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ABSTRACT Reinforcement learning agent learns how to perform a task by interacting with the environment.

The use of reinforcement learning in real-life applications has been limited because of the sample efficiency

problem. Interactive reinforcement learning has been developed to speed up the agent’s learning and facilitate

to learn from ordinary people by allowing them to provide social feedback, e.g, evaluative feedback, advice or

instruction. Inspired by real-life biological learning scenarios, there could be many ways to provide feedback

for agent learning, such as via hardware delivered, natural interaction like facial expressions, speech or

gestures. The agent can even learn from feedback via unimodal or multimodal sensory input. This paper

reviews methods for interactive reinforcement learning agent to learn from human social feedback and the

ways of delivering feedback. Finally, we discuss some open problems and possible future research directions.

INDEX TERMS Human agent/robot interaction, interactive reinforcement learning, interactive shaping,

social interaction.

I. INTRODUCTION

Reinforcement learning (RL) has achieved remarkable suc-

cesses in many practical problems [1], [2]. With recent

advances in deep learning, RL has attracted more attention

and been combined as deep RL to solve end-to-end learning

in sequential decision tasks [3]. However, the problem of

sample efficiency has largely limited the application of RL

and deep RL to real-life situations. For example, it might take

an RL agent millions of training samples for learning a good

policy to play a video game [3]. In practice, RL and deep

RL will be mostly applied to robots or agents operating in

human living environments. The interaction between agent

and human is essential and will increase as well. Therefore,

enormous knowledge and experience from human users could

be used to guide the agent’s learning.

There are many ways that human trainers can direct an

agent to learn, such as by providing demonstration, instruc-

tion/advice, and evaluative feedback [4]–[12]. A human user

can provide a demonstration to an agent by remote con-

trol or by his own body [10], [13]. One form of learning

The associate editor coordinating the review of this manuscript and

approving it for publication was Pedro Neto .

from demonstration is inverse reinforcement learning [14],

in which an agent optimizes the policy by learning a reward

function from provided demonstrations. And demonstrations

are mostly used for initializing the agent’s policy or solving

the RL task with one time interaction using inverse RL.

However, in complex task domains, it might be very diffi-

cult for non-expert human trainers to provide high-quality

demonstrations.

Another way that human trainers direct agents to learn is

to provide instruction or advice via natural languages [15].

When learning from advice, the advice usually needs to

be encoded into a programming language or mapped from

natural language to a formal language, which can be used

to improve the reinforcement agent learning [16], [17]. The

agent can also learn from instruction by mapping free-form

natural language instructions to intermediate shaping rewards

[18] or learn to follow language instructions by learning

a reward function from them [19]. The effects of different

types of advice such as optimal action advice and optimal

gain-risk advice on the agent’s learning performance are

investigated [20]. The human user can also provide evaluative

feedback to train the agents. Agent learning from human

evaluative feedback is termed human-centered reinforcement
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learning [21]. The interpretation of evaluative feedback can

be different, such as numeric reward, discrete categorical

feedback or policy feedback, resulting in different learning

algorithms. However, in most studies human feedback are

provided via button presses or mouse clicks. Inspired by

real-life biological learning scenarios, they could deliver the

feedback more naturally via emotions, gestures, or even natu-

ral languages to train the agent. The agent can even learn from

both these naturally delivered evaluative feedback and other

social feedback, like demonstration, advice and instruction.

Since there are already some survey papers on learning

from demonstration and observation [10], [22], the objec-

tive of this paper is to investigate the most recent work

on using different human social feedback (evaluative feed-

back, advice/instruction) to train agents to solve reinforce-

ment learning tasks. The methods on learning from human

feedback can be model-based or model-free as in traditional

RL. The way of providing feedback by human users can be

unimodal or multimodal. In addition, the agent can learn from

both human feedback and environmental rewards, or from

different sources of human social feedback. Encouraging

results have been shown by these reviewed approaches in one

or more challenging reinforcement learning tasks, such as RL

benchmarking domains [23], [24], Atari games [25], simu-

lated robotic control [8], [26] and real robot navigation [27].

II. BACKGROUND

In this section, we first describe reinforcement learning,

which constitutes the foundation of all the algorithms pre-

sented in this paper. We then introduce interactive reinforce-

ment learning, where agent learn from feedback provided by

human trainers.

A. REINFORCEMENT LEARNING

Reinforcement Learning [2] is a framework in which

agents learn to solve sequential decision-making problems.

A sequential decision problem can be modeled as an

Markov decision process (MDP), represented by a tuple <

S,A,T ,R, γ >, where S represents a set of states and A rep-

resents an action set. T is the transition probability function

T : S × A × S → [0, 1], R is the reward function R : S ×

A×S → ℜ. γ ∈ [0, 1] is the discount factor, determining the

present value of rewards received in the future. The agent’s

learned behavior is represented by a policy, π : S × A,

where π (s, a) = Pr(at = a|st = s) is the probability of

selecting a possible action a ∈ A in a state s. The objective

of the agent is to learn an optimal policy π
∗ by maximizing

the expected cumulative reward. RL algorithms are usually

divided into three categories: policy search methods, value

function methods and actor-critic methods. Policy search

methods learn the policy directly. Value function methods

estimate the value function—state value function V π (s) and

action value function Qπ (s, a), and derive the policy from it.

Actor-critic methods learn the policy and value function at

the same time. The policy and value function can be approx-

imated and optimized. In deep RL, deep neural networks are

usually used as function approximation. The standard RL

framework can be shown in Figure 1.

FIGURE 1. Illustration of an agent learning with standard reinforcement
learning (adapted from [2]).

B. INTERACTIVE REINFORCEMENT LEARNING

Inspired by potential-based reward shaping [28], interactive

reinforcement learning is proposed as one solution to the

sample efficiency problem in RL and deep RL (Figure 2).

Meanwhile, an interactive RL agent can also learn from a

human observer, especially non-experts in agent design and

programming. In interactive reinforcement learning, an agent

learns from human evaluative feedback, i.e., evaluations of

the quality of the agent’s behavior provided by a human user,

or advice/instruction. The interpretations of evaluative feed-

back can be different, e.g., a comment on the agent’s behavior

based on the expected agent policy in the human trainer’s

mind or the policy the agent is following, discrete categorical

feedback strategy, numeric reward etc., which result in many

interactive RL algorithms. The human advice/instruction can

also be used to aid a standard RL agent learner or an agent

learns how to follow instructions by directly learning a reward

function from them [16]–[19].

FIGURE 2. Interactive reinforcement learning framework.

III. INTERACTIVE REINFORCEMENT LEARNING FROM

HUMAN FEEDBACK

As in standard RL, interactive RL algorithms in the litera-

ture are mainly divided into two categories: (1) model-based

algorithms, and (2) model-free algorithms. All current

model-based methods for interactive RL from human feed-

back are reward-based methods, which take human feedback
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FIGURE 3. A diagrammatic representation of classification of learning
methods from human feedback.

as numeric reward as in standard RL. While model-free

methods can be reward-based and policy-based methods.

Policy-based methods take human feedback as policy feed-

back which is an evaluation on the agent’s policy. In each cat-

egory, according to whether an agent learns a value function

alone or both value function and policy separately at the same

time, we can also group them into: value function method

and actor-critic method. In the following, we will discuss the

features of algorithms in both groups and present relevant

example algorithms from the literature. As a small supple-

ment, we will discuss and elaborate on ways of learning from

both human and environmental feedback.

A. MODEL-BASED METHOD

Model-based methods are generally considered to be sample

efficient, since the learning speed can be improved and the

amounts of interactions needed for learning can be decreased

once the model of the environment is obtained. Knox and

Stone first proposed the TAMER framework [9] which

learns and selects actions with an estimated reward function.

In TAMER, the human teacher observes the agent’s behav-

ior and can give reward corresponding to its quality. There

are three key modules for an agent learning with TAMER:

1) a predictive model of human reward from the agent’s

experienced state-action pairs and the reward instances pro-

vided by the human trainer; 2) a credit assigner to deal with

the time delay of human reward caused by evaluation of

the agent’s behavior and delivering it; 3) an action selec-

tor with the predictive reward function. The reason why a

TAMER agent can learn from myopic human reward is that

the human trainer already takes a long-term consequence

of the agent’s behavior in mind when she is providing the

evaluation [9]. VI-TAMER was further proposed to allow a

TAMER agent learning non-myopically from human reward

[29]. A VI-TAMER agent learns from the discounted human

rewards while modeling the human rewards. It learns a

value function from the learned human reward function via

value iteration and select actions with the value function to

get the most accumulated discounted human reward. The

VI-TAMER agent can even update the value function via

planning with dynamic programming or Monte Carlo tree

search strategy. Vien and Ertel extended the TAMER frame-

work to train agents in continuous state and action domains by

proposing actor-critic TAMER [30]. In actor-critic TAMER,

the agent learns a human reward function — the critic, and a

parametrized policy to select actions — the actor, at the same

time. To solve complex problems with high-dimensional state

space, [25] proposed deep TAMER by using deep neural

network to approximate the reward function. In [19], an agent

learns to follow language-based instruction by generating a

reward function via distinguishing a fixed set of instruction

pairs from instruction pairs generated by the current policy

with adversarial learning method.

All abovemethods take human feedback as numeric reward

— reward-based methods, and consider to model the human

reward function from provided human feedback. This is use-

ful when human trainers get tired of providing feedback for

further training. In this case, the learned reward function can

be used for learning. In addition to modeling the reward func-

tion, VI-TAMER can improve its learning by planning with a

known transition function and learned reward function.When

the transition function is not available, the agent can also

learn the transition model from the interaction with the envi-

ronment and human trainer. Moreover, except for actor-critic

TAMER, most above methods can only learn in tasks with

discrete action spacewhich limits their applications. Since the

action space for many tasks in the real world is continuous,

it would be immensely useful to extend these methods to

tasks with continuous actions. Furthermore, for learning in

high dimensional state space, actor-critic TAMER can be

powered with deep learning to learn the state representation

autonomously.

B. MODEL-FREE METHOD

When it is difficult to model the reward function and transi-

tion from the environment and human trainer, the agent can

also learn from human provided feedback in a model-free

manner. Actually most interactive RL methods from human

evaluative feedback are model-free methods. Depending on

the different interpretations of human feedback, they can

be grouped into two categories: reward-based methods and

policy-based methods.

1) REWARD-BASED METHODS

In reward-based interactive RL methods, human feedback

is taken as numeric reward as in standard RL. Instead of

modeling the reward function, an agent can also learn directly

from human reward. To our knowledge, Clicker training was

the first proposed concept using only positive reward to train

an agent [31]. The first software agent called Cobot learns

from both reward and punishment by applying reinforcement

learning in an online text-based virtual world where people

interact [4]. The agent learns to take proactive verbal actions

(e.g. proposing a topic for conversation) from ‘reward and

punish’ text-verbs invoked by multiple users. A Q-value

function [32] can also be learned by taking human rewards

with the same way as environmental rewards in traditional
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reinforcement learning [33], [34]. The agent can also learn the

policy directly by optimizing it with a function approximator.

Pilarski et al. [8] proposed a continuous action actor-critic

reinforcement learning algorithm [35] that learns an optimal

control policy for a simulated upper-arm robotic prosthesis

using only human-delivered reward signals.

2) POLICY-BASED METHODS

While reward-based methods interpret human feedback as a

numeric reward, an agent can also learn from human feedback

by taking it as policy feedback. In this case, the human

feedback is taken as evaluation based on the agent’s behavior.

Reference [12] take human feedback as policy-dependent on

the agent’s current policy and use it to replace an advan-

tage function which describes how much better or worse an

action selection is compared to the current expected behavior.

Temporal Difference (TD) in standard reinforcement learn-

ing is an unbiased estimate of the advantage function. The

advantage function can better capture a diminishing returns

strategy, which means the initial human feedback for taking

the optimal action a in state swill be positive, but goes to zero

as the probability of selecting action a in state s goes to 1.

They proposed the COACH algorithm by using human feed-

back directly to calculate the policy gradient in an actor-critic

algorithm. Arumugam et al. further extend COACH to deep

COACH using deep neural network as function approximator

for the policy [36]. Reference [37] propose ‘policy shaping’

by formalizing human feedback as a label on the optimality

of actions and using it as policy advice, instead of converting

feedback signals into numeric rewards.

In addition, [11] interpreted human feedback as discrete

categorical feedback strategies that depend both on the behav-

ior the trainer is trying to teach and the trainer’s teaching

strategy. They inferred knowledge about the desired behavior

from cases where no feedback is provided. The experimental

results of Loftin et al.’s work show that their algorithms

could learn faster than algorithms that treat the feedback as a

numeric reward. The debate over the interpretation of human

feedback is not over yet. In fact, human feedback could be

interpreted differently by different trainers especially when

they interpret the instruction differently in the task [38]. They

might even change the training strategy over time.

C. LEARNING FROM BOTH HUMAN AND

ENVIRONMENTAL FEEDBACK

Learning solely from human feedback is useful when there

is no objective measure in the task or it is difficult to define

an effective reward function for the task. In this case, human

trainers can use their feedback to customize the agent’s

behavior according to their expertise in the task and the

agent’s optimal behavior is solely decided by the human

trainer. When the reward function of the task is available,

it would be helpful for the agent to learn from both the envi-

ronmental reward of the defined reward function and human

feedback, especially when the environmental reward is very

sparse. In this case, human feedback can be used to guide the

agent’s exploration and speed up its learning from environ-

mental rewards. For example, in [17], reinforcement learners

can learn from both the reinforcement provided by the envi-

ronment and the human-generated advice. In [16], the advice

was represented by creating new hidden nodes in a neural

network for approximating the Q function. They showed an

improvement in the agent performance compared to an agent

learning without advice or making use of advice using naive

technique. In [33], the agent learns by maximizing its total

discounted sum of human reward and environmental reward.

In addition, in the TAMER+RL framework, an agent can

learn from both human and environmental rewards while

modeling the reward function at the same time, which can

lead to a better agent performance than learning from either

alone. The agent can learn sequentially first from human

evaluative feedback, then environmental reward [39] and

from both rewards simultaneously, which allows the human

teacher to provide evaluative feedback at any time during the

training process [40]. Reference [41] further proposed the the

DQN-TAMER framework by combining Deep Q-Network

with deep TAMER. In DQN-TAMER, the agent estimates

an action value function—Q̂—from the environmental feed-

back and the reward function—Ĥ—from human feedback.

The final policy is obtained by weighted averaging the two

policies from the DQN agent and TAMER agent trained in

parallel.

In summary, while learning from both human feedback

and environmental feedback provides a way for solving the

exploration problem in reinforcement learning, it also enables

an agent to learn according to the trainer’s preference from

her immediate feedback and a long-term behavior from the

environmental feedback.

IV. FEEDBACK SOURCE

Recent research in Human Robot Interaction (HRI) has

focused on developing robots that can detect common human

communication cues for more natural interactions. Social

HRI is a subset of HRI that encompasses robots which inter-

act using natural human communication modalities, includ-

ing speech, facial expressions and gestures like body lan-

guage. This allows humans to interact with robots without

any extensive prior training, permitting desired tasks to be

completed more quickly and requiring less work to be per-

formed by the human user [42]. From the above consid-

eration, we will mainly study the way robots interact with

humans from the perspective of feedback sources, as shown

in Figure 4.

A. UNIMODAL SENSORY FEEDBACK

In the current study, most interactive RL agent learns from

feedback communicated by the human trainer in one single

mode. Under the circumstances, human feedback can be

delivered via hardware such as keypress on the keyboard,

mouse clicks etc, or via natural interactions like facial expres-

sions, natural languages and gestures.
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FIGURE 4. A diagrammatic representation of source of human feedback.

1) HARDWARE DELIVERED

In interactive RL, human trainers can form their feedback

in the mind and then deliver the feedback intentionally and

explicitly to agents via hardware facilities, mainly including

but not limited to keyboard keys, mouse clicks with a slider

or bar, or other sensors [9], [11], [12], [25], [36], [43]–[45].

Although this precise feedback can train agents to learn an

effective policy, the reaction time of human trainers causes

the delay in delivering their feedback, so the agent might

be uncertain about which actions the human feedback is

targeting at especially for agents with frequent actions. Knox

and Stone proposed a credit assign technique to solve this

problem with a probability density function to estimate the

probability of the teacher’s feedback delay [23]. However,

the time delay might be very different for different trainers.

In addition, the trainers need to learn how to operate the

hardware before they start training the robots andmost studies

have a practice session to allow trainers getting familiar with

giving feedback. Moreover, these interfaces are quite tedious

and impractical for non-expert trainers in home-like envi-

ronments. Therefore, it is desirable to develop more natural

communication interfaces between the trainer and robot, e.g.,

using speech, emotion or gestures like caregiver teaching

infants.

2) NATURAL INTERACTION

Instead of learning from explicit feedback provided by human

trainers intentionally, an interactive RL agent can also learn

from implicit feedback provided via natural interactions.

Especially for long-term behavior learning with interactive

RL, in order to avoid the fatigue caused by the cognitive

burden of providing explicit feedback, training agents with

natural feedback will be very useful and important. For exam-

ple, facial expression can be extracted as evaluative feedback

for personalizing the interaction process for users with dif-

ferent abilities. Human feedback given without the intention

to teach or otherwise affect behavior—possibly derived from

smiles, attention, tone of voice, or other social cues are more

abundantly broadcast and can be observed without adding

any cognitive load to the human [23]. Ideally, human trainers

can convey their feedback via emotions, natural languages,

gestures, etc., just as naturally as human-human interaction

in the real life.

a: FACIAL FEEDBACK

Gadanho proposed an emotion-based architecture (EB archi-

tecture) by combining the traditional reinforcement learning

with an emotion system. The emotion system is used to

calculate a well-being value that was used as social rein-

forcement. The EB architecture can learn to decide when to

switch and reinforce behavior with Q-learning [46]. Broekens

examined the relationship between Emotion, Adaptation and

Reinforcement Learning by proposing the EARL framework

[47]. In EARL, human’s real emotional expressions were ana-

lyzed in real-time as additional social reinforcement signals

to train a ‘‘social robot’’. Their results show that affective

facial expressions facilitate robot learning significantly faster

compared to a robot trained without social reinforcement.

Veeriah et al. proposed to allow an agent to learn a value

function that maps facial features extracted from a cam-

era image to expected future reward [48]. Their prelimi-

nary results suggest that an agent can quickly adapt to a

user’s changing preferences and reduce the amount of explicit

feedback required to complete a grip selection task. With

a fully autonomous social robotic learning companion for

affective child-robot tutoring, Gordon et al. used the mea-

sured children’s valence and engagement via an automatic

facial expression analysis system as reward signal for the

robot’s affective reinforcement learning [49]. They evaluate

their system with 34 children in preschool classrooms for

a duration of two months. Their results show the robot can

personalize its motivational strategies to each student using

verbal and non-verbal actions. Arakawa et al. also trained a

DQN-TAMER agent with facial expressions obtained via a

camera as implicit human reward [41].

VOLUME 8, 2020 120761



J. Lin et al.: Review on Interactive RL From Human Social Feedback

In the above work, facial expressions were predefined

as positive and negative feedback to train the agent, e.g.,

‘‘happy’’ as positive feedback (+1), ‘‘angry’’ as negative

feedback (−1). However, the positiveness and negativeness

of emotions can be dynamic in the training process. Li et al.

trained a prediction model mapping the facial feedback to

explicit keypress feedback with collected data. Their simu-

lated experiment showed that with enough recognition accu-

racy, agents can learn a comparative performance from solely

facial feedback compared to learning from explicit keypress

feedback [50].

b: NATURAL LANGUAGE-BASED FEEDBACK

When autonomous agents learn from human users, giv-

ing instruction or advice via natural languages is an intu-

itive and promising way for teaching agents to perform a

task, especially for non-technical users. Reference [16] first

proposed the RATLE (Reinforcement and Advice-Taking

Learning Environment) system to incorporate program-

ming language-based advice provided by external observer

into a Q value function. Reference [17] translated natural

language-based advice in English into formal language and

use them to influence agent’s learning policy. Reference [18]

proposed the LEARN (languageE-Action Reward Network)

framework, which maps free-form natural language instruc-

tions to intermediate shaping rewards based on actions taken

by the agent. In addition, Tenorio et al. used predefined natu-

ral language-based verbal commands to communicate human

evaluative feedback to train a real autonomous mobile robot

learning to perform navigation tasks in a simulated environ-

ment [26]. Their experimental results show that even though

human rewards delivered by verbal commands are noisy,

faster convergence was achieved compared to traditional rein-

forcement learning from only environmental rewards.

Instead of using natural language to communicate feed-

back for aiding RL agent learning from environmental

reward, an agent can also learn a policy directly from nat-

ural language-based instructions. Reference [51] mapped

language to a reward function in an object-oriented MDP

framework. Reference [52] used raw visual observations

and natural language-based text input to learn a policy for

instruction execution in contextual bandit setting. In [19],

an adversarial learning framework is proposed to improve

policy learning by generating a reward function via distin-

guishing a fixed set of instruction pairs from instruction pairs

generated by the current policy.

c: GESTURAL FEEDBACK

Human often use gestures such as hand and body movement

as communication cues in human-human interaction, espe-

cially when speech is not allowed or cannot be understood.

Therefore, human gestures have the potential to be used

for extracting feedback to train agents. Kuno et al. used

gestures to control the direction of an intelligent wheelchair

and proposed to recognize unknown gestures by interaction

with the human user [53]. To facilitate a robot to learn from

task experts rather than programming experts, Voyles and

Khosla proposed to use gesture-based programming methods

for providing demonstrations to train robots [54]. In addition,

gestures can also be used to provide advice feedback or

command feedback to aid an RL agent learning [55], [56].

B. MULTIMODAL SENSORY FEEDBACK

The systems and techniques discussed above focus on the

recognition of one single input mode in order to determine

human affect. The use of multimodal inputs over a single

input provides two main advantages: when one modality

is not available due to disturbances such as occlusion or

noise, a multimodal recognition system can estimate using

the remaining modalities, and when multiple modalities are

available, the complementarity and diversity of informa-

tion can provide feedback with increased robustness and

performance.

To understand the interplay between gesture and speech

and the way in which they support communication,

Quek et al. proposed a multimodal interaction framework for

discourse segmentation in free-form gesticulation accompa-

nying speech in natural conversation [57]. Cruz et al. integrate

dynamic multimodal audiovisual interaction with interactive

reinforcement learning [56]. They allow human trainers to

provide predefined advice to agents in either speech, gesture,

or a combination of the two. Their results show multimodal

integration facilitates the robot with interactive reinforcement

learning to obtain a better performance in a smaller number

of training episodes compared to unimodal scenarios. Refer-

ences [58], [59] used the audience’s vocal laughs and visual

smiles to calculate the reward as implicit social evaluative

feedback to shape the humor of a robot. To endow a chess

companion robot for children with empathic capabilities,

Leite et al. use a multimodal framework to model the user’s

affective states and allow the robot to adapt its empathic

responses to the particular preferences of the child who is

interacting with it [60]. They combine visual and task-related

features to measure the user’s valence of feeling. The change

of valence before and after the robot taking the empathic

strategy is calculated as rewards for a multi-armed bandit

reinforcement learning algorithm. Their preliminary study

with 40 children show that robot’s empathic behavior has a

positive effect on users.

Almost all above methods only combine two modal inputs

as feedback for agent training and the combined inputs are

limited to speech, gestures, vocal laugh and visual emotions

and task-related features. Actually, there aremore other social

cues from the human trainer that can be used as feedback, e.g.,

attention, speech prosody, gaze direction etc. And even more

than two modal inputs can be used to deliver the trainer’s

feedback. In addition, these natural interactive feedback can

even be combined with hardware delivered feedback to train

agents. For example, Li et al. mapped the facial expressions

to explicit keystroke feedback and proposed to allow an agent

to learn from both the predicted facial feedback and keystroke

feedback [50].
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V. CONCLUSION AND FUTURE DIRECTIONS

This paper aims at reviewing the progress in leveraging dif-

ferent types of human social feedback to solve reinforcement

learning tasks. In this section, we briefly discuss several

promising future research directions.

A. LEARNING FROM NATURAL IMPLICIT FEEDBACK

A general problem for interactive RL is that the interface

between the trainer and the robot for providing feedback has

not been developed in a natural manner for domestic sce-

narios. Most of them used keyboard buttons or mouse clicks

to provide feedback which are quite tedious and impractical

for non-expert trainers in home-like environments. Although

some researchers studied using facial expressions, speech or

gestures to provide evaluative feedback and advice to train

agents, these feedback are usually predefined and intention-

ally provided by trainers. Human social feedback derived

from smiles, speech, attention, prosody, or other social cues

are more abundantly broadcast and can be taken as implicit

feedback for agent learningwithout adding any cognitive load

to the human [23]. An open problem is that of finding ways

to allow robots to learn from these free-form communicated

implicit feedback. For example, affect and emotion detected

in speech prosody [61] and conversations [62], [63].

B. INTERACTION DESIGN

From the perspective of robots, an understanding of how to

design the interaction between the robot and the trainer allows

for the design of the algorithms that support how people can

teach effectively and be actively engaged in the training pro-

cess at the same time. This is useful for personalizing inter-

action with a socially assistive robotics. In the transparent

learning mechanism [64]–[66], facial expressions and body

languages are used to express the robot’s learning state and

solicit feedback from the human teacher. What information

and behavior should be communicated or expressed by the

robot to elicit training of higher quality or longer duration is

still a problem remaining to be investigated.

C. LEARNING FROM MULTIPLE INSTRUCTIVE MODALITIES

The literatures reviewed in this paper are mostly focused

on learning from evaluative feedback or learning from

advice/instruction. However, to obtain a fully autonomous

interactive RL agent, algorithms for learning from human

demonstration, evaluative feedback and advice/instruction

should be integrated, even with standard RL learning

paradigms. Much work has been done in terms of combining

learning from demonstration [67], [68], evaluative feedback

[37] and advice [18] with standard RL respectively. However,

agents also need to learn frommultiple instructive modalities,

including primarily demonstration, verbal advice/instruction,

evaluative feedback, attentional cues, or gestures which

human teachers rely on. While there is some previous work

allowing a robot learning from demonstrations and natural

feedback cues provided by the teacher through speech [69],

and learning from both human demonstration and evaluative

feedback [70], there is still much work to be done in this

respect.
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