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Abstract: Identification of complex interactions between miRNAs and mRNAs in a regulatory network helps
better understand the underlying biological processes. Previously, identification of these interactions was
based on sequence-based predicted target binding information. With the advancement in high-throughput
omics technologies,miRNAandmRNAexpression for the sameset of samplesareavailable. Thishelpsdevelop
more efficient and flexible approaches that work by integrating miRNA and mRNA expression profiles with
target binding information. Since these integrative approaches ofmiRNA–mRNA regulatorymodules (MRMs)
detection is sufficiently able to capture the minute biological details, 26 such algorithms/methods/tools for
MRMs identification are comprehensively reviewed in this article. The study covers the significant features
underlying every method. Therefore, the methods are classified into eight groups based on mathematical
approaches to understand their working and suitability for one’s study. An algorithm could be selected based
on the available information with the users and the biological question under investigation.

Keywords: computational methods; miRNA–mRNA regulatory modules; survey.

1 Introduction
miRNAs control the regulation of the majority of genes post-transcriptionally. They are short, non-coding
RNAs that hybridizewithmRNAs and control various biological processes like cell growth and differentiation,
apoptosis, oncogenic transformation, and others. miRNAs repress the translation of mRNA transcripts of
protein-coding genes either by binding to the transcript or by its degradation. It has been observed that
miRNA deregulation plays a significant role in the progression of most human cancers. It has also been
associated with the pathogenesis of several multi-factorial and genetic disorders [1]. Therefore, there is a
great need to identify regulatory networks comprising miRNAs and their target mRNA transcripts. This can
help in exploring their function in specific biological conditions. Several computational techniques have
emerged which helps elucidate miRNA function. These techniques can be placed into the following three
groups. (1) Methods that help in miRNA target prediction. (2) Methods that help in discovering MRMs. (3)
Methods that help in discovering functional MRMs (FMRMs).

The first category comprises methods that deal with the prediction of mRNA targets of miRNAs, based on
sequence information [2–5]. The methods in the second category identify modules/groups of co-expressed
mRNAs and miRNAs. In contrast, the methods of the last category predict miRNA regulatory networks for
the specific biological condition. There is a slight difference between the latter two categories; the purpose
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Figure 1: Workflow of the review.

of both methods is the same except that FMRMs are condition-specific. FMRMs help in a deeper and critical
understanding of underlying biological pathways. It also helps understand the development and prohibition
of the pathogenesis of many diseases that MRMs cannot. FMRMs are potentially superior for designing
miRNA-based drugs and treatments based on gene therapeutics [6]. The computational approaches/methods
that have been designed for the identification of MRMs or FMRMs can be categorized into two major groups:
(1) Methods that use only sequence-level information. (2) Methods that integrate sequence level information
with the expression profiles of the biomarkers.

Identifying MRMs/FMRMs is an essential step towards discovering the combinatorial effects of miRNAs
andmRNAsof different cellular states.Methods in thefirst groupuse sequence similarities to identifymiRNAs’
targets aremainly based on seed sequence information and evolutionary conservation. Because of small seed
sequences’ availability, these methods are low on sensitivity and predict a large number of false-positive
interactions between the two biomarkers [7]. Most of the methods of this group have high computational
complexity and are not very helpful in retrieving the functional aspects of the identifiedmodules. In contrast,
the second groupmethods utilize two types of information and integrate them to predict co-expressed groups
of miRNAs and mRNAs. The sequence level information also uses these biomarkers’ expression profiles
measured across the same set of samples. Thesemethods are often supported by the information derived from
sequence-basedstudies likemiRNA-target information,GGI (gene–gene interaction), andothers.Thedynamic
and condition-specific properties of the expression profiles help in better exploration of regulatory modules
in comparison to the methods of group one. While most of these approaches use a mere negative correlation
to recover some miRNA–mRNA relationships, but fails when it comes to fulfilling the biological context.
The problems faced by such straightforward approaches have been overcome by several other powerful and
sophisticated approaches that deal with finer details of a biological system. The review attempts to provide
an overview of some important and well-known algorithms that use the integrated approach to discover
MRMs/FMRMs, the workflow is presented with the help of Figure 1.

2 Computational approaches for MRMs identification
Identification of MRMs/FMRMs helps understand miRNA regulatory networks comprising mRNAs and some-
times also the transcription factors (TFs). All themethods developed in this area have a commonaim, to detect
biologicallymeaningful regulatorymodules. Table 1 represents a list of 26 latest methods. Among the enlisted
methods, the methods that are based on integrative approach either make use of a complete set of expression
profiles of both the biomarkers derived from a specific biological condition or first identifies differentially
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Table 1: List of algorithms/methods/approaches/tools for MRMs identification.

Method Data sets Feature Input data requirement

Correlation based approach

Peng X. et al. [8]# Hepatitis C∗ Identifies HCV infection-associated
MRMs

miRNA and mRNA expression +
samples category (diseased and
normal)

MAGIA2 [9]
web-interface

NCI-60∗ Identifies MRMs by exploring the
interplay of miRNAs and TFs in
gene/transcripts expression regulation
that are involved in mixed regulatory
circuits

miRNA and mRNA expression

MirConnX [10]
web-interface

GBM∗ Identifies MRMs that reflects
characteristics specific to the data
guided by some prior beliefs

miRNA and mRNA expression

Zhang W. et al.
[11]#

P/MPC Identifies miRNA–mRNA correlation
network modules in tumour subtypes

miRNA and mRNA expression +
samples category (tumour
subtypes)

Mirsynergy [12]
R package

OV, BRCA, and
THCA∗

Detects synergistic MRMs by overlapping
neighbourhood expansion

miRNA and mRNA expression +
miRNA targets + PPIs

DICORE [13]# EMT, BRCA, and
multi-cancer
dataset∗

Detects MRMs by exploring collective
group relationship

miRNA and mRNA expression

BCM [14]# BRCA and THCA∗ Predicts MRMs by iteratively merging the
bicliques with the guidance of the GGIs

miRNA and mRNA expression +
miRNA targets + GGIs

DmirNet [15]# EMT, BRCA, and
MCC∗

Identifies MRMs by taking advantage of
three direct association estimation
methods, the bootstrapping and the
Ensemble approach based on an
inverse-rank-product method.

miRNA and mRNA expression +
samples category (diseased and
normal)

MIMPFC [16]# EMT, BRCA, and
MCC∗

Identifies MRMs by combining
phase-only correlation and improved
rough-fuzzy clustering

miRNA and mRNA expression +
miRNA targets

CALM [17]# THCA, BRCA,
EMT, and OV∗

Identifies MRMs through integrating the
causal interactions and statistical
correlations between the miRNAs and
their target genes

miRNA and mRNA expression

Linear model approach

Lu Y. et al. [18]# NPC and other
tumors∗

Identifies MRMs based on a Lasso
regression model

miRNA and mRNA expression +
miRNA targets+ samples category
(diseased and normal)

Engelmann J.C.
and R. Spang,
[19] R script

NCI-60∗ Predicts canonical and non-canonical
MRMs

miRNA and mRNA expression +
miRNA targets

PIMiM [20]# OV∗ Discovers MRMs using probabilistic
model that combines regression with
network information

miRNA and mRNA expression +
miRNA targets + PPIs

CoModule [21]# OV∗ Predicts MRMs in which the miRNAs in
each module are expected to present
cooperative mechanisms in regulating
their targets mRNAs

miRNA and mRNA expression +
miRNA targets

Bayesian network approach

SA-Bns [22]# EMT Discovers MRMs using a splitting and
averaging scheme for Bayesian structure
learning

miRNA and mRNA expression +
miRNA targets+ samples category
(diseased and normal)
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Table 1: (continued)

Method Data sets Feature Input data requirement

HCTarget [23]# BRCA, PRAD, and
MM∗

Predicts miRNA-target using classical
Markov chain Monte Carlo algorithm

miRNA and mRNA expression +
miRNA targets

Statistical approach

Liu B. et al. [24]# Mouse mammary
dataset

Identifies functional MRMs with
correspondence latent Dirichlet
allocation

miRNA and mRNA expression +
miRNA targets (optional)

Dchip-GemiNI
[25]
web-interface

LIHC, KIRC,
PRAD, LUAD, and
GCC∗

Identifies MRMs in human cancers using
TF-miRNA feed-forward loops

miRNA and mRNA expression +
TF-gene + TF-miRNA +miRNA
targets

Jayaswal V. et al.
[26]#

Leukemia and
MM (Time series
data)

Predicts MRMs that contains direct
regulation or indirect regulation of
mRNAs

miRNA and mRNA expression +
miRNA targets

CAPE RNA [27]# Bladder cancer
(Urothelial
samples)∗

Predicts MRMs based on individual
classification

miRNA and mRNA expression +
miRNA targets

Rule induction approach

Tran D. H. et al.
[28]#

Multiple cancer
data sets∗

Detects MRMs by exploring
combinatorial nature of gene regulation

miRNA and mRNA expression +
miRNA targets

Song R. et al.
[29]#

HCV infected
humans∗

Detects MRMs by considering both
inverse and positive regulatory
relationships between the biomarkers

miRNA and mRNA expression +
miRNA targets

Paul S. et al.
[30]#

COAD∗ Predicts MRMs using rough hypercuboid
based supervised clustering

miRNA and mRNA expression +
miRNA targets

Probability learning approach

Joung J.G. et al.
[31] available on
request

Multiple human
cancer∗

Predicts MRMs via population-based
probabilistic learning

miRNA and mRNA expression +
miRNA targets

Matrix decomposition approach

SNMNMF [32]
Python script

OV∗ Multiple non-negative matrix
factorization based data integration
framework for MRMs identification

miRNA and mRNA expression +
PPIs +miRNA–mRNA interaction
+ DNA–protein interaction

Mutual information based approach

RFCM3 [33]
executable C++
codes

CESC∗ Identifies MRMs in cervical cancer using
MISIM and mutual information

miRNA and mRNA expression +
MISIM

The # in the first column indicates that a method is only available as algorithmic steps and no tool/web-interface/scripts are
provided. The remaining approaches are freely available in the form of web-interface or scripts that can be modified by the
users. The Data sets column represents the system for which the algorithm is developed or the data sets used for
bench-marking. An ∗ represents that the method can be used for any other systems if the required input data is available,
whereas no ∗ means the algorithm is designed precisely for that system (as claimed by the authors). Some of the other terms
and abbreviations used in the table are as; NCI-60: A panel of 60 human cancer cell lines from several distinct tissues, GBM:
glioblastoma multiforme, P/MPC: primary/metastatic prostate cancer, OV: ovarian cancer, BRCA: breast cancer, THCA: thyroid
cancer, EMT: epithelial-mesenchymal transition, MCC: multiclass cancer, NPC: nasopharyngeal cancer, PRAD: prostate
adenocarcinoma, LIHC: liver hepatocellular carcinoma, KIRC: kidney renal clear cell carcinoma, PRAD: prostate
adenocarcinoma, LUAD: lung adenocarcinoma, GCC: germ cell cancer, MM: multiple myeloma, COAD: colon adenocarcinoma,
CESC: cervical cancer, PPIs: protein–protein interactions, GGIs: gene–gene interactions, MISIM: miRNA functional similarity.
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expressed biomarkers from the complete set and later on incorporates the sequence-based information to
find MRMs/FMRMs from them. All the methods enlisted in Table 1 have been classified into eight groups.
They are categorized based on different mathematical approaches used by them to integrate the information
from expression profiles to the known target information. (1) Correlation-based approaches use a straightfor-
ward way of estimating the correlation between miRNAs and mRNAs. (2) Linear model-based approaches.
(3) Bayesian network-based approaches. (4) Statistical model-based approaches use statistical tests to find
significant modules. (5) Rule induction approaches use machine learning methods to search for subgroups.
(6) Probability-based approaches either use population-based probabilistic learning or probabilistic graph-
ical model to infer regulatory information. (7) Matrix decomposition approaches convert the integrated
matrix derived from several types of information into several canonical forms. (8) Mutual information-based
approaches. Next, some of the methods from each of the above-mentioned groups are presented in detail.

2.1 Correlation-based approaches
The most simplistic approach to identifying MRMs are whether the biomarkers’ expression is inversely
correlated. It means that if a miRNA is up-regulated (or highly expressed) then the target mRNA should
be down-regulated [34]. However, some of the studies have also shown that this inverse relationship does
not hold true all the time [35–37]. Therefore, the MRMs identified based purely on the inverse regulatory
relationship are incomplete in a certain biological context.

2.1.1 A method based on a graph-theoretical approach

In this method, inverse expression relationship between miRNA and mRNA with computationally predicted
targets of miRNA have been combined by Peng X. et al. [8], to identify the Hepatitis C virus (HCV) infection-
associated MRMs. miRNA regulation in other complex human diseases can also be identified by this method.
The regulatory network constructed is in the form of a bipartite graph or a bi-clique, a graph where each
vertex of one set (miRNAs) is linked to each vertex of another set (mRNAs) [38]. The method takes the help
of Maximal bi-clique enumeration, algorithm [38] and identifies all maximal bi-cliques in the miRNA–mRNA
regulatory network. (1) In the first step, the pairwise correlation between eachmiRNA andmRNA is calculated
and stored in a matrix. (2) Next, a binary correlation network is generated from the correlation matrix. A
correlation threshold is required for this purpose, which is obtained by calculating false detection rates (FDR)
at different correlation values. FDRhelps in identifying statistically significant relationships betweenmiRNAs
and mRNAs. A threshold is then selected with an overall low FDR as well as it should include the maximum
number of highly correlated miRNA–mRNA pairs. (3) In the next step, the above network is superimposed
with sequence-basedmiRNA-target information. A connection is made only if a pair of miRNA andmRNA has
a strong negative correlation, and they are also connected in the sequence-based target information. In this
way, many-to-many relationships are identified between miRNAs and mRNAs, and a regulatory network is
identified. (4) A bipartite graph represents this regulatory network. All the maximal bi-cliques are specified
as MRMs. The workflow of this method is presented in Figure 2.

2.1.2 A method that identifies MRMs based on within-class variability

This method is developed by Zhang W. et al. [11], to interpret the genetic regulation of prostate cancer, which
is heterogeneous and complicated. The study was to understand the difference in gene regulatory network
between primary prostate cancer and metastatic prostate cancer (PPC and MPC). The biological principle
governs that miRNAs and mRNAs are differentially expressed across different subtypes or prostate cancer
stages. This can also be true for any other cancer or such complex diseases. This within-class variability
is primarily due to inherent variation present in the sampled individuals belonging to the same class. This
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variation is in the form of a molecular genetic mechanism that helps rebuild disease or condition-specific
regulatory networks. The steps followed by this method are: (1) miRNA–mRNA correlation matrices are
generated, the number of suchmatrices depends on the number of sub-types under study. Pearson correlation
is calculated in a computationally intensive manner for 1000 times. 80% of the samples are randomly
selected for every run, and then the mean of 1000 replications are estimated to be the final correlation. (2)
The expression correlation matrices are discretized with genes in the rows and miRNAs in the columns. The
correlationvaluesaredivided into threegroups thataredenotedby1 (the top1%of thepositivecorrelations),−1
(the top 1% of the negative correlations), and 0 (rest of the correlations). (3) The next task is to remove
the unwanted miRNAs and mRNAs, to condense the discretized correlation matrices. Therefore, miRNAs
(columns) that do not have any recorded relationship with the genes of the biological condition under study
are removed. Also, the mRNAs (rows) with less than two non-zero entries are removed. (4) To get a better idea
about the complicated interplay among the biomarkers in the correlationmatrix and reduce the trivial task of
pairwise comparison of thematrix element, a novel method is employed at this step: Fisher’s transformation.
The discretized correlationmatrix entries are transformed using thismethod before their decomposition. This
helps in an explanation of the results by the standard statistical theory. (5) Then, the correlation matrices are
subjected to Hierarchical clustering. This clustering analysis is performed in two ways using Ward’s method
andManhattandistance. (6)miRNAsubsets aredetermined from the clustering result. A couple of two-column
topologymatrices are generated containing positive and negative connections for each of themiRNA subsets,
respectively. (7) Final identification of MRMs is made by dropping off mRNAs having a single connection,
either positive or negative.

2.1.3 Mirsynergy

Target site information, GGIs, and miRNA and mRNA expression profiles are altogether used by Mirsynergy
[12] for MRMs prediction. The modules discovered by this method contain overlapping mRNAs and miRNAs.
The model parameters are predefined, which helps identify a consistent number of modules. Here, the
algorithm used for clustering is adapted from ClusterONE [39]. The method tries to construct synergistic
MRMs and formulate them as a clustering problem comprising two stages as presented in Figure 3. Stage 1:
Only the clustering of miRNAs is considered with the primary aim of the maximization of miRNA–miRNA
synergy. This synergistic relationship is directly related to the correlation betweenmiRNAs. Stage 2: MRMs are
assigned based on greedily adding or removing genes from them to maximize the synergy score. Gene–gene
interaction weights (GGIW) and miRNA–miRNA interaction weights (MMIW) have an equal contribution
in defining the synergy score. Incorporation of GGIs information helped in better identification of MRMs,
compared to use miRNA–mRNA interaction alone. The advantage of Mirsynergy over other methods are that
it uses deterministic formalismand automatically identifies the number ofmodules. The predefined threshold
helps in merging and filtering out of the low-quality clusters. At the same time, it has been shown to improve
its computational efficiency by reducing the theoretical bound to only O(M(N + M)) from O(K(T + N +
M)2) per iteration for M miRNAs and N mRNAs across T samples. Mirsynergy is available at Bioconductor
https://bioc.ism.ac.jp/packages/3.0/bioc/html/Mirsynergy.html.

2.1.4 DICORE

The collective group relationship between miRNA and mRNA regulation is the primary idea behind the
development of DICORE: The computational framework of Discovering Collective group Relationships [13].
This approach adds quantitative strength information to the identified MRMs. The available data sets are
represented with the help of a weighted bipartite graph, and the method searches for a deterministic expla-
nation to the problem of MRMs identification. The MRMs identified by this method have shown significant
relevance with the biological condition under study. The step-wise details of DICORE are as follows: (1) At
first, the correlation between miRNAs and mRNAs are calculated. The correlation coefficients are stored in a

https://bioc.ism.ac.jp/packages/3.0/bioc/html/Mirsynergy.html
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weight matrixW, and a weighted bipartite graph represents the interactions. (2) Based onW, miRNA–miRNA
andmRNA–mRNA collaboration matrices are generated separately. These matrices represent a collaboration
score representing the degree of connectivity between the same type of biomarkers. (3) Groups of miRNAs
and mRNAs are identified separately. Collaboration scores are used as a similarity measure for generating
overlapping clusters. The clustering algorithm used here is adapted from ClusterONE [39]. Clusters having
more than 500and less than 5mRNAs are discarded. Also, to avert star-shapednetworks (networks containing
onemiRNA andmultiple targets), theminimum size for themiRNA group is set to 3. (4) At last, MRMs (COREs)
are identified by calculating the canonical correlation [40] between the groups of miRNAs and mRNAs.

2.1.5 BCM: BiCliques merging

BCM [14] is a flexible approach for MRMs discovery that uses expression profiles of both the biomarkers along
withmiRNA–mRNA target site information and GGIs (gene–gene interactions). Earliermethod [8], ends up in
identifying a large number of MRMs despite the small size of the network because all the maximal bi-cliques
that are statistically significant are considered regulatory modules by them. To overcome this problem, the
idea of bi-clique merging is applied by [14] Bi-cliques are merged iteratively in BCMwith the proper guidance
from GGIs as well as from the overlap present between them. A scoring function facilitates the process of
merging. The greedy basedmerging strategy that helps thismethod is fast and effective implementation of the
merging process. The main steps of the method are as follows: (1) Expression profiles of both the biomarkers
and miRNA-target information is utilized to generate a weighted miRNA–mRNA regulatory network. (2) All
the maximal bi-cliques are enumerated. The edge weights are not considered while doing so. This gives rise
to a large number of entirely connected bipartite miRNA–mRNA sub-graphs. (3) A random shuffling test is
performed to assess each of themodules’ statistical significance so that the insignificant ones can be removed
from further consideration. (4) The candidate modules are iteratively merged based on their overlaps and
GGIs until none of them remains.

2.1.6 DmirNet: direct miRNA–mRNA association network

Reconstruction of several direct regulatory pathways, including direct miRNA–mRNA association networks,
is performed by DmirNet [14]. The method tries to solve three major issues related to the other methods
proposed to identifyMRMs. The first one is traditional correlation-basedmethods to find correlations between
biomarkers based on their expression. These methods may represent various inaccurate connections or
overestimate edge weights because of transitive information flow among direct associations. The next issue
is related to the dimensionality of the study data sets. The availability of high dimensional low sample size
data sets creates difficulty in calculating reliable and accurate empirical correlations between all pairs of
expression profiles. The last issue is the variation in the performance of these methods across different data
sets. More reliable models are needed to tackle the above-mentioned shortcomings that can show optimal
or sub-optimal performance across different data sets. The steps followed by DmirNet: (1) In the first step,
irrelevantmiRNAs andmRNAs are removed so that only the activemiRNA–mRNA interactions remain. (2) The
biomarkers, which pass the criteria to be called differentially expressed, are then integrated and scaled. (3)
Next, the integrated expression profile is subjected to three different direct correlation inferencemethods that
are based on bootstrapping strategy. The method used is Partial correlation [41], Sparse Partial correlation
(SPACE) [42] and Network deconvolution [43]. (4) Each of these methods generates a matrix based on a
direct correlation model from the expression profiles containing all combinations of miRNAs and mRNAs. (5)
Integrating the relationship derived between all the biomarkers from different methods is done to generate
the final direct correlation matrix using a rank-based aggregation method. (6) The above step’s output is
finally used to regenerate a direct miRNA–mRNA association network by assigning threshold to the weights.
In a nutshell, it can be said that DmirNet tries to improve the MRMs identification approach by taking
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complete advantage of bootstrapping, inverse-rank-product-based ensemble approach, and the three direct
associations estimation methods.

2.1.7 MIMPFC

MIMPFC has efficiently combined improved Rough Fuzzy Clustering (IRFC) and Phase Only Correlation (POC)
[44] to identify MRMs. The principle behind this method’s working is inspired by the relationships of the
collective group [45], and DICORE [13]. DICORE explores the interacting strength between groups of miRNAs
andmRNAs instead of their individual strength. The uncertainty present in the data is penalized. This penalty
term is based on an assumption of undiscovered interaction between the two biomarkers, which leads to
a biased result. Therefore, to avoid such uncertainties, MIMPFC combines POC and IRFC for clustering
interacting groups of miRNAs and mRNAs. Following are the steps of MIMPFC [16]: (1) In the first step,
the interaction matrix W is generated. POC is applied to find pair-wise interaction between miRNAs and
mRNAs. The expression of these biomarkers across a common set of biomarkers is utilized for this purpose.
(2) Both the information sources (miRNA and mRNA expression) are used individually to generate similarity
fuzzy score matrices P and Q, respectively. (3) miRNA and mRNA classes are inferred by using IRFC. To
avoid removing the potential biomarkers, the classes having less than 3 miRNAs and less than 5 mRNAs
are re-clustered. (4) At last, canonical correlation [40] is applied to identify interacting miRNA and mRNA
classes.

2.1.8 CALM: causal regulatory modules

The causal relationships between miRNAs and their target genes have been explored in [17] for MRMs
discovery, which has been neglected by the other methods. Statistical correlation and causal interaction
between both the biomarkers are simultaneously explored by CALM to identify biologically significantMRMs.
This integration helps avoiding incorrect regulations. Following steps are taken by this method to identify
MRMs: (1) Intervention calculus when the DAG is absent (IDA) strategy [46, 47] has been used to build causal
interaction between miRNAs and mRNAs. The interactions are represented in the form of a Directed Acyclic
Graph (DAG). The nodes of this graph represent miRNAs andmRNAs, and the edges represent the interaction.
The steps of IDA strategy applied here are: (a) PC (Peter and Clark) algorithm [48], is used to explore the
causal interaction among the biomarkers based on their expression. To incorporate sparsity in thematrix, the
PC algorithm is modified by reducing the value of alpha. Then the causal interaction between miRNAs and
mRNAs are calculated by using the do-calculus [49] strategy. (b) In order to avoid the problem of over fitting,
here a bootstrapping strategy is applied. (c) At the last step, the significance of the identified interactions is
evaluated based on a two-step KS static. Interactions having a p-value lesser than 0.05 are only considered. (2)
For the estimation of miRNA–miRNA regulatory interactions, functional similarity between their target genes
is considered. R package GO-Semsim [50] is used to estimate these interactions. (3) MRMs are identified by
greedily adding or removing the target gene to maximize the modularity score similar as done in ClusterONE
algorithm [39].

2.2 Linear model based approaches
Most of the correlation-based approaches depend on calculating pairwise relationships between the two
biomarkers. However, several studies have shown that multiple miRNAs can regulate the expression of a
singlemRNA. Therefore, linearmodel-based approaches identify the combinatorial effect ofmultiplemiRNAs
on a single mRNA.
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2.2.1 PIMiM

PIMiM: Protein Interaction-basedMicroRNAModules [20] is a regression-based probabilisticmethod. It works
by integrating interactions, expression profiles, and sequence data and identifies mRNA modules that are
regulated by a small set of miRNAs. PIMiM is applied to the cancer data. It shows that incorporating PPIs data
and accurate modeling of coordinated miRNA–mRNA interactions helps the method accurately identify the
regulatory modules. The steps of PIMiM are as follows: (1) Four matrices are taken as input by this method,
two of the expression matrices and two of the weighted adjacency matrices. The adjacency matrices Ω and
𝜙 contain the protein interactions and the predicted miRNA–mRNA interactions from sequence data. (2) The
number ofmodules (K) to be identified is predefined. Thismethod’s primary aim is to calculate the propensity
for every miRNA and mRNA that represents their belongingness in module k. The membership parameters,
uik and vjk denotes the belongingness. Where uik and vjk >= 0. (3) The miRNA regulators are specified, and
the weights for the probabilistic regression model are learned based on two assumptions. According to the
first assumption, all themRNAs of amodule are targets of themiRNAs if and only if they are also the predicted
targets. The second assumption suggests aggregation of down-regulated weights is present across all the
modules. These assumptionsmake this method different from all the other methods that use the probabilistic
regression model. (4) To incorporate the interaction data (Ω and 𝜙), a function is formulated that works by
rewarding strong connectivity between the predicted miRNA targets if they belong to the same module. The
model tunes the contribution of positive and negative interactions by the 𝛼 and 𝛽 parameters, respectively,
and 𝜎(.) is the logistic sigmoid function. The interaction probability between miRNA and an mRNA and
between two genes/proteins is directly proportional to the chance that the interacting biomarkers will lie in
the same module. (5) Finally, the log-likelihood optimization function is minimized to find the MRMs. This
function has three components. The first one estimates the interaction betweenmiRNAs andmRNAs based on
their expression. The second and third component deals with rewarding predicted miRNA targets and PPINs,
respectively. (6) The convex nature of this log-likelihood function ends up in finding several local minima.
Therefore, to restrict multiple solutions, two sets of l1 norm constraints and two different regularization
parameters (C1 and C2) are added. The probabilistic model developed here integrates network information
with regression to discovermodules,which is very different fromother probabilisticmodel-based approaches.
To combine the data from multiple conditions, a new iterative learning procedure is developed that learns
the parameters of the proposed model and helps decipher condition-specific regulation of miRNAs with the
help of MRMs identification.

2.2.2 CoModule

Like the other methods, CoModule [21] also tries to identify overlapping MRMs by integrating diverse data
sets. This is a cluster-based computational method whose ultimate goal is to detect such MRMs, in which
each miRNA represents a cooperative mechanism in regulating their target mRNAs. To fulfill this purpose, at
first CoModule clusters the miRNAs based on a similar expression. A rough set clustering approach is applied
for this purpose. Once a credible amount of miRNA clusters has been obtained, regulators’ targets are added
naturally into the corresponding clusters to produce the final MRMs. The precise miRNA–mRNA interactions
are reconstructed by using the LASSO regression model, which considers expression profiles of both the
biomarkers and sequence-based predicted target sites information.

2.3 Bayesian network based approach
Past studies have shown effective use of the Bayesian network, a probabilistic graphical model for identifying
complex gene-networks [51]. Keeping this in view, similar approaches have also been developed and applied
to study and understand the regulatory information between the two biomarkers (miRNAs and mRNAs) by
modeling the whole miRNA–mRNA regulatory network.
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2.3.1 SA-BNs: splitting and averaging scheme for Bayesian networks

The method developed by Liu B. et al. [22], uses the strategy of splitting-averaging to learn the Bayesian
network so that the complex interaction between miRNAs and mRNAs in different physiological conditions
can be modeled with maximum accuracy. SA-BNs first identify a set of differentially expressed biomarkers
between the multiple conditions under study. Welch t-test with 10,000 times permutation (p-value < 0.05,
adjusted by Benjamini and Hochberg (BH) method) is used for this purpose. Following are the steps: (1)
After the extraction of differentially expressed biomarkers, the expression profiles are split according to the
categoriesof samples. (2)Discretization isdoneasastandardizationmeans for thedataas theyarederived from
a different platform. (3) Next, the dependency of the biomarkers is estimated from the discretized expression
profiles for the respective sample categories by learning a Bayesian network structure. At this step, to avoid
falsediscoveries,miRNA-target information isused. (4) In thefinal stage, all theBayesiannetworks learned for
the different sample categories are merged by taking an average. Thus an overall miRNA–mRNA interaction
network is generated. Themethod takes the help of bootstrapping [52], that is, re-samplingwith a replacement
for robust interference. This helps it in dealingwith a small sample size ofmiRNA ormRNA expression profile.
Also, to overcome the computationally consuming task of Bayesian network learning, it utilizes the concept
of constraint-based space searching. Here, the constraints are in the form of domain knowledge. This method
outperforms those methods that use a normal Bayesian network for finding MRMs.

2.4 Statistical approaches
The application of statistical methods in extracting knowledge from multiple information sources have been
widely explored. These methods use very few assumptions and parameters and help develop robust models
that can identify MRMs having significant biological relevance [25–27].

2.4.1 MRMs identification by integrating guided and unguided clustering

Themethod proposed in [26] has two steps; first, it identifies the miRNA andmRNA clusters separately. Later,
association between these two clusters are estimated, and the clusters having statistically significant associa-
tions are reported as potential MRMs. The method works as: (1) miRNAs and mRNAs are clustered separately
by unguided clustering (ClustUN) and also by guided clustering (ClustGD). Changes in expression profiles are
not considered in ClustUN. (2) Clusters returned by both the methods for both the biomarkers are evaluated
separately to find statistically significant miRNA and mRNA clusters. A non-parametric bootstrap test is used
on enrichment analysis to do so. (3) Next, a statistically significant association between miRNA–mRNA pairs
are determined. A pair is only considered associated only if the computational prediction accords with the
change in expression of miRNAs and mRNAs. A linear model tests the latter condition. The method helps
in the identification of two types of mRNA clusters. One that is co-regulated by a set of miRNAs and others
regulated by just a single miRNA. miRNAs that share very few co-targets belongs to a cluster of size one.
The method’s detection of MRMs may vary based on the input matrix that contains the information about
computationally derived miRNA–gene targets. As observed by Jayaswal V. et al. for the time-course data set,
the modules detected by using the combination of miRanda [53], TargetScan [54], PicTar [5] and miRGen [55]
were different from the modules detected by using TargetMiner [56].

2.4.2 Corr-LDA inspired FMRMs identification method

The sample matched miRNA and mRNA expression data, profiled across multiple classes of conditions or
tissues give ampleopportunity to systematically investigateplausible FMRMs invariousbiological conditions,
even without considering the target binding information. Several studies have shown that the methods that



M. Madhumita and S. Paul: miRNA–mRNA regulatory modules identification | 13

do not utilize the already known miRNA–target interactions may help reduce biases [7, 54, 57]. The method
used by Liu B. et al. [24], for the identification of FMRMs is inspired by Corr-LDA (Correspondence Latent
Dirichlet allocation) strategy [58]. Corr-LDA’s concept is successful for the automatic annotation of images
with their captions. For FMRMs discovery, every module is considered as an independent group linked to a
latent function. Themethod thenmodels the functionalmodules by exploring latent randomvariables, which
act as a connecting link between miRNAs and mRNAs.

2.4.3 CAPE RNA

CAPE RNA: Classification based Analysis of Paired Expression data of RNA [27] helps in capturing altered
miRNA–mRNA regulation between different biological conditions. It identifies the altered regulation between
tissue samples without having prior information about the stratification of the groups. When applied to
the expression data of normal and cancerous samples, the method could capture differentially regulated
miRNA–gene interactions. The steps of CAPE RNA are as follows: (1) miRNA and mRNA expression profiles
are first normalized and partitioned into three sets: “high,” “medium,” and “low,” based on their respective
expression values. (2) Filtration of interaction states is performed. miRNA and mRNA probes having a score
greater than a certain threshold (𝜃score = t|E|) are only considered for the further steps. This helps in the
identification of sets of biomarkers having somewhat similar expressions. At the same time, both sets together
should cover thewhole datasetwithminimal overlap. (3) Classification of everymiRNA–mRNA interaction for
each of the samples is performed. At this stage, sequence-based interaction information is also considered.
(4) Ametric called Jaccard-index is then considered to estimate the overlap between the experimental and the
expected groups. This calculation is based on the assumption that mRNAs regulated by a specific miRNA are
up-regulated inonegroupanddown-regulated in theotherone. Thishelps in searching for all thedifferentially
regulatedmiRNA–mRNA interactions. (5)At last, the obtaineddifferentially regulated interactions aremerged
based on a negative correlation between the interacting species to make a final selection of MRMs. The
classification of gene expression data performed by this method is based on certain biological assumptions.
This helps the method in reducing the information content to a greater extent. Also, CAPE RNA does not use
statistical tests like t-test ormean/mediancomparisons fordifferentgroups; thishelpsCAPERNAreduceerrors
occurring due to outliers and prevents the underestimation of the regulation of a single sample. Therefore,
the combined set of miRNA–mRNA interaction states are examined.

2.5 Rule induction based approaches
In a rule induction technique, rules are generated from a set of input variables with information theory
calculation. The rules are generated so that only those input variables get selected that are most relevant
to the values of output variables. The identification of MRMs rules is generated from multiple information
sources and then tried to be integrated into a meaningful fashion [28–30].

2.5.1 Confidence and coverage based rule induction method

The method used in [28] to discover MRMs is based on the rule induction approach. Such machine learning
approaches have been successfully applied in subgroup discovery. There are mainly three ways for inducing
rules from data: exhaustive search, separate and conquer, and divide and conquer [59]. In this method set of
miRNA–mRNA regulatory rules are produced using the CN2-SD rule induction system [60]. This system is an
improvement to the CN2 approach that uses separate and conquer strategy [61]. Following are the steps of the
method: (1) At first, the correlation between the first gene and the rest of the genes is calculated. (2) Based
on the correlation threshold, the gene set is divided into two classes, similarity, and dissimilarity. (3) The
interaction information from the miRNA-target binding information table is now taken into consideration.
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Based on these interactions, a column indicating class is appended to the miRNA binding information table.
After this addition, the table becomes a regulatory decision table for the current gene. (4) Next, regulatory
rules are defined by using the CN2-SD rule induction system. (5) Filtration of the insignificant rules is done.
Rules which contain miRNAs with highly correlated expression profiles are only considered for generating
potential MRMs. (6) The above process is repeated for all the genes one by one in the gene expression profile
table.

2.5.2 Supervised Clustering based rule generation method

RH-SAC (Rough Hyper-cuboid based Supervised Clustering) deciphers the regulatory interactions present
between multiple miRNAs and mRNAs expressed in the patients suffering from colorectal cancer [30]. The
objective of this method is to discover groups of miRNAs and mRNAs that are functionally similar. Also, the
coherent expression of such groups should classify the clinical outcomes. Themethod also calculates metrics
like similarity/redundancy to identify the relationship between the selectedmiRNAs andmRNAs. The concept
of RH-SAC [62] helps this method efficiently handle those uncertainties that arise during the expression data
analysis. Next, the steps of this method are discussed. (1) First, the RH-SAC approach of clustering is applied
tomiRNA expression data to identifymiRNA clusters/rules.When employed to the SVM classifier, the average
expression of these clusters was able to classify the samples. Two cross-validation methods are also used to
check on classification accuracy, namely leave-one-out-cross validation and 10-fold cross-validation. (2) Next,
for each of themiRNA rules, target mRNAs are assigned to them. The experimentally validatedmiRNA-targets
are used for this purpose. (3) The reduced set is now subjected to the RH-SAC algorithm to generate mRNA
rules. It helps in searching for a group of functionally similar and differentially expressedmRNAs. (4) Finally,
the miRNA and respective mRNA rules are merged to generate MRMs. This approach can identify biologically
relevant MRMs in different conditions and is suggested to be used in larger sample groups. The method can
examine sub-type-specific unique miRNA–mRNA interactions.

2.5.3 Connected discriminatory rules generation method

Themethodproposed in [29] focuses on the identification of both positive and inverse regulatory relationships
frommiRNA andmRNA expressions profiled on the same set of Hepatitis C virus-affected tissue samples. The
method can also be applied for the identification of such relationships in other complex human diseases. The
method is composed of two sequential steps that use a “change-to-change” approach to identify interrelated
discriminatory rules, and the steps are as follows: (1) At first, miRNA rules are generated. The rules contain
a set of differentially expressed miRNAs with a frequency of 100%. Next, these biomarkers are ranked using
gain-ratio criterion [63, 64] throughWeka 3.6 software package (http://www.cs.waikato.ac.nz/ml/weka/). The
committee tree approach is used to detect 100%-frequency. (2) Public data is searched to identify predicted
mRNA targets for every miRNA in each rule and a set of mRNA for each miRNA rule is selected. (3) Now, on
this reduced set of mRNAs, data mining techniques are applied to identify mRNA rules for 100% frequency.
(4) Finally, the grouping of all mRNA rules of 100% frequency for each miRNA rule is done to identify MRMs.
These modules are represented by a bipartite graph, where both of the biomarkers are kept in their respective
parties. Positively regulatedmiRNA–mRNApairs and inverse expression relationships exist inmany-to-many
regulatory modules; this biological principle makes this method unique in its implementation and MRMs
discovery.

2.6 Probability learning based approach
The techniques that use the probability learning approach for MRMs identification try to predict the
probability of certainmiRNA–mRNA interactions. Multiple information sources are used for such predictions
under different biological conditions.

http://www.cs.waikato.ac.nz/ml/weka/
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2.6.1 Population based probabilistic method

The method proposed in [31] identifies coherent MRMs based on the assumption that they share similar
biological functions. Along with the expression profiles of miRNAs andmRNAs, the predictedmiRNA–mRNA
interactions are also used. Both miRNA and mRNA expression profiles have different scales and variations;
merely combining themwill lead to a poor result. Therefore, a population-based probability learning method
is used, built on co-evolutionary learning and estimation-of-distribution algorithms [65–67]. This method
helps in combing multiple data sets more effectively. The steps are as follows: (1) In the learning process,
randompopulations ofmiRNAs andmRNAs are selected fromeachof the expressionprofiles. Eachpopulation
is assigned a probability vector. (2) The Fitness measurement binding score is calculated for each individual
in both populations. (3) The best individual is selected based on fitness scores. Incorporation of this strategy
imbibes a co-evolutionary learning effect and helps find a complete solution. (4) The probability vectors for
the two populations are updated. Two parameters (𝛿m∈ (0,1] and 𝛿t∈ (0,1]) are defined to control the update
rate. When these parameters attain a value closer to zero, the probability vector assigned at this stage is
highly dependent on the prior probabilities. (5) The present probability distribution of both the biomarkers
is updated, and new populations are generated. (6) The above steps of updating the probability distribution
and generating the new populations are repeated until the maximum number of generations is reached. The
cooperative fitting of two groups ofmiRNA andmRNAs to the best solution findsMRMswith significantly high
fitness scores. This method is similar to the bi-clustering method, where clustering of rows and columns is
done simultaneously ona two-dimensionalmatrix. Thoughbi-clusteringhasbeenwidelyused to solve several
biological issues [68], it has one shortcoming that it requires the prior setting of several fitness parameters.
Hence, there is a need to reduce the number of parameters. Also, the reduction should maintain an implicit
balance between several objectives. Therefore, designing amulti-objective optimization technique can tackle
this problem.

2.7 Matrix decomposition based approach
The decomposition of multivariate data has been successfully attained by non-negative matrix factorization
(NMF). For the integration of multiple information sources, the NMF framework has been usedmultiple times
in a regularized manner.

2.7.1 SNMNMF: sparse network-regularized multiple negative matrix factorization

Effective integration of heterogeneous data by Zhang et al. helps in the prediction of miRNA–gene regulatory
co-modules [32]. The integration is done in a regularizedmanner to capture information fromdifferent sources
like the expression profiles of both the biomarkers along with miRNA–target interactions and GGIs. Earlier
attempt to jointly analyze expressionprofiles in amultipleNMF framework couldnot attain amodular solution
[69]. Therefore, to overcome this shortcoming, sparsity penalties are applied to the variables in this method
called SNMNMF. This penalty component also helps enhance the signal-to-noise separation and, at the same
time, perk up the interpretability of the obtained MRMs. In a basic NMF problem, expecting to attain a global
minimum with a standard optimization algorithm is very unrealistic. Therefore, to attain a local minimum,
the process of matrix decomposition is iteratively updated by the algorithm SNMNMF. To attain this local
minimum, an objective function is framed that has three elements. Each of these three elements has a specific
task. The first one deals with the two non-negative matrices, namely, X1 and X2, representing two expression
matrices. The second and third elements take care of interaction constraints occurring due to GGIs and
miRNA–target interactions. This objective function is then optimized to attain a joint decomposition of both
thematrices X1 and X2. This decomposition helps in obtaining MRMs. The steps followed by SNMNMF are: (1)
These are the required inputs for the algorithm: (a) matrices X1 and X2 (b) a network containing information
about DNA–protein and protein–protein interactions called as GGIs and is represented by the matrix, A (c)
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another matrix B, that contains information about miRNA–target interactions. (2) A common basis matrix,
namely W and two coefficient matrices, namely, H1 and H2 are obtained by simultaneous factorization of
X1 and X2 respectively. Also, the information content of matrix, A and B are utilized to incorporate the
network’s regularized constraints. (3) Information about miRNA–gene regulatory co-modules is derived from
the decomposed matrix component. The basis of identification of co-modules is shared components (a
column inW) with significant association values in the corresponding rows of H1 and H2. The python scripts
for SNMNMF is available at http://nimfa.biolab.si/nimfa.methods.factorization.snmnmf.html.

2.8 Mutual information based approach
This section describes a method that helps in the identification of FMRMs in Cervical cancer. The method
utilizes the expression variability ofmiRNAandmRNAacross a common set of samples to identify star-shaped
modules in the beginning, having one miRNA and up to fifty mRNAs. Later these star-shaped modules are
merged to get biologically significant modules based on MISIM (miRNA functional similarity) information
[70]. Next, the method is described in detail.

2.8.1 Relevant and functionally consistent miRNA–mRNA modules

Relevant and Functionally Consistent miRNA–mRNA Modules (RFCM3) [33] uses Mutual Information (MI) to
identify regulatory modules containing multiple biomarkers of both types. A two-stage approach, which is
used to derive relevant and functionally consistent MRMs are described further.

Stage 1: Identification of Star Shaped Modules – At first star-shaped modules containing one miRNA and
amaximum of fiftymRNAs are generated. The expression value of mRNAs andmiRNAs are first discretized by
using the discretizationmethodmentioned in [71]. Then, the relevance between amiRNAand all themRNAs is
calculated usingMI. Themost relevantmRNA is selected, having the highest value ofMI. This selectionmakes
themost relevantmRNA as amodulemember. The above steps are iterated till the required number of mRNAs
get identified for a module. The selection of the next mRNA form the remaining mRNAs is only done if it
maximizes the criteria: 0.5∗f̂ ( j 𝕏)+ 0.5∗ 1

|Θ|
∑

i∈Θ f̃ (i, j). Here, f̂ ( j,𝕏) represents relevance: MI between
miRNA and mRNA, and f̃ (i, j) represents functional similarity: MI between two mRNAs. Also, mRNAs
having functional similarity lesser than 0.15 with the already selected mRNAs in a module is not considered.
This stage generatesm number of star-shaped modules, wherem is the number of miRNAs present in miRNA
expression matrix taken as input.

Stage2: InfusionofmiRNA–miRNAfunctional similarity information– In this step, star-shapedmodulesare
merged into MRMs containing multiple miRNAs and mRNAs that are biologically relevant to cervical cancer.
MISIM similarity is used for this. In the MISIM matrix, pairwise functional similarity between the miRNAs
related to cervical cancer is represented through normalized scores between 0 and 1. The higher the score
stronger is the interaction,whereas a0meansno interaction at all. These functional similarities are calculated
based on the assumption that a group of functionally related miRNAs is most probably associated with the
same kind of diseases, and DAGs can represent these associations. RFCM3 varies the functional similarity
score from 0.7 to 1 for merging multiple star-shaped modules. If the MISIM similarity score between the
miRNAs of twomodules is greater than these cut-offs, they aremerged into onemodule withmultiplemiRNAs
and mRNAs. The obtained modules are passed to pathway enrichment analysis using DAVID annotation tool
[72, 73], and a quantitative index named KPES (Kegg pathway enrichment score) is calculated to capture
the biological relativity of these modules. Similarity value at which the modules have maximum KPES is
considered as the optimal cut-off score and the modules as the final MRMs for cervical cancer. RFCM3 can be
applied to any disease-specific miRNA and mRNA expression data where MISIM similarity is available. The
executable codes for RFCM3 is available at http://home.iitj.ac.in/‘~sushmitapaul/CBL/softwares.html.

http://nimfa.biolab.si/nimfa.methods.factorization.snmnmf.html
http://home.iitj.ac.in/`~sushmitapaul/CBL/softwares.html
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3 Recommendation for the users
A schematic portrayal for the identification of MRMs is presented in Figure 4. At first, the miRNA–mRNA
interaction table/matrix is generated by integrating expression profiles using an associationmetric like corre-
lation/MI or others. Sometimes miRNA-target information is also included. Then, some clustering technique
is used to cluster both the rows and columns simultaneously (miRNA and mRNA) to generate MRMs. Later,
a filtration step is added to derive the significant modules. Several researchers have regularly explored this
general platform, and the integration, clustering, and filtration steps have been modified to get biologically
relevantMRMs. Somemethods even incorporate theGGI information at the filtration or integration step. Some
methods conduct integration and later steps on differentially expressed biomarkers. Another group uses rule
induction; they cluster miRNAs first and then add mRNA by incorporating target information. A different set
of algorithms is also available, which only uses expression data to avoid bias. These methods generate the
interaction information from just the expression profiles, generate individual miRNA andmRNA clusters, and
then merge them to form modules.

The user has to be very careful while choosing the suitable method for their study. The choice of method
depends on the amount and type of input data available and the biological question under investigation. A
flowchart is presented in Figure 5 to guide the users for the same. For example, if someone needs to identify
MRMs by incorporatingmiRNA-target information and PPIs alongwith the expression profiles, they can go for
Mirsynergy [12] or PIMiM [20], and if they also want to incorporate TF-gene information, then they can go for
SNMNMF [32]. There are several options available, if a person is only interested in using expression profiles
to avoid incorporation of false positive interactions coming from sequence-based interaction databases.
Additional information like GGIs, PPIs, miRNA-targets, MISIM and others can be beneficial if the interaction
information for most of the miRNAs and mRNAs/genes present in the expression profiles is available. For a
study where normal and diseased samples are available performing a prior differential expression analysis
is preferred and incorporation of disease specific interactions provides better results. Methods like DmirNet
[15] and Peng X. et al. [8] can be used in these scenarios.

Figure 4: Schematic portrayal for the identification of
MRMs.
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As pointed out in Figure 4, there are three algorithmic steps for MRMs identification, (1) calculation
of association between miRNAs and mRNAs from expression profiles, (2) data integration in the form of
miRNA–target interaction, and (3) bi-clustering of the final interaction matrix or network. There can be one
extra step where other additional information can be added. Therefore, users have the opportunity to mix
and match these steps based on data availability and the mathematical model they want to use. Suppose a
user wants to calculate the association between miRNAs and mRNAs using MI and not correlation and also
have no MISIM [70] information for generating final MRMs as par the RFCM3 [33] method. He/She can use
the concept of synergy score used in Mirsynergy [12] and compute the association between multiple miRNAs.
A single tool/method is sufficient for MRMs identification if similar input data are chosen, but a user can
also, combine the results of a few tools for a single analysis as explained above. Such combination requires
through mathematical understanding and good coding skills in order to alter the original algorithm. Also for
some of themethods, onlymathematical details are available despite working tools hence workingwith them
is difficult.

Some of themethods discussed here are freely available; some of them are available on request, whereas
most are only available as algorithmic-steps. Hence working with them is difficult. Such methods provide
little help to the end-users but are helpful for the algorithm developers in applying various mathematical
models. The web-interface based methods are easy to use and are available with proper documentation.
Whereas knowledge of respective programming languages is required for using themethods for which scripts
are available. All such information is provided in Table 1 and the working links are provided at the point of
method description (if available). Time complexity is only discussed here if it is presented by the authors of
respective methods, as benchmarking is beyond the scope of this review. Time consumption depends on the
number of miRNAs and mRNAs available in the input data, mathematical complexity, and the programming
platform used. Methods that require incorporation of additional information requires databasemining which
is a time-consuming task.

4 Conclusions
Several efforts have been made to understand the scrupulous regulatory functions of miRNAs based on
miRNA regulatory modules. However, it is still a challenge because of the complex nature of combinatorial
and cooperative mechanisms between miRNAs and genes. Recently, the opportunity for identification of
condition-specific MRMs has increased drastically because of the availability of same sampled expression
profiles. Further, incorporation of prior target binding information and GGIs adds extra knowledge to identify
MRMs. Whereas, some researchers have suggested that to avoid bias, incorporation of such information
should be avoided. This review attempts to summarize the recent progress in the computational methods
and tools applied for the identification of MRMs. 26 strategies that use paired mi/mRNA samples to detect
functional MRMs have been surveyed. The methods discussed here take the help of predicted miRNA–mRNA
targets, GGIs, TF-miRNA–gene interaction, MISIM, and gene ontology-based semantic similarity along with
the expression profiles at different stages.

Most of the methods discussed here are model-dependent, and their efficiency in identifying MRMs
depends on the selection and quality of the data used in their development. They also use a variety of aspects
of miRNA–mRNA interactions available over time. Therefore, making a comparison between them would
be a biased attempt. This review might help the readers easily identifying appropriate steps to be followed
for their study. Although the reviewed methods cannot be compared directly. There is a scope that they can
complement and enhance each other’s functionality if combined. The methodologies discussed in this study
will help the users get an in-depth understanding of the MRMs; simultaneously, will help the algorithm
developers develop more effective tools.
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