aware
of. Jessi et al. [32] developed a method of evaluating how the invasion of personal space
by a robot affects human comfort. Przemyslaw et al. [33] examined human response to
motion-level robot adaptation to determine its effect on team fluency, human satisfaction,
and perceived safety and comfort. All research above proves that robot motion-related
factors have critical impacts on human comfort during HRC tasks.

2.3. Anthropomorphism

Another factor is anthropomorphism, which refers to the attribution of a human
being’s characteristic to a non-human object like robot [34,35]. The most well-known
concept and the most important rule for robot appearance design is the “uncanny valley”,
identified by the robotics professor Masahiro Mori in 1970 [36]. The discovery of the
uncanny valley brought a huge change to previous understandings of the relationship
between human emotional response and human likeness. Uncanny valley theory claims
that the human emotional response only keeps increasing until it reaches a point beyond
which the response quickly becomes strong revulsion. However, as the robot’s appearance
continues to become even closer to a real human, the emotional response becomes positive
once again. Such fall and rise changes form a valley-shaped curve in the relationship plot,
as shown in Figure 1. Thus, the name “uncanny valley” is given.
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Figure 1. Uncanny valley plot [36].

For robotics appearance design, it is crucial to avoid uncanny valley in order to prevent
giving people creepy feelings. Furthermore, simply avoiding falling into the uncanny valley
range is not enough. Goetz et al. [37] proposed the hypothesis that people’s acceptance and
cooperation with the robot can be improved by providing a better match between a robot’s
social cues and its tasks. Minato et al. [35] supported Goetz et al.’s opinion by extending
the original uncanny valley concept to a broader dimension which includes not only robot
appearance but also behaviors. According to Minato et al.’s theory, the general evaluation
of interaction benefits from good matchings of robot appearances and their corresponding
behaviors. Bartneck et al. [34] also claimed that it is important to match the appearance of
the robot with its abilities. A highly human-look-like robot might give the user the illusion
that it is able to complete extremely complex tasks such as listening and talking, which
it is not capable of.Therefore, robot developers need to be very careful in choosing the
appearance design of their robots. MacDorman pointed out that appearance is not the
only factor being able to trigger the uncanny valley effect [38]. Expectation violation and
cognitive paradoxes can induce similar emotional reactions [39,40].

Despite the simplicity in understanding the concept of the uncanny valley, a great
number of challenges in robot appearance design remain. There is a lack of a comfort
model to predict which region of the uncanny valley curve the robot falls in. Thus, the
difficulty and cost of robot appearance evaluation increase.

2.4. Robot Sociability

The last factor is robot sociability, which has been getting more attention recently.
Applying social robots as mental health interventions for children has become increasingly
popular in healthcare environments [41]. Kabacinska et al. found that robot interventions
had positive impacts on children’s mental reactions; reduced depression and anger were
found in testing children.

As social robots obtain increasing attention in the market and research field, scientists
and engineers have started to look into more detailed sub-factors under robot sociability, such
as their levels of animacy, likeability, perceived intelligence, and perceived safety; they have
also studied how these sub-factors impact human comfort and reactions. Walters et al. [42]
found that subject’s personality profiles influence personal spatial zones in human–robot
interactions. People systematically prefer robots for jobs when the robot’s human likeness
matches the sociability required in those jobs [34,35,37]. For example, a robot with a good
manner and friendly speaking tone is preferred. Gasteiger et al. [43] listed four key factors in
optimizing human experience during HRC tasks with social robots: (1) communication and
language, (2) behavior and service, (3) proxemics, and (4) interface design.
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Challenges in robot sociability factors still remain. Few studies quantitatively inves-
tigated why certain appearances of the robots are preferred. The relationship between
appearance and comfort requires further research.

2.5. Discussion

In this section, the human comfort factors under HRC scenarios were reviewed in four
categories: ergonomic factors, robot motion-based factors, anthropomorphism, and robot
sociability factors. All cited works in this section are listed in Table 1. Papers are grouped
and ordered based on influential factors. Short summaries of methodologies of each paper
are also provided.

Table 1. Influential factors of human comfort.

Author / References # Factors Methodologies

Guarnaccia et al. (2014) [18,19] Noise Noise Source Characterization; Noise
Level Measurements

Ouis (2001) [20] Noise

Noise Source Characterization; Sound
Pressure Level Measurement;

Acoustical characteristics of traffic noise;
Measurement of Annoyance and

Discomfort from Noises

Hall et al. (1985) [21] Noise
Proposed a model demonstrating how

activity interference affects the
probability of annoyance

Izumi and Yano (1991) [22] Noise
Developed a ‘path analysis’ to explain the

annoyance responses obtained
from questionnaires

Pennig et al. (2012) [23] Noise Subjective Measurement; Questionnaire

ASHRAE Standard 55 [24] Thermal Definition of Thermal Comfort

ASHRAE Handbook of
Fundamentals [25] Thermal Energy Balance Equation for the

Human Body

Da Silva (2002) [26] Thermal

Thermal mannequins; heat conduction
mathematical model; Sound Chamber;

Combination of Subjective &
Objective Measurement

Ormuž et al. (2004) [27] Thermal; Noise

Thermal mannequins; Sound
Testing Chamber;

Combination of Subjective &
Objective Measurement

Tiller et al. (2010) [18] Thermal; Noise Subjective Measurement (Likert Scale
Rating); Questionnaire

Weitian et al. (2018) [30] Motion-based
Proposed a computational model to

quantify the human comfort;
Subjective Measurement;

Ross et al. (2015) [31] Motion-based
Human-Robotic Interaction Tasks;

Combination of Subjective &
Objective Measurement

Jessi et al. (2018) [32] Motion-based

Human-Robotic Interaction Tasks;
Wizard of Oz;

Combination of Subjective &
Objective Measurement;
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Table 1. Cont.

Author / References # Factors Methodologies

Lasota et al. (2014) [33] Motion-based

HRC-Tasks Experiments;
Adjust the robot movement trajectories

and moving speed based on test
subjects’ reactions

Bartneck et al. (2009) [34] Anthropomorphism HRC-Tasks Experiments;
Subjective Measurement

Minato et al. (2005) [35] Anthropomorphism
Human-Robotic Interaction Tasks;

Combination of Subjective &
Objective Measurement

Masahiro Mori (2012) [36] Anthropomorphism Thought Experiment

MacDorman (2006) [38] Anthropomorphism Interview; Questionnaire

Goetz et al. (2003) [37] Robot Sociability Human-robotic Communication Tasks;
Objective Measurement; Questionnaire

Katarzyna et al. (2020) [41] Robot Sociability

Review on examining the impacts that
social robots such as Nao, Paro,

Huggable, Tega imposed on children in
various scenarios.

Gasteiger et al. (2021) [43] Robot Sociability A review of key factors influencing
human experience in HRC

Walters et al. (2005) [44] Human–Robot Proximity; Sociability
Human-Robotic Interaction Tasks;

Combination of Subjective &
Objective Measurement

For ergonomic factors, the noise and thermal impacts on human comfort and how
comfort varied along with these factors’ changes were introduced. These two factors
are environmental factors, which are independent of the setup of robots. Methods of
establishing noise and temperature models and evaluating annoyance levels were also
presented. Thermal equations and on-body sensors were widely used to evaluate the body
heat transfer data. However, limitations still exist in these methods. For the noise factor,
not too many studies focus on the quantitative side, and most of the research work is based
on subjective ratings only. Thus, a quantitative ergonomic factor-based comfort model
would be greatly helpful for future research in this field. For the thermal factor, traditional
methods use on-body sensors and thermal mannequins to collect data; however, the fact
that different individuals have different rates of metabolism could create extra difficulties
for thermal modeling and measuring. Another challenge of using mannequins is their low
measuring accuracy, which does not correctly reflect human comfort levels.

The “uncanny valley” effect and corresponding theory have been found and widely
used in analyzing comfort. Researchers have further expanded the original two-dimensional
uncanny valley curve into three dimensions, claiming that human comfort will be further
improved by matching the robot appearances and their corresponding behaviors. For
robot-motion-based factors, a considerable amount of research has been done evaluat-
ing single-factor impact, including moving speed, the final position of object delivery,
human–robot proximity, interaction time cost, robot movement trajectory, etc. These in-
fluences are highly dependent on individual preferences. Despite the fact that abundant
research efforts have been made in this area, there is still a lack of a comprehensive comfort
model which can handle multiple factors’ impact at the same time. It is very unlikely that
human–robot interaction scenarios take place in reality that has only one varying factor.
For robot sociability factors, an important rule is to avoid uncanny valley in appearance
design. Human–robot proximity also plays a key role in human comfort in human–robot
interaction. Similar to daily social interactions, a preferred interaction distance also exists
between humans and robots. In terms of communication, people tend to prefer robots with
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better social skills and friendlier communications. Robots with better comprehension and
communication skills, both physically and vocally, can greatly improve human comfort.
The limitation in this area is that few studies have quantitatively investigated why certain
appearance features and details of the robots are preferred. The relationship between
appearance and comfort requires deeper investigations.

3. Review on Measurements of Comfort

The sense of comfort is a human’s subjective nature and results from a human’s
reaction to the environment [45–48]. For human comfort measurement, there are two main
widely used approaches: the self-evaluation approach (subjective measurements) and the
physiological approach (objective measurements) [9].

3.1. Subjective Measurements
3.1.1. Likert Scale

Questionnaires have been the most widely used data collection method in subjective
rating measurements. Various kinds of rating scales have been used to assess a person’s
subjective attitudes. Among all kinds of approaches, the Likert Scale is the most commonly
used one to obtain scaled responses to a certain statement in survey research.Likert Scale
was first introduced by psychologist Rensis Likert in his paper [49] in 1932, and thus the
name Likert Scale was given. As Burns et al. stated in their book [50], when responding to a
Likert Scale, respondents provide their level of agreement on a symmetric scale on a series
of items. The Likert Scale will then capture the intensity of the subject’s feelings. Despite
the advantages that questionnaires possess, they have limits as well. Questionnaires are
typically not compatible with real-time data collection. Thus, in order to counteract this
limitation, some researchers created hand-held devices.

3.1.2. Hand-Held Device

Koay et al. developed a hand-held device equipped with a pressing button and pressure
sensor as a measurement approach of subjective comfort levels in human–robot interaction
experiments [51]. The test subject is instructed to press the button with different pressure and
duration time to report his/her subjective feelings whenever discomfort feeling is perceived.
In order to precisely match the button pressing moments and corresponding experiment
events, time-stamped recording is required. Such a synchronization technique would be a
great help in achieving more accurate analysis based on real-time data. Furthermore, besides
the real-time data collection characteristics, the hand-held device also adds a new dimension
to comfort data, which is discomfort duration. The duration length of the discomfort feeling
can be used as a new feature for better comfort analysis. Wang et al. [52] designed another
type of handheld subjective comfort collection device based on a single-chip microcomputer
equipped with four buttons mapping to four comfort states. The device is used to collect
real-time comfort data from passengers in a car ride.

Although the hand-held device has been proven to be useful in many cases, it still
has many limitations and drawbacks. First, the disadvantage is the error input caused
by the device’s sensitivity flaw; test subjects were found to accidentally press the button
without notice [53]. To avoid this issue, subjects need to put their index fingers away from
the button; however, this might introduce another problem where subjects might press too
hard when suddenly encountering uncomfortable conditions. The second disadvantage
of using the device is that the subjective pressing force inputs are difficult to maintain
consistently and accurately to reflect corresponding comfort levels throughout a long-
duration experiment. The third issue with using the device is that many subjects tend to
forget to press the button after the experiment starts for a period of time while they are too
focused on the tasks.
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3.1.3. Video Footage Analysis

Another widely used human comfort evaluation approach in HRI scenarios is the
analysis of video footage which records the interactions between humans and the robots.

By viewing the videotapes, the event-related behaviors and activities of the subjects
are counted and finally used in statistical analysis. For example, Salter et al. [54] used
recorded video footage to analyze various types of children’s play styles with autonomous
mobile robots by counting their body movement behaviors. Koey et al. [51] implemented a
video annotation tool to mark and categorize specific human behaviors. Koey et al. used
the time stamps information to sync the comfort data series, then matched the test subjects’
uncomfortable states shown in their video footage to determine the cause of discomfort in
terms of robot behaviors.

Dautenhahn et al. [55] studied human micro-behaviors during human–robot interac-
tions by recording the body reactions such as eye gazing and eye contact activities from
children with autism. The videotaping method is even more helpful for scenarios where
verbal communication and feedback are not applicable. The disadvantages of the video
analysis technique are also not negligible. Firstly, video analysis is a highly-technique
required skill that puts a strict standard on the person who carries out the task. Secondly,
it is time-consuming and thus fatigue-inducing, which eventually might cause the video
observer to overlook some critical details such as relevant behaviors and subjects’ facial
expressions. Furthermore, even if the video observer did as best as he/she could, the facial
or body expressions of the subjects might not fully or truly reveal his/her actual emotions.

3.2. Objective Measurements

Human bodies tend to present a variety of physiological responses such as respiration
rate and blood pressure increase [56], skin temperature drop [57], heart rate variability
(HRV), and pupil diameter quantitative characteristic changes [58–60]. Therefore, objective
measurement methods mostly focus on these physiological signals.

3.2.1. Heart Rate Variability

Among all the influential factors of human comfort, stress is one of the most important
ones. Human stress level is closely related to heart rate-related indexes. When it comes
to the quantitative study of heart rate, the first and the most critical concept to consider is
heart rate variability, also known as HRV.

Heart rate is defined as the number of heartbeats per minute, while heart rate variabil-
ity (HRV) represents the fluctuation in the time intervals between adjacent heartbeats [44].
HRV is a powerful tool in studying and monitoring psychological status changes due to
the fact that HRV reflects the regulation of autonomic balance, blood pressure (BP), gas
exchange, and possibly even facial muscles. Hilgarter et al. [61] found that HRV indices
possess high sensitivities to psychological status fluctuations in stress response, regardless
of age and sex.

The most commonly used methods of interpreting and processing HRV raw data
are still categorized into two main groups—time-domain methods and frequency domain
methods, although different types of other methods have been proposed over the years,
such as geometric methods and nonlinear methods.

Time domain HR is an intuitive measurement of objective metrics. Several widely
used time domain indexes are listed below [44,62]:

• Mean of Heart Rates;
• Standard Deviation of HRs;
• SDNN—the standard deviation of NN (normal-to-normal) intervals. It is often ob-

tained over a 24-hour period since it is normally more accurate when measured over
24 h than short-period monitoring;

• SDANN—the standard deviation of the average NN intervals calculated over
short periods;
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• RMSSD—root mean square of successive differences, the square root of the mean of
the squares of the successive differences between adjacent NNs;

• SDSD—standard deviation of successive differences, the standard deviation of the
successive differences between adjacent NNs;

• NN50—the number of pairs of successive NNs that differ by more than 50 ms;
• pNN50—the proportion of NN50 divided by the total number of NNs.

Besides the methods of measuring HRV introduced above, other refined calculation
methods have also been developed. Another simple measuring approach of HRV is the
standard deviation of the mean R–R interval (SDRR) [63]. De Geus et al. [64] found that
HR increases and SDRR decreases transiently when healthy subjects are acutely stressed.
Berntson et al. [63] found that respiration also has a great impact on HR changes. Respi-
ratory sinus arrhythmia (RSA) is considered an index of cardiac parasympathetic activity
and tends to decrease under acute psychological stress [65,66]. Despite all the advantages
and power that time-domain analyses possess, they are still limited in some cases, which
results in requirements for other analysis approaches.

Frequency domain methods categorize heart rate oscillations into four bands as ultra-
low-frequency (ULF), very-low-frequency (VLF), low-frequency (LF), and high-frequency
(HF) bands, and then count the number of NN intervals that falls into each band. Based on
the distribution of absolute or relative power, the Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysiology [65] published
a standard for this categorization [44].

Among these four bands, researchers tend to be more interested in LF and HF bands
since their ratio provides a great amount of useful information. The ratio between LF power
(0.05–0.15 Hz) and HF band power (0.15–0.4 Hz) reflects the instantaneous balance between
sympathetic and parasympathetic activities [67]. A list of HRV-related index responses
regarding mental stress is given below:

• Mean HR increases during mental stress [67];
• Mean RR-interval and RMSSD decrease as mental stress increases [68];
• LF/HF and LF tend to increase as mental stress increases [67,68];
• HF decreases during acute stress [69];
• LF/HF ratio is also important in evaluating thermal comfort. LF/HF ratio increases

as the temperature get too hot or too cold;
• Heart rate variability decreases during stress.

Schubert et al. [67] designed a challenging speech task to induce acute psychological
stress in order to study how the measures of heart rate and HRV can be affected by short-
term stressors/long-term stress exposure. Schubert et al. found that SDRR, LF, and HF
increased under acute stress, while RSA and LF/HF ratios remained still, and respiration
rates decreased. The analysis of heart rate (HR) data for stress measurement is well known
in physiological indexes [70,71]. Sawabe et al. [70] collected raw HR data with a thoracic
HR band and an electrocardiograph circuit, and then obtained LF/HF ratio from the raw
data. Eventually, comparisons on the LF/HF rate change within a few seconds were carried
out to evaluate the stress level of a passenger during an autonomous vehicle simulation
ride test. Wang et al. [72] used personal thermal sensation as a continuous function of time,
and then adopted not only the time-domain and FFT features, but also applied the Hilbert
Transform (HT) to extract the instantaneous amplitude (iA) of the LF and HF for thermal
comfort modeling.

3.2.2. Electrodermal Activity

The next physiological index is electrodermal activity (EDA), also known as skin
conductance, galvanic skin response (GSR), electrodermal response (EDR), and skin con-
ductance response (SCR). EDA is the property of the human body that causes continuous
variation in the electrical characteristics of the skin. Skin resistance varies with the state of
the sweat glands in the skin. The arousal of the sympathetic autonomic nervous system ac-
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tivity can result in the increase of the sweat gland, which leads to greater skin conductance.
Thus, the EDA signal is widely used as another important index in evaluating a person’s
psychological or physiological arousal in response to an external stimulus [73]. The higher
the arousal, the higher the skin conductance. The change in skin response is linked with
emotion, stress, and pain. As of today, EDA is considered the most popular method for
studying human psychophysiological phenomena [74].

Skin conductance measurement is typically composed of two components—tonic skin
conductance level (SCL) and phasic skin conductance response (SCR) that result from
sympathetic neuronal activity. Tonic skin conductance levels can be considered as the
smoothly and slowly changing levels, while the phasic skin conductance responses can be
thought of as the rapidly changing peaks.

The EDA signals are usually collected at the palmar area of a subject’s hands or feet
since these areas typically have the strongest sweat gland activities [73]. Skin conductance
is captured using skin electrodes which are easy to apply. Data are acquired with sampling
rates between 1–10 Hz and are measured in units of micro-Siemens (µS). Typical computing
features of GSR include:

• Amplitude of SCR;
• Latency between stimulus and SCR onset;
• Recovery time of 63% amplitude;
• The distributions of the EDA peak height and the instantaneous peak rate.

Since the relationship between these GSR features and human comfort is very complex,
there is no simple math formula to represent it. Thus, a great amount of research uses
machine learning techniques to handle the problem. Shi et al. and Lagomarsino et al. [75,76]
investigated the feasibility of using GSR to evaluate subjects’ cognitive loads. The GSR
data results and analysis from the user experiments demonstrated that mean GSR across
users increases as cognitive load increases. Khamaisi et al. [77] presented a strategy to
evaluate the mental and physical workloads and stress of workers in heavy workload
scenarios by measuring the EDA, HR, and eye activity signals. The experiment was
set up in the VR environment. Villarejo et al. [78] used the GSR device and predicted
whether the test subjects were in a mentally stressed situation with a success rate of 90.97%.
Sawabe et al. [70] measured subjects’ personal skin conductance using the terminals of
the subject’s two fingers. The eSense Skin GSR sensor was applied in their research to
collect and analyze the EDA data. The stress response of the subject is detected by a rapid
change in the GSR rate. Setz et al. [73] analyzed the effectiveness of using electrodermal
activity (EDA) to distinguish stress from cognitive load under two designed stress factors.
Multiple features were used in this research: (1) Mean, maximum, and minimum EDA
levels; (2) Slope of the EDA level; (3) Mean EDA peak height; (4) Mean EDA peak rate
in peaks/min; (5) Quantile thresholds at 25%, 50%, 75%, 85%, and 95% for the EDA peak
height and the instantaneous peak rate. Then, the following classification methods were
implemented: (1) linear discriminant analysis (LDA); (2) support vector machine (SVM);
(3) nearest class center (NCC) algorithm. Setz et al. eventually found that EDA results
successfully discriminate cognitive load from stress with an accuracy greater than 80%.
Furthermore, the EDA peak height and the instantaneous peak rate were found to carry
information about the stress level of a person.

3.2.3. Skin Temperature

Skin temperature (SKT) measures the thermal changes on the skin. The fluctuations
in skin temperature are mainly influenced by blood flow volume changes due to vascular
resistance or arterial blood pressure variations. Local vascular resistance is mediated by
the sympathetic nervous system [79]. Therefore, the SKT variation is another indicator
of a person’s emotional state. Kim et al. [80] adopted a wide variety of physiological
features for emotion classification, including maximum and mean skin temperatures within
50 s intervals. Zhai et al. [81] found that the patterns of temperature slope provide more
meaningful information than the mean value in terms of emotion classification accuracy.
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Pao et al. [82] proposed a thermal sensation prediction model by adopting physiological
features including body temperature, EDA, EEG, and ECG. The accuracy results indicate
that this new model performs better than the predicted mean vote (PMV) model.

3.2.4. Electroencephalography (EEG)

Electroencephalography, also known as EEG, is an electrophysiological process of
recording the electrical activity of the brain by placing EEG electrodes on the surface of
the user’s scalp. The electrical activity mainly comes from voltage changes from ionic
current within and between some brain neurons. The collected signals will then go through
processes such as amplifying, digitizing, and then being sent to a computer or mobile
device for data processing [83].

The brain waves are usually divided into four bands by frequency: Delta, Alpha, Beta,
and Gamma. The Delta band has the lowest frequency, while the Gamma band has the
highest frequency [84]. Each band has its own features and carries specific information
which reflects certain nervous system activity. For frequency band analysis and classifica-
tion, power spectral analysis is implemented to visualize the EEG power of each frequency
band. The differences in brain mapping of the relatively high-beta wave in the temporal
lobe can be useful when assessing participants’ stress.

EEG is well known for a significant and reliable bio-signal reflecting mental fatigue.
Cognitive loading induces mental fatigue, and people have difficulty processing visual
stimuli or making decisions when they suffer from mental fatigue. The EEG signals can
also be used to detect many high-level human emotions such as happiness, surprise, fear,
disgust, etc. Current research mostly applies machine learning models such as SVM and
RNN to extract time-domain or frequency-domain features from raw EEG signals and then
implement classification.

Choi et al. [84] examined how indoor environmental elements such as temperature,
odor irritants, and sound will impact human stress levels by designing multiple climate
chambers and carrying out EEG tests to generate occupants’ brain maps. The experiment
results demonstrated that brain wave analysis in the temporal lobe could be highly useful
when assessing participants’ stress. Yao et al. [85] investigated the impact of environmental
temperature changes on EEG, eventually finding that the β band is dominant under extreme
temperature conditions, while α band power is significantly larger than the other bands
under the neutral temperature condition. Kang et al. [86] created a wellness platform
to address the visual discomfort issues generated in the stereoscopic 3D (S3D) display
scenarios. The authors firstly determined the features that can be used as the index for
visual discomfort perception, then applied machine learning techniques (SVM) to build a
BCI framework to eventually optimize the S3D content based on the viewer’s EEG response.
Lin et al. [87] studied predicting and categorizing four different human emotion states (joy,
anger, sadness, and pleasure) during music listening based on recorded EEG signals. The
authors found that most of the identified EEG features were extracted from the electrodes
near the frontal and parietal lobes. Eyam et al. [88] proposed an approach which utilizes
EEG to detect human emotional states and then instantly adapts COBOT parameters to
human emotional states. The approach kept human emotions within a desirable range
and increased the humans’ confidence and trust in the robot. Peng et al. [89] evaluated
high-speed railway passengers’ overall comfort by using questionnaires and EEG through a
series of field tests. The experimental results indicate that passengers have different neural
signatures under different comfort states in the frequency and spatial domains. The β band
is more relevant to comfort compared to others.

3.2.5. Pupillometry

The last metric introduced in this section is pupillometry. Pupillometry is a reliable tool
for studying cognitive and emotional processes, as well as for determining an individual’s
emotional state [90,91]. The pupil is the black hole, also known as the aperture of the
iris, which is located in the center of the eye that allows light to strike the retina. It is a
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pigmented structure that contains two antagonistic muscle groups—the sphincter and the
dilator muscles [60]. The sphincter is responsible for constricting the pupil while the dilator
is functioning to dilate the pupil. A great amount of research has shown that the extent
of pupil diameter (PD) dilation is related to the mental effort load of the subject during
cognitive tasks or psychological stresses [92–94].

Compared to other stress indexes such as cardiovascular activity, EDA, and EEG, the
most significant advantage of pupillometry is its unobtrusiveness. No physical contact is
required between the pupillary data collection devices and the human body. Typically, pupil
activities can be simply measured with one video camera or more professional devices like
an eye tracker. For example, the Tobii TX300 eye-tracking system measures eye movement
at 300 Hz and another system—iView—developed by SensoMotoric Instruments with a
50 Hz sampling rate [91].

Previous research has demonstrated their effectiveness for pupillometry studies [95].
Some other eye-movement metrics, such as saccade parameters, are also found to be
influenced by psychological stresses [96,97]. Zhang et al. [98] studied the relationship
between colors in subway station and visual comfort through pupilometry analysis. The
research proved that the pupillary unrest index and saccade rate in the eye movement
index were significantly negatively correlated characteristics with the user’s comfort, which
can be served as the evaluation parameters of visual comfort. Pedrotti et al. [60] studied
the impact of psychological stress on pupillary activities by proposing a new method that
utilized wavelet transform and neural networks. The experiment was based on simulated
driving tasks; pupil diameter, EDA signals, and self-reported assessments were recorded.
The neural network classifier proposed by the authors yielded 79.2% prediction accuracy
among the four test scenarios.

Changes in pupil diameter have also been proven to be optimal in measuring hu-
man emotion. For example, pupil diameter increases when the person feels pleasure or
fear. Babiker et al. [91] designed multiple experiment tests with positive and negative
sound stimuli and recorded the pupillary responses from 30 participants. The pupillary
measurements indicated that pupil dilation sharply increased during the sound stimuli
tests, and the pupil dilation phenomenon was found to be even stronger for the negative
stimuli scenarios.

3.3. Discussion

This section reviewed two main comfort measuring approaches—subjective measure-
ment and objective measurement. All cited works in this section are listed in Table 2. Papers
are grouped and ordered based on evaluation metrics. Short summaries of methodologies
of each paper are also provided.

The subjective measurement approaches include the Likert-Scale evaluation, hand-
held device, and video footage analysis, while the objective measurement approaches
include utilizing human physiological signals such as heart rate variability (HRV), electro-
dermal activities (EDA), skin temperature, electroencephalography (EEG), and pupillome-
try. Since comfort is widely accepted by most researchers as a subjective mental response
to environmental stimulus [14], subjective rating approaches such as the Likert Scale are
usually conceived as the most accurate type of human comfort measuring method so far.
Thus, subjective ratings are commonly used as ground truth values in many comfort pre-
diction models which utilize physiological signals from the human body as model inputs.
Despite the advantages questionnaires and the Likert Scale possess, they have limits as
well. Questionnaires are not capable of real-time data collection; in addition, the comfort
data are highly discrete, which sacrifices accuracies in true comfort reflections. Fortunately,
hand-held devices counteract the issue. However, it also creates new challenges such as the
button sensitivity issue, accuracy issue, and subject’s focus problem. Particularly in HRC
tasks, it is sometimes impossible for the subjects to press the button while executing the
required actions. Therefore, a third method can be used as the compensating method. Video
footage analysis has been proven to be effective in capturing real-time human reactions,



Sensors 2022, 22, 7431 14 of 25

which can be very useful in analyzing his/her emotion, but it is a highly-technique-required
skill and fatigue-inducing job.

Table 2. Measurement methods and metrics of human comfort.

Author / References # Metrics Methodologies

Hart et al. (1988) [48] Task Load Likert Scale based Questionnaires

Haspiel et al. (2018) [45] Trust; Anxiety; Preference; Cognitive
Load

Autonomous Vehicle Ride Simulation;
Likert Scale based Questionnaires

Peterson et al. (2017) [46] Situational Awareness; Trust

Autonomous Vehicle Ride Simulation
with Secondary Task; Questionnaires,

Eye-tracking, Heart Rate, Galvanic
Skin Response

Peterson et al. (2018) [47] Perceived Risk; Trust

Autonomous Vehicle Ride Simulation
with Secondary Task; Questionnaires,

Eye-tracking, Heart Rate, Galvanic
Skin Response

Koay et al. (2005) [51] Self-reported Value Human-Robotic Interaction Tasks;
Hand-held Device, Questionnaires

Wang et al. (2020) [52] Self-reported Value Ride Comfort; Hand-held Device,
Questionnaires

Su et al. (2021) [53] Hand-held Device; Self-reported Value;
EDA; EEG; Pupilometry

Ride Comfort; Subjective &
Objective Measurements

Salter et al. (2004) [54] Behavior Preference Human-Robotic Interaction Tasks;
Recorded video footage

Dautenhahn et al. (2002) [55] Micro-behaviors Recording body reactions during
human–robotic interaction tasks

Wei (2013) [56] Stress Respiration (RSP);
Electromyogram (EMG)

Ramos et al. (2014) [59] Stress Heart Rate (HR); Respiration Rate; skin
temperature; EDA

De Geus et al. [64] Stress Impact of Stress on Heart rate variability
(HRV) Metrics

Setz et al. (2009) [73] Cognitive Load; Stress
Memory Tasks for Human; Galvanic Skin

Response, Linear Discriminant
Analysis, SVM;

Shi et al. (2007) [75] Cognitive Load; Stress Cognitive Load and Stress Inducing
Tasks; Electrodermal Activity

Lagomarsino et al. (2022) [76] Cognitive Load Cognitive Load; HRC Tasks;
Electrodermal Activity

Kaklauskas et al. (2011) [57] Emotion; Work Productivity Heart Rate; Blood Pressure; Skin
Temperature; Skin Conductance

Zhang et al. (2014) [58] Cognitive Workload EEG; EDA; Heart rate variability (HRV);
Cognitive Load Experiment

Shaffer et al. (2017) [44] Heart Rate Variability Heart rate variability (HRV) Metrics
and Features

Hilgarter el al. (2021) [61] Heart Rate Verbal Learning Task; Questionnaires

Berntson et al. (1997) [63] Heart Rate Variability Heart rate variability (HRV) Metrics
and Features
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Table 2. Cont.

Author / References # Metrics Methodologies

Task Force of the European Society of
Cardiology and the North American

Society of Pacing
and Electrophysiology [65]

Heart Rate Oscillation Standard for Categorization of Heart Rate
Oscillation Bands

Schubert et al. (2008) [67] Heart Rate Variability Chronic and Short-term Stress Effects on
Heart Rate Variability (HRV)

Castaldo et al. (2015) [68] Heart Rate Variability
Acute mental stress and short term Heart
Rate Variability (HRV) measures in time,

frequency and nonlinear domain

Pagani et al. (1997) [69] Heart Rate Variability Relationship between HRV Components
and Nerve Activity

Sawabe et al. (2018) [70] Stress; Heart Rate; Galvanic
Skin Response

Autonomous Vehicle Ride Simulation;
Heart Rate; Galvanic Skin Response;

Wang et al. (2022) [72] Heart Rate Variability Thermal Comfort Experiments; FFT,
time-domain, HT features

Boucsein (2012) [74] EDA Physiological States

Villarejo et al. (2012) [78] EDA; Stress Emotion Inducing Tasks; Math and
Reading Tasks; EDA;

Jang et al. (2015) [79] EDA; Emotions of boredom, pain, and
surprise

Emotion Stimulation Tasks; ECG; EDA;
Skin Temperature;

Khamaisi et al. (2022) [77] EDA; Stress; HRV; Pupilometry VR Simulation; Worker Mental Stress
under Heavy Workload

Kim et al. (2004) [80] Skin Temperature; EDA; Emotions
Detection; HRV; Pupilometry

Multimodal (audio, visual and cognitive)
approach to evoke specific

emotional status

Zhai et al. (2006) [81] Skin Temperature; EDA; Stress;
Pupil Diameter Stress induction interactive tasks; SVM;

Pao et al. (2022) [82] Skin Temperature; Thermal Comfort Skin Temperature; EDA; EEG; ECG;
Thermal Chamber Experiment

Choi et al. (2015) [84] EEG; Stress Human in a Stress Test Chamber;
Paper-based Test; EEG-based Test;

Yao et al. (2008) [85] EEG; Thermal Comfort Climate Chamber; Questionnaires; Skin
Temperature; EEG; ECG

Lin et al. (2010) [87] EEG; Emotion Music Listening Tasks

Eyam et al. (2021) [88] EEG; Human Emotional States HRC Tasks; EEG

Peng et al. (2022) [89] EEG; Passenger Overall Comfort Field Tests; EEG

Kang et al. (2017) [86] EEG; Visual Comfort Stereoscopic 3D video; EEG
Response; SVM;

Granholm et al. (2004) [90] Pupillometry; Cognitive and Emotional
Process Cognition and Emotion Inducing Tasks;

Pedrotti et al. (2014) [60] Pupillometry; Stress; EEG; Simulated Driving Task; EEG Response;
Questionnaire; Neural Network;

Babiker et al. (2015) [91] Pupillometry; Emotion Detection;
Audio Stimulation; Pupil Response;

Subjective Ratings; Machine
Learning; kNN;

Beatty (1982) [92] Pupillometry; Mental Effort Load
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Table 2. Cont.

Author / References # Metrics Methodologies

Bradley et al. (2008) [94] Pupillometry; Emotional Arousal Picture-viewing Tasks; Pupil Diameter;
EDA; Heart Rate;

Klingner et al. (2008) [95] Pupillometry; Cognitive Load; Task-evoked Pupillary Response; Remote
Eye Tracker

Minin et al. (2011) [96] Pupillometry; Stress; Eye-movement; Simulated Driving Task (Lane Change);
Visual Search Task;

Zhang et al. (2022) [98] Pupilometry; Visual Comfort Pupillary Unrest Index & Saccade Rate in
the Eye Movement

HRV and EDA signals have been widely used to assess long-term and short-term
psychological states, which can take from several minutes to 24 h. Time-domain features
of HRV analysis and EDA analysis can be easily implemented in HRI scenarios; however,
frequency-domain methods of HRV analysis sometimes can be tricky to apply. The reason
is that these frequency-domain features usually require at least up to five-minute recording
to be effective, but many HRI tasks only last a short period of time. This greatly reduces the
chance of frequency-domain features being used. EEG features have also shown advantages
in predicting human emotion and cognitive load. Despite the fact that a great amount
of research has proved the effectiveness of utilizing bio-signals for stress, comfort, and
emotion measurements, the physiological signals are susceptible to noises and uncertainties,
which could be affected by many unknown factors and random events. In addition, there
is still a lack of a complex model which directly relates body signals to more general and
comprehensive human comfort ratings.

4. Comfort Improvement Approaches

The subjective nature of comfort leads to individual differences in preferences of
robot behaviors. In general, adapting the robot’s performance to humans can result in
a positive impact on one’s comfort. A great deal of previous research has focused on
improving human comfort feedback during HRC tasks using motion-based, social factor-
based approaches, and other typical methods.

4.1. Motion-Based Improvement Methods

Robot adaptability refers to the ability of a robot to adjust its working style and
responses based on the environmental change and stimulus in order to better achieve the
task goal. Robot adaptability consists of many factors such as robot pose, speed, moving
trajectory adaptations, as well as adaptations with respect to social factors such as voice
and gesture.

4.1.1. Optimizing Robot Moving Trajectory

An optimized robot movement trajectory that clearly expresses the robot’s intent and
matches the human partner’s expectation will lead to more fluent collaborations and higher
human comfort. Dragan et al. [99] designed an HRC task that requires the human subject
to collaborate with the robot for tea serving. Three types of robot moving trajectories were
created, and the results showed that the most predictable type of motion obtained the
highest user score ratings and the least time cost. Alami et al. [100] proposed a framework,
which allows the robot to select and perform its tasks based on the human partner’s
presence, needs, and preferences. The framework introduced two criteria, the security
criteria and the visibility criteria, which prevent the robot from approaching too close to
humans and also ensure the visibility of the selected path. Gielniak et al. [101] developed
an autonomous algorithm that creates anticipatory motion variants from a single motion
exemplar that has hand and body symbols as a part of its communicative intent. The
results demonstrated that humans understood robot intent sooner than motions without
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anticipation. Dinh et al. [102] presented a framework that generates predictable robot
motions with dynamic obstacle avoidance during human–robot interactions by using the
policy improvement method. Besides using Dynamic Motion Primitives for trajectory
generation, an additional potential field term was added to penalize trajectories which
could lead to collisions. A cost function is designed to minimize the risk of collisions and
maximize the predictability of robot motions.

Human awareness of COBOTs is not only critical due to safety concerns but also
because of better human–robot collaboration experience and efficiency. Lasota et al. [33]
applied a PhaseSpace motion capture system to keep track of the human arm’s position
during a screw-tightening task while the system predicts the intent of the human subject
and estimates the shared workspace, then adjusts the robot trajectory to avoid the collision.
Both quantitative measurements and subjective feedback indicated that subjects preferred
the human-aware setup over the baseline setup and had a higher perceived comfort level
and higher working efficiency.

4.1.2. Planning Robot with Adaptive Poses

Human workers in traditional factory working environments usually repeat certain
postures and movements constantly, which could cause certain aggravated work-related
diseases. Such diseases are typically known as “Musculoskeletal disorders” (MSDs), which
are also the largest category of work-related diseases [103]. New adaptive robots in the
next generation should be able to prevent these diseases and discomfort feelings from
human workers.Ciccarelli et al. [104] proposed a system to improve human postural
comfort by optimizing robot behavior. The system is based on workers’ anthropometric
characteristics, posture monitoring, task requirements, and a real-time risk assessment
by standard methodology. Busch et al. [105] investigated and developed the approach
to improve the human worker’s collaborative posture during HRC tasks. The authors
integrated the REBA method [106] into a framework that estimates the ergonomic costs of
each human body joint. The cost function and postural assessment techniques are taken
from the ergonomic research. For the cost calculation, each joint has an associated value
which represents the MSD risk score. The final optimization objective is to minimize the
overall risk scores of the human body. Eventually, optimal robotic behaviors which guide
human workers to better postures were derived based on the framework.Tassi et al. [107]
developed a novel Augmented Hierarchical Quadratic Programming (AHQP) framework
which integrates human-related parameters to optimize ergonomics, for multi-tasking
control in Human–Robot Collaboration. The framework combines typical industrial manu-
facturing parameters (e.g., cycle times, productivity) and human comfort (e.g., ergonomics,
preference), in order to identify an optimal trade-off.

Despite the great work from Busch et al., Chen et al. [108] discovered that optimizing
only muscular comfort is not sufficient. For example, while the human may have better
muscular comfort, he or she can be dangerously close to the robot and is obstructed by
the robot links. Thus, Chen et al. presented a planning algorithm for robot grasping and
positioning to improve both human comfort and safety. The algorithm considers both the
muscular activation level required to carry out the task and the human spatial perception
during the interaction. By maximizing both comfort criteria, both the grasp stability and
human comfort were improved.

4.2. Sociability-Based Improvement Methods

The constantly aging population structure and shortages in healthcare resources in
many countries have greatly promoted the research and the application of nursing robots
and social companion robots in the past decades. Previous research has shown that humans
tend to accept a robot more easily with better social abilities and behaviors [109].

Social robot acceptance typically can be categorized into two branches—functional
acceptance and social acceptance [110]. Functional acceptance mainly refers to the human’s
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acceptance level of the robot’s usability, while social acceptance refers to whether the human
is willing to build a pet-like relationship with the robot or become a conversational partner.

Heerink et al. [110] investigated users’ preference and acceptance of robots with differ-
ent levels of social abilities and behaviors. The five basic features (Cooperation, Empathy,
Assertion, Self-Control, and Responsibility) from the Gresham and Elliott’s Social Abilities
Rating System (SSRS) [111] were used as correlated features corresponding to certain be-
haviors programmed into the robot. The iCat robot was used as an interactive robot and
had two working conditions. One of the conditions was more socially communicative with
more facial expressions and head nodding, etc. Results demonstrated that participants
generally had a higher preference for the more socially communicative setup of the robot
and tended to be more willing to interact with it.

From the perspective of robot sociability, developing appearances for robots in human–
robot interaction, especially for domestic service robots and health care robots in public
settings, plays an important role in improving human comfort [42,110,112]. Walters et al.
found that 60% of human subjects prefer robot-approaching distances that are expected for
normal social interactions between humans [42]. As mentioned in Section 2, human–robot
proximity also has great influence on human comfort. Jessi et al. [32] built a testbed based on
a Baxter humanoid robot and Wizard of Oz implementation; they then evaluated how the
invasion of personal space by a robot, with appropriate social context, affects human comfort.

Kuo et al. [113] studied the influence of age and gender factors on the acceptance of
healthcare robots in HRI scenarios. The differences in ages between the two groups are barely
noticeable, but a significant gender-driven difference was found. Van Dijk [114] found that
letting the elders discover the convenience and usefulness of the devices would help increase
elderly people’s acceptance. Mitzner et al. [115] also proposed similar findings about the
benefits and rewards of letting elderly people have a positive experience with the technologies.

4.3. Other Typical Methods

Wang et al. [116] proposed a Teaching-learning-prediction model to let the robot
learn from human demonstration. Robot action selections are based on human intention
anticipation. Shah et al. [117] made the robot emulate the effective coordination behaviors
observed in human teams to minimize the human’s idle time. Hoffman et al. [118]
proposed the concept of a perceptual symbol system, which uses simulation and inter-
modal reinforcement to allow for decreased robot reaction time. Robot emulates the
Perceptual-symbol practice in robot decision-makings.

4.4. Discussion

This section reviewed several types of comfort improvement methods, including the
motion-based method, sociability-based method, and some other typical methods. All
cited works in this section are listed in Table 3. Papers are grouped and ordered based on
evaluation metrics. Short summaries of methodologies of each paper are also provided.

The motion-based methods include trajectory optimization and pose adaptation ap-
proaches. Trajectory optimization algorithms mainly focus on two ways to improve human
comfort—actively adapting robot trajectories to human arm motions to provide humans
higher trust and thus higher comfort; adapting trajectories to better match human ex-
pectations to improve collaboration fluency and thus provide higher comfort response.
Pose adaptation methods aim at adapting robot delivery poses to reduce musculoskeletal
disorders-related diseases to improve human joint comfort.

Previous research pointed out that humans tend to have a preference on a robot
with better social abilities and behaviors. Thus, the methods of improving social robot
acceptance are typically focused on two branches—functional acceptance improvement and
social acceptance improvement. Functional acceptance improvement methods mainly focus
on improving the usability of the robots, while the social acceptance improvement methods
focus on the effectiveness of improving robots’ communication skills and appearances,
as well as adapting the interactive distance with humans. In social robot designs, age
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and gender factors need to be taken into consideration. Some researchers found that a
huge gender-driven difference exists on the acceptance of healthcare robots. In order to
improve the elder people’s acceptance, the most effective way is to let them realize the
convenience and usefulness of these machines and devices. This chapter also covers some
typical methods which will enhance robot collaboration efficiency to improve the human
experience during the tasks. For example, a teaching–learning–prediction model enables
the robot to learn from human demonstration. A robot can minimize the human’s idle time
by observing and studying from human’s effective behaviors.

Table 3. Comfort improvement methods.

Author / References # Metrics Methodologies

Dragan et al. (2015) [99] Anticipatory Robot Movement Trajectory HRC-Tasks Experiments; Combination of
Subjective & Objective Measurement

Gielniak et al. (2011) [101] Anticipatory Robot Movement Trajectory HRC-Tasks Experiments; Combination of
Subjective & Objective Measurement

Dinh et al. (2019) [102] Anticipatory Robot Movement Trajectory
HRC-Tasks Experiments; Black-box

Optimization, Dynamic Motion
Primitives, Policy Improvement

Ciccarelli et al. (2022) [104] Robot Poses Optimization HRC-Tasks Experiments; Muscular
comfort Optimization

Busch et al. (2017) [105] Robot Poses Optimization
HRC-Tasks Experiments; Objective

Measurement; Questionnaires; Muscular
comfort Optimization;

Tassi et al. (2022) [107] Robot Poses Optimization
HRC-Tasks; Trade-off between human
comfort and Task Efficiency; Muscular

comfort Optimization

Chen et al. (2018) [108] Robot Poses and Position Optimization
HRC-Tasks Experiments; Objective

Measurement; Muscular comfort and
Human Spatial Perception Optimization;

Alami et al. (2005) [100] Human-aware robot motion High-level Symbolic Planning

Lasota et al. (2014) [33]

Human intention anticipation; HRC-Tasks Experiments; Combination of
Subjective & Objective Measurement

Human-aware robot motion;
Adjust the robot movement trajectories

and moving speed based on test
subjects’ reactions

Adaptive robot speeds

Jessi et al. (2018) [32] Adaptive Human–Robot Proximity

Human-Robotic Interaction Tasks;
Wizard of Oz;

Combination of Subjective &
Objective Measurement;

Ruyter et al. (2005) [109] Robot Sociability; Robot Communication
skills

Home Dialogue System; Wizard of Oz
experiment; Robotic interface simulating

human social behaviors

Walters et al. (2005) [42] Robot Sociability; Human–Robot
Interactive Distance

Human–Robot Interaction Experiments;
Combination of Subjective &

Objective Measurement

Heerink et al. (2006) [110] Robot Sociability; Robot
Communication skills

Human–Robot Communication
Experiments; Subjective
Measurement—3-point

scale Questionnaires

Kuo et al. (2009) [113] Robot Sociability; User Acceptance HRC-Tasks Experiments; Objective
Measurement; Questionnaires
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Table 3. Cont.

Author / References # Metrics Methodologies

Wang et al. (2018) [116] Human intention prediction

Teaching-learning prediction (TLP)
model based on extreme learning

machine (ELM) algorithms using online
natural multi-modal information for the

robot to learn from human hand-over
demonstrations and predict

human intentions

Hoffman et al. (2008) [118] Human intention prediction; Robot
decision-makings

A perceptual symbol system, which uses
simulation and inter-modal

reinforcement to allow for decreased
reaction time through top-down biasing

of perceptual processing.

Shah et al. (2011) [117] Human-inspired robot task execution

A task-level executive that enables a
robot to collaboratively execute a shared
plan with a person. The system chooses
and schedules the robot’s actions, adapts

to the human partner, and acts to
minimize the human’s idle time.

Most methods introduced above are empirical, and there is still a lack of theoretical
comfort model-guided comfort improvement methods. In addition, the collaborative task
designs in existing studies are usually composed of only one or two simple moves from
the human side, which can not accurately simulate some of the real-world manufacturing
scenarios. For the test of robot appearance designs, adopting virtual reality technology
seems to be a better approach with higher freedom of customization and lower cost. In
addition, most methods above only study improving comfort based on some specific and
limiting factors. Controlling multiple different factors to improve the general comfort
level remains a challenge. In general, the amount of research on the topic of human
comfort improvement is much less than the two previous topics: influential factors and
measurement methods. However, the findings and achievements in these two topics
enable us to better understand the human comfort and also build a foundation for future
research work in improving human comfort in HRC. For future research works, more efforts
should be focused on comfort improvement methods which consider multiple factors
simultaneously, as well as methods that merge real-time subjective comfort measurement
and physiological signal-based measurement methods to improve comfort in real time
during HRC tasks.

5. Conclusions

Three major research topics on human comfort in human–robot collaboration scenar-
ios were reviewed in this paper. In Section 1, the background of current manufacturing
environment setups was introduced, and the usage of collaborative robots still remains a
small portion. One of the main concerns preventing COBOTs from becoming a big part of
the industry is the relatively low user acceptance. In order to improve the user perceived
comfort, safety, and trust in COBOTs, a great amount of research has been done during
the past few decades. The influential factors on human comfort during HRC tasks were
introduced in Section 2, including ergonomic factors, motion-based factors, anthropomor-
phism, and robot sociability factors. In Section 3, human comfort measurement methods
which consist of subjective and objective measurement approaches were reviewed. Sec-
tion 4 covers the comfort improvement methods, including robot motion-based approaches,
sociability-based approaches, and other typical methods.

The human comfort factors under HRC scenarios can be classified in four categories:
ergonomic factors, robot motion-based factors, anthropomorphism, and robot sociability
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factors. Ergonomic factors are independent of the setup of robots. Robot-motion-based
factors, including moving speed, the final position of object delivery, and human–robot prox-
imity, are highly dependent on individual preferences. Robot sociability factors also play a
key role in human comfort. Robots with better communication skills can greatly improve
human comfort. Comfort measurement methods consist of two main branches—subjective
measurement and objective measurement. The subjective measurement approaches in-
clude the Likert-Scale evaluation, hand-held device, and video footage analysis, while the
objective measurement approaches include utilizing human physiological signals such as
heart rate variability (HRV), electrodermal activities (EDA), skin temperature, electroen-
cephalography (EEG), and pupillometry. The subjective measurement results are usually
considered as the ground truth values and considered to be more reliable than physiological
measurement results. Likert Scale is the most accurate approach but lack of real-time data
acquisition ability, while hand-held device and video footage analysis methods provide
real-time data but sacrifice reliability and accuracy. Physiological signals have been widely
used to assess long-term and short-term psychological states, emotions and cognitive loads,
which can take from several minutes to 24 h. Features extracted from these physiological
signals usually consist of two types—time-domain features and frequency-domain features.
Comfort improvement methods, including the motion-based method, sociability-based
method, and some other typical methods, can improve human comfort by adapting robots’
trajectories, poses, communication styles, and even appearances.

There are also some promising future research directions based on this review. Firstly,
more unknown influential factors can be explored in the context of HRC. Secondly, better
objective measurement approaches are needed. Most of the physiological metrics for
objective comfort measurement introduced in this paper only demonstrate the relationship
between body signals and specific comfort factors. A complete model needs to be developed
to better map these body signals to general and comprehensive comfort ratings. Thirdly,
for comfort improvement methods, there is still a lack of theoretical comfort-model-guided
methods. Most methods only study improving comfort based on some specific and limiting
factors. Controlling multiple different factors to improve the general comfort level remains
a challenge. Therefore, more research work is expected to understand, measure, and
improve human comfort in the context of human–robot collaboration.
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41. Kabacińska, K.; Prescott, T.; Robillard, J. Socially assistive robots as mental health interventions for children: A scoping review.
Int. J. Soc. Robot. 2021, 13, 919–935. [CrossRef]

42. Walters, M.; Dautenhahn, K.; Te Boekhorst, R.; Koay, K.; Kaouri, C.; Woods, S.; Nehaniv, C.; Lee, D.; Werry, I. The influence of
subjects’ personality traits on personal spatial zones in a human–robot interaction experiment. In Proceedings of the ROMAN
2005. IEEE International Workshop On Robot and Human Interactive Communication, Nashville, TN, USA, 13–15 August 2005;
pp. 347–352.

43. Gasteiger, N.; Hellou, M.; Ahn, H. Factors for personalization and localization to optimize human–robot interaction: A literature
review. Int. J. Soc. Robot. 2021, 1–13. [CrossRef]

44. Shaffer, F.; Ginsberg, J. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [CrossRef]
45. Haspiel, J.; Du, N.; Meyerson, J.; Robert, L., Jr.; Tilbury, D.; Yang, X.; Pradhan, A. Explanations and expectations: Trust building

in automated vehicles. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human–Robot
Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 119–120.

46. Petersen, L.; Tilbury, D.; Yang, X.; Robert, L. Effects of Augmented Situational Awareness on Driver Trust in Semi-Autonomous
Vehicle Operation. 2017. Available online: https://hdl.handle.net/2027.42/137707 (accessed on 1 July 2022).

47. Petersen, L.; Zhao, H.; Tilbury, D.; Yang, X.; Robert, L. The influence of risk on driver trust in autonomous driving systems. In
Proceedings of the Autonomous Ground Systems Technical Session of the Ground Vehicle Systems Engineering and Technology
Symposium, Novi, MI, USA, 7–9 August 2018.

48. Hart, S.; Staveland, L. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv. Psychol.
1988, 52, 139–183.

49. Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 1932, 22, 55.
50. Burns, A.; Bush, R. Basic Marketing Research, 2nd ed.; Prentice Hall Press : Hoboken, NJ, USA, 2007.
51. Koay, K.; Walters, M.; Dautenhahn, K. Methodological issues using a comfort level device in human–robot interactions. In

Proceedings of the ROMAN 2005. IEEE International Workshop on Robot and Human Interactive Communication, Nashville,
TN, USA, 13–15 August 2005; pp. 359–364.

52. Wang, C.; Zhao, X.; Fu, R.; Li, Z. Research on the comfort of vehicle passengers considering the vehicle motion state and passenger
physiological characteristics: Improving the passenger comfort of autonomous vehicles. Int. J. Environ. Res. Public Health 2020,
17, 6821. [CrossRef]

53. Su, H.; Jia, Y. Study of Human Comfort in Autonomous Vehicles Using Wearable Sensors. IEEE Trans. Intell. Transp. Syst. 2021, 23,
11490–11504. [CrossRef]

54. Salter, T.; Te Boekhorst, R.; Dautenhahn, K. Detecting and analysing children’s play styles with autonomous mobile robots: A case
study comparing observational data with sensor readings. In Proceedings of the 8th Conference on Intelligent Autonomous
Systems (IAS-8), Amsterdam, The Netherlands, 10–13 March 2004; pp. 10–13.

55. Dautenhahn, K.; Werry, I. A quantitative technique for analysing robot-human interactions. IEEE/RSJ Int. Conf. Intell. Robot. Syst.
2002, 2, 1132–1138.

56. Wei, C. Stress emotion recognition based on RSP and EMG signals. Adv. Mater. Res. 2013, 709, 827–831. [CrossRef]
57. Kaklauskas, A.; Zavadskas, E.; Seniut, M.; Dzemyda, G.; Stankevic, V.; Simkevičius, C.; Stankevic, T.; Paliskiene, R.;
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