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Abstract Fuzzy Cognitive Maps (FCMs) keep growing in popularity within the
scientific community. However, despite substantial advances in the theory and ap-
plications of FCMs, there is a lack of an up-to-date, comprehensive presentation
of the state-of-the-art in this domain. In this review study we are filling that gap.
First, we present basic FCM concepts and analyze their static and dynamic prop-
erties, and next we elaborate on existing algorithms used for learning the FCM
structure. Second, we provide a goal-driven overview of numerous theoretical de-
velopments recently reported in this area. Moreover, we consider the application of
FCMs to time series forecasting and classification. Finally, in order to support the
readers in their own research, we provide an overview of the existing software tools
enabling the implementation of both existing FCM schemes as well as prospective
theoretical and/or practical contributions.
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1 Introduction

Fuzzy Cognitive Maps were proposed by Kosko [48] as a graph-based knowledge
representation method describing a set of concepts in a domain of interest that
are connected by cause-and-effect relationships among them.

From the structural perspective, an FCM is a cognitive digraph that describes
the behavior of a physical system in terms of nodes and edges connecting them.
The concepts (i.e, nodes of the graph) can be understood as fuzzy sets describing
the variables, objects or entities of the system under investigation. The signed and
weighted edges of the graph represent the causal relationships among the concepts.
By characterizing the interaction between fuzzy sets over several iterations, FCMs
are able to represent vague and complex scenarios.

During the last thirty years of FCM research, substantial improvements to the
original FCM architecture have emerged. FCMs became an important member of
the Soft Computing family [128] as they were capable of efficiently solving numer-
ous problems across a variety of domains such as decision support, system control,
time series forecasting, pattern classification, and many others. Spurred by tan-
gible progress, research on FCMs continues to draw a great deal of interest from
many researchers around the globe. Recently, the Neurocomputing journal dedi-
cated a Special Issue [30] to the theoretical advances of fuzzy cognitive mapping,
which comprises fresh contributions to the this field.

There are numerous papers published within the FCM arena. Each of them
briefly revisits the basic concepts behind FCM theory. However, most of those
reviews are rather partial and often focused on the specific problem addressed in
the paper. To the best of our knowledge, the latest comprehensive report on FCMs
was published by Papageorgiou and Salmeron [97] in 2013. Substantial advances
in the theory of FCMs have surfaced since then. In this paper we fill this gap by
presenting the most up-to-date review on FCMs to the reader.

Another limitation of older FCM survey papers is the lack of practical advice
about implementation issues. The gap between the theoretical advances and the
development of accurate and mathematically sound FCM-based systems advocates
for the proliferation of software tools with more complete experimentation features.
Without knowledge on existing FCM software tools, most of the researchers are
forced to develop their own implementations from scratch. In addition to being a
laborious task, such implementations are hard to integrate or even compare with
each other. In this paper, we outline the existing software tools that are available
to implement, test and validate FCM-based models. As a more general goal, this
paper attempts providing the reader a clear theoretical basis and practical support
towards implementing FCM-based solutions.

The rest of this paper is organized as follows. Section 2 goes over the mathemat-
ical underpinnings of fuzzy cognitive mapping and its dynamic properties. Section 3
describes the most prominent algorithms for learning the map structure and lays
out a comparative analysis between Hebbian-based and error-minization-driven
algorithms. Section 4 elaborates on FCM-based times series forecasting while Sec-
tion 5 reports on recent advances and challenges behind FCM-based classification.
Section 6 reviews the existing software tools for experimenting with FCMs while
the last section enunciates some concluding remarks.
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2 Fuzzy Cognitive Maps

The semantics behind a standard FCM can be defined by a 4-tuple (C,W,A, f),
where C = {C1, C2, . . . , CM} is the family of M concepts modeled after fuzzy sets,
W : C × C → [−1, 1] is the matrix containing the weight wij ∈ [−1, 1] assigned to
each pair of concepts (Ci, Cj). The value of wij determines the sign and intensity
(magnitude) of the edge connecting the cause concept Ci with the effect concept

Cj . The function A : C → A
(t)
i computes the activation degree Ai ∈ R of each

concept Ci at the discrete time step t = {1, 2, . . . , T}. Finally, the transfer function
f : R→ I aggregates the impact of multiple causal events over the target concept
and clamps the result to the predefined activation interval. The interpretation of
the causal weight wij between two concepts Ci and Cj is as follows:

– If wij > 0, then an increment (decrement) in the concept Ci will produce an
increment (decrement) on concept Cj with intensity |wij |.

– If wij < 0, then an increment (decrement) in the concept Ci will produce a
decrement (increment) on concept Cj with intensity |wij |.

– If wij = 0 (or very close to 0), this denotes the absence of a causal relationship
from Ci upon Cj , so there is no causal edge in the graph.

Other FCM extensions are designed to achieve flexibility when modeling com-
plex systems. As an example, Miao et al. [67] introduced the Dynamical Cognitive
Network where each concept can have its own value set, depending on how pre-
cisely it needs to be described in the network. In these FCM-based networks, the
edges on the digraph define dynamic, causal relationships among concepts. This
scheme is able to capture not only the causal relationship but also how it will make
the effect and how long it takes for the effect to build up.

Equation (1) displays Kosko’s activation rule for FCMs, with A(0) being the
initial configuration (activation vector), wji the value of the causal relation con-

necting concept Cj to concept Ci whereas A
(t)
i denotes the activation value of

concept Ci at the t-th time step. This update rule is iteratively repeated until a
stop condition is met. Notice that an FCM will produce a state vector at each
discrete time step that comprises the activation degree of all concepts.

A
(t+1)
i = f

 M∑
j=1
i6=j

wjiA
(t)
j

 (1)

The above equation describes an inference (updating) rule widely used in many
FCM-based applications, but it is not the only one. Stylios and Groumpos [127]
proposed a modified inference rule where concepts take into account their own past
activation value besides the corresponding weights and activation values coming
from other concepts. This reasoning rule is preferred when updating concepts that
are not influenced by other concepts. The reader can notice that this implicitly
removes the i 6= j constraint in Kosko’s equation.

A
(t+1)
i = f

 M∑
j=1
i6=j

wjiA
(t)
j +A

(t)
i

 (2)
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Another modified update rule was proposed in [86] to avoid the conflicts emerg-
ing in the case of inactive concepts. Being more explicit, the rescaled inference de-
picted in Equation (3) allows dealing with the scenarios where there is no informa-
tion about an initial concept state and helps prevent the saturation problem (i.e.,
the activation values of processing entities careen toward their minimal/maximal
values as a result of a dense information flow described by similar causal signs).
In some scenarios, we could counter the aforementioned issues by using the proper
parametric settings in the transfer function.

A
(t+1)
i = f

 M∑
j=1
i6=j

wji(2A
(t)
j − 1) + (2A

(t)
i − 1)

 (3)

Selecting the proper update rule depends on the problem at hand and regularly
requires a strong understanding of the physical/simulated system under investi-
gation. As a further valuable remark, Papakostas and Koulouriotis [102] observed
that removing the i 6= j restriction in Equations (1) and (2) does not necessarily
improve the overall prediction rates of FCM-based classifiers.

One of the most relevant characteristics of FCMs is the interpretability of their
topology. In fact, FCMs can be defined as interpretable recurrent neural networks
that include fuzzy logic elements during the knowledge engineering phase. More
explicitly, an FCM exploits an activation vector by using a rule similar to the
standard McCulloch-Pitts model [65] where concepts can be thought of as neural
processing entities. This implies that the activation degree of each map neuron is
given by the value of the transformed weighted sum this processing unit receives
from the connected neurons in the causal network.

A few papers in the literature (e.g., [130] [129] [103] [55] [80] [81]) construe
FCM-based models as Artificial Neural Networks (ANNs), even when some FCM
theoretical methods (e.g., Hebbian learning algorithms) have a clear neural mean-
ing. The reason behind that relies on their differences. Classical ANNs regularly
perform like black boxes where both hidden neurons and connections do not bear
any clear meaning to the problem itself [80]. However, the FCM neurons and
their connections do have a precise interpretation for the system under study. Be-
sides, FCMs do not involve hidden neurons since such entities could neither be
interpreted nor help explain why a solution is suitable for a given problem. This
suggests that the representation capability of FCM-based systems is superior to
that of ANN-based models, which explains why FCMs have witnessed a plethora
of successful applications in modeling complex real-world scenarios.

2.1 Dynamic properties of FCM-based systems

As mentioned, FCMs produce a new state vector at each discrete time step. This
procedure is repeated until either the system stabilizes or meets a predefined stop
criterion (e.g., reaching a maximal number of iterations) [50]. The former implies
that a hidden pattern was discovered [49], whereas the latter suggests that the
FCM responses are either cyclic or completely chaotic.
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If the cognitive network is able to converge, then the system will produce the
same output towards the end, and therefore the activation degree of concepts
will remain unaltered (or subject to infinitesimal changes). On the other hand,
a cyclic FCM produces dissimilar responses with the exception of a few states
that are periodically produced. The last possible scenario is related to chaotic
configurations in which the network yields different state vectors. Formally, such
situations are mathematically defined as follows:

– Fixed-point [129] (∃tα ∈ {1, 2, . . . , (T − 1)} : A(t+1) = A(t), ∀t ≥ tα): the
FCM produces the same state vector after the tα-th iteration. This suggests
that A(tα) = A(tα+1) = A(tα+2) = · · · = A(t).

– Limit cycle [132] (∃tα, P ∈ {1, 2, . . . , (T − 1)} : A(t+P ) = A(t),∀t ≥ tα):
the FCM periodically produces the same state vector after the tα-th iteration.
This suggests that A(tα) = A(tα+P ) = A(tα+2P ) = · · · = A(tα+jP ) where
tα + jP ≤ T , such that j ∈ {1, 2, . . . , (T − 1)}.

– Chaos [132]: the FCM produces a different state vector at each iteration. In
other words, the system is neither stable nor cyclic.

In presence of chaotic or cyclic situations, the reasoning rule stops once a
maximal number of iterations T is reached. At that point, the state vector is
calculated from the last response, but this output may be partially unreliable due
to the lack of stability. Convergence is often desirable since the responses become
consistent and the expert may understand the system behavior. However, there
are scenarios lying beyond decision making and pattern classification (e.g., time
series forecasting) where convergence is much less desired.

The convergence issues in FCM-based systems are mostly related to i) the
pattern encoded in the weight matrix, ii) the strategy for updating the concepts’
values and iii) the non-decreasing transfer function used in the reasoning rule [71].
Several studies [42] [10] [129] have shown that a symmetric zero-diagonal matrix
in conjunction with an asynchronous update rule lead to improved convergence
features. On the other hand, as was already explained, the transfer function and
its parameters may prove crucial to reach convergence.

Boutalis et al. [14] investigated the existence and uniqueness of the fixed-point
attractors in FCM-based systems equipped with sigmoid transfer functions by
using the contraction mapping theorem. It was proved that when the causal weight
matrix meets certain conditions, the map will converge to a unique fixed-point
attractor. Besides, the authors introduced an adaptive weight estimation method
that employs different weight projection criteria to guarantee that the uniqueness
of the FCM solution is not compromised.

Kottas et al. [51] studied the existence and uniqueness of the equilibrium point
on FCMs [52] [53]. Following the same contraction-mapping-based rationale, the
authors analytically proved that when the weight matrix meets specific conditions
(related to the size of the network and the sigmoid slope) the network will converge
to a unique solution regardless of its initial values.

Knight et al. [46] investigated the effect of the parameter controlling the sig-
moid slope over the FCM convergence. The idea is based on the assumption that
should there were two stable fixed points then a slight change in initial condi-
tions (which cannot be exactly quantified) may result in a different outcome, thus
making the returned values difficult to justify. It can be observed that the model
convergence does not depend on the weigh set defining the system.
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In [69] [70] the authors proposed a learning algorithm to improve the system
convergence without modifying the causal weights. This procedure estimates the
slope parameter of each sigmoid neuron by minimizing an error function that quan-
tifies the dissimilarity between consecutive responses for the same initial stimulus.
In a deeper analysis, Nápoles and his collaborators [80] proposed four modifica-
tions related to the error function and the analytical boundaries for the search
space. In the improved variant, the learning algorithm minimizes the dissimilarity
between the current state vector and the expected response.

More recently, Nápoles et al. [71] put forth an extended procedure to improve
the convergence features of FCM-based systems used in the simulation of multiple
scenarios. In this approach, the learning algorithm simultaneously reduces the dis-
similarity between two consecutive state vectors and the dissimilarity between the
current state vector and the expected response. Moreover, the authors analytically
investigated the trade-off between system accuracy and convergence. The numeri-
cal results reported in [71] confirmed that establishing a trade-off between accuracy
and convergence cannot always be achieved without modifying the weight matrix.
The empirical evidence indicates that by simply adjusting the sigmoid function
parameters, some concepts are still unable to converge into an infinitesimal error
region. In the case of FCM-based systems where decisions are defined by closed
partitions of the activation space, this outcome may be acceptable.

2.2 The transfer function

The function f : R → I in Equations (1), (2) and (3) denotes a monotonically,
non-decreasing function used to clamp the activation value of each concept to the
desired interval I, where I = [0, 1] or I = [−1, 1] depending on the problem domain.
According to the cardinality of the state space, existing transfer functions may
be categorized into either discrete or continuous. The most widely used transfer
functions are the bivalent, the trivalent, the hyperbolic tangent and the sigmoid
function. Next, we explain some of their properties.

1. The bivalent function (see Equation (4)). It is a well-known discrete function
that only produces binary responses leading to a finite number of states. This
happens because an FCM is a deterministic system and so, if it reaches a state
that it has previously visited, the system will enter a closed orbit which will
always repeat itself [129]. Therefore, a binary FCM will either converge to a
fixed-point attractor or show cyclic patterns (with an exponential period in
the worst scenario) but it will never produce chaos.

f1(x) =

{
1 , x > 0

0 , x ≤ 0
(4)

2. The trivalent function (see Equation (5)). It is another discrete transfer func-
tion that produces a finite number of different states; therefore, the network
will either converge to a fixed-point attractor or produce cyclic patterns, but
chaos is not possible. The key disadvantage of discrete transfer functions lies
in its poor representation capabilities given that only rather qualitative (i.e.,
bivalent or trivalent) scenarios can be modeled.
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f2(x) =


−1 , x < 0

0 , x = 0

1 , x > 0

(5)

3. The hyperbolic function (see Equation (6)). It is a continuous transfer function
that produces infinite states that are freely distributed within the [−1, 1]M

hypercube. Besides the equilibrium points and the cyclic states, continuous
functions might additionally yield chaotic outputs [129]. However, they can be
used for modeling both qualitative and quantitative scenarios.

f3(x) =
e2x − 1

e2x + 1
(6)

4. The sigmoid function (see Equation (7)). It is a continuous function that pro-
duces an infinite number of different states that are freely distributed within
the [0, 1]M hypercube. In this function, λ > 0 and h > 0 are two user-specified
parameters controlling the function slope and offset, respectively. Higher values
of λ increase the steepness and make it more sensitive to the fluctuations of x,
hence the derivative grows as the activation value goes up.

f4(x) =
1

1 + e−λ(x−h)
(7)

Figure 1 displays the state space of an FCM-based network with three concepts
for both the bivalent and trivalent functions. In the bivalent variant, the states are
located in the corners of the [0, 1]2 hypercube, whereas in the case of the trivalent
variant the states lie at the corners, at the middle of the edges, at the center of the
sides and at the center of the [−1, 1]2 hypercube. As an interesting result, Miao
and Liu [66] proved that the problem of finding whether a state is reachable in a
binary FCM is non-deterministic polynomial hard.

(a) Bivalent transfer function. (b) Trivalent transfer function.

Fig. 1: State space of FCM-based systems with three concepts using (a) a bivalent
transfer function, and (b) a trivalent transfer function.
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The number of patterns an FCM is capable of recognizing increases with the
number of outputs that f(.) produces. Regrettably, this also bumps up the risk of
producing cyclic states with larger exponential periods. This risk could be miti-
gated (or completely suppressed) should the weight matrix meet some conditions
ensuring the convergence to a fixed-point attractor. The reader can refer to the
results reported in [42] [10] [14] [129] [51] [81] for further discussion.

Nevertheless, it has been proved that the FCM exhibits a greater inference ca-
pacity whenever continuous threshold-based functions are used [129]. Bueno and
Salmeron [15] conducted a benchmarking study and concluded that the sigmoid
function attains the highest predictive capacity among all tested transfer func-
tions. It is worthwhile emphasizing that the selection of the threshold function is
frequently conditioned by the system requirements, i.e., by the role each concept
plays in modeling the system under consideration.

Some researchers use standard parameters without taking into account their
effect over the cognitive model and its behavior. For example, by using the Kosko’s
reasoning rule, λ = 1 and h = 0 in Equation (7), an inactive concept will become
active after the first time step. In most real-world problems, this behavior is diffi-
cult to justify to the domain expert and often affects the cognitive representation
of the physical/artificial system under consideration.

3 Learning Algorithms

As a minimalist description, the main objective behind FCM learning is to derive
the weight matrix W(M×M) based on expert intervention, available historical data
or both. Most of the existing learning approaches assume that the set of concept
labels is provided a priori by the expert [87] and only the weight matrix is learned
either from raw data or with the help of domain experts.

A diverse number of learning algorithms have been proposed in the literature;
they are mostly based on principles coming from the field of artificial neural net-
works. The most important algorithms for FCM learning can be classified into
three types on the basis of their underlying learning paradigm: Hebbian-based,
error-driven and hybrid learning algorithms. Additionally, there exist other alter-
native learning schemes that do not fall within the three aforementioned groups.
They combine other mathematical and computational theories to build FCMs and
we will go over their theoretical underpinnings opportunely.

3.1 Hebbian-based approaches

Hebbian-based learning methods are unsupervised procedures. As such, they do
not require a collection of labeled historical records, i.e., data in which the value of
the decision feature(s) are previously known. The theory behind such methods was
introduced by Donald Hebb in his book “The Organization of Behavior” [37] and
later modified through multiplicative normalization by Erkki Oja [11], thus leading
to the Oja learning rule. The goal of learning FCMs by using adaptive Hebbian-
based methods is to yield weight matrices on the basis of experts’ knowledge and
to improve the accuracy of previously defined weights.
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The first Hebbian-based learning algorithm, referred to as Differential Hebbian
Learning (DHL), was presented by Dickerson and Kosko [23]. The DHL algorithm
assumes that if the cause concept Ci and the effect concept Cj change their acti-
vation values simultaneously, then the causal weight wij shall be increased by a
constant factor; otherwise, the causality relation will not be modified in that iter-
ation. Equation (8) displays the weight update rule used in this algorithm, where

∆A
(t)
i = A

(t)
i − A

(t−1)
i , with A

(t)
i being the activation value of the Ci concept at

the t-th iteration. In this formulation, the parameter ηt represents the learning
rate and it is adjusted at each iteration.

w
(t+1)
ij =

w
(t)
ij + ηt

(
∆A

(t)
i ∆A

(t)
j − w

(t)
ij

)
, ∆A

(t)
i 6= 0

w
(t)
ij , ∆A

(t)
i = 0

(8)

The main drawback of this local approach resides in the absence of information
concerning the system as a whole. In other words, the DHL method updates the
weights between each pair of concepts, thus taking into account only these two
concepts and ignoring the influence coming from other concepts.

An improved DHL variant called Balanced Differential Algorithm (BDA) was
introduced by Huerga [43] to attenuate this problem. This learning method elimi-
nates one of the DHL limitations by taking into account all the concept values that
change at the same time when the weights are updated. Specifically, it considers
the change in all the concepts that are produced in the same time step and with
the same directionality. BDA is a more powerful scheme than its predecessor, al-
though not very popular (to the best of our knowledge, it has only been applied in
binary pattern recognition problems, which hinders its application to other areas).
Equation (9) formalizes BDA’s update rule for FCMs without self-connections,
which is iteratively applied over the initial weight matrix.

w
(t+1)
ij =


w

(t)
ij + ηt

[
∆A

(t)
i ∆A

(t)
j∑m

k=1
∆A

(t)
i ∆A

(t)
j

− w(t)
ij

]
, ∆A

(t)
i ∆A

(t)
j > 0

w
(t)
ij + ηt

[
−∆A(t)

i ∆A
(t)
j∑m

k=1
∆A

(t)
i ∆A

(t)
j

− w(t)
ij

]
, ∆A

(t)
i ∆A

(t)
j < 0

(9)

Shortly after, two new Hebbian-based learning algorithms emulating synaptic
plasticity, namely Active Hebbian Learning (AHL) and Nonlinear Hebbian Learn-
ing (NHL) were introduced in [85] and [91], respectively.

AHL assumes that all concepts are activated asynchronously and in this way, a
fixed-point attractor is reached by considering the concepts’ activation at different
iterations. This mechanism is useful in systems where the concepts are activated
based on a specific sequence [85]. The domain experts determine a desired set
of concepts, an initial structure and interconnections of concepts as well as the
sequence of activation concepts. Unlike the previous algorithms where only the
nonzero weights are updated, in the AHL scheme all weights (except those per-
taining to self-connections) are updated.

In the AHL learning method, concepts are categorized as either activated or
activation entities, where the activation values of the former are used to activate
the latter. Equation (10) displays the AHL’s weight update rule, where Ǎj(t)
denotes the value of the j-th activation concept, whereas γ(t) is the weight decay
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associated with the t-th iteration. Both the weight decay and the learning rate are
exponentially decreased over time. The key disadvantage of this learning method
lies in its reliance on expert judgment.

w
(t+1)
ij =

[
1− γ(t)

]
w

(t)
ij + η(t)A

(t)
i

[
A

(t)
j − w

(t)
ij Ǎ

(t)
j

]
(10)

NHL is another Hebbian-based learning implementation that modifies the orig-
inal Hebbian learning rule. The NHL procedure initially requires the experts’ in-
tervention for determining the nature of the concepts, the range of values these
concepts might take and the definition of the sign of each weighted interconnec-
tion. The initial graph structure elicited from the experts is retained during the
learning process, thus preserving its physical interpretation [87]. However, this
dependence on the experts’ criteria becomes one of the major drawbacks of this
algorithm. NHL introduces two stop criteria: (1) a close-enough solution to the de-
sired response has been reached or (2) a fixed-point attractor has been identified.
Equation (11) portrays NHL’s weight update rule.

w
(t+1)
ij = w

(t)
ij + ηA

(t)
j

[
A

(t)
i −A

(t)
j w

(t)
ij

]
(11)

As a further modification, the authors in [99] introduced a weight decay factor
γ leading to the update rule depicted in Equation (12), where the inclusion of the
sgn(.) sign function attempts to preserve the weight directionality.

w
(t+1)
ij = γw

(t)
ij + ηA

(t)
j

[
A

(t)
i − sgn

(
w

(t)
ij

)
A

(t)
j w

(t)
ij

]
(12)

The Improved Nonlinear Hebbian Learning (INHL) algorithm was proposed
by Li and Shen [58]. They added a term in the update rule called the impulse in
order to avoid getting trapped in local minima in regions where the error surface
plateaus. Equation (13) shows the resultant update rule, where α ∈ (0, 1] denotes
the acceleration while descending the error surface.

w
(t+1)
ij = α(t+1)∆w

(t)
ij + η(t+1)

(
z(2t)

) [
1− z(t)

] [
A

(t)
j −A

(t)
i w

(t)
ij

]
(13)

where

z(t) =
1

1 + e−A
(t)
i

(14)

Later, an improved version of the NHL method named Data-Driven NHL (DD-
NHL) was brought forth by Stach et al. [122]. The authors’ main motivation relies
on the fact that the NHL algorithm does not exploit any additional information
that could improve learning and generate more accurate models. DD-NHL uses
the same principle behind Hebbian-based procedures but instead of generating
data used for learning only from the current model, it takes advantage of data
available for a given system. Unlike other Hebbian-type algorithms, in this method
the initial weight matrix can be randomly generated. The authors demonstrated
through several experiments that DD-NHL is superior to NHL should historical
data be available. However, a more exhaustive study [104] concluded that even
this variant yields poor performance in classification scenarios.
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3.2 Error-driven approaches

Error-driven learning methods aim at generating weight matrices that minimize an
error function based on the difference between the expected responses and the map-
inferred outputs. These algorithms are more expensive optimization techniques
given that they attempt to fit a model to a set of historical observations. On the
other hand, they require the definition of the objective function to be optimized,
which is the core of the learning procedure. In this subsection, we revise some of
these objective functions and their semantics.

Koulouriotis et al. [54] applied a genetic strategy to learn the model structure
from data. In this approach, the method uses a collection of input/output vector
pairs, which are referred to as examples. The method computes a weight set that
transforms the input vectors into the output vectors. Equation (15) shows the
error function to be minimized, where x encodes the weight set, K is the number
of instances, M is the number of concepts, while Aki and Ãki denote the current
response and the expected one, respectively.

E(x) =
K∑
k=1

M∑
i=1

|Aki − Ãki| (15)

Anologously, a learning procedure based on Particle Swarm Optimization (PSO)
was introduced in [105]. Similarly to the above approach, the algorithm computes
the weight set on the basis of historical data (multiple sequences of state vec-
tors) that converge into a desired final state. Therefore, the model requires human
knowledge to specify adequate constraints that would guarantee that the relation-
ships within the FCM model retain the physical meaning defined by the experts.
Equation (16) unveils the error function to be minimized for the k-th instance,
where A∗ik denotes the activation value of the i-th decision concept, H(x) is the
well-known Heaviside function [87], whereas Li and Ui represent the lower and
upper boundaries, respectively, of the acceptable activation interval.

Ek(x) =
M∑
i=1

H
(
Li −A∗ik

)
|Li −A∗ik|+

M∑
i=1

H
(
A∗ik − Ui

)
|A∗ik − Ui| (16)

A memetic approach that combines PSO with both deterministic and stochastic
local search schemes for solving the above problem was investigated in [110] [111].
The memetic schemes were applied to real-life problems and compared with well-
known continuous optimizers, thus justifying their superiority.

In [89], the authors adopted Differential Evolution (DE) to compute the weight
matrix by using a single input-output record. Equation (17) shows the error func-
tion to be minimized in this learning procedure.

E(x) =
M∑
i=1

|Li −A∗ik|+ |A∗ik − Ui| (17)

Another approach for learning the network structure from a single historical
record was proposed by Mateou et al. [64] where the weights are recalculated to
increase the reliability of FCM-based systems in multiobjective decision-making
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scenarios. The authors used a variant of Genetic Algorithms (GAs) for multiob-
jective optimization that attempts estimating a weight matrix while satisfying
several criteria at the same time. Equation (18) displays the error function for this

model, where Ãi is the expected response for the i-th concept, A
(t)
i is the current

activation value and T > 50 denotes the maximal number of time steps. It should
be stated that we have rewritten the original formulation of this equation to be
consistent with the notation used in this paper.

E(x) =
M∑
i=1

|Ãi −
50∑
t=1

A
(T−t)
i

50
| (18)

Stach et al. [124] [125] proposed a genetic learning method that only requires
a single activation sequence. Equation (19) displays the attached error function,
where p ∈ {1, 2,∞} and c denotes the normalization factor, i.e., c = 1/(T − 1)M
for p ∈ {1, 2} and c = 1/(T − 1) for p =∞. This procedure decomposes the input
sequence into at most K = T − 1 pairs of the form {A(t), A(t+1)} such that A(t)

defines an initial state vector and A(t+1) is the expected response. Repeated pairs
are not considered since if the recurrent system reaches a previously produced
state, its behavior will be exactly the same regardless of the simulation history.
Consequently, all state vectors that are produced after either a limit cycle or an
equilibrium point is reached are already ignored.

E(x) = c

T−1∑
t=1

M∑
i=1

|A(t)
i − Ã

(t)
i |

p (19)

The above error function is perhaps the most widely used and accepted in the
context of FCM learning. However, its performance quickly deteriorates as the
number of concepts increases. In order to improve the algorithm scalability, Stach
and his colleagues [121] examined the parallel nature of Real-coded Genetic Algo-
rithms (RCGA). The proposed master-slave parallelization scheme allows learning
FCM-based model comprised of dozens of concepts.

Later on, a divide-and-conquer procedure on the basis of RCGA [123] was put
forth. This technique makes use of a strategy to subdivide the input data in order
to speed up the learning process. Equation (20) displays the fitness function to be
maximized, where α and β are the positive scaling constants.

F (x) =
α

β
∑T−1
t=1

∑M
i=1

(
A

(t)
i − Ã

(t)
i

)2
+ 1

(20)

Chen et al. [18] adopted an error function that uses multiple input sequences
to improve the generalization capability of the learned model. Equation (21) shows
this function, where K denotes the number of training sequences and T the number
of time steps. The reader may notice that this error function is a generalization of
Equation (19) in which a single input sequence is required. In order to accomplish
the error function minimization, the authors decomposed each numerical weight
into a sequence of P + 1 discrete variables, i.e., the sign and P integer variables
denoting the required precision. The algorithm was able to successfully tune a fully
connected network topology comprised of 40 concepts.
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E(x) =
1

KM(T − 1)

K∑
k=1

M∑
i=1

T∑
t=1

(
A

(t)
ki − Ã

(t)
ki

)2
(21)

Subsequently, Chen et al. [19] introduced a decomposed learning scheme based
on Swarm Intelligence to adjust gene regulatory networks comprised of 100 nodes.
Later, Chen and their collaborators [20] proposed a modified error function that
includes a sparseness penalty factor ps as depicted in Equation (21). In this case,
they performed the optimization process using a decomposed RCGA. The experi-
ments demonstrated that this algorithm was able to learn large-scale networks of
up to 300 concepts. To the best of our knowledge, this method stands as the best
published result to date in learning complex FCM networks.

E(x) =
1

KM(T − 1)

K∑
k=1

M∑
i=1

T∑
t=1

(
A

(t)
ki − Ã

(t)
ki

)2
+ ps

M∑
i=1

M∑
j=1

|wij | (22)

Several heuristic search methods have been used to optimize the above func-
tions. For example, Alizadeh et al. [8] adopted Tabu Search while Ghazanfari et al.
[31] resorted to the search capabilities of Simulated Annealing and Genetic Algo-
rithms. Other search procedures include: Artificial Inmune Systems [59], Chaotic
Simulated Annealing [6], Big Bang - Big Crunch [136], Extended Great Deluge
[12], Artificial Bee Colony [135], Particle Swarm Optimization [82], Cultural Algo-
rithm [4], Bacterial Evolutionary Algorithm [16], Structure Optimization Genetic
Algorithm [112], Imperialist Competitive Algorithm [3], etc.

It is opportune to highlight that some review papers (e.g., [87] [97]) use the term
population-based to gather both single-trajectory and population-based search
methods, leading to a theoretically inaccurate taxonomy. This (almost impercep-
tible) mistake comes from the fact that the first supervised learning algorithms
were based on population-based algorithms, which often produce better results.
On the other hand, we cannot claim the novelty of a learning method only because
we adopted a different optimizer, even when we understand that this component
is a key piece in most data-driven learning techniques.

3.3 Two different approaches - what works when?

As mentioned, the majority of the FCM learning algorithms are devoted to com-
puting a “suitable” weight set. Nevertheless, each kind of learning algorithm comes
with its own set of advantages and limitations, which makes it appropriate to spe-
cific types of problems depending on the data and knowledge availability. Selecting
an adequate approach in each case is not trivial and may depend on obtaining an
accurate and theoretically sound modeling.

Hebbian-based methods are convenient to fine-tune the weight set with a small
deviation from the initial configuration provided by the expert. This means that
the adjusted weights might preserve their causal meaning, which cannot be ensured
when using a data-driven algorithm. However, their poor generalization capability
arises as a barrier difficult to overcome. This issue render Hebbian-based methods
unfit prediction problems comprising two or more categories, unless we use near-
optimal initial weights and multiple training examples.
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As an alternative, we can use error-driven learning algorithms. Several studies
have shown that these techniques increase the FCM functionality, robustness and
generalization abilities [20] [87]. This suggests that a single weight set is capable
of recognizing patterns belonging to different decision classes. In spite of these
remarkable advantages, error-driven algorithms also have relevant drawbacks to
be considered. For example, they are time-consuming and require multiple input-
output training sequences to compute the learned model.

Perhaps the chief downside of error-driven learning methods is that they pro-
vide solutions that are difficult or impossible to interpret, which may lead to in-
correct static analysis [98]. In a nutshell, we cannot guarantee that the algorithm
is capable of producing authentic causal relations corresponding to the behavior
of the physical system under investigation. Furthermore, these algorithms might
generate FCM models with poor convergence features.

From the above analysis we can conclude that Hebbian-based methods might
be adequate to face control problems [116] where the domain restrictions are clearly
known. In such a case, these unsupervised procedures will adjust the initial weight
matrix according to an activation sequence. Notice that the Oja’s learning rule
generates an algorithm for principal components analysis rather than an accurate
predictive model; perhaps that is why FCM-based classifiers perform poorly when
trained with Hebbian-based algorithms. In contrast, error-driven approaches are
more convenient for solving pattern classification and forecasting problems where
multiple training sequences are available. However, in these scenarios the network
interpretability may be compromised since there is no guarantee that the produced
weight matrix encloses authentic causal relations.

3.4 Hybrid learning approaches

Hybrid learning approaches employ a combination of the first two mentioned FCM
learning mechanisms: Hebbian-based and error-driven procedures. In the hybrid
learning schemes, the learning goal is to modify/update the weight matrices on
the basis of initial knowledge from the experts and historical data in a two-stage
process [87]. The literature is rather scant when it comes to describing hybrid FCM
learning methods and, for some reason, the proposed approaches are not widely
accepted in solving real-world FCM-based problems.

Papageorgiou and Groumpos [90] investigated a coupling of the DE and NHL
algorithms by using both the global search capabilities of evolutionary algorithms
and the effectiveness of the NHL rule. This hybrid learning technique was suc-
cessfully applied to real-world decision making problems. The experimental anal-
ysis results confirmed that this hybrid strategy was capable of effectively training
FCMs, thus leading the system to desired states and determining an appropriate
weight matrix for each specific problem.

Another hybrid scheme was presented by Yanchun and Wei [133]; the authors
put together an RCGA-based optimization scheme and the NHL algorithm to solve
a partner selection problem. Their algorithm inherited the main features of each
learning technique, the RCGA population-based algorithm and the NHL rule, thus
combining expert knowledge with available data.



A Review on Methods and Software for Fuzzy Cognitive Maps 15

A hybrid FCM learning procedure blending NHL and the Extended Great Del-
uge Algorithm (EGDA) was investigated in [113]. This hybrid scheme possesses
NHL’s efficiency and EGDA’s global optimization capabilities. The FCM is first
trained via NHL in order to get a set of weights close to the optimal (unknown)
topology, and then EGDA further optimizes the network structure driven by the re-
sponse error minimization. The reported results are really encouraging but deeper
research using more complex scenarios is required.

3.5 Other learning approaches

During the literature review, we identified other alternative learning schemes that
do not fall within the three aforementioned groups. Such methods combine other
theories to build and/or optimize an FCM-based system.

Konar and Chakraborty [47] proposed a model for unsupervised learning and
reasoning on a special type of cognitive maps realized via Petri nets. The learning
process in this context adapted the weights of the directed edges from transitions
to places in the Petri net. After convergence of the learning algorithm, the network
can be used to compute the beliefs of the desired propositions from the supplied
beliefs of the axioms. Later, Kyriakarakos et al. [56] merged FCM and Petri nets
for autonomous polygeneration microgrids.

Carvalho and Tomé [17] introduced an approach based on fuzzy Boolean nets
for learning rule-based FCMs such that fuzzy Boolean nets are used to extract the
linguistic membership functions from historical data. The internal binary memories
of each consequent concept are modified according to the states of the antecedent
concepts and the state of that consequent entity.

Madeiro and Zuben [63] introduced a gradient-based method for the automatic
construction of FCM-based systems. The objective function is minimized starting
from an initial solution given that gradient-based methods are local optimization
algorithms. This technique leaned on RCGA with gradient search to learn the
FCM weights and construct the network structure. It should be mentioned that
gradient-based leaning methods are also error-driven approaches, but they do not
use a metaheuristic to minimize the least-squares error function. That is why we
revise gradient-based methods in this section separately.

A supervised learning procedure based on the gradient method was proposed
by Gregor and Groumpos [34] to compute the weight set in the direction of the
steepest descent of the error function. As well, a multi-step gradient method [95]
was applied to the domain of time series forecasting, more explicitly, to predict the
electricity consumption and stock exchange returns. Although this gradient-based
method seems like a promising approach for FCM construction using time series
data, further analytical experimentation is required.

The evolutionary mechanism of Cellular Automata was exploited in [21] to
learn the FCM connection matrix. A one-dimensional cellular automata encoded
the weight set and the cellular states were chosen within the [0, 1] range to create
a cell space. In order to guide the optimization effectively and accelerate the con-
vergence speed, a mutation operator was added to the algorithm. This approach
was tested in short-term stock prediction.
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Luo et al. [62] proposed an FCM model to design game-based learning systems
inspired on their properties for concept representation and reasoning. It computes
the difference between the outputs of the teacher and the learner submodels to
control the whole game learning process. The improved FCM has the ability to
self-learn from both existing data and a priori knowledge.

We should acknowledge the existence of previous studies on this topic, for
instance Stach et al.’s survey [120] that goes over the main features of the Hebbian-
type and evolutionary-based learning algorithms for FCMs. Likewise, the survey
paper in [87] gives continuity to this important field.

3.5.1 Network topology optimization

Several learning algorithms have been developed to optimize the topology of com-
plex causal networks. For instance, Alizadeh et al. [7] put forth an FCM learning
method that simplifies the topology by only selecting relevant concepts without
sacrificing the model’s accuracy. In this method, the FCM concepts were clustered
on the basis of their cause and effect behaviors.

Nápoles et al. [74] designed a learning algorithm to produce compact FCM-
based systems. In the first step, the algorithm automatically estimates the causal
weight matrix from historical data. Next, the superfluous/irrelevant concepts are
removed by minimizing a constrained error function that ensures preserving the
overall accuracy. This algorithm uses the centrality of each concept as a metric to
guide the search across a space comprised of 2M solutions.

Similarly, Homenda et al. [40] investigated the effect of the a posteriori removal
of weak connections or concepts. The concepts were removed together with their
connections. After modifying the network topology, the simplified models were
tested with well-known time series to check whether they were still able to predict
future states with an acceptable low error or not.

A new Structure Optimization Genetic Algorithm (SOGA) for FCM learning
came to light in [112] for modeling complex decision support systems. The method
defines an error function with an additional penalty for those FCM topologies
with large number of concepts and connections among them. The obtained results
confirmed that SOGA was able to reduce the FCM structure while preserving its
most important concepts and connections.

In [92] the authors proposed a reduction approach for FCMs through a clus-
tering algorithm based on fuzzy tolerance relations. The algorithm finds concepts
that have identical or similar behavior and groups them into the same cluster.
Next, the causal relations are recalculated and parameters associated with the sig-
moid transfer function are adjusted to compensate for these modifications. Notice
that merging concepts lead to the creation of artificial concepts and relations that
may not have a clear meaning for the problem at hand.

More recently, Salmeron and Froelich [115] introduced a dynamic optimization
method for FCMs in time series forecasting. The algorithm estimates the weight
matrix, the set of relevant concepts and the transfer function (together with its
parameters) in a single step. This approach allows optimizing the network structure
during the learning stage, thus avoiding the creation of semantically meaningless
concepts. We strongly recommend using this methodology, as many FCM scenarios
can be successfully mapped to time series problems.
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3.5.2 Optimization of convergence features

As mentioned in Section 6, Nápoles et al. [69] [70] [80] [71] proposed several models
to improve the convergence of FCM-based systems. In these methods, the authors
assume that the concepts and causal relations have been previously estimated. To
accomplish the learning goal, the proposed algorithm estimates the parameters of
the sigmoid functions attached to the map concepts. In spite of the promising re-
sults obtained in the classification field, the study conducted in [71] evidences that
improving the convergence features of FCM-based systems is not always possible
without altering the semantics behind the cognitive model.

4 Fuzzy Cognitive Maps for Time Series Forecasting

Fuzzy cognitive mapping has been widely used for time series forecasting. In this
section we elaborate on this particular application due to its importance in data
stream mining and the modeling of dynamic systems.

Let y ∈ < be a real-valued variable observed over a discrete time scale within
the period t ∈ [1, 2, . . . , N ], where N ∈ N denotes its length. Thus, a univariate
time series is defined as a sequence of observations {y(t)} = {y(1), y(2), . . . , y(N)}.
Let us denote by historical time series the one in the period t ∈ [1, 2, . . . , te], where
te ≤ N . The goal of forecasting is to predict the next values of the time series,
i.e., ŷ(te+1), ŷ(te+2), . . . , ŷ(te+H), where H is referred to as the prediction horizon.
To accomplish the forecasting task, a model F is required. Assuming single-step
forecasting, i.e., for H = 1, the model F is used to calculate ŷ(te+1) = F(y(te)).
The problem to be addressed is the construction of F , which is usually not known
and has to be discovered using historical records.

At every time (i.e., iteration) step within the prediction period t ∈ [te + 1, N ],
an individual forecasting error is evaluated as E(t) = ŷ(t) − y(t). To evaluate
the cumulative prediction error over the entire period [te + 1, N ] several different
benchmarking measures may be adopted. Two of the most popular ones are the
Mean Absolute Percentage Error (MAPE, see Equation (23)) and the Root Mean
Squared Error (RMSE, see Equation (24)). The lower the value of these measures,
the more precise the forecasting model becomes.

MAPE =
1

N
·
N∑
t=1

∣∣∣∣E(t)

y(t)

∣∣∣∣ · 100% (23)

RMSE =

√√√√ 1

N
·
N∑
t=1

[
E(t)

y(t)

]2
(24)

In the FCM context, the forecasting model F corresponds to the FCM-based
network. This means that the FCM concepts are mapped to time series variables
and then, the learning of the FCM weights occurs followed by the testing within the
prediction horizon. Depending on the type of mapping between the FCM concepts
and the lagged values of the time series, the FCM can be used to forecast both
univariate and multivariate time series. In addition, FCMs have been adapted to
the forecasting of approximated time series, interval-valued time series or granular
time series, as it will be illustrated in the following subsections.
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4.1 Univariate time series forecasting

Earlier FCM applications to time series forecasting were confined to the univariate
case. In these scenarios, the FCM concepts are mapped to the lagged time series,
thus playing a role similar to that of the regressors in auto-regressive forecasting
models. Such an approach was proposed in [38] [41] [60] [61].

In these works, all values of the learning part of the time series are clustered
through the fuzzy c-means method, where the number of clusters c is a user-defined
parameter. In this way, at each time step, the value of the time series belongs to
every created cluster with some membership grade. It is assumed that every cluster
(denoted as an FCM concept) plays the role of a fuzzy set. This suggests that the
activation value Ai is the degree to which the current value of the time series
y(t) belongs to the concept Ci. By performing this operation for all concepts, the
vector of concept activation states is obtained, while the FCM weights are learned
using the training part of the data. During the prediction phase, the sequence of
activation vectors is reconstructed using the learned model. To obtain numerical
values of the forecasted time series, each vector is defuzzified.

In [41] an FCM simplification was performed. The edges having weak absolute
value of weights were pruned from the FCM topology. Different values of pruning
thresholds were examined with regards to their influence on the obtained prediction
errors. It turned out that around 1/6 of the edges could be dropped without a
substantial increase in the prediction error. A similar approach was used in [60]
where a higher-order FCM was employed as the forecasting model. This means
that the FCM’s reasoning equation was modified to include not only the values of

A
(t−1)
j but also older states of concepts A

(t−2)
j , A

(t−3)
j , . . . , A

(t−k)
j .

Another approach related to the times series forecasting using FCMs was pro-
posed in [39] [115]. It assumes a direct mapping of the lagged values of the time
series to the FCM concepts. The fuzzification function was replaced with the max-
min normalization. Learning and testing was performed assuming online availabil-
ity of data. The concept of moving (sliding) window was applied for learning and
testing purposes. In addition to the previous works, the learning of the FCM pro-
posed in [115] encompassed the optimization of the length of the learning period
and the selection of the transformation function together with its parameters. The
optimization was performed dynamically for every learn-and-test trial. Empirical
results suggested that the obtained FCM model is very competitive with respect
to other models in terms of the prediction accuracy.

4.2 Multivariate time series forecasting

In the case of multivariate time series, the vector Y = [Y (1), . . . , Y (t), . . . , Y (N)]
comprises a sequence of observations for multiple real-valued variables, such that

Y (t) = [y
(t)
1 , . . . , y

(t)
i , . . . , y

(t)
M ]. Therefore, the single-step forecasting assumes the

form: Ŷ (te+1) = F(Y (te)), where the network F is used as the forecasting model.
It is possible to distinguish two approaches to the forecasting problem. In the first
case, it is assumed that the multivariate time series Y (t) is synthetic and generated
by the existing cognitive network. This implies that the learning phase will be
oriented to compute a model that mimics the generated time series. Additionally,
the reconstruction of the original FCM should be considered.
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In [126] the authors adopted this first approach and proposed a new method for
time series prediction, which was carried out both at the linguistic and numerical
levels. The proposed prediction method combines FCMs with granular, fuzzy-
set-based input models. The obtained results, which are compared with other
prediction models using fuzzy sets, have shown that the proposed architecture
achieves good accuracy expressed at both the linguistic and numerical levels.

The other approach revolves around the application of FCMs to the forecasting
of real-world time series. Froelich and Juszczuk [26] elaborated on the predictive
capabilities of adaptive and evolutionary FCMs. The goal of their research was to
determine what learning methods should be recommended for a particular predic-
tion problem. They illustrated the FCM predictive capabilities through an example
concerning the forecasting of weather conditions.

Froelich et al. [27] put forth an FCM-based prostate cancer prediction model.
Moved by the problem domain requirements, an improved evolutionary approach
for learning the FCM model was designed. The focal point of the new method was
to improve the effectiveness of long-term prediction. The evolutionary approach
was experimentally verified using clinical data acquired during a two-year period.
The advantage of using this method was theoretically justified and then empirically
corroborated in [88] with the introduction of a multi-step approach to learning
evolutionary FCMs for the prediction of pulmonary infection.

Song et al. [118] [119] designed an FCM-based network using neural networks
and fuzzy sets in order to predict chaotic time series. The four-layer fuzzy neural
network aimed to enhance the FCM’s learning ability and coupled the inference
mechanism of conventional FCMs with the learning of fuzzy membership functions.
In this scheme, mutual subsethood is used to define and describe the causalities in
the cognitive model. As a further advantage, the FCM model can be automatically
constructed from data, and therefore the expert’s intervention is not required.
Simulation results confirmed that this approach performs better in terms of both
prediction accuracy and architectural simplicity in most cases, compared to the
methods adopted for benchmarking purposes.

Recently, Vanhoenshoven et al. [131] use an approach based on autoregressive
integrated moving average to overcome the convergence issues of the recurrent
network while preserving its capability of performing multiple-ahead predictions.
Not too many FCM-based forecasting models can claim this feature. The prelimi-
nary results are certainly encouraging, but further research is required. Similarly,
Alghzawi [5] illustrated the negative effects of the convergence on the FCM-based
forecasting models by using a real-world problem concerning social security rev-
enues in Jordan. In reference [109] the reader may find other FCM applications to
the forecasting of real-world multivariate time series.

4.3 Approximate time series forecasting

It is worth mentioning that some applications do not require to deal with accurate
numerical time series. Instead, only approximating the numerical expected outputs
is desired. For example, in meteorology, often minimal and maximal daily temper-
atures are important. The exact variability of temperature during the daytime is
usually not required. For this reason, the original time series is approximated and
only this approximation is subject to forecasting.
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Froelich and Salmeron [29] approximated the original time series through inter-
vals, where the lower and upper bounds of the intervals made up the interval time
series (ITS). This multivariate ITS model was successfully validated using real-
world meteorological data. Moreover, aiming at handling the multivariate ITS, the
FCM was appropriately adapted by replacing classical numerical operators with
those from interval arithmetic. The resulting fuzzy grey cognitive map (FGCM)
[114] was deemed as the forecasting model. To cope with interval arithmetic in the
FGCM, a modified genetic algorithm was developed.

Another model to the approximation and forecasting of time series was intro-
duced in [28]. A numeric time series was approximated via information granules in
the form of triangular fuzzy numbers. The sequence of these granules constituted
a granular time series (GTS). For the GTS forecasting, a specialized model had to
be learned. The model applied clustering of fuzzy numbers and a genetic algorithm
to compute the parameters related to forecasting scheme.

5 Fuzzy Cognitive Maps for Classification

As mentioned, FCMs have been widely studied due to their appealing properties
for handling complex and dynamic systems, but less attention has been paid to
the development of FCM-based classifiers.

The pattern classification problem [24] is about building a mapping f : U → D
that assigns to each instance x ∈ U described by the attribute set Φ = {φ1, . . . , φM}
a decision class D from the N possible ones in D = {D1, . . . , DN}. The mapping
is often learned in a supervised fashion, i.e., by relying on an existing set of previ-
ously labeled examples used to train the model. The learning process is regularly
driven by the minimization of a cost/error function.

Machine Learning researchers are mainly focused on attaining high prediction
rates. Some classifiers like Artificial Neural Networks, Support Vector Machines,
Ensemble techniques or Random Forests are well known to be the most likely
successful algorithms for addressing a real-world problem in terms of prediction
rates. Regrettably, most accurate classification models do not provide any mech-
anism to explain how they arrived at a particular conclusion and behave like a
“black-box”. This negatively affects their practical usability in scenarios where an
understanding of the inference process is required.

5.1 Low-level Fuzzy Cognitive Classifiers

The first attempt to use FCMs in solving classification tasks was implemented in
[101] [100]. In these papers, the authors defined the notion of FCM-based classifiers.
On of the challenges to be faced when constructing an FCM-based classifier lies in
how to connect input and output concepts since an FCM classifier’s topology (i.e.,
concepts and causal relations) must comprise a coherent meaning for the system
being modeled. If the input concepts denote features of the classification problem,
then we are in presence of a low-level cognitive classifier where neural processing
units can be categorized as shown below:

Definition 1 We say that a concept Ci is an independent input concept if its
activation value does not depend on any other input concept.
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Definition 2 We say that a concept Ci is a dependent input concept if its activa-
tion value is influenced by other connected concepts.

Definition 3 We say that a neural processing entity Ci in an FCM-based classifier
is an output concept if we can predict a decision class from its final activation value,
which only depends on the connected input concepts.

Typically, independent and dependent input concepts are used to activate the
cognitive networks since they often denote problem features. Output concepts, on
the other hand, are used to compute the decision class for an initial activation
vector. In the case of independent input concepts, they can propagate the initial
activation vector and they are not influenced by other input concepts, therefore
their activation value remains static. Notice that the domain expert must ideally
determine the role of each concept and the way that input concepts are connected
among themselves. In spite of this fact, Papakostas et al. [104] proposed three
generic architectures for mapping the decision classes:

– Class-per-output architecture. Each decision class is mapped to an output
concept. Therefore, the predicted decision class corresponds to the label of the
output concept having the highest activation value.

– Single-output architecture. Each decision class is enclosed into the activa-
tion space of a single output concept.
1. Using a clustering approach. Each class is associated with a cluster center.

In the testing phase, the center having the closest distance to the projected
activation value is assigned to the input instance.

2. Using a thresholding approach. Each decision class is associated with a pair
of thresholds. In the testing phase, the interval comprising the projected
activation value is then assigned to the input instance.

In these architectures, the experts should ideally determine the way in which
concepts are connected while the weights are often sought via a learning method.
This implies that the human intervention is required during the construction stage.
Even so, automatic construction methods based on metaheuristics are unable to
produce authentic causal relations since they just fit the model to the existing
data. Therefore, we are losing the interpretability features attached to the network,
although the decision process remains transparent.

On the other hand, the absence of hidden processing entities in these recurrent
neural networks may probably lead to poor prediction rates. Aiming at boosting
the prediction capability of FCM-based classifier, in [100] the authors presented
two hybrid topologies. Figures 2 and 3 show these topologies that include a black-
box classifier to improve the prediction rates.

In the first hybrid model, the black box produces a confidence degree per deci-
sion class. This confidence vector is used as the initial configuration for the FCM
model that corrects the outputs produced by the black box. In the second model,
the input concepts are also connected to the output ones, so the predictions com-
puted by the black-box classifier can be understood as a bias. However, these
classification models greatly reduce (or perhaps completely suppress) the trans-
parency attached to the cognitive network. If this happens, then there is no reason
to use FCMs in classification scenarios; instead, we can adopt powerful black boxes
like Support Vector Machines or Random Forests.
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Fig. 2: Hybrid FCM-based classifier type-1.

Fig. 3: Hybrid FCM-based classifier type-2.
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In the FCM literature, several studies [84] [94] [93] [83] [117] using Hebbian-
based algorithms in pattern classification scenarios are reported. However, some of
these works are far from being considered authentic pattern classification solutions.
Papakostas et al. [104] thoroughly tested the performance of several Hebbian-type
algorithms in classification scenarios and concluded that these learning procedures
regularly produce very poor classification rates. For example, the NHL algorithm
reported an average performance of 15.47% on the Glass dataset whereas DD-
NHL computed an average prediction rate of only 4.91%! Of course, we could
find specific pattern classification scenarios on which a Hebbian-based algorithm
performs comparably to other learning approaches.

In the supervised learning case, the authors in [82] resorted to a Swarm Intel-
ligence method for predicting autistic disorder in children. The network topology
was initially proposed in [45] and comprises 24 concepts: 11 independent input
concepts, 12 dependent input concepts and a single output concept using a thresol-
ding approach. Afterwards, Kannappan and Papageorgiou [44] addressed the same
classification problem by means of artificial immune systems.

Zhou and Zhang [137] came up with a text categorization method on the basis
of similarity-based rough sets and FCMs, which replaces the FCM causal relation
with a correlation relation to generate text classifiers.

An FCM model for the screening and separation of usual ductal hyperplasia
from the rest of intraductal lesions was described in [9]. For this goal, 86 patients in
the Shahid Beheshti Hospital of Isfahan were studied, and 10 of the most significant
features were extracted by three pathologists and turned into FCM concepts when
determining the screening of these lesions. An overall classification accuracy of
95.35% was obtained on the entire database.

Nápoles et al. [74] proposed an FCM-based classification method using a single-
output architecture and a thresholding approach to model HIV proteins. In this
network, each sequence position is denoted as an independent input neuron due
to the fact that a single-point mutation may certainly encourage changes in other
positions. The goal is to predict whether a new mutation sequence is resistant to
the target inhibitor or not. The prediction rates achieved by this model ranged
from 95% to 99% depending on the target inhibitor. In an attempt to understand
the virus behavior, Grau and Nápoles [32] employed these fine-tuned networks to
synthetically generate mutations having susceptible features.

Froelich [25] introduced a new algorithm to improve the prediction rates of
FCM-based classifiers using a single-output architecture. The algorithm gener-
ates thresholds with a superior discriminatory power, which are determined after
learning the FCM structure. The results of the experiments conducted using pub-
licly available Machine Learning datasets evidenced that the application of the
proposed algorithm leads to an improved accuracy of the FCM classifier.

5.2 Granular Fuzzy Cognitive Classifiers

Granular FCM classifiers refer to high-level fuzzy cognitive models where input
concepts map information granules [13] rather than low-level features. For exam-
ple, Nápoles et al. [78] [77] introduced the notion of rough cognitive mapping in
the context of pattern classification. The new classification model transforms the
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original feature space into a granular one that is exploited using the FCM infer-
ence rule. In these so-called Rough Cognitive Networks (RCNs), the weight matrix
is automatically computed on the basis of the three-way decision rules [134] from
Rough Set Theory (RST) [106] [1] that define three regions to perform the classi-
fication process. The RCN model achieved competitive performance with respect
to state-of-the-art classifiers in traditional classification problems [78] [77] as well
as a network intrusion detection scenario [75].

Recently, two RCN models were introduced: Rough Cognitive Ensembles [72]
and Fuzzy-Rough Cognitive Networks [79]. The purpose of these methods is to deal
with the RCN’s parametric requirement while preserving their global prediction
capabilities. Although both variants performed comparably, it should be remarked
that we can achieve the same accuracy using an ensemble composed of a few
networks that using a single fuzzy-rough classifier! Furthermore, the fuzzy-rough
classifier allows smoothly elucidating its decision process based on its foundations:
fuzzy inclusion degrees and causal relations among granules.

Inspired on the RCN semantics and the approaches discussed in [107] and [108],
Nápoles et al. [73] proposed a partitive granular cognitive map to solve graded
multi-label classification problems. In these machine learning problems, the goal is
to predict the degree to which each instance relates to each available decision class.
Three different FCM topologies were studied and several convergence features
were included into the supervised learning methodology. Numerical experiments
confirmed the ability of these granular classifiers to accurately estimate the degree
of association between an object and each label.

The above references are not the only works in this realm but they serve to
demonstrate the rapid growth and diversity of application areas that have wit-
nessed the benefits of FCM-based solutions.

6 Software Tools for Fuzzy Cognitive Maps

While reviewing the literature, we found some attempts to develop software tools
for creating and experimenting with FCMs. Papers related to this methodology
usually present theoretical methods or practical applications, but they are rarely
supported by well-defined software implementations. In this section, we review the
most relevant software available in the literature.

FCM Modeler [68] is a pioneering software for designing FCM-based systems.
It was developed about 20 years ago and consists of a simple interface with the aim
of supporting group decision making on a qualitative static model. Some of the
features of this software tool include: (i) intuitive user interface, (ii) the capability
of designing and storing FCM-based systems, and (iii) the inference of FCM mod-
els based on the observed concepts and successive state vectors. FCM Modeler was
intended to serve as a general modeling tool but the project never evolved in that
direction. The authors also advocate for the inclusion of a basic implementation of
a machine learning algorithm. We could not find other references in the literature
referring to this tool; nevertheless, we acknowledge it as a seminal idea that seeded
other ensuing implementation endeavors.
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A very similar approach termed FCM Designer [2] shows a much better imple-
mentation and extends the original idea behind FCM Modeler. This software tool
is a notch higher than the previous one but it is still rather difficult to interact
with. FCM Designer’s chief functionalities include: (i) interactive graph visualiza-
tion, (ii) graphical support to design FCM models and (iii) the ability to simulate
new scenarios using the available causal knowledge. Likewise, this software tool
allows choosing the inference rule by picking the type of transfer function and
the stop criterion. The key drawback of this software lies on the lack of learning
algorithms to compute the parameters that define the system.

Mental Modeler [33] is another recently proposed software tool. It features
a web-based modeling implementation to support group decision making, thus
allowing experts to collaboratively represent and test their assumptions about a
system. Mental Modeler can be mainly used by non-IT people, usually experts or
stakeholders in a given domain who need to design a simple cognitive map (with
signed and weighted relationships) and simulate its behavior for some scenarios.
The most important disadvantages of this tool are related to the lack of learning
algorithms and its limited set of experimental options. However, the web-based
approach is appreciated, especially to be used by unsavvy users in the field.

The Java Fuzzy Cognitive Maps (JFCM) emerged as an open-source library for
FCM modeling [22] in 2014. The library is small and simple but can be used to cre-
ate a variety of FCM-based models. JFCM allows loading networks directly from
XML files, thus increasing its usability. The central idea behind this project is to
create reusable modules that could be loaded when seeking an FCM-based solution
to a given problem. JFCM was conceived from an object-oriented programming
perspective; hence, if the set of standard components are not sufficient for more
complex projects or theoretical proposals, the source code may be extended ac-
cordingly. This advantage becomes a limitation for experts with no programming
skills since it requires a straight plunge into the source code.

Intelligent Expert System based on Cognitive Maps (ISEMK) is a software for
modeling decision support systems based on fuzzy cognitive maps and artificial
neural networks [112] [96]. ISEMK is composed of four basic blocks, namely: the
knowledge processing, analysis of the FCM operation, neural network tool and
graphical user interface. The first block contains an FCM module and learning al-
gorithms based on gradient method with the use of historical data and population-
based learning via RCGA and SOGA as optimizers. The neural network module
allows implementing a multi-layer neural network for time series forecasting as
well as two learning algorithms: the Levenberg-Marquardt method [35] and the
Backpropagation method with momentum [36]. Moreover, ISEMK has an inter-
face supporting the visualization of results.

FCM Tool was originally introduced by León et al. [57] to model a real decision-
making problem concerning public transportation in Belgium. This software allows
(i) designing complex FCM-based models through an interactive graph visualiza-
tion, (ii) customizing the update rule by selecting the kind of transfer function and
stop criterion to be used, (iii) analyzing scenarios and their effects over the whole
system. FCM Tool provides a population-based learning algorithm for automati-
cally deriving causal weights from historical data. Another relevant feature is the
inclusion of aggregation operators for combining several FCM-based systems into
a single knowledge-based representation.
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FCM Tool eventually evolved into FCM Expert [76], a general-purpose and
more complete software platform for modeling FCM-based systems. As mentioned,
FCM Tool was meant to address a specific decision-making problem. This implies
that the implemented learning algorithms could not be used to tackle more general
pattern classification problems. FCM Expert inherits the strongest features in
FCM Tool and adds several unsupervised and supervised learning algorithms for
adjusting the weight matrix. This software tool includes techniques for optimizing
the network topology [74] and improving the system convergence [70] [80] without
losing relevant information. Moreover, the user can configure the model parameters
(e.g., the transfer function, the reasoning rule or the stop criterion) and benefit
from a friendly graphical interface.

Table 1 provides a comparison of the reviewed software tools across several
often desired indicators such as the existence of experimentation facilities, inclusion
of machine learning algorithms and graphical support.

Table 1: Comparison of existing software tools for FCM modeling

Year Simulation options Learning algorithms Graphical support
FCM Modeler 1997 None Only one Poor
FCM Designer 2005 Limited None Adequate
FCM Tool 2011 Several Only one Advanced
JFCM 2013 For developers None None
Mental Modeler 2013 Limited None Adequate
ISEMK 2015 Several Several Adequate
FCM Expert 2017 Several Several Advanced

From this assessment we can notice that FCM Designer, Mental Modeler and
FCM Tool provide a suitable graphical support to the experts when analyzing
scenarios and experimenting new situations, whereas JFCM is appropriate for de-
veloping FCM modules that could be reused in more complex solutions. However,
these implementations still lack experimentation options and/or do not allow han-
dling Machine Learning problems, which significantly hinder their usability when
facing real-world situations. In contrast, FCM Expert and ISEMK stand as the
most convenient software tools for developing FCM-based systems. The former
is devoted to simulation and pattern classification scenarios whereas the latter is
primarily focused on time series forecasting.

7 Concluding Remarks

In this review, we have surveyed relevant aspects of the FCM theory that include:
(i) a walk through foundational concepts, with special emphasis on the dynamic
properties of these systems as well as the different types of transfer functions and
their bearing on convergence; (ii) the fundamental classes of FCM learning al-
gorithms, ranging from Hebbian-based schemes to error-driven models and their
amalgamations; (iii) the most recent FCM developments in the forecasting of uni-
variate, multivariate and approximate time series as well as pattern classification
scenarios and (iv) the list of available software tools and their practical consider-
ations when designing FCM-based systems.
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From the theoretical underpinnings of these recurrent neural networks we can
state that selecting the proper transfer function and updating rule is a key aspect
when designing the system. These factors will impact the network’s capability of
producing meaningful and accurate results.

One of the more prominent gaps in FCM theory lies in the learning algorithms
to compute the weight set. As explained, Hebbian-based procedures have a poor
generalization ability. On the other hand, the key drawback of the error-driven
learning methods is that they provide solutions that are difficult to interpret. To
the best of our knowledge, there is no error-driven procedure capable of produc-
ing authentic causal relations that match the modeled system. Discovering causal
structures from historical records is quite challenging owing to the lack of statisti-
cal methods to measure causality. Other aspects such as the scalability or network
convergence are also issues that remain open problems.

Regarding pattern classification, the prediction rates of low-level FCM-based
classifiers are still often below those achieved by their black-box counterparts. We
can conjecture about the reasons behind this behavior, for example, the absence
of theoretically sound supervised learning algorithms with good generalization
features. On the other hand, the prediction rates achieved by high-level FCM-
based classifiers are indeed encouraging when compared to traditional black boxes
yet a low-level analysis is no longer possible.

It should be highlighted that we can achieve different levels of interpretability
depending on the abstraction degree used to model the FCM concepts. Entities
with high abstraction level (i.e., information granules) lead to high-level inter-
pretable models. If the level of abstraction is too high, then the network is difficult
to analyze, but the reasoning process is still transparent. Conversely, defining
attribute-level FCM concepts allows interpreting the system closer to its origi-
nal physical/virtual representation. However, sometimes the experts are unable to
define causal relations with such specificity level.

The results in time series forecasting using both attribute- and granular-level
models are promising as well. Regrettably, low-level FCM-based forecasting models
tend to converge to a fixed-point attractor when performing the inference process.
While this feature is highly attractive in simulation and pattern classification situ-
ations, its effect on time series scenarios is less desirable. If the network converges
to a fixed point, then the forecasting model will not fit the time series. This ob-
servation suggests that further investigation in this direction is required.

In this review study, we identified FCM Expert and ISEMK as the most com-
plete tools for designing, learning and simulating FCM-based systems. FCM Ex-
pert includes algorithms for computing the weight matrix, reducing the network
topology in dense FCM-based systems and improving the convergence without
losing relevant information, while ISEMK comprises several learning methods for
time series forecasting. Despite these facilities, both software products are still far
from bridging the existing gap between theoretical advances in the FCM field and
the development of sound practical applications.
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