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Abstract 

Additive manufacturing (AM) or 3D printing is growing rapidly in the manufacturing industry and has 

gained a lot of attention from various fields owing to its ability to fabricate parts with complex features. 

The reliability of the 3D printed parts has been the focus of the researchers to realize AM as an end-

part production tool. Machine Learning (ML) has been applied in various aspects of AM to improve the 

whole design and manufacturing workflow especially in the era of industrial revolution 4.0. In the 

review article, various types of ML techniques are first introduced. It is then followed by the discussion 

on their use in various aspects of AM such as design for 3D printing, material tuning, process 

optimization, in-situ monitoring, cloud service, and cybersecurity. Potential applications in the fields of 

biomedical, tissue engineering and building & constructions will be highlighted. The challenges faced 

by ML in AM such as computational cost, standards for qualification, and data acquisition techniques 

will also be discussed. In the authors’ perspective, in-situ monitoring of AM processes will significantly 

benefit from the object detection ability of ML. As a large data set is crucial for ML, data sharing of 

AM would enable faster adoption of ML in AM. Standards for the shared data are needed to facilitate 

easy sharing of data. The use of ML in AM will become more mature and widely adopted as better data 

acquisition techniques and more powerful computer chips for ML are developed. 

Keywords: Machine Learning, Artificial Intelligence, 3D printing, In-situ Monitoring, Design for 

Additive Manufacturing, Process Optimization. 

1. Introduction 

Additive manufacturing (AM) techniques, or 3D printing, have matured and brought about a paradigm 

shift on how things are designed and manufactured. The layer-by-layer fabrication techniques enable 

the fabrication of parts with complex geometries and functionally graded properties. AM is also greener 

as they reduce material wastage in general. It has come a long way from being a prototyping tool to 

slowly being adopted for end-part production.  

Various AM fabrication techniques such as fused filament fabrication (FFF), stereolithography (SLA), 

selective laser sintering (SLS), selective laser melting (SLM), laser engineered net shaping (LENS) 

have been developed to print real functional parts with various kinds and forms of materials. However, 

there exist some unique challenges to overcome, such as the porosity due to poor fusion between 

adjacent filament, anisotropic nature of the materials, and warping as a result of the residual stress due 

to the fast cooling nature of the AM processes.  

Detailed understanding of the AM process, from the processability of the feedstock materials 

(rheological properties and powder flowability) to the relationship between the process-structure-
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properties of the AM parts, is necessary. However, the AM processes involve multiple process 

parameters that can influence the quality of the final parts which requires interdisciplinary 

understanding such as material properties, solid-liquid interaction, fluid dynamics, grain-growth 

development, and thermal-mechanical interaction. The setting up of physics-based models can be 

difficult and time-consuming as it necessitates a comprehensive knowledge of the multi-scale and multi-

physics AM processes. As a result, individual research typically covers only a few aspects of the entire 

printing process which restricted the representation of the whole. For instance, research such as 

microscale grain structure evolution of the powder bed fusion using computational fluid dynamics (CFD) 

(Acharya, Sharon et al. 2017, Tan, Sing et al. 2020), analytical modeling of residual stress (Fergani, 

Berto et al. 2017), and macro-scale melt pool profile and bead shape using finite element analysis (Chen, 

Guillemot et al. 2017) has been attempted. Such analyses are time consuming. It is therefore difficult 

to emulate the whole AM process quickly and accurately through the physics-based numerical 

simulations. The use of machine learning (ML) data-driven models based on the physical understanding 

of AM processes is instrumental as optimization of the AM process can be performed with only 

incomplete or partial information about the AM processes.  

Additionally, quality control of the AM parts has gained wide attention from the industries to ensure 

parts fabricated for functional use satisfy specific requirements, particularly in quality and reliability. 

As more advanced AM materials are developed and used in critical parts of structures (Wong and 

Hernandez 2012, Madara and Selvan 2017), high part quality must be ensured. Unwanted porosity is a 

known issue in AM processes (Aboulkhair, Everitt et al. 2014, Liu, Guessasma et al. 2018). These 

porosities significantly affect the mechanical performance of the AM parts.  A study has shown that a 

highly dense AM part (>99.8%) can be produced using a well-controlled system (Sing, Wiria et al. 2018, 

Yu, Sing et al. 2019). In-situ quality control techniques are therefore required to further improve the 

quality of the AM parts through detection of anomaly and corrective printing using closed loop feedback. 

To overcome the time-consuming physics-based modeling and to detect anomaly during the in-process 

monitoring for quality control, data-driven models have been used in the AM field. A large amount of 

data is collected and processed by the ML algorithms to predict certain behaviors and properties, which 

are essential for decision making. It is also used in AM to recognize certain patterns or irregularities in 

the dynamic manufacturing process. The ML has gained a substantial influence on all aspects of AM—
from the design of the AM part, fabrication process, and qualification to logistics. The impact of ML is 

expected to grow in the years to come. 

This article presents a review of the research development concerning the use of ML in AM, especially 

in the areas of design for 3D printing, process optimization, and in-situ monitoring for quality control. 

Other areas such as cloud service platform, service evaluation and security of attack detection will also 

be discussed. The organization of the article is as follow: Section 2 details the classification and the 

working principles of ML techniques used in AM. Next, Section 3 gives a comprehensive review of the 

use of ML in various aspects of AM, and lastly, Section 4 depicts the potential and challenges in this 

field. 

2. Machine Learning techniques 

ML techniques are generally categorized into 4 groups: supervised learning, unsupervised learning, 

semi-supervised learning, and reinforced learning (Figure 1). In this section, the theories and ideas of 

each category of ML techniques will be discussed in detail. 



 

Figure 1 Machine learning techniques used in 3D printing 

2.1 Supervised Learning 

Supervised learning involves training an algorithm on a group of data, in which each training point 

contains a label. This label signifies a particular class that the training point belongs to. Supervised 

algorithms then try to identify the decision boundaries that split the clusters of data. Supervised learning 

algorithms model the relationship between the input features and the labeled outputs. Thus, it is able to 

predict input features for “desired” outputs (Figure 2).  

 

Figure 2 Supervised machine learning 

Some examples of supervised learning algorithms used in AM field are Naive Bayes (Wu, Phoha et al. 

2016, Bacha, Sabry et al. 2019), Decision Trees (Wu, Phoha et al. 2016), Linear Regression, 

convolutional neural network (CNN) (Gu, Chen et al. 2018, Ludwig, Meyer et al. 2018, Pham, Lee et 

al. 2018, Scime and Beuth 2018, Shevchik, Kenel et al. 2018, Yuan, Guss et al. 2018, Zhang, Hong et 

al. 2018, Francis and Bian 2019, Khadilkar, Wang et al. 2019), genetic programming (Vosniakos, 

Maroulis et al. 2007, Rong-Ji, Xin-hua et al. 2008, Jiang, Liu et al. 2014, Vijayaraghavan, Garg et al. 

2014, Garg, Lam et al. 2016, Yamanaka, Todoroki et al. 2016), long short term memory (Koeppe, 

Hernandez Padilla et al. 2018), artificial neural network (ANN), particle swarm algorithm (Asadi-

Eydivand, Solati-Hashjin et al. 2016), k-nearest neighbor (KNN) (Wu, Song et al. 2017), radial basis 

function (Vahabli and Rahmati 2016), Siamese neural network (He, Yang et al. 2019), and support 

vector machine (SVM) (Gobert, Reutzel et al. 2018). 



2.2 Unsupervised Learning 

Unlike supervised learning, unsupervised learning algorithms require no human expert to label the data. 

Unsupervised methods extract features in the input data that are unlabelled and classify the data through 

self-taught rules. Thus, these models are usually applied to identify hidden or unknown relationships 

among the data (Figure 3).  

 

Figure 3 Unsupervised machine learning 

Some examples of unsupervised learning algorithms used in AM field are K means clustering (Scime 

and Beuth 2018, Scime and Beuth 2019, Snell, Tammas-Williams et al. 2019), self-organizing map 

(SOM) (Gan, Li et al. 2019, Jafari-Marandi, Khanzadeh et al. 2019, Wu, Yu et al. 2019), and restricted 

Boltzmann machine (Ye, Hsi Fuh et al. 2018). 

2.3 Semi-supervised Learning 

Semi-supervised learning is a combination of supervised and unsupervised learning algorithms. Semi-

supervised learning algorithms are applied when dealing with a large volume of data that makes labeling 

very impractical and costly and therefore the data fed to the learning algorithms is a mixture of labeled 

and unlabelled data. These models use the two sets of data (labeled and unlabelled) and generally 

perform better than unsupervised learning because of the presence of the small amount of labeled data. 

They are more cost-efficient and simpler to train than supervised learning. Some examples of semi-

supervised algorithms are Gaussian Mixture (Okaro, Jayasinghe et al. 2019), Model low-density 

separation, generative models, and graph-based methods. 

2.4 Reinforced learning 

Unlike supervised learning that has labelled data, training data for reinforced learning algorithms can 

only provide an indication on whether they are correct or not. They iteratively learn “good” behavior 
by interacting with their environment. They learn through principles similar to supervised learning, but 

instead of having a large volume of labeled data, the model has to “interact” with the environment, 
which in turn produces a positive reward or a negative punishment. This feedback reinforces the 

behavior of the model, thus giving it the name (Figure 4).  



 

Figure 4 Reinforcement machine learning 

Reinforcement learning algorithms often use the terms exploration and exploitation. Exploitation refers 

to taking action that produces the highest possible reward and exploration refers to taking action that 

has not been taken before. By using a combination of these two techniques, the model can slowly learn 

more about the environment, while understanding inputs that lead to positive rewards, hence, arriving 

at optimal solutions. Some examples of reinforcement learning algorithms are Q-Learning (Benoit, 

Rana et al. 2018, Wasmer, Le-Quang et al. 2018), Temporal Difference and Deep Adversarial Networks. 

3. Applications of ML in 3D printing 

The use of ML algorithms in the 3D printing field covers various major aspects that have a direct impact 

on the quality of the final 3D printed parts. They include design for 3D printing, part quality/process 

optimization, and in-situ monitoring for quality control. There are also some other aspects related to the 

efficiency of the design and manufacturing process for 3D printing techniques, namely, printability 

checking, slicing acceleration, nozzle path planning, cloud service platform, service evaluation and 

security of attack detection. In this section, the use of the ML algorithms in the various aspects of 3D 

printing will be discussed.  

3.1 Design for 3D printing 

Design for 3D printing is an important research topic that requires a comprehensive understanding of 

the capabilities and limitations of 3D printing techniques. It is the first and critical step in the process 

workflow. A good  computer-aided design (CAD) model design would not only ensure the printability 

but would also reduce the amount of support material when it is needed. However, the design process 

is normally iterative and time-consuming. Data-driven design for 3D printing would help designers in 

the design process.  

Maiden et al. showed that the design feature database provided ideas and design features for less-

experienced designers (Bin Maidin, Campbell et al. 2012). The use of the ML technique in 3D printing 

enables feature recommendations to existing CAD models, thus helping the designers to speed up the 

decision-making process during the design stage. For instance, a hybrid ML algorithm was devised 

which uses hierarchical clustering to classify AM design features and support vector machine (SVM) 

to enhance the hierarchical clustering result in pursuit of finding the recommended AM design features 

(Yao, Moon et al. 2017). It helped inexperience designers who were new to 3D printing to determine 

suitable AM design features for the remote-controlled car components without actual physical trials and 

errors.  



Apart from that, ML algorithms have been used for feature recognition of CAD models for 

manufacturability analysis of 3D printing. Heat Kernal Signature and multiscale clustering method were 

used to detect whether manufacturing constraints existed in a particular CAD model, helping designers 

to identify possible design faults early (Shi, Zhang et al. 2018). In a study to determine ideal print 

orientation to avoid putting support structures on user-preferred features, a double-layered Extreme 

Learning Machine (DL-ELM) was used (Zhang, Le et al. 2015). In this DL-ELM, the first layer was 

the ELM classification to evaluate the relative score between the various part orientations, and the 

second layer was the ELM regression to construct a global score for all printing directions. It was found 

to be able to identify the best printing directions with minimum visual artifacts due to support removal. 

In a study to optimize the build orientation, CNN was found to be better in terms of accuracy and 

consistency at predicting build time and part mass than the baseline linear regression model (Williams, 

Meisel et al. 2019). 

 

Figure 5 Overview of applying ANN for highly efficient numerical modelling. a) experimental test to confirm the FEA results. 

b) FEA results used as  input for ANN. c) ANN artitecture containing one fully connected layer followed by two long-short-

term memorcy cell (LSTM) and then followed by another fully connected layer. d) schematics of fully connected layers. e) 

schematics of LSTM. f) comparison with FEA showing NN capability in predicting stresses (Koeppe, Hernandez Padilla et al. 

2018). 

The advancement in numerical simulation has allowed CAD models to be evaluated digitally before 

they are fabricated and tested physically, thus reducing the cost and time spent in experiments. However, 

numerical simulations can be computationally costly and time-consuming with complex processes, 

making online monitoring of the printing processes not feasible. Data-driven models have potential in 

predicting the final properties of the printed parts. Khadilkar et al. used a deep learning-based (DL) 

framework to estimate stress distribution on the cured layer from SLA in almost real-time (Khadilkar, 

Wang et al. 2019). In this attempt, a 3D model database that contains a wide range of geometric features 

was first generated. FEA simulations on the 16,700 3D printed models were then used to generate data 

labels to train the DL network. They found that a two-stream CNN outperforms single-stream CNN and 

ANN. Despite this, ANN is used to learn a parameterized mechanical model of cellular lattice structures 

that includes their linear elastoplastic mechanical behavior to predict maximum Von Mises and 

equivalent principal stresses in the struts and joints (Koeppe, Hernandez Padilla et al. 2018) (Figure 5). 



The data-driven stress prediction took about 0.47 seconds, which is significantly shorter in comparison 

with the FEM simulation which took 5-10 hours. The trained ANN models can potentially be 

incorporated into existing FEM frameworks to simulate the structural performance of larger parts of 

various scales. Apart from that, ML algorithms can learn the thermal deformation of the AM processes 

and provide appropriate geometric compensation to the models for printing (Chowdhury 2016). 

AM or  3D printing has also encouraged the development of new designs, such as biommetic structures 

(Meng, Zhao et al. 2020, Yang, Gu et al. 2020). In particular, composite structures can now be tuned 

rapidly. ML algorithms have been demonstrated to be suitable for such area, especially in tuning 

material properties and is capable of generating new designs that outperform existing composites 

available in the dataset (Gu, Chen et al. 2018, Gu, Chen et al. 2018). CNN was used to predict the 

stiffness and toughness of the composite. ML simulation, which includes the training (n=80,000) and 

predictive (n=20,000) phases, is found to be 250 times quicker compared to FEM simulations. Also, it 

is found that a small amount of training data is sufficient to obtain a ML model with high accuracy. 

Furthermore, obtaining an optimal design for the composite is still possible with incomplete information. 

Table 1 provides a summary of various research works on ML in design for 3D printing. 

 

Table 1 The use of ML in design for 3D printing 

Features ML technique Remarks Ref. 

Composite design Linear model 

and CNN 

- predict mechanical properties accurately 

even with small amount of training data 

- ability to rebuild detailed performances of 

designs without using precise information in 

the training process. 

(Gu, Chen 

et al. 2018) 

Process planning Genetic 

algorithm (GA) 

and classical 

gradient-based 

schemes 

-included design search space restrictions, 

which make the objective function not 

continuously differentiable in design space  

highly nonconvex 

(Zohdi 

2018) 

Design feature 

recommendation 

Hierarchical 

clustering and 

SVM 

-assist novice designers discover AM-

enabled design freedoms.  

-only performance-centric design knowledge 

(i.e. “loadings”, “objectives” and 
“properties”) has been considered in AM 
design feature recommendation. 

(Yao, Moon 

et al. 2017) 

Tuning 

microstructure 

and 

microhardness 

SOM - included physics-based models, 

experimental measurements, and a data-

mining method. 

- Dendrite arm spacing and microhardness 

are approximated using the mechanistic 

models. 

(Gan, Li et 

al. 2019) 

Optimize build 

orientation with 

respect to build 

time and part 

mass 

10 layer CNN 

and linear 

regression 

model 

- CNN are most precise at estimating all 

three studied factors than the baseline linear 

regression model for the training and 

evaluation conditions explored. 

(Williams, 

Meisel et al. 

2019) 

flatness 

perception 

classification 

tree (C4.5) 

- The results indicated some differences in 

the perception of flatness quality.  

(Petrov, 

Pernot et al. 

2016) 

Geometric 

compensation 

Feedforward 

ANN 

- used FE model to simulate the 

deformations in the AM part  

(Chowdhury 

2016) 



- geometrical compensation is performed on 

the STL file of the part using the trained 

network.  

Part orientation DL-ELM - DL-ELM method is used to assessed part 

orientation based on viewpoint preference, 

visual saliency, smoothness entropy and area 

of support. 

- scores of a part printed in different 

orientations are assessed. 

(Zhang, Le 

et al. 2015) 

manufacturability Heat Kernel 

Signature 

(HKS) 

-speed up the product development process. 

- reduce human error 

(Shi, Zhang 

et al. 2018) 

Part estimation Knowledge-

Based ANN 

- a hybrid learning network that incorporates 

topological zones obtained from knowledge 

of the process and other zones where 

missing knowledge is modelled using 

classical ANNs.  

-has better generalization capabilities and 

uses fewer neurons for training. 

(Nagarajan, 

Mokhtarian 

et al. 2019) 

Efficient 

numerical 

modeling 

ANN with a 

fully-connected 

layer with 1024 

rectified linear 

units, 2 LSTM-

cells with 1024 

units 

respectively 

and a fully 

connected 

linear output 

layer. 

-reduction in computational time from hours 

to milliseconds with good agreement in 

result.  

(Koeppe, 

Hernandez 

Padilla et al. 

2018) 

Stress prediction 2-stream CNN - 16,700 models of data labels are created 

using FEA simulation.  

-parameters such as peak stress and 

dependence on previous layer information 

are investigated.  

-The deep learning model outperforms the 

simple neural network model used for stress 

prediction. 

(Khadilkar, 

Wang et al. 

2019) 

Composite design CNN -used ML for coarsegraining – analyzing 

and designing materials without the use of 

full microstructural data. The coarse-

graining is achieved by condensing a group 

of building blocks into a single unit cell, 

which greatly lowers the number of 

parameters required in the ML algorithm.  

(Gu, Chen 

et al. 2018) 

Designing 

surrogate systems 

ANN - 7500 random thickness beams and 

corresponding FE solutions are generated to 

train the ANN.  

- able to replicate the dynamic characteristic 

of a target whose physical characteristics are 

inaccessible or unknown. 

(Sarlo and 

Tarazaga 

2016) 

 

 



3.2 Part quality/process optimization 

Process optimization is often performed when new materials or new processes are developed. Process 

optimization of AM processes can be performed to obtain certain characteristics of the 3D printed parts 

with variation in the process parameters. Process parameters affect the part properties for AM (Yu, Sing 

et al. 2019, Kuo, Chua et al. 2020). A database of process-structure-properties (PSP) relationship for a 

certain AM process and materials would enable the proper selection of the parameters based on the 

available information in the database .  

The PSP relationship is often complicated due to the high dimensionality of the process parameters, 

making it difficult to establish the governing mathematical formula of the process. Due to its complex 

nature, ML algorithms have been used to determine the PSP relationships for many AM.  

Gan et al. attempted using SOM, an unsupervised ML technique, to identify the process-structure-

properties relationship of the directed energy deposition process for Inconel 718 (Figure 6) (Gan, Li et 

al. 2019). Multiple objective optimizations of the process parameters can be achieved from the large 

and high-dimensional dataset, which is obtained from simulation and validated with experimental 

results, with the help of visualized SOM. 

 

Figure 6 An illustration of the workflow normally used in current numerical studies (top row) and of experimental studies 

(bottom row), accompanied by a description of how ML technique can be incorporated to discover useful process-structure-

property relationships of certain materials. (Gan, Li et al. 2019) 

 

ANN (Lee, Park et al. 2001, Shen, Yao et al. 2004, Vosniakos, Maroulis et al. 2007, Rong-Ji, Xin-hua 

et al. 2008, Munguía, Ciurana et al. 2009, Sood, Ohdar et al. 2009, Wang, Li et al. 2009, Equbal, Sood 

et al. 2011, Sood, Equbal et al. 2012, Sood, Ohdar et al. 2012, Noriega, Blanco et al. 2013, Saqib, 

Urbanic et al. 2014, Vijayaraghavan, Garg et al. 2014, Xiong, Zhang et al. 2014, Chen and Zhao 2015, 



Wang, Jiang et al. 2015, Asadi-Eydivand, Solati-Hashjin et al. 2016, Ding, Pan et al. 2016, Ding, Shen 

et al. 2016, Mohamed, Masood et al. 2016, Vahabli and Rahmati 2016, Bayraktar, Uzun et al. 2017, 

Zhang, Mehta et al. 2017, Caiazzo and Caggiano 2018, Deng, Feng et al. 2018, Qi, Chen et al. 2019)  

is the most commonly used ML technique for process optimization, although other techniques such as 

genetic algorithm (GA) (Vosniakos, Maroulis et al. 2007, Rong-Ji, Xin-hua et al. 2008, Jiang, Liu et al. 

2014), multigene-genetic programming (MGGP)(Vijayaraghavan, Garg et al. 2014), random forest 

network (RFN) (Li, Zhang et al. 2019), support vector regression (SVR)(Li, Zhang et al. 2019), 

ensemble algorithms (He, Yang et al. 2019, Li, Zhang et al. 2019), Siamese network (He, Yang et al. 

2019), fuzzy C-means (Li, Dong et al. 2009, Equbal, Sood et al. 2011), and k-means(Li, Dong et al. 

2009) have also been used. For example, Sario et al. used ANN to design 3D printed surrogate systems 

that match the dynamic characteristic of a target whose physical characteristic is not available(Sarlo 

and Tarazaga 2016). 7500 random thickness profiles of beams were generated to train the ANN model 

to predict the suitable thickness profile of the beam for a certain frequency or mode shape. It is found 

that the ANN algorithm can predict surrogates with low modal error (<12%) and moderate frequency 

error (<18%). 

3-layer ANN structure is sufficient for process optimization, with the first layer being the input layer, 

second being the hidden layer, and third being the output layer. The number of neurons in the first layer 

depends on the number of input process parameters of the study. The number of neurons in the third 

layer is determined by the number of properties to be optimized which is typically one or two. The 

number of neurons in the hidden layer is normally more than that of the input layer. The number of 

neurons in the hidden layer selected must be appropriate to avoid overfitting or underfitting issues in 

ML. Overfitting occurs when noise in the training data is captured and learned as concepts by the model. 

In contrast, underfitting refers to the lack of fit of the model to the training data, which means the 

reasonable relationship between the data and the model is not obtained. 

Normalization of the input parameters is essential before they are used for ML models as it helps the 

ANN to learn faster and make sure the inputs are incomparable range. If the inputs are of different 

scales, the weights linked to some inputs will be updated much faster than other ones, which is 

undesirable. Hence, they are usually linearly normalized to be in the range of either [0,1] or [-1,1] using 

 
ri−rminrmax−rmin  (Jiang, Liu et al. 2014, Vahabli and Rahmati 2016, Deng, Feng et al. 2018) 

 
2ri−rminrmax−rmin − 1 (Xiong, Zhang et al. 2014, Asadi-Eydivand, Solati-Hashjin et al. 2016, Ding, Shen et al. 

2016),  

where ri is the particular input data, rmin is the smallest input data and rmax is the largest input data, 

respectively.  

The accuracy of the ANN model also depends on the size of the training data used to train the ANN 

model (Qi, Chen et al. 2019). A dataset of 16 to few hundreds samples could generally give error lesser 

than 10% (Qi, Chen et al. 2019). 

Various studies have compared ML algorithms with conventional optimization methods such as 

Taguchi method (Sood, Ohdar et al. 2009, Chen and Zhao 2015, Ding, Shen et al. 2016), polynomial 

regression model (Sood, Ohdar et al. 2012, Xiong, Zhang et al. 2014, Mohamed, Masood et al. 2016), 

ANOVA (Sood, Equbal et al. 2012, Sood, Ohdar et al. 2012, Saqib, Urbanic et al. 2014, Mohamed, 

Masood et al. 2016, Bayraktar, Uzun et al. 2017). In the study of bead geometry prediction during single 

track melting using laser welding and gas metal arc welding (Figure 7), 4-12-2 ANN was found to 

achieve a lower mean of errors registering 1.922% and 2.104% as compared to a second-order 

regression model with a mean of errors of 2.633% and 2.308% for bead width and bead hight predictions 

(Xiong, Zhang et al. 2014). In another study to predict the dynamic modulus of elasticity of 3D printed 

parts, ANN was found to have the better predictive ability by achieving higher R2 value and lower 



absolute average deviation as compared to the fractional factorial model despite having limited numbers 

of experiments (Mohamed, Masood et al. 2016).  

 

Figure 7 Process optimization for the robotic WAAM system (Ding, Pan et al. 2016). 

In the study to predict the wear characteristics, a 5-8-1 ANN model was able to achieve a higher 

correlation coefficient (R2 value) of 0.9902 in comparison to the regression model’s 0.9516. The ability 

of ANN models to capture the non-linearity between the input and output parameters has allowed 

complex AM process mathematical models to be determined with higher accuracy. Table 2 

summarizes the use of ML algorithms in AM process optimization, the input process parameters, and 

the target properties. 

Table 2 The use of ML for process optimization of AM processes 

Process Purpose Method Input parameters Accuracy Ref. 

FFF  Optimize 

compressive 

strength 

Resilient 

backpropagati

on (RBP) 

ANN 

Layer thickness, 

orientation, raster angle, 

raster width, airgap 

80.8 (Sood, 

Ohdar et al. 

2012) 

FFF Predict wear 

volume 

5-8-1 RBP 

ANN 

Layer thickness, 

orientation, raster angle, 

raster width, airgap 

- (Sood, 

Equbal et 

al. 2012) 

FFF wear MGGP, 

SVR, 

ANN 

Layer thickness, 

Orientation, Raster angle, 

Raster width, Air gap 

93 (Vijayaragh

avan, Garg 

et al. 2014) 

FFF  Predicting 

Volumetric 

error 

GA, ANN Orientation, slice thickness - (Vosniakos, 

Maroulis et 

al. 2007) 

FFF Dimensional 

accuracy 

Fuzzy logic, 

NN, Taguchi 

Layer thickness, 

orientation, raster angle, 

raster width, airgap 

- (Equbal, 

Sood et al. 

2011) 

FFF Dimensional 

accuracy 

Grey 

Taguchi, BP-

NN 

Layer thickness, 

orientation, raster angle, 

raster width, airgap 

- (Sood, 

Ohdar et al. 

2009) 

FFF Surface 

roughness 

Ensemble 

algorithm* 

 

Layer thickness, extruder 

temperature, feed rate to 

flow rate 

93 (Li, Zhang 

et al. 2019) 



FFF Geometric 

accuracy 

ANN Part angle, and distance 

between parallel faces 

- (Noriega, 

Blanco et 

al. 2013) 

FFF Scaffold 

wire width 

ANN and GA Platform movement speed, 

extrusion speed, nozzle 

diameter, fiber spacing 

- (Jiang, Liu 

et al. 2014) 

FFF Dynamic 

modulus of 

elasticity 

ANN Layer thickness, 

Air gap, 

Raster angle, 

Build orientation, Road 

width, 

Number of contours 

91.7 (Mohamed, 

Masood et 

al. 2016) 

FFF Tensile 

strength 

ANN Thickness, 

Temperature, Raster pattern 

96 (Bayraktar, 

Uzun et al. 

2017) 

FFF Surface 

roughness 

RBF ANN- 

Imperialist 

competitive 

algorithm 

(ICA) 

Layer thickness,  

Build angle 

96 (Vahabli 

and 

Rahmati 

2016) 

Ceramic 

slurry 

extrusion 

Extrusion 

time, width 

deformation 

5-11-2 ANN amount of dispersant SD-

03, glycerol, polyethylene 

glycol, HPMC and solid 

content 

97.4 (Deng, 

Feng et al. 

2018) 

Binder Jet Predicting 

surface 

roughness, 

shrinkage 

rate in y and 

z directions 

3-layer BP-

ANN 

Layer thickness, printing 

saturation, heater power 

ratio, drying time 

- (Chen and 

Zhao 2015) 

Binder jet Compressiv

e strength, 

open 

porosity 

Aggregated 

ANN 

Orientation, layer 

thickness, delay time 

96.5 (Asadi-

Eydivand, 

Solati-

Hashjin et 

al. 2016) 

SLS density 4-9-1 ANN Laser power, scan speed, 

scan spacing, layer 

thickness 

- (Shen, Yao 

et al. 2004) 

SLS dimension Radial basic 

function 

ANN, fuzzy 

C-means and 

pseudo-

inverse 

method, k-

means 

Laser power, scan speed, 

scan spacing, layer 

thickness 

- (Li, Dong 

et al. 2009) 

SLS Build time ANN Z height, volume, bounding 

box 

- (Munguía, 

Ciurana et 

al. 2009) 

SLS Shrinkage 

ratio 

ANN, GA Laser power, scan speed, 

hatch spacing, layer 

thickness, scan mode, 

temperature, interval time 

87.3 (Rong-Ji, 

Xin-hua et 

al. 2008) 



SLS Tensile 

strength 

ANN Laser power, scan speed, 

hatch spacing, layer 

thickness, powder 

temperature 

- (Wang, 

Jiang et al. 

2015) 

SLS Density ANN Laser power, scan speed, 

hatch spacing, layer 

thickness, scan mode, 

temperature, interval time 

- (Wang, Li 

et al. 2009) 

SLM porosity RFN Part position and 

orientation, recycled 

powder content 

-  

SLM Keyhole 

porosity 

k-means 

clustering 

Energy density 40-44 (Snell, 

Tammas-

Williams et 

al. 2019) 

SLA Dimensional 

accuracy 

ANN Layer thickness, border 

overcure, hatch overcure, 

fill cure depth, fill spacing 

and hatch spacing 

- (Lee, Park 

et al. 2001) 

SLA printability Ensemble 

method, 

Siamese 

network 

Print speed Ensemble

: 73 

Siamese: 

88 

(He, Yang 

et al. 2019) 

LMD Geometrical 

accuracy 

ANN Laser power, scanning 

speed, powder feeding rate 

94.2-98% (Caiazzo 

and 

Caggiano 

2018) 

EBM Volume, 

roughness 

ANN Spreader translation speed, 

rotation speed 

97.5% (Zhang, 

Mehta et al. 

2017) 

WAAM Offset 

distance 

3-12-1 ANN Bead width, height, center 

distance of adjacent 

deposition paths 

- (Qi, Chen 

et al. 2019) 

Arc 

welding 

Bead 

geometry 

(width and 

height) 

ANN Wire-feed rate, travel 

speed, 

Stick-out 

- (Ding, 

Shen et al. 

2016) 

Arc 

welding 

Bead 

geometry 

(width and 

height) 

4-12-2 ANN wire feed rate (F), welding 

speed (S), arc voltage (V), 

and nozzle-to-plate distance 

(D) 

93 (Xiong, 

Zhang et al. 

2014) 

Wire and 

arc 

additive 

manufact

uring 

(WAAM) 

Bead 

geometry 

(width and 

height) 

2-13-2 ANN Wire-feed rate, travel speed 98 (Ding, Pan 

et al. 2016) 

Laser 

cladding 

Melt pool 

width 

ANN Laser power, Powder feed 

rate, Laser speed, Focal 

length,  Contact tip to 

work-piece distance  

- (Saqib, 

Urbanic et 

al. 2014) 

* Contains classification and regression trees (CART), Random vector functional link (RVFL), 

network Ridge regression (RR), SVR, Random forests (RF) AdaBoost 



3.3 In-situ monitoring for quality control 

In-situ monitoring of the AM process could potentially improve the reliability and repeatability of the 

3D printed parts through the means of closed-loop feedback control with the help of sensors. By 

detecting defects during the printing process, in-process corrective printing could be realized, which 

could potentially facilitate in-process part qualification.  

Active research about quality monitoring of AM techniques have been on (1) obtaining melt pool 

temperature history through means of pyrometers and high-speed camera, (2) defect detection at every 

individual level by analyzing images obtained by the optical camera, near-infrared thermal CMOS 

cameras, photodiodes, and x-ray phase-contrast imaging (XPCI) (Zhao, Fezzaa et al. 2017, Le-Quang, 

Shevchik et al. 2018, Wasmer, Le-Quang et al. 2018) and/or x-ray computed tomography (CT) of the 

entire workpiece (Thompson, Maskery et al. 2016).  These measurements are then used to infer the 

existence of potential defects in the build process (Figure 8). Gobert et al. highlighted that image 

resolution, lighting condition, and the number of sensors or cameras are key to improving the 

performance of the in-situ monitoring (Gobert, Reutzel et al. 2018).  

 

Figure 8 An example of porosity prediction method utilizing supervised ML(Khanzadeh, Chowdhury et al. 2018) 

Detection of flaws through human-created condition-based algorithms requires an in-depth 

understanding of the printing process as well as the computer vision knowledge. Such condition-based 

algorithms are more restrictive as new algorithms have to be generated when new materials become 

available, or when new part geometries are introduced as this method needs to take the interactions 

between various parameters into consideration. The reliance on the human operator makes condition-

based algorithms less practical.  

ML allows anomaly detection through a large dataset of good printing samples and bad printing samples 

and the detection capability can be improved by adding new training data.  

As most of the in-situ monitoring uses cameras to acquire information about the printing condition, 

defect detection relies heavily on the capability of computer vision (CV). The most used ML technique 

in computer vision is CNN (Figure 9), although other techniques have been used as well. For instance, 

Scime and Beuth used scale invariant feature transform (SIFT) to extract melt pool features and adopted 

various features extraction techniques such as a bag of words (BoW), histogram of oriented gradients 



(HOG) clustering  to extract useful features from images and form feature vectors. The feature vector 

is then fed to SVM image claissification algorithm to learn the defects such as under-melting, keyholing, 

and balling (Scime and Beuth 2019). They also attempted using ML techniques with CV to detect 

anomalies such as recoater hopping, recoater streaking, debris, superelevation, part failure, and 

incomplete powder spreading.  

 

Figure 9 CNN used in computer vision for in-situ monitoring of AM process (Scime and Beuth 2018) 

Although the ML algorithm can predict no anomaly with 100% accuracy, the algorithm was not able to 

predict recoater streaking with high accuracy (50.6%) (Scime and Beuth 2018). They compared the 

BoW technique with multiscale CNN (MsCNN) and found that MsCNN can achieve higher 

classification accuracies but it is more computationally expensive (75% slower) (Scime and Beuth 

2018). Self-Organizing Error-Driven Neural Networks (SOEDNN), a combination of SOM ann ANN, 

is found to be more accurate in classifying porosity defects than K Nearest Neighbor (KNN), and multi-

layer perceptron (MLP) (Jafari-Marandi, Khanzadeh et al. 2019).  KNN is a supervised classification 

algorithm that will give new data points accordingly to the k number or the closest data points.  Another 

group of researchers used spectral CNN and reinforced learning algorithm to classify the acoustic 

emission features obtained from the fiber-Bragg grating (FBG) sensor to predict the quality of the prints. 

Spectral convolutional neural networks (SCNN) was found to have higher classification accuracies (83, 

85 and 89 % for high, medium and poor workpiece qualities) (Shevchik, Kenel et al. 2018) compared 

to the reinforced learning technique (74, 79 and 82% for high, medium and poor workpiece qualities) 

(Wasmer, Le-Quang et al. 2018). Ye et al. used a deep belief algorithm that consists of stacking 

restricted Boltzmann machines (RBMs), which has undirected connections between its top two layers 

and directed connections between all following adjacent layers, to classify the plume and spatter with 

minimum preprocessing and no feature extraction. The deep belief algorithm can achieve a 83.4% 

accuracy rate(Ye, Hsi Fuh et al. 2018). In another work to extract melt pool, plume, and splatter data, 

CNN (92.7%) was found to have higher classification accuracy as compared to SVM (89.6%) and the 

combination of SVM and principle component analysis (PCA) (90.1%)(Zhang, Hong et al. 2018). A 

summary of the use of ML in in-situ monitoring of AM processes is shown in Table 3.  

 



Table 3 The use of ML in in-situ monitoring of AM processes 

Technique

s 

Type of 

sensors 

Machine 

learning 

technique 

Kernel 

size 

Type of 

defects 

Accurac

y 

Ref. 

PBF one 

megapixel 

Photron 

FASTCAM 

Mini AX200 

high-speed 

camera 

-BoW 

- SIFT 

- HOG 

-k-means 

unsupervise

d clustering 

algorithm 

2x2 desirable, 

balling, 

severe 

keyholing, 

keyholing 

porosity, or 

under-

melting 

- (Scime and 

Beuth 2019) 

PBF Optical 

camera 

Reinforced 

learning 

- Surface 

roughness 

96 (Benoit, Rana 

et al. 2018) 

PBF EOS M290 

stock camera 

(1280X1024 

pixels) 

bag-of-

keypoints 

- filter 

responses 

k-means 

unsupervise

d clustering 

algorithm 

20X20, 

10X40, 

100X100 

Recoater 

hopping, 

Recoater 

streaking, 

Debris, 

Super-

elevation, 

Part failure, 

Incomplete 

spreading 

83.4 (Scime and 

Beuth 2018) 

PBF DSLR camera 

(Nikon 

D800E)( 7360

× 4912 pixels) 

 - anomaly 91.5 (Abdelrahma

n, Reutzel et 

al. 2017) 

PBF 10.55 Mpix 

IDS UI-

5490SE-C-

HQ camera 

(3840×2749 

Pixel 

Active 

Contours 

without 

Edges 

(ACWE) 

bias field 

estimation 

(LSE BFE) 

- Geometric 

deviation 

 

 

 (Caltanissetta

, Grasso et al. 

2018) 

PBF Mikrotron 

EOsens 

MC1362 

(256x256 

pixels) at 

1000FPS 

CNN-tensor 

flow 

64X64 Melt pool 

size, Track 

continuity 

93.1 (Yuan, Guss 

et al. 2018) 

PBF Photodiode 

(100kHz) 

Semi-

supervised 

Gaussian 

Mixture 

Model 

(GMM)  

Expectation 

Maximizatio

n (EM) 

algorithm 

- - 70 (Okaro, 

Jayasinghe et 

al. 2019) 

PBF FASTCAM 

Mini 

deep belief 

network 

Down-

sized 

plume and 

spatter 

83.40 (Ye, Hsi Fuh 

et al. 2018) 



UX50/100 

high-speed 

NIR camera 

5000 fps 

(DBN) 

restricted 

Boltzmann 

machine 

image of 

100x125 

 

PBF high-speed 

camera 2000 

fps 

Principal 

component 

analysis, 

SVM, CNN 

 

11x11 

5x5 

3x3 

melt pool, 

plume and 

spatters 

 

92.8 (Zhang, 

Hong et al. 

2018) 

PBF DSLR Nikon 

D800E 36.3-

megapixels 

linear SVM 

CNN 

3,5,7,9,11 

voxels 

Discontinuiti

es such as 

incomplete 

fusion, 

porosity, 

cracks, or 

inclusions 

85 (Gobert, 

Reutzel et al. 

2018) 

PBF EOS M290 

stock camera 

(1280X1024 

pixels) 

Multiscale 

CNN 

25X25, 

100X100, 

Downsize

d 

200X200 

Recoater 

hopping, 

Recoater 

streaking, 

Debris, 

Super-

elevation, 

Part failure, 

Incomplete 

spreading 

85 (Scime and 

Beuth 2018) 

PBF Inline 

coherent 

imaging 

(Laser Depth 

Dynamics 

LD-600-AL) 

(200kHz) 

- - - - (Kanko, 

Sibley et al. 

2016) 

PBF co-axial 

pyrometer 

camera (480 × 

752) 

dual control 

charting 

system that 

consists of 

Hoteling’s 
T2 and Q 

charts 

130x130 

25x36 

6x6 

porosity and 

mini-cracks 

90.97 (Khanzadeh, 

Tian et al. 

2018) 

LENS dual-

wavelength 

pyrometer 

(Stratonics, 

Inc.) and an 

IR camera 

(Sierra-

Olympic 

Technologies, 

Inc. 

Viento320) 

KNN, SVM, 

decision 

tree, 

discriminant 

analysis 

- porosity recall 

value 

(98.44%

) 

(Khanzadeh, 

Chowdhury 

et al. 2018) 

FFF Differential 

wide-band AE 

sensor, a PAC 

SOM’s 
clustering 

- Scratching & 

hitting, 

- (Wu, Yu et 

al. 2019) 



2/4/6 

preamplifier, 

and a PAC 

PCI-2 DAQ 

system. (50 

kHz- 900 

kHz) (10 M 

samples per 

second) 

Fiber 

debonding & 

material 

peeling off, 

Material 

rubbing & 

sliding 

 

3.4 Cloud 3D printing service platform 

The cloud platform is integral in popularizing 3D printing and advancing towards industry 4.0.  It is a 

server-based computing model that consists of both hardware and software resources. It enables the 

sharing of resources to a public repository, including 3D models or printing services, and integrates 

them to form a comprehensive pool of resources (Figure 10) (Wang, Wang et al.).  

ML algorithms can learn to do service evaluation and demand matching to allow extensive assessment 

of terminal printers and manage the resources intelligently based on printing accuracy, quality, cost and 

time (Wu, Peng et al. 2016). ML also enables features recommendation for designs to allow intelligent 

customization of products (Yao, Moon et al. 2017). This lowers the entry barrier for public users. 

Resource allocation algorithms have been used to develop adaptive and collective management of 

resources (Wang, Wang et al.). Using an optimization algorithm based on fuzzy number different 

quantization by hamming distance, Wu et al. quantified the service quality and improve the accuracy 

of service selection (Wu, Peng et al. 2016). In another work, Dong et al. used GA to create a quality of 

service (QoS) acquisition method and a trust evaluation model for cloud manufacturing service (Dong 

and Guo 2014). 

 

Figure 10 Parameters of customization demand and 3D printing service(Mai, Zhang et al. 2016) 

3.5 Security of attack detection 

3D printing takes an important role in the Industry 4.0, where file sharing and cloud manufacturing has 

gained more attention in recent years. Cyber-security for 3D printing is a growing concern as attacks 

on the systems may lead to unwanted flaws to the products through the malicious alteration of process 

parameters. ML can be applied to circumvent such situations.  



To spot malicious attacks spontaneously in the FFF technique, Wu et al. applied three supervised 

learning algorithms, namely k Nearest Neighbours (kNN) algorithm, random forest algorithm, and an 

unsupervised anomaly detection algorithm to detect anomalies (Wu, Song et al. 2017). Images obtained 

from the optical camera are transformed into a greyscale plot. Features such as grayscale mean, standard 

deviation, number of pixels higher than the threshold value are extracted from the grayscale value 

distribution. The study has shown that the unsupervised anomaly detection learning algorithm was able 

to achieve higher accuracy (96.1%) as compared to kNN (87.5%) and random forest (95.5%). 

Faruque attempted using supervised and unsupervised K-Means ML algorithms to detect cyberattacks 

from information such as the design specification of the printed parts and the thermal history of the 3D 

printer (Figure 11) (Faruque 2016). However, the inadequate amount of thermal camera, low sampling 

frequency and resolution and the lack of dynamic focus capability of the camera have limited the 

performance of the attack detection. 

 

Figure 11 Workflow of cyberattack detection in AM using ML (Faruque 2016). 

File sharing has lowered the difficulty of an average user to access and fabricate various parts using 3D 

printing. It could pose threats to the community if 3D models of some dangerous weapons are shared 

online and fabricated using 3D printers. Pham et al. proposed an anti-weapon model detection algorithm 

that can be used to prevent sharing and printing of the restriction items (Pham, Lee et al. 2018). In the 

proposed algorithm, facets and vertices are extracted to form pairs of random points from the 3D mesh 

(Figure 12). The distances between the pairs of two points are then calculated. The D2 shape distribution, 

which is a distribution of Euclidean distances of the pairs, is then calculated to obtain a D2 vector. The 

D2 vectors are then used to train the CNN to detect firearm and knife models. CNN is found to have an 

accuracy of 98.03% which is higher than other methods that used depth image (Wohlkinger and Vincze 

2011). 



 

Figure 12 Workflow of 3d weapon model detection for AM(Pham, Lee et al. 2018) 

4. Potential and challenges 

In this section, the potential of ML in 3D printing for various fields and the challenges faced when 

applying the ML algorithm in 3D printing are discussed in detail. 

4.1 Potential 

4.1.1 Medical 

AM anatomical models can result in more precise treatment planning, better communication, and 

improved training and education. The fabrication of anatomical models involves image acquisition and 

reconstruction of the anatomy using CT, image segmentation, and finally printing of the anatomical 

models (van Eijnatten, van Dijk et al. 2018, Radzi, Tan et al. 2020).  

The precision of the models relies heavily on the imaging and image segmentation steps. Gassman et 

al. attempted using ANN to perform the segmentation to reduce the possibility of rater drift and inter-

rater variability (Gassman, Powell et al. 2008). The ANN also saves time and effort to manually obtain 

the data of interest, enabling the possibility of tailor-made models for patients. Material tuning of multi-

material printing using material jetting techniques such as polyjet can be performed by training the ML 

algorithm to learn from the large dataset of mechanical properties and doctors’ input on haptic 

perception. However, Huff et al. pointed out that having a large dataset for every organ system for 



training the ML algorithm is challenging but necessary step towards realizing these personalized 

anatomical models (Huff, Ludwig et al. 2018). 

4.1.2 Tissue engineering 

Bioprinting is an emerging field in tissue engineering that utilizes 3D printing processes to print bio-

inks to fabricate tissue-like structures (Khan, Kahin et al. 2019, Mishbak, Cooper et al. 2019). ML can 

be useful in predicting material properties of the various mixture composition of the bio-inks as well as 

coming up with new scaffold designs that suit specific purpose through learning from a large database 

of materials and designs (Yu and Jiang 2020). Multiple objectives optimization of the printing of bio-

ink using ML algorithms can be performed. For instance, Menon et al. applied hierarchical machine 

learning to concurrently optimize material, process variables, and formulate additive manufacturing of 

silicone elastomer through freeform reversible embedding (Menon, Póczos et al. 2019). 

4.1.3 Building & constructions 

The use of ML in 3D printing for building and constructions can cover various aspects including 

material, design and process (Lim, Tan et al. 2018, Lao, Li et al. 2020). The search for new 3D printing 

materials with specific performance such as high compression and tensile properties, strong crack 

resistance and toughness, short setting time and high setting strength can be done by training the ML 

algorithms to detect features and patterns from a large database of available material properties. ML 

can also allow quantity surveying to be done easier using the past relevant cases to predict the amount 

of material needed and provide a precise budget for targetted cost control. New and novel data-driven 

design of 3D printable structures that are multifunctional and more sophisticated (Sanjayan and 

Nematollahi 2019) can be created using the ML technique. The tool path planning of multiple robots 

for 3D printing requires a good understanding of the dynamic mechanical behavior of the extruded 

material as well as the synchronization of the robots (Al Jassmi, Al Najjar et al. 2018). ML can also be 

applied to learn a large number of process plans and to optimize the material consumption and reduce 

the build time by comparing the cost of the various plans. 

4.2 Challenges 

4.2.1 Computational cost 

Data-driven numerical simulations using ML techniques are found to be more computationally efficient 

as compared to physics-based numerical simulations. The stress prediction of lattice structure from a 

trained ML model takes about 0.47 s as compared to a FEM simulation which would take 5-10 h to 

complete (Koeppe, Hernandez Padilla et al. 2018). In another work, is found that stress prediction can 

be made within milliseconds using data-driven CNN in comparison to FEA which took a few minutes 

(Khadilkar, Wang et al. 2019). However, training a large data set can be computationally expensive and 

time-consuming. Nagarajan employed knowledge based-ANN model to reduce the training time and 

cost (Nagarajan, Mokhtarian et al. 2019). The knowledge-based ANN consists of four modular ANN, 

where the output of the sub-ANN output is the input of another sub-ANN. By doing this, the knowledge-

based ANN can have 12 fewer neurons than the classical ANN and allow the hidden layers to work in 

a more dimensionally homogeneous space, thus improving its efficiency.  

Computational cost also plays an important role in in-situ monitoring and closed-loop control. Real-

time layer-by-layer defect detection and melt pool inspection require defects to be detected 

spontaneously so as not to increase the build time which significantly affects the production rate. Scime 

and Beuth compared the computational time of BoW and MsCNN for anomaly detection and found that 

the computational time for each layer for the BoW technique was 4 s, which is shorter than that of the 

MsCNN (7 s) (Scime and Beuth 2018). The detection operation was considered fast considering the 

printing of a layer takes several minutes to finish. However, melt pool inspection with the high-speed 

camera requires more computational power due to the larger data set. Better ML techniques are required 



for this kind of application that involves a large data set. Francis and Bian used high- performance 

computing to study the thermal-mechanical modeling using Convolutional and Artificial Neural 

Network for Additive Manufacturing Prediction using Big Dat (CAMP-BD) deep learning algorithm 

(Francis and Bian 2019). A total of 21818 thermal images are captured which amounts to 40 GB of data. 

The training of the CAMP-BD took 26 days to finish using the supercomputer cluster at Mississippi 

State. 

4.2.2 Standards for qualification  

The sharing of data is key to develop a large database, which is essential for ML algorithms to work. 

With more groups of researchers working on new materials and process development, standards for 

data acquisition and pre-processing of the data would ensure sharing of data and encourage 

collaboration among the AM community. Besides, there are several ML frameworks such as 

Tensorflow, Caffe, and Pytorch available in the markets. However, they are not compatible with each 

other. Hence, it is important to have a unified framework to facilitate the sharing of ML models among 

the research community. 

4.2.3 Data acquisition techniques 

ML algorithms learn from the data obtained from sensors and the performance of ML algorithms is only 

as good as the quality of the input data. It is therefore important to have a reliable acquisition technique 

to ensure that the data obtained can provide informative insights into the printing process. Apart from 

that, it requires strong fundamental knowledge on image processing analysis to identify the most 

suitable sensors to be used for capturing important features. For examples, Sensors used in 3D printing 

processes that involve melting must have a high refresh rate and high resolution to capture the 

information of the melt pools. These melt pools have high thermal gradients and heat transfer rates. Wu 

et al. pointed out that blurriness due to the motion of the camera has resulted in lower accuracy as 

compared to the simulation results (Wu, Song et al. 2017).  

In spite of the huge range of sensors used, each in-situ monitoring technique has its limitations that 

impede its use in the actual production line (Tapia and Elwany 2014, Everton, Hirsch et al. 2016). 

Temperature measurement of the melt pool is restricted to the surface of the melt pool and contains no 

information regarding the complicated fluid flow and heat transfer in the build direction. Due to the 

high laser scan speed and fast-cooling nature of the process, expensive high-speed cameras are often 

required and calibration of the emissivity of the melt pool can be challenging. Layer wise anomaly 

detection using an optical camera or thermal camera offers an inexpensive way to detect defects. The 

layer-wise anomaly detection can detect defects at the surface of each new layer after it is created but 

not the pores or defects within the new layers. Although x-ray technologies such as XPCI and CT can 

detect internal flaws for the study of origin and propagation of cracks, they are not suitable for real-time 

monitoring applications. Also, the two x-ray methods technologies are expensive and time-consuming 

(Thompson, Maskery et al. 2016, Zhao, Fezzaa et al. 2017, Le-Quang, Shevchik et al. 2018). 

Furthermore, the sensor would need to be able to function properly in harsh printing conditions, such 

as in elevated temperatures. 

5. Conclusion 

The use of ML in 3D printing covers a wide spectrum of applications, ranging from design for 3D 

printing, process optimization, to in-situ monitoring. ML has been demonstrated to be a powerful tool 

to perform data-driven numerical simulation, design features recommendation, real-time anomaly 

detection, and cybersecurity (Figure 13).  

ML has shown to outperform conventional optimization methods such as second-order polynomial 

regression especially when dealing with high dimensionality data. ANN is found to be the most common 

and efficient ML technique for process optimization. A 3-layer ANN is sufficient to achieve an accuracy 



as high as 98%.  CNN is found to be more efficient than ANN in dealing with 2D images and 3D models 

due to its ability to capture spatial features. Hence, CNN has found applications in feature recognition, 

feature recommendation in designing objects for 3D printing, as well as anomaly detection in in-situ 

monitoring.  

Labelling of data is a tedious work and it requires the users to have a knowledge of the outcome of the 

data. On the other hand, unsupervised learning is very useful when user does not know what to extract 

from the data. It is often used in in-situ monitoring for anomaly detection without needing to have 

labelled data. The learning performance can be greatly improved by using reinforced learning technique 

where a small amount of labelled data is provided. 

Potential applications and challenges have been identified and discussed. Large datasets are the key to 

achieving high predicting and detecting accuracy. Data acquisition and processing in a standardized 

format would make the sharing of 3D printing data easier among the AM community to build up a large 

dataset. Developing more advanced ML algorithm techniques and higher computational power in the 

future would see improved real-time in-situ monitoring and closed-loop feedback control. Classification 

accuracy should be further improved to achieve higher detection rate and to reduce false detection rate. 

As the quality of the input data greatly affects the performance of the ML algorithms, better sensors 

with higher data acquisition rate and higher resolution would definitely improve the performance of the 

ML algorithms. Advanced data compression technique that are more efficient would be required to 

handle the large dataset from the sensors. 

Future research should focus on multi-task learning that would significantly improve the reliability of 

the model so that designers would be able to assess the functionality of AM products prior to actual 

manufacturing. Such a predictive model will further accelerate the effort of realizing digital twins for 

AM. It opens an exciting opportunity for ML to grow and be used in 3D printing applications. 

 

 

Figure 13 Summary of AI in 3D printing 
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