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Abstract: Using sensors to monitor signals produced by drivers is a way to help better understand

how emotions contribute to unsafe driving habits. The need for intuitive machines that can interpret

intentional and unintentional signals is imperative for our modern world. However, in complex

human–machine work environments, many sensors will not work due to compatibility issues, noise,

or practical constraints. This review focuses on practical sensors that have the potential to provide

reliable monitoring and meaningful feedback to vehicle operators—such as drivers, train operators,

pilots, astronauts—as well as being feasible for implementation and integration with existing work

infrastructure. Such an affect-sensitive intelligent vehicle might sound an alarm if signals indicate

the driver has become angry or stressed, take control of the vehicle if needed, and collaborate with

other vehicles to build a stress map that improves roadway safety. Toward such vehicles, this paper

provides a review of emerging sensor technologies for driver monitoring. In our research, we look

at sensors used in affect detection. This insight is especially helpful for anyone challenged with

accurately understanding affective information, like the autistic population. This paper also includes

material on sensors and feedback for drivers from populations that may have special needs.
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1. Introduction

Emotions and affective expressions play a critical role in decision-making, learning, and other

cognitive functions, but current technology is, for the most part, incapable of taking our emotions into

account. Affective computing, supported through practical sensors, provides a possible solution to

this problem. Taking driving as a context, by monitoring and reacting to the emotions or underlying

signals from drivers, affective computing enhances interactions between humans and technology, with

the ultimate goal to improve safety. The vehicle can be equipped with an intelligent support system

to monitor the driver, monitor the driver’s behaviors, provide feedback to the driver, and even take

control of the vehicle if necessary.

For long-term use and adoption, sensors should be practical: they should not require the user to

spend significant time activating the device, experience discomfort when using the device, or spend

significant time maintaining the device. These non-intrusive sensors can take the form and function of

skin-contact wearables that measure unintentional signals as well as surface-borne sensors that collect

intentional signals from the driver. An example of a practical sensor might be a group of pressure

sensors embedded into a vehicle’s surfaces, powered and monitored by the vehicle to detect a user’s

interactions with seats, safety accessories, armrests and the steering wheel. In-vehicle sensors already

face challenges because of acoustic noise, electromagnetic noise and compatibility issues related to

integrating with a central processor; for instance, a scalp-mounted electroencephalograph (EEG) sensor
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would be challenging to apply in vehicles because of noise sensitivity and data-processing requirements.

Beyond engineering considerations, it would be unrealistic to expect daily drivers to apply the EEG

sensor before each trip because it would be a new behavior and a time-consuming departure from

the driver’s routine in a world where it is already difficult to get people to wear seatbelts. Wearable

sensing devices such as watches and eyeglasses that fit into a driver’s established routine are more

practical. Video cameras, reviewed in 2016 by Fernández et al. [1], are practical in the sense that users

do not need to activate or touch them, but cameras and microphones also introduce privacy concerns

and produce high bandwidth data that requires processing. New soft and textile-embedded sensor

formats are promising because they can be fitted to vehicle interiors, and because they can detect

safety-relevant activity using body contact data that is not as personally identifiable as video and

audio streams.

Figure 1 illustrates a pressure sensor for tracking a driver’s grip pressure in (a) a body-worn

format, and (b) a vehicle surface format. Wearable sensors such as the glove in (a) are more practical

for daily use than, for example, blood sampling to measure glucose [2] or cortisol levels, or neural

implants to detect brain activity in animal studies. Such invasive sampling can validate conclusions

drawn from proxy signals available at the body surface, but a sensor glove is better for daily wear from

the user’s viewpoint. However, for this grip-tracking application, the driver would have to modify

their behavior to put gloves on, would need to keep the gloves charged, and would need to initiate

wireless communication between the gloves and the vehicle. For those reasons, the steering wheel

format in Figure 1b is more practical than gloves for grip tracking. Measurements of other signals

that vary with driver stress levels, such as pulse rate, skin surface temperature, and skin conductance,

often rely on skin-to-sensor contact that cannot be guaranteed on vehicle surfaces—even a steering

wheel, if the driver is wearing mittens. In this physiological-sensing realm, wearables are unparallelled.

Previous reviews have carefully considered wearable sensors for driving safety [3], wearable sensors

for emotion recognition [4,5], and combinations of wearable and in-car sensors for detecting driver

drowsiness [6,7] and distraction [7,8].

 

Figure 1. Example of a body-worn pressure sensor (a) vs. a vehicle surface pressure sensor (b).

The current review covers the recent (since 2000) state of the literature on sensors that monitor

driving behaviors, including emotions experienced while driving, and sensors designed for non-driving

contexts that can detect emotional and physiological states applicable to transportation safety.

We distinguish wearable sensors from vehicle surface-borne sensors, and consider where each of

these sensor types may find the most practical application for monitoring driver behavior, identifying

a general trend of wearable sensors for physiological measurements and surface-borne sensors for

driver–vehicle interactions. We also provide a summary of emerging sensor technologies to study

affective states, discuss concerns for their practicality in a driving situation, and their potential to

contribute to future research on driver safety.
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1.1. Affective States and Affect Detection

We provide a brief description of the literature’s use of affective states and emotions in the

context of affect detection, as well as recommendations for further reading in related research areas.

The foundation of affective computing is informed by theory of emotion. This field of research seeks

to develop “computational systems that recognize and respond to the affective states (e.g., moods

and emotions) of the user” as described by Calvo and D’Mello in their 2010 article [9], which gives

a comprehensive review on the overlap of emotion research and affect detection. There is a rich

history on the definition of emotion, emotional expression, and emotional experience [10,11]. Picard’s

work [12] instituting affective computing steers clear of addressing a definition of emotion directly,

instead defining emotional experience and moving on to affect detection. Picard (1995) uses “sentic

state, emotional state, and affective state interchangeably. These refer to your dynamic state when

you experience an emotion. All you consciously perceive in such a state is referred to as your

emotional experience” [12]. Affect detection is possible by way of a person revealing their emotional

expression, through the motor system, or “sentic modulation” [12]. James individually [13], and later

with Lange [14], provides a theory of emotion that links physiological changes in the sympathetic

nervous system (SNS), a part of the autonomic nervous system (ANS), to emotional expressions [13–15].

Physiological-based affect detection leverages sensors to detect changes in a person’s SNS and ANS.

The James-Lange theory of emotion is used in several studies of affective states: Calvo and D’Mello [9];

Ekman, Levenson, and Friesen [16]; Critchley et al. [17]; AlZoubi, D’Mello, and Calvo [18]; and

Baker et al. [19]. For further reading, see also work by Smith and Lazarus [20], Darwin [21], and

Dalgleish [22].

For specific definitions of emotions, methods and assessment tools used in each study may vary.

When given, we will summarize the definition of an affective state, or methods, used in a specific

study. For Lazarus (1993), emotions include anger, anxiety, fright, sadness, and happiness, among

others; and this research also describes an overlap of stress and emotion [10]. Russell (2003) defines

core affect to include a pleasure scale (happy, sad) as well as an arousal scale (fatigue, drowsiness,

tense, alertness) [11]. The affective states of frustration, confusion, engaged concentration, delight,

surprise, boredom, and neutral were examined by Baker et al. [19], and defined as follows:

“Frustration was defined (for participants) as dissatisfaction or annoyance. Confusion was defined as

a noticeable lack of understanding, whereas engaged concentration was a state of interest that results

from involvement in an activity. Delight was defined as a high degree of satisfaction. Surprise was

defined as wonder or amazement, especially from the unexpected. Boredom was defined as being weary

or restless due to lack of interest. Participants were given the option of making a neutral judgment to

indicate a lack of distinguishable affect. Neutral was defined as no apparent emotion or feeling.”

In relation to driving, an exhaustive list of which emotions have the greatest influence is not

fully known, as discussed in Section 6. To frame that exploration, Figure 2 takes Russell’s Affective

Circumplex [23] and marks areas likely, but not yet fully studied, to represent concerns for driver

safety; we list some current studies linking affect and safe/unsafe driving behaviors in Table 1. Figure 2

should be considered a broad initial guideline for researchers considering the impact of emotions on

driver behavior, but it should be used very cautiously as a definitive conclusion on which emotions are

involved in driving and how they influence behavior. Therefore, the circumplex can be used to guide

which sensors are appropriate to consider when monitoring drivers, based on the sensor’s history of

studies relating it to certain affective information.

1.2. Methods

This review used Google Scholar to identify recent (since 2000) literature on driving-relevant

affect detection using sensors that are compatible with vehicle environments. Keywords searched

include driver behavior, driving safety, sensors, soft sensors, wearable sensors, and affect detection.

The authors excluded results based on relevance to this review’s focus and redundancy of a topic
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covered by cited works. During the editorial process, reviewers suggested additional references.

Ultimately, more than 110 references are cited for further reading.

 

Figure 2. The affective circumplex with adaptation of an overlay of four colored ovals, representing

which quadrants likely relate to safer or riskier driving behaviors. Adapted from [23]. Representative

studies to support the effect on driver behavior are covered in Section 2 and Table 1.

2. Previous Work Relating Affect to Driver Behaviors/Physiological Signals

Endowing intelligent systems with an ability to understand implicit interaction cues, such as the

person’s intention, attitude, and their likes and dislikes creates more meaningful and natural interactions

between the human operator and the intelligent system [24]. However, current technology cannot

seamlessly interpret emotions and affective states that convey implicit communication. Responding

to emotions is integral to typical social interaction and increases ways humans and technology

communicate. Additionally, human–machine interaction (HMI) that relies solely on explicit commands

ignores the potential gain of implicit communication, which can be significant as evidenced from

experimental psychology [25]. Affective computing provides a possible solution to this problem.

To establish affect-sensitive HMI, the role and potential of implicit communication is important [26].

By monitoring and reacting to the emotions or underlying signals from users, affective computing

enhances interactions between humans and technology. Dr. Picard’s book [27] established a springboard

for affective computing. Recent advancements in this research area have moved toward wearables and

other practical sensors, leveraged machine-learning analysis techniques, and expanded the range of

application areas.

Aside from trait, personality, and other personal factors [28–31], traffic and environmental

situations that contain certain appraisal factors (e.g., whether another driver was accountable) can

lead to a driver’s development and experience of emotions [32]. Several representative examples,

although not exhaustive, are outlined in Table 1. Emotions and the accompanying attributions of

traffic situations create a motivational tendency to show certain behaviors [33,34]. Such behaviors,

if dangerous, may lead to negative consequences and compromise one’s own safety and the safety

of other road users [29,35,36]. For example, angry drivers tend to drive faster, commit more traffic

violations, display hostile gestures, honk more frequently, and underestimate risky situations, as

evidenced in questionnaire, simulator, and naturalistic driving studies [35,37–39]. These behaviors are

considered aggressive and unsafe to other vehicles. Furthermore, individuals who scored higher on
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the Driving Anger Expression Index are 2.5 times more likely to damage their vehicles in anger and

twice as likely to crash than individuals who scored lower on the Driving Anger Expression Index [40].

Other work [41] revealed that drowsiness had the largest impact on increased crash rates, more than

other inattention scenarios; while stress was linked to minor crashes [42].

In the following, a brief summary of the methods or definitions used to study the affective

states listed in Table 1 is given. Roidl et al. [32] used the Driving Anger Scale to measure anger, the

State Trait Anxiety Inventory to measure anxiety, and a modified Geneva Emotion Wheel to measure

contempt and fright. Westerman and Haigney [43] examined the Driver Behaviour Inventory and

the Driver Behaviour Questionnaire to study stress. Steinhauser [44] studied happiness, calmness,

and anger during driving through a combination of (1) asking participants to self-select and re-live a

previously-experienced life event related to each emotion and (2) by playing music related to each

emotion, as validated by Jefferies et al. [45]. No further definitions of the affective states were given to

participants. Philip et al. [46] used Grandjean’s definition of fatigue [47] as “a gradual and cumulative

process associated with a disinclination towards effort, eventually resulting in reduced performance

efficiency.” Lee et al. [48] collected physiological measures of drowsiness and measures on the Johns

Drowsiness Scale.

Table 1. Representative studies on the relationship between affect detection and driver behavior.

Affective State Reference(s) Effect on Driver Behavior

Anger and Anxiety (vs.
contempt and fright)

Roidl et al. (2014) [32]
Higher driving speed, stronger

acceleration, speed limit violation for
a longer time

Stress Westerman and Haigney (2000) [43]
Higher (self-reported) lapses, errors,

and violations

Happiness and Calmness
(vs. anger)

Steinhauser et al. (2018) [44]
Lower driving speed and speed

variability, longer distance to lead car

Fatigue Philip et al. (2005) [46] More inappropriate line crossings

Drowsiness Lee et al. (2016) [48]
More near-crash events and lane

excursions

2.1. Measuring Affect Based on Physiological Signals

Previous research has shown that physiological signals could classify affective states induced

by on-road driving with 97% accuracy [49], with heart rate and skin conductivity having the highest

correlations with driver stress. Physiological signals are not appropriate indicators of emotion for

every application. Respiration has been linked to being indicative of emotional states [50]. It is a

slowly-changing signal that does not provide information in enough time to prevent a driving-related

accident [51], but it may provide insight into the relationship between driver emotional response and

behavior. Tracking multiple physiological signals was judged as a favorable approach in previous

research [52–54], and should be examined in work that seeks to predict and respond to physiology-based

changes in emotion.

2.2. Measuring Affect to Improve Driver–Vehicle Interactions

Aside from physiological signals, researchers have been examining the degree to which

affect-sensitive driver interfaces can be used to infer and support a driver’s affective state, safety, and

comfort [55]. The causal association between emotion and performance has long been documented.

Drivers who are stressed or angry are more likely to exhibit unsafe and dangerous behaviors and

violations [29,56–58]. Since the driving task heavily involves integrating visual information and

coordinating motor responses, researchers have been exploring the use of other senses for the

monitoring of driver’s affective state. For example, a speech-based emotion recognition system with an

adaptive noise cancellation technique that filters out ambient noise from driving has shown promise
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in classifying positive, neutral and negative emotions [59]. Nass and colleagues examined whether

characteristics of a vehicle voice can influence driver’s affective state and driving performance [60],

and the results showed that when the driver’s emotion matched vehicle voice emotion, drivers had

fewer accidents, attended more to the road, and spoke more to the vehicle. A recent article emphasized

the importance of using natural driver-car communication to understand a driver’s affective state and

needs as well as to provide a human-like assistance system [61]. This approach has the advantages

of being adaptive to various driving situations, drivers’ propensities and coping strategies, and the

uncertainty of traffic behaviors [62]. Recent findings suggest that, in addition to matching vehicle voice

to driver’s affect, vehicle voice showing empathy via a voice assistant led to the largest improvement

of negative emotions and was also positively perceived by angry and sad drivers [63].

3. Soft and Wearable Sensor Technologies Applicable to Monitoring Driver Behavior

This section reviews wearable sensors and soft surface-borne sensors that can measure some

aspect of a driver’s affective state and provide data that could be used in the future to study possible

improvements in driver safety. As discussed in the introduction, embedded and wearable sensors

are practical formats for in-vehicle sensing. We divided the review into two branches: sensors that

monitor largely-involuntary physiological signals, and sensors that monitor driver–vehicle interaction.

3.1. Sensor Technologies for Affect Detection Based on Physiological Signals

Physiological signals generated from the human body include brain electrical activity

(electroencephalography, EEG), skin temperature, heart rate and other aspects of the heart’s electrical

activity (electrocardiogram, ECG/EKG), eye blink rate, blood flow and oxygenation (SpO2), muscle

current (electromyography, EMG), skin conductance changes due to sweating (galvanic skin response,

GSR, or electrodermal activity, EDA), and respiration rate and volume. Such signals are usually

involuntary, except in the sense that muscle signals and respiration events can sometimes originate

from intentional body motions or speech. Physiological signals have previously been investigated

for emotion recognition [4,64]. In the latter study [64], GSR, skin temperature, and heart rate were

collected with an armband wearable sensor that the authors suggested could work with drivers.

Driving-specific studies that use wearable physiological sensors to investigate a safety-relevant

emotional response include wired GSR and heart rate sensors measuring stress in a street driving

environment [65]. Even though vehicles introduce electronic and acoustic noise, a seated driver

produced fewer motion artifacts in the GSR and heart rate data than in related studies on

ambulatory subjects.

More recently, GSR, SpO2, respiration and ECG data were collected from drivers using wearable

sensors with the goal of recognizing task difficulty-induced stress [66]. EMG sensors applied to subjects’

facial muscles detected facial expressions originating from anger in simulated driving tests [67]. Heart

rate and skin conductance electrodes provided insight into stress in subjects taking a simulated

driving test in a later study, with visible feedback on drivers’ stress levels provided by real-time data

processing [68]. Like the Healey studies, these groups used stick-on ECG and EMG electrodes and

other physiological sensors that attached directly to the body; data collection was wireless in newer

reports. Such biomedical electrodes are useful for proof-of-concept studies and high-quality data

collection for a fundamental understanding of the relationship between physiological signals and

emotions experienced while driving.

However, armband [69,70] and eyeglass-based [71] sensors are more practical than ECG electrodes

for widespread use, because they are fast to apply and may already be part of a driver’s everyday

routine. Researchers recently studied driver drowsiness using the infrared proximity sensor built into

Google Glass eyeglasses to measure blink rate using a thresholding algorithm [72] and determined

that they were able to detect operator drowsiness.

Softer, stretchier electronic and optical materials have emerged over the past 10 years, making

it possible to collect physiological data from textile-like surfaces and even from skin-contacting
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conformal sensors. A recent overview of this fast-moving research area [73] described applications in

healthcare, consumer electronics, and robotics. Although no driving-specific sensors were mentioned,

physiological signals commonly used to detect stress (for example, pulse rate) are measurable with soft

materials, and new emotion-relevant applications like wearable sweat quantification and analysis [74]

are now possible thanks to skin-conforming materials.

These sensors are lighter, more breathable and more comfortable than ECG electrodes, but most

drivers are not yet accustomed to applying stickers or tape to their skin, plus powering the devices is

still an early-stage technology that uses radiofrequency (RF) power transmission or thin-film batteries.

Therefore, researchers are also moving physiological sensors to vehicle interior surfaces. In-vehicle

sensors have successfully monitored drivers’ heart rates for detecting drowsiness [75], using electrically

conductive fabric wrapped around the steering wheel. ECG electrodes on the steering wheel have also

been studied for driver identification from biometric signatures [76,77]. Heart rate and respiratory rate

sensors were embedded in vehicle seats based on piezoresistive textiles [78]. Soft, surface-embedded

sensors measured physiological data in a vehicle seat in road tests [79] where, beyond detecting

driver stress, the authors suggested the passive seat and steering wheel ECG could improve safety by

detecting underlying heart conditions. A problem they addressed that is not present in skin-adhesive

sensors was drivers’ failure to consistently grip the steering wheel; they proposed to fill data gaps with

lower-resolution heart-rate data measured from redundant sensors in the vehicle seat. The missing

hand itself could also indicate inattention, for example from texting or holding a cellphone. A recent

study investigated the use of non-contact, capacitive coupled ECG embedded in the back support

of a driver’s seat in a simulator to estimate driver’s fatigue [80]. Results indicated that there was

good correlation between conventional ECG and cECG signals and that cECG signals had higher

quality over time. Although this study only had male participants and used one type of clothing, it

demonstrated feasibility for monitoring dynamics of heart rate variability using non-contact, more

practical ECG methods. Table 2 compares the above-listed physiological studies.

Table 2. Wearable/in-vehicle physiological sensors and the connection between the sensed signal and

affective state.

Physiological Sensor Reference
Affective State(s)

Sensed
Scope and Context

(Driving Only)

Heart rate, galvanic skin
response (GSR) wearable

biomedical sensors

Healey and Picard
(2005) [49]

Stress
Driving test on roads: 24

subjects on at least a
50 min route

GSR, SpO2, respiration, and
electrocardiogram (ECG)

wearable biomedical sensors

Ranjan Singh and
Banerjee (2010) [66]

Fatigue, stress
Driving test on roads: 14

subjects including taxi drivers

Heart rate and GSR wearable
biomedical sensors, plus

wearable biofeedback using a
visible indicator

MacLean et al. (2013)
[68]

Stress, emotional
regulation

Simulated driving test: 11
subjects with driving experience

and no history of epilepsy
or autism

Heart rate, GSR, and
temperature from armband;

Polar heart monitor chest strap

Nasoz et al. (2010)
[69]

Fear, frustration,
boredom

Simulated driving test:
41 subjects

Eye blink rate, from smart
glasses-correlated with braking

response time and
lane deviation

He et al. (2017) [72] Drowsiness
Simulated driving test:

23 subjects.

Heart rate variability, from ECG
electrodes made from
conductive fabric on

steering wheel

Yu (2009) [75] Fatigue, drowsiness
Simulated driving test:

2 subjects
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Table 2. Cont.

Physiological Sensor Reference
Affective State(s)

Sensed
Scope and Context

(Driving Only)

Heart rate using ECG electrodes
on body, and eye movement

Oliveira et al. (2018)
[81]

Drowsiness
Driving test on roads:

20 subjects

GSR, SpO2, Respiration, and
ECG embedded in vehicle seat

Baek et al. (2009) [79] Task-induced stress
Driving test on roads: 4 subjects

with at least 5 years
driving experience

Facial electromyography (EMG)
Saikalis and Lee

(2019) [67]
Anger

Simulated driving test:
11 subjects

Electroencephalography (EEG)
and heart rate

Hassib, Braun,
Pfleging, and Alt,

(2019) [82]

Negative emotions
induced by music

Simulated driving test:
12 subjects

Capacitive coupled ECG
embedded in back support of

vehicle seat

Bhardwaj and
Balasubramanian

(2019) [80]
Fatigue

Simulated driving test: 20 male
subjects

3.2. Measuring User Activity Based on Driver–Vehicle Interaction

Besides involuntary physiological signals like those reviewed in Section 3.1, drivers interact with

vehicle surfaces by gripping, tapping, leaning, and other hand or whole-body motions that give insight

into their attention level and affective state. These body motions may be intentional, as in steering

wheel motions made by a driver following a route, or unintentional, such as fidgeting. Safety is also

improved if body position information helps plan airbag deployment during a collision.

Intentional motions for steering, braking, and acceleration are already collected by vehicle

instrumentation, but body position is not. The following sensor technologies are able to capture

body position and other driver-vehicle interactions based on proximity, pressure, and acceleration.

Table 3 covers such emerging wearable and vehicle surface-borne sensor technologies for measuring

driver–vehicle interactions. Previous studies in this category often focus on activity recognition rather

than emotion recognition, and, likely because these wearable and soft sensor materials are an emerging

field, many of the papers summarized below and listed in Table 3 emphasize the new sensor technology

itself rather than applications such as monitoring transportation activities. However, some recent

papers do apply wearable and surface-borne user interaction sensors to driving. Researchers used

accelerometer-equipped smart watches to track hand motion [83], making the connection to driver

monitoring by correlating acceleration and gyroscope readings with non-steering secondary task

motions during road-driving tests. Another group developed soft piezoresistive fabric steering wheel

sensors, not for heart rate measurement as described above, but for detecting grip pressure, location,

and swiping gestures [84].

In contrast to resistive pressure sensors which require direct contact, capacitive sensing can detect

changes to electric fields extending above and around electrode surfaces. This feature makes capacitive

sensing a good match for driver-vehicle interactions like head or torso position where the driver is not

contacting the surface at all times. Capacitive proximity sensing has been applied to vehicle seats for

detecting driver posture and possible sudden braking [85], and researchers investigated its feasibility

for measuring driver head position [86], which is an indicator of drowsiness and a critical input for

active restraint systems during a crash.

Emerging soft technologies are already monitoring subtle body motions in non-driving contexts

using skin-like wearable sensors. For example, a wearable capacitive sensor was demonstrated

to detect restless leg motion [87]. Soft, deformable optical materials made it possible to measure

shape changes in a leg-worn athletic tape caused by weight bearing [88], and hand motions in a

glove [89] equipped with all-polymer strain sensors. Body motions like fidgeting and slouching are

also visible in images; Fernández et al. [1] gives a comprehensive overview of camera-based sensors for

detecting motions relevant to driver fatigue and inattention. Soft optical sensors might complement or

replace some types of image sensing, while their optical readouts might simplify wiring in vehicle
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applications where signals must be transmitted across a gap between moving parts. A recent study

proposed methodology to standardize the processing of camera-based sensing data while taking into

account individual differences, randomness in driver behaviors, and driver head motion tracking [90].

Another recent wearable sensor used resistive textile sensors embedded in trousers to classify body

postures [91]; such sensors can capture shifts in weight that are difficult to pick up on camera, and can

collect information related to a wearer’s focus, participation and engagement without video recording.

Surface-borne sensors are contrasted with obtrusive video cameras for sensing human activity in

smart environments [92].In recent office- and home-environment studies, researchers integrated thin

resistive and capacitive sensors into soft surfaces for human activity recognition. An electronic textile

couch was equipped with capacitive presence sensors, with a focus on sleep apnea intervention [93].

In another smart furniture experiment, observers recorded engagement, laughter, speaking and

listening behaviors in seated subjects and correlated them with data from chairs fitted with resistive

pressure-sensing pads [94]. These sensor formats are compatible with upholstered interior vehicle

surfaces. The experiments generally determine pressure location by sampling a large array of sensor

electrodes. Electrical impedance tomography can collect touch-location information with only a few

(typically 8) electrodes using a scanning approach. Touchpads were created by painting surfaces with

conductive paint on which consecutive resistance measurements were collected at pairs of electrodes

along the edge of the conductive surface [95]. Electrical impedance tomography in a wrist-wearable

format has also been used to classify hand gestures [96].

Table 3. Emerging sensor technologies that can capture driving-relevant user interaction signals.

Interaction Sensor
Format

Reference
Interaction Category

and Possible Affective
State(s)

Context of Study
(Driving/Other)

Wrist-worn
accelerometry on both

driving hands
Bi et al. (2017) [83]

Handling secondary
tasks (texting, eating),

distraction, drowsiness

Road driving tests with 6
subjects, 75 different trips

Capacitive proximity
sensors in vehicle seats

Durgam and Sundaram
(2019) [85]

Driver posture, sudden
braking, panic

Other: validating
occupant position in
video vs sensor data

Capacitive proximity
sensors in vehicle

headrests

Ziraknejad et al. (2015)
[86]

Head position,
drowsiness

Other: validating head
position detection in lab

tests

Wearable capacitive
pressure sensor

Pouryazdan et al. (2016)
[87]

Fidgeting, inattention
Other: detecting restless

leg motion

Stretchable optical strain
sensors in athletic tape

Harnett et al. (2017) [88] Muscle tension, stress
Other: detecting weight
bearing activity in lab
tests, proof of concept

Stretchable optical strain
sensors in gloves

Leber et al. (2018) [89] Hand motion, distraction
Other: detecting hand

configuration in lab tests,
proof of concept

Resistive textile pressure
sensors in trousers

Skach et al. (2018) [91]
Body posture, social

behavior, engagement

Other: Classification of
19 different postures and

gestures, 36 subjects

Resistive foam pressure
sensors in an office chair

back and seat
Skach et al. (2017) [94]

Seated body position,
social behavior,

engagement

Other: Correlation of
body position and

speaking role during
conversation, 27 subjects
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Table 3. Cont.

Interaction Sensor
Format

Reference
Interaction Category

and Possible Affective
State(s)

Context of Study
(Driving/Other)

Electrical impedance
tomography touch

detection on 3D objects
Zhang et al. (2017) [95]

Hand motion/grip shape,
coordination level
related to alertness

Other: User interface for
computers, games, toys:

demonstration

Wrist-worn electrical
impedance tomography

sensor
Zhang et al. (2016) [96]

Hand positions,
excitement/hostility

Other: classifying hand
gestures

The key advantage of vehicle surface-borne sensors is that they are transparent to the user.

In contrast to wearable textile sensors or wearable electronics where the user is acutely aware of the

sensors, surface-borne sensors may collect body position or hand grip data without disturbing the

user. Only recently it has become practical to measure body motions from these unobtrusive sensors

instead of video or human observation methods. The link between this kind of sensor data and

drivers’ affective states needs further clarification from the human-computer interaction community

and comparison with questionnaires and physiological data.

4. Relationship between Driver Behavior and Roadway Safety

Making practical use of affect-sensitive sensor data to improve safety is a layered problem

with solutions at the technology layer, the behavior modification layer, and the policy layer. In a

study that merged physiological data (ECG heart monitoring) and vehicle data (speed, acceleration,

fuel consumption, and pedal position), researchers went beyond characterizing individual driver

behavior, suggesting that locations where multiple drivers experienced stress could help “map

potentially dangerous road segments and intersections” [97]. Such information on human factors can

complement and help interpret speed and braking patterns already captured by road sensors and

external surveillance cameras [98], and geometric road characteristics like curvature and elevation

collected by mobile phone sensor data analysis with an eye toward adjusting speed limits on rural roads

with horizontal curves [99]. These examples suggest that real-time crash prevention is not the only goal

for in-vehicle and wearable driving sensors. For instance, patterns of human stress reactions to specific

traffic conditions could effectively distill years of human driving experience into safer algorithms for

self-driving cars. The benefits of these advanced sensors can also extend to pedestrians and passengers

of vehicles without sensors in the form of road repairs, warning signs, and traffic re-routing.

A well-integrated monitoring and assistance system is likely to maximize the intended safety

benefits while minimizing barriers to adoption. From a user’s perspective, having an intelligent system

is only part of the solution, the other requirement is user’s acceptance, adoption, and cooperation.

In their conceptual framework, Lee and See described the processes from receiving information on a

display to calibrate trust in automation and to develop reliance on automation, and how this process is

influenced by individual, organizational, cultural, and environmental contexts [100]. For affect-sensitive

driver interfaces to efficiently monitor and support drivers, the sensors, technologies, interfaces, users,

and the operating environment (vehicle itself and supportive infrastructure) should be designed jointly

and as one whole system [101].

5. At-Risk Example Population: Drivers with Autism Spectrum Disorders

The literature shows that sensors used for affect detection do provide information relevant

to monitoring driver behavior. However, most studies do not include drivers with autism. This

population is covered as an at-risk example of drivers with special needs to consider. Specifically,

individuals with autism have deficits in accurately expressing explicit cues of affect, making forms

of affect detection that rely on generalized facial expressions or neurotypical vocal tones less reliable.
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Individuals with autism spectrum disorders (ASD), are not devoid of affective expressions [102–104],

but their own understanding of them and interpretation by others is limited [105,106]. For example, a

person with ASD might smile when actually in pain. Furthermore, facial feature interpretation can be

challenging because of their difficulties in displaying the expected range of facial expressions [107,108]

or mismatch with their vocal tone. Therefore, monitoring another communication signal can be very

informative for detecting changes in emotions for this population. An affect-sensitive system that can

interpret the changing emotions of a driver and react with useful and appropriate feedback could be

transformative. This at-risk population may require more training hours than neurotypical individuals,

before driving skills are acquired at a safe level. As a focus discussed in future directions, driving

simulators will be targeted to develop the intervention infrastructure.

Autism rates are growing, and the challenges autism presents to daily life abound. Research

suggests prevalence rates of autism have increased in the last four decades from 1 in 10,000 to an

estimated 1 in 68 children and 1 in 42 boys, based on the latest CDC report [109]. Individuals with

autism are characterized by having difficulties with social interaction and communication, and a

tendency to fixate on limited interests and repetitive behaviors [110]. The symptoms can range in degree

from mild to severe, which is why autism is a spectrum disorder and generally described as autism

spectrum disorders, or ASD. Even though there is increasing research in technology-assisted autism

intervention, there is a paucity of published studies that specifically address how to automatically

detect and respond to affective states of individuals with ASD. Such ability could be critical given

the importance of human affective information in human–technology interaction [27,111] and the

significant impacts of the affective factors of children with ASD on the intervention practice [112–114].

People with autism do have changing physiological signals that indicate reactions to their

experiences [102–104]. Detecting subtle markers of changes in emotions is important in autistic therapies.

Trained therapists make their best interpretations but could be further assisted by advancements

in affective computing. Previous work demonstrated that affect-sensitive closed-loop human–robot

interaction improved performance and enhanced enjoyment for a small group of children with

ASD [115]. Advancements in sensors and interpretation of signals between drivers with ASD and

technology are needed. An intelligent driving simulator that can detect the affective states of a person

with ASD and interact with him/her based on such perception could have a wide range of potential

impacts. A clinician could use the history of the person’s affective information to analyze the effects of

the intervention approach. With the record of the activities and the consequent emotional changes

in the person with ASD, a driver training system could learn individual preferences and affective

characteristics over time and thus could alter the manner in which it responds to the needs of different

drivers with ASD.

6. Conclusions and Future Directions

For a full understanding of driver behavior and its relationship to safety, sensors must capture

both unintentional physiological signals correlated with fatigue/stress/affective states, and voluntary

interaction signals (for example, steering, braking, gripping) coming from the driver’s response to

those states. The general pattern that emerged from our literature review in Section 3 is that: wearable,

skin-contacting sensors are a practical means for successfully capturing unintentional physiological

signals. Surface-borne sensors are more practical than wearables, as discussed in the glove-vs.-wheel

example of Figure 1, but are more difficult to use for physiological sensing than for user activity

recognition because unreliable skin contact adds noise to most physiological signals. Perhaps for this

reason, wearables dominated the physiological sensors reviewed in Table 2, which was limited to

driving applications only. Meanwhile, driver–vehicle interaction sensing can be successful with either a

wearable or surface-borne approach. Table 3, our review of sensors that capture user-interaction signals,

had a relatively even split between wearable and surface-borne sensors for detecting driver–vehicle

interaction. Since these studies were so recent, we did not narrow the applications to a driving context.
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As these emerging user interaction sensor technologies mature, the practical advantages of in-vehicle

surface sensors may give them an edge over wearables.

Figure 3 puts our review of affect detection (Table 1), physiological sensors (Table 2), and

user-interaction sensors (Table 3) in context with the larger picture of driver behavior. A third category

of sensors, vehicle data sensors, refers to braking, steering, acceleration and other mechanical signals

available from vehicle computers. This sensor layer in the second row of the diagram is the link

between driver behavior and possible safety interventions.

 

Figure 3. Relationship between driver behavior through intentional and unintentional signals, driver

affect detection, sensor types, and safety interventions. Solid borders indicate the topics emphasized in

this review.

This review suggests utilizing implicit communication by analyzing affective information gathered

from physiological data of a person during affect-sensitive interactions with an intelligent system.

The intelligent system, such as an advanced driver training system, will take in processed physiological

signals and apply an affective model which maps the signals to an affective state. Then that system

will make decisions about altering the interaction to respond appropriately to the affective state.

The intelligent system is trying to emulate the human ability to detect, interpret, and influence affective

states. Although such systems will not be able to precisely define a user’s internal motivations, the

information can be used as feedback to improve HMI and skill learning. Closed-loop interaction is

achievable, after open-loop analysis to process the signals into samples of features and build affective

models to relate feature samples to an affective state. The current climate of high acceptance of

wearable electronics in daily life, data-driven solutions, and demand for more communication between

humans and machines is ripe for advancements in affective computing. Teenagers may be willing

adopters of such technology and could be the first generation to witness the future fruits of affective

computing experiments, implemented on common computing devices during closed-loop interactions

in everyday life.

Conducting a comprehensive study of physiological signal analysis during driving situations,

with an open-ended broad list of emotions would be a useful next step. Such a study could be

modeled after AlZoubi, D’Mello, and Calvo’s work on the exploration of computer-based learning

situations [18]. This previous work collected data on which emotions are likely to occur in a learning
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activity. Participants were 27 adults that completed a learning module on a computer. Participants then

watched their 45-min session again and gave labels to every 20 s of the experience. The affective states

they could choose from included: boredom, confusion, curiosity, delight, flow/engagement, frustration,

surprise, neutral (no affect), and an “other” category. This research provided important information on

which emotions are more likely to be experienced in a learning situation. A similar study centered on a

driving task would be of great benefit to quantify which emotions are more prevalent while driving.

These insights can then guide the deployment of sensors and the integration of unintentional and

intentional signals that will support driver monitoring, assistance, and intervention.

Additionally, future research should systematically compare the feasibility and efficacy of

emerging surface-borne and other practical sensors in a driving context and investigate the potential

for monitoring a driver’s affective state and implications for training and interventions. This work

needs to be conducted in simulators as well as naturalistically with a focus on improving safety and

well-being of the drivers. Practical applications should be envisioned beyond real-time intervention in

individual vehicles. Large-scale statistics on drivers’ affective states in response to common driving

situations could offer valuable training insights for driverless vehicle algorithms. Mapping stress

and distraction could suggest better design rules for future roadways. Affective mapping might

also pinpoint where to spend transportation funds on roadway modifications that improve safety

not only for individual sensor-equipped vehicles, but also for cyclists, pedestrians, and drivers with

autism who do not outwardly express affective states in the same manner as the majority of drivers.

As we pointed out earlier, clinically-disadvantaged populations, such as individuals with autism

spectrum disorders [52,104,108], can especially benefit from tailored in-vehicle intelligent systems

that monitor vehicle control behaviors and the underlying physiological states. Practical wearable

and surface-borne sensors coupled with already available vehicle data sensors provide the means to

connect affect detection to driver, vehicle, and transportation system interventions.
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