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Abstract

Recently, mechanical micro-milling is one of the most promising micro-manufacturing processes for productive and accurate
complex-feature generation in various materials including metals, ceramics, polymers and composites. The micro-milling tech-
nology is widely adapted already in many high-tech industrial sectors; however, its reliability and predictability require further
developments. In this paper, micro-milling related recent results and developments are reviewed and discussed including micro-
chip removal and micro-burr formation mechanisms, cutting forces, cutting temperature, vibrations, surface roughness, cutting
fluids, workpiece materials, process monitoring, micro-tools and coatings, and process-modelling. Finally, possible future trends
and research directions are highlighted in the micro-milling and micro-machining areas.

Keywords Micro-milling . Chip formation . Burr formation .Micro-milling tool

1 Introduction

Miniaturisation is a well-established recent demand of the
industrial sectors, highly encouraged by the recommendations
and laws of national governments and by the European Union
(EU). Miniaturisation meets the recently published core mis-
sions and policy of the EU, like decreasing the negative effects
of industrial processes on the climate change (product
minimisation reduces the specific energy demand of the prod-
ucts) and increasing the number of smart systems and equip-
ment in the cities and factories (smart systems and equipment
require miniature parts like microprocessors and microcir-
cuits) [1]. Therefore, the demand for miniature components
has increased significantly in many areas of the industry, such
as the aerospace, bioengineering, optics, microelectronics, au-
tomotive, medical and defence [2–6].

Miniaturised components can be manufactured by (i)
electro-discharge machining [7–10], (ii) laser micro-
manufacturing [11–13], (iii) lithography, electroplating and

moulding (LIGA) [14, 15], (iv) deep reactive ion etching [16,
17], (v) deep UV lithography [18, 19] or (vi) mechanical micro-
machining [20–24] technologies. Excellently precise geometri-
cal features and small tolerances can be achieved by these
micromachining technologies; however, their operation time
and cost are often extremely high. Mechanical micro-
machining is one of the most time-effective and most cost-
effective methods for manufacturing miniaturised 3D compo-
nents, mainly due to the relatively high material removal rate
(MRR). Mechanical micro-machining processes can be catego-
rized based on the analogy of the conventional-sized machining
technologies: micro-milling, micro-drilling, micro-turning etc.
One of the most commonly applied mechanical micro-
machining technologies is the micro-milling [3, 4, 25–28]; this
paper focuses therefore on its up-to-date review and discussion.

The main objective of the present paper is to review recent
results and advances in micro-milling, including micro-chip
removal and micro-burr formation mechanisms, cutting
forces, cutting temperature, vibrations, surface roughness, cut-
ting fluids, workpiece materials, process monitoring, micro-
tools and coating, and process-modelling in order to summa-
rise and discuss recent knowledge and outline possible future
research directions and trends in micro-milling.

2 Micro-milling process

Micro-milling is a precise and flexible technology to manu-
facture complex 3D geometries in various types of materials
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(metals and its alloys, polymers, ceramics, graphite, compos-
ites etc. [3, 26–38]) by relatively high material removal rates.
The kinematic of micro-milling is similar to the conventional-
sized milling process; however, there are some unique phe-
nomena and key issues: (i) the size of the cutting tool can be
extremely small (diameter of 25 μm [39] or 50 μm [40]), the
length-to-diameter ratio is therefore often high. The
unfavourable size of the tool, and the vibration and/or the
relatively large tool run-out often lead to a tool-breakage
[41]. (ii) The uncut chip thickness is often in the same order
of magnitude as the cutting edge radius or as the grain size of
the workpiece material [2, 32, 42, 43]. Therefore, the material
deformation mechanisms are often dominated by the
ploughing-effect [20, 44], and the quality of the surface is
often inadequate [42, 45]. Furthermore, the value of the theo-
retical chip thickness is often similar to the size of the mini-
mum chip thickness [20, 45, 46], which may prevent chip
formation in each edge step-in [47, 48]. (iii) The ratio of the
burr size to the size of the machined features is higher than it is
used to in the case of the conventional machining operations,
the cost and time needs of the micro-deburring processes have
therefore more effect on the final cost of the products [49, 50].
Furthermore, it is extremely difficult to remove burr in micro-
sized features [32, 51]. (iv) The stiffness, the attenuation and
the accuracy of the micro-milling machine have a significant
influence on the quality of parts. In addition, milling machines
require extremely high spindle speeds (up to 450,000 rpm
[52]) to grant proper cutting speeds. However, current
micro-milling machine tool models provide often only maxi-
mum 200,000 rpm spindle speeds [53]. (v) The importance of
the monitoring and diagnostics of micro-milling processes is
sufficiently high because the cutting tool can easily damage
the surface of the material (inappropriate surface roughness,
burr formation, micro-crack formation etc.) or break [27, 54,
55]. Therefore, the monitoring of the tool-condition is highly
recommended in the case of micro-machining processes. The
aforementioned issues have been investigated by many re-
searchers in the past years; however, there are still many lacks
and challenges in this area [56–64], as discussed in the fol-
lowing chapters.

2.1 Chip removal mechanism in micro sizes

Chip removal mechanisms are mostly influenced by the ma-
terial type (metallic materials, polymers, ceramics, composites
or sandwich structures) and its properties, followed by the tool
geometry (rake angle, cutting edge radius, clearance angle,
diameter etc.), scale of machining (macro, micro, or nano)
and the primary process parameters (cutting speed, feed rate,
depth of cut) [56–66]. For example, the dominant chip remov-
al mechanism for macro machining of a Ti6Al4V is shearing
in the primary shearing zone [67], while the dominant chip
removal mechanisms (CRMs) for macro machining of carbon

fibre reinforced polymer (CFRP) composites are bending, de-
lamination formation, crushing and shearing, depending
mainly on the fibre cutting angle and tools’ rake angle [68,
69]. However, if the above materials are machined in micro-
scales, the ploughing dominates often the chip removal mech-
anisms [36].

In mechanical machining, the thickness of the removable
material layer is limited; this limit is named as minimum chip
thickness (hmin). If the undeformed chip thickness (h) is small-
er than hmin, the cutting tool only compresses the top of the
material instead of removing it. This phenomenon causes
more often difficulties in micro-milling than in conventional-
sized machining. According to Vipindas et al. [70], the cutting
edge radius has the most significant influence on the size of
the minimum chip thickness, as was confirmed by
Wojciechowski et al. [47], Dib et al. [45], and Sahoo et al.
[20] as well. The minimum chip thickness can be quasi-
precisely estimated by an empiric model developed by Gao
et al. [43] and Dib et al. [45].

As it is already discussed in depth by the researchers, the
macro-chip removal mechanisms of quasi-homogeneous (e.g.
metallic) materials are mostly shearing dominated [71], but
the CRMs of micro-machining are often influenced mostly
by the ploughing-effect, according to Aramcharoen and
Mativenga [72]. Its reason can be found in the negative kine-
matical rake angle of the cutting tool, caused by the relative
high cutting edge radius compared to the uncut chip thickness.
The negative effective rake angle of the cutting edge com-
presses the top of the material, and it deforms plastically.
The micro-chip removal mechanisms are illustrated in Fig. 1.

If the value of h is smaller than the value of hmin (Fig. 1a),
the cutting tool presses only the material below the cutting
edge, and it recovers back without any chip formation. In this
case, the material deforms mostly elastically and it damages
the surface structure (due to the plastic deformation), which
results in worse surface quality [45]. If the value of h is com-
parable to the value of hmin (Fig. 1b), the chip starts to form
due to the shearing effect in the primary shearing zone. In
addition, the specific passive cutting force is high due to the
relatively significant ploughing-effect. In the case of the h is
greater than hmin (Fig. 1c), chip is continuously formed due to
the stable plastic deformation in the shearing zone, while the
elastically deformed material springs back. Nevertheless, the
ratio of elastic recovery is lower. The undeformed chip thick-
ness (h) is often thicker than the removed material depth [73].
This mechanism is the closest to the macro-chip removal
mechanism of quasi-homogeneous materials.

The undeformed chip thickness is almost constant during
orthogonal machining if the vibrations and the regenerative-
effect is not considered. However, it is not constant during
milling: its value is changing with the tool rotation; therefore,
it may happen that all of the aforementioned cases (Fig. 1 a, b
and c) appears and characterize the material removal process
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[25]. Furthermore, a low feed and/or a relatively high tool
deflection may result in that chip not forms in certain cases,
and the material is deformed elastically mainly [25, 47].

In mechanical micro-machining, the effect of the micro-
structure of the material (material defects; density, type, posi-
tion, orientation and size of grains/fibres/particles) is signifi-
cant [62, 74, 75]. The influences of the microstructure of an
anisotropic and an inhomogeneous material are illustrated in
Fig. 2. If the micro-particle (grain, fibre etc.) of the material is
positioned completely below or above the theoretical cutting
depth (Fig. 2a and b), the effect of the micro-particle is negli-
gible. Nevertheless, the micro-particles have a significant ef-
fect on the CRMs if they are located in the depth of the theo-
retical cutting depth, as illustrated in Fig. 2c and d. The spe-
cific cutting energy demand of the micro-particles often
higher than the matrix’s [62], the pressing (Fig. 1c) or
crushing (Fig. 1d) of the particles requires therefore more
cutting energy, which may result in higher vibrations, faster
tool wear, more burr formation and worse surface quality.

The deep technological knowledge and experience ac-
quired in conventional-sized milling (macro-milling) cannot

be directly applied to the micro-milling process, mainly, due
to the size effect (the machining related phenomena and pro-
cess characteristics are not correlated linearly with the tool’s
size-reduction) and the relative high tool deflections [25].
Therefore, the micro-chip removal mechanisms and the
micro-milling of quasi-homogeneous materials were investi-
gated previously by theoretical [76–78], experimental [42,
79–81] and simulation [80, 82, 83] approaches by many re-
searchers. Bissacco et al. [84] investigated the limits of the
size effect in micro-milling, which border separates the micro
and macro-chip removal mechanisms. Aramcharoen and
Mativenga [72] conducted micro-machining experiments on
a hardened, very fine-grained H13 steel, and they found that
the hmin/rβ ratio of the theoretical chip thickness (h) to the
cutting edge radius (rβ) is a key parameter, which influences
the micro-machining process significantly. According to their
studies, the size effect is significant, when the ratio is less than
1. The cutting edge radius of a micro-milling tool is approxi-
mately 1–20 μm [39], which is about in the same magnitude
as it is used at the conventional sized tools. The value of the
cutting edge radius depends mainly on the material of the tool,
the particle size, the manufacturing precision and the state of
tool wear [74]. According to Bissacco et al. [25], the afore-
mentioned h/rβ ratio has a great influence on the relative ma-
chining accuracy, burr formation and surface quality.
Furthermore, the increasing of the feed per tooth (fz) has a
positive effect on the quality of machined features and also
on the tool condition. Nevertheless, the optimisation process
of the feed per tooth value should include the analysis of the
cutting forces and the tool deflections.

Mian et al. [85] investigated the micro-machinability of an
Inconel 718 alloy. They pointed out that nor only the ratio of
fz/rβ, but also the cutting speed is an important parameter from
the point of view the size effect and the optimisation of the
micro-milling process. In addition, they concluded that the
specific cutting energy, the burr root thickness and the surface
quality are recommended to be analysed in order to estimate
the magnitude of the size effect. Pratap et al. [86] conducted
micro-machining simulations on Ti6Al4V alloy and observed

Fig. 1 Schematic of micro-chip removal mechanisms: (a) the undeformed chip thickness (h) is smaller than the minimum chip thickness (hmin), (b) the
value of h is comparable to the value of hmin, (c) the value of h is higher than the value of hmin (adapted from [42, 72])

Fig. 2 Schematic of the influence of the position of particles on the
micro-machining process: the micro-particle is positioned (a)
completely below, (b) completely above, (c) close to and (d) on the
level of the theoretical cutting depth (adapted from [42, 71, 72])
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that the size of stress in the primary shearing zone was relative
high (2467 MPa), which was explained by the size effect.

Coatings can also be applied in the micro-machining tech-
nologies to increase tool performance and tool life, but it has
to be pointed out that the thicker coating increases the value of
the cutting edge radius, and thus affects minimum chip thick-
ness [87]. Many researchers have studied the relationship be-
tween minimum chip thickness (hmin) and edge radius (rβ)
using experimental [46, 88, 89], numerical [77, 90, 91], and
analytical [92, 93] methods. For example, de Oliveira et al.
[46] experimentally investigated the hmin/rβ ratio on an AISI
1045 steel and found that it changes between 0.22 and 0.36.
Their observation was confirmed by Cuba Ramos et al. [88]
and Kang et al. [89] on the same AISI 1045material. The ratio
of hmin/rβ was analysed in many materials and technologies;
the calculated ratios are summarised in Table 1. As can be
seen in the table, the ratio changes between 0.14 and 0.48.
This ratio could indicate the goodness of technology or be a
parameter which is monitored during the machining process.
E.g. if the hmin/rβ gets smaller than a critical value, the cutting
process parameters (or the cutting tool) has to be changed, in
order not to reduce surface quality or machining efficiency.

2.2 Burr formation in micro sizes

One of the main micro-milling induced geometrical defects is
the burr occurrence on the machined edges of the material.
The specific size of the burr is usually smaller than it is used to
observe in conventional sized milling; their removal is, there-
fore, more difficult and challenging task [32, 51]. The burr
does not weaken the material; however, it greatly affects the
quality of the part, as its size can be comparable to the diam-
eter of the tool [98], and degrades its performance [32, 99].

Burr may be formed on the machined features of the material
if the cutting tool plastically deforms the uncut material instead
of removing them, which may be caused by the following main
issues: (i) the uncut (theoretical) chip is not supported by any
material or special supporting fixtures [100], (ii) the cutting edge
radius and ploughing effect are relatively large [46, 101] (iii) the
tool run-out is significant [46, 101], (iv) extensive and uncon-
trolled vibration (chatter) complicates the process [54, 82, 102],
or (v) the type and position of the micro-particles of the part are
unfavourable [62, 103]. Micro-groove-milling induced burr oc-
currence can be seen in Fig. 3. As it is clearly observable on the
figure, the appearance of the burr on the top of the workpiece

Table 1 Summary of key papers dealing with the ratio of hmin/rβ

Authors hmin/rβ Material Method Response variables

Sahoo et al. [20] 0.25–0.33 P20 steel Micro-milling, experimental Surface quality, process signals

Wojciechowski et al.
[47]

0.48 AISI 1045 Micro-milling, analytic-experimental Cutting force

Dib et al. [45] 0.24–0.33 RSA 6061-T6 Micro-milling, experimental Cutting force

Vipindas et al. [70] 0.33 Ti6Al4V Micro-milling, experimental Cutting force

Sun et al. [36] 0.4 Al7075-T6 Micro-milling, numerical Cutting force and chip formation

Wang et al. [41] 0.3 Inconel 718 Micro-milling, numerical Cutting force and chip formation

Aslantas et al. [94] 0.3 Ti6Al4V Micro-milling, experimental Cutting force, surface roughness

de Oliveira et al. [46] 0.22–0.36 AISI 1045 Micro-milling, experimental Specific cutting force, surface roughness,
chip formation

Ramos et al. [88] 0.29 AISI 1045 Orthogonal micro-turning, analytical
and experimental

Surface roughness

Malekian et al. [92] 0.23 Al 6061 Micro-milling, analytical Friction coefficient

Yang et al. [95] 0.4 Al 2024-T6 Micro-milling, numerical and
experimental

Cutting temperature, cutting force, stress

Kang et al. [89] 0.3 AISI 1045 Micro-milling, experimental Cutting force

Lai et al. [91] 0.2–0.4 OFHC copper Micro-milling, numerical Flow stress

Woon et al. [96] 0.26 AISI 4340 Micromachining, numerical Shear stress, effective rake angle

Li et al. [81] 0.25 OFHC copper Micro-milling, numerical and
experimental

Surface roughness

Vogler et al. [90] 0.14–0.43 Ferrite-perlite steel Micro-milling, numerical Surface roughness

Liu et al. [77] 0.2–0.35 AISI 1040 Micro-milling, molecular-mechanical
theory

Cutting temperature, shear stress, stress
state

Liu et al. [77] 0.35–0.4 Al 6082-T6 Micro-milling, molecular-mechanical
theory

Cutting temperature, shear stress, stress
state

Son et al. [93] 0.2–0.4 Al, OFHC copper Micromachining, analytical Friction coefficient

Yuan et al. [97] 0.25–0.33 Cu–Mg–Mn aluminium
alloy

Micro-turning, experimental Cutting force, friction coefficient
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material is significant, and its size is comparable to the size of the
tool diameter. However, burr can be formed not only on the top
edges of the material, but it is often observable on the entry and
exit edges, too [78]. Figure 4 summarises the different burr types
and their locations.

Three main burr formation mechanisms can be identified,
which related to micro-milling processes [106]: (i) the mate-
rial is compressed, mainly due to the ploughing effect, and it
gets therefore bulged plastically to the sides of the material.
This mechanism is named as Poisson (Fig. 5a). (ii) The uncut
chip tearing from the material, rather than gets removed clear-
ly. This mechanism is called as tear (Fig. 5b). (iii) The uncut
chip gets bent rather than removed. This mechanism is named
as rollover (Fig. 5c).

Burr formation is significantly influenced by the condition
of the tool, which changes continuously as the cutting pro-
gresses. In order to select the appropriate parameters, it is

important to know the actual condition of the tool [98], as
the burr increases as the wear progresses [94, 98]. Oliaei and
Karpat [108] examined the effect of the built-up edge on burr
formation, but found no strong correlation; nevertheless, they
found that higher forces result in a larger burr.

In the scientific literature, two main approaches can be
found to eliminate burrs. The first one is to remove the burr
after machining (deburring), and the other is to reduce it dur-
ing machining. The latter approach is more appropriate in
terms of machining costs and operation time; the optimisation
of micro-milling processes is therefore essential. According to
Saptaji and Subbiah [109], the incorrect design of deburring or
incorrect selection of cutting parameters may cause a signifi-
cant dimensional error, micro-damage, surface error, or resid-
ual stresses.

Many researchers have examined the effect of milling strat-
egies on burr formation: the up-milling (also known as

Fig. 3 Top burr on the micro-
milled surface in AISI H13 (vc =
90 m/min, ap = 100 μm and (a) fz
= 2 μm, (b) fz = 6 μm) [42]

Fig. 4 Different burr types and
their locations (adapted from
[104, 105])
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conventional milling) was to be found ideal from the point of
view burr-minimisation on OFHC [110], Inconel 718 [85],
Ti6Al4V [94], AA1100 [98], AISI 1045 [4], Al6061-T6
[109], X5CrNi18-10 [111] materials. Hajiahmadi [49] ob-
served smaller top-burr height in the case of up-milling of
AISI 316L, than it was observed at the down-milled (also
known as climb milling) top edges. Nevertheless, the top-
burr thickness was smaller at the down-milled edges.
Piquard et al. [112] found a thinner and wider burr on the
down-milled side.

Wu et al. [110] proposed an extra milling process with an
up-milling strategy with a small width of cut to remove the
formed burr. Mian et al. [85] observed that the burr-geome-
try—generated by the down-milling—is more uniform than
the burr-geometry generated by the up-milling strategy.
Biermann and Steiner [111] showed that the quality of the
micro-machined side-wall of the workpiece is better when the
down-milling strategy was applied; however, the burr-size was
to be found larger, as was confirmed by Saptaji and Subbiah
[109]. Mian et al. [85] proposed that the burr root thickness can
be effectively controlled by the optimisation of the cutting
speed and the ratio of the theoretical chip thickness to the edge
radius. According to Kumar et al. [99], the cutting parameters,
workpiece material properties, tool geometry, coatings, and
coolant lubricants also affect the burr formation significantly
in micro-milling. Piquard et al. [112] analysed the micro-
milling process and found that the feed per tooth and the width
of cut significantly affect the burr size. They also found that
higher feed per tooth and smaller cutting width values have a
positive effect on the burr formation mechanisms.

Aramcharoen and Mativenga [72] experienced a decreas-
ing burr size on hardened H13 steel, as the ratio between the
undeformed chip thickness and the cutting edge radius in-
creased. They explained it by the decreasing ploughing phe-
nomenon. Chen et al. [113] proposed to decrease the ratio of
depth of cut to tool diameter in order to minimise burr forma-
tion. Increasing the cutting speed and feed per tooth also had a
positive effect on burr formation in the parameter ranges vc =
40–90m/min and fz = 1–4 μm [4]. Kumar et al. [32] examined
the lateral exit-burr and found that it is unfavourable at the up-
milled sides. Nevertheless, Kiswanto et al. [98] observed sig-
nificant exit-burr formation at the down-milled sides as well.
Furthermore, they could not found any significant differences

between the burr-shapes at the up-milled and down-milled
sides. Gilbin et al. [29] conducted micro-milling experiments
on 42NiCrMo16 using a diameter of 500 μm end mill. They
showed that an increase in feed was found to be the most
suitable for reducing the exit burr, while unlike in macro-mill-
ing, this did not have a significant effect on surface quality. In
contrast, according to Biermann and Steiner [111], increasing
the feed may cause a higher top burr height in X5CrNi18-10,
possibly because the increased amount of material cannot be
removed continuously with only a single cut. They also con-
cluded that increasing cutting speed due to “the higher strain
rate hardening of material”, and the use of sharp tools with a
positive rake angle and a large spiral angle is advantageous to
reduce the size of the upper burr.

Kumar et al. [32] studied the micro-machinability of
Ti6Al4V and they could decrease the height of exit-burr by
reducing the cutting speed from 314 m/min to 79 m/min.
Aramcharoen et al. [2] micro-machined AISI H13 and ob-
served that most of the tool coatings are suitable for reducing
the size of burrs. Swain et al. [79] conducted micro-machining
experiments on Nimonic 75 alloy and compared the cutting-
ability of a nanostructured TiAlN coated tool and an uncoated
one. They found that the tools perform almost identically at
the start of the cutting, but with increasing the cutting length—
due to the different wear behaviours—the burr increases more
rapidly in the case of the uncoated cutting tool is applied.

According to Komatsu et al. [114], by reducing the grain
size of the material, the size of the burr can be reduced. For
normal grain sizes (~ 9.10 μm) the cutting force suddenly
decreases at the end of the cut with the variable primary shear
angle, and a large burr forms at the edges. In contrast, in the
case of ultrafine grain materials, (~ 1.52 μm), the force reduc-
tion at the end of the chip separation takes place gradually.Wu
et al. [110] conducted finite element and experimental inves-
tigations on an oxygen-free copper using a diamond tool and
pointed out that the Poisson burr is caused by the lateral flow
of stagnant material at the lower segment of the cutting edge.
During their investigation, the cutting edge radii were set to 0,
1, 2 and 5 micrometres, which parameters were smaller and
also higher than the uncut chip thickness. They observed that
the area of the maximum stress shifted from the upper corner
of the cutting edge to the lower corner, due to the dominant
ploughing effect. All of these resulted in larger Poisson burr.

Fig. 5 The schematic of the (a) Poisson, (b) tear and (c) rollover burr mechanisms (redrawn [105, 107])
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According to the authors, the burr formation is minimal, if the
uncut chip thickness is reduced to the same value than the
cutting edge radius. However, the further decrease in the chip
thickness induced an opposite effect. According to Aurich
et al. [40], a tilted spindle results in a completely different
material removal condition than the conventional one. Due
to the tilted cutting tool, the effective helix angle can be
minimised, which may have a positive effect on burr forma-
tion. Kou et al. [115] recommended the use of adhesive
supporting material to increase the stiffness of the edge of
the workpiece. In the case of their novel method, the burr is
formed on the supporting material, which can be removed
from the piece more easily. The procedure was experimentally
verified. Saptaji et al. [109, 116] proved that tapered tools
could reduce the top burr as well as the exit burr due to the
sloping walls. They recommended a diamond single crystal
tool with a very small cutting edge radius for ductile materials
to reduce burrs, which require high accuracy and good vibra-
tion control for efficient use additionally.

2.3 Cutting force in micro-milling

Themain differences between macro and micro-scaled machin-
ing from the point of view cutting force can be seen in Fig. 6.
Due to the size reduction in micro-milling, the magnitude of the
cutting forces is significantly smaller than in the case of macro-
milling. Typically, the force amplitudes are between a few
tenths and a few tens of Newtons. Nevertheless, the ratio of
cutting force (Fc) to the passive force (Fp) differs significantly.
In the case of micro-milling, the passive force has a more sig-
nificant effect on the chip removal process, which is a conse-
quence of the ploughing phenomenon.

It is essential to know and monitor the cutting forces be-
cause they provide information about many phenomena, such
as chip formation, mechanism of material removal, vibration,
and tool condition [68, 74, 118]. All of these contribute to
improving the predictability of the process, reducing the speed
of the tool wear and increasing the reliability of the process.

As discussed earlier, in the case of micro-milling, the cut-
ting edge radius plays an important role in the chip removal
because it affects the minimum chip thickness, as well as the
material removal mechanisms. Since the value of rβ and other
characteristics of the tool are constantly changing due to tool
wear, the effect of wear on cutting forces is the subject of
many researches [76, 94]. Afazov et al. [119] micro-milled
AISI 4340 steel and proved that higher cutting edge radius
causes higher cutting forces. Wu et al. [120] machined
OFHC copper and found that the ratio of shear force and
ploughing force to the main cutting force was 55% and
45%, respectively. As the radius increases, the difference is
shown here also increases. Yang et al. [95] conducted micro-
milling experiments on Al2024-T6 aluminium alloy and
showed that although the cutting forces are higher, the effec-
tive stress reduces. Pratap et al. [86] analysed the cutting
forces during micro-milling of Ti6Al4V alloy. They found
that higher cutting forces are caused by mainly the accelerated
tool wear rates (~ higher cutting edge radius), caused by the
increased cutting temperatures. In this scenario, the increase in
force is due to the stronger ploughing phenomenon, which
occurs when the value of the chip thickness is below the value
of minimum chip thickness [91, 121]. All of these phenomena
often contribute to unpredictable tool life [87]. Mian et al. [85]
pointed out that at small theoretical chip thickness, the
ploughing effect is present for a longer time until the tool
actually starts to cut. At higher feed per tooth values, the
dominance of the ploughing effect is often reduced.

A significant increase in the specific cutting force is ob-
served at small chip thicknesses due to the phenomenon of the
size effect [122]. According to Gao et al. [43], a larger cutting
edge radius results in a larger negative rake angle, which af-
fects the shear and ploughing force significantly. The
ploughing force increases significantly below the minimum
chip thickness, which also entails a significant increase in
the specific cutting force. In micro-milling, forces can also
increase due to the excessive reduction in feed rate due to
the ploughing phenomenon. Aslantas et al. [94] showed that
a tool with a low coefficient of friction could prevent

Fig. 6 Dominant cutting forces in
(a) micro-milling and in (b)
macro-milling, where Fp denotes
the passive force, Fc the cutting
force (adapted from [71, 117])
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ploughing. Lu et al. [76] developed a novel cutting force mod-
el, which gives an accurate estimate of the forces taking into
account the wear state of the tool. de Oliveira et al. [46] stud-
ied the effect of the feed per tooth on the specific cutting force
at macro and micro-sized milling operations. In the case of
micro-milling, specific cutting force by an average of 22%
could be reduced by doubling the feed per tooth; and it could
be reduced by 13% by doubling the depth of cut. These values
were only 18% and 7% in macro sizes, respectively. Similar
trends were observed in 12Cr18Ni9 by Gao et al. [43], and it
was shown that increasing the cutting width (ae) also reduces
the specific cutting force.

Zhou et al. [123] performed micro-milling simulations on
NAK80 steel, and found that the effect of cutting speed on
cutting forces is negligible in their studied parameter range (vc
= 12–36 m/min, fz = 0.3–12 μm). Wang et al. [41] micro-
milled Inconel 718 alloy, and showed that the cutting force
increases with increasing feed per tooth and ae. They also
highlighted, that the feed per tooth should be set above a
critical value (hmin), and the ae should be chosen relatively
small to reduce the forces. Sun et al. [36] conducted 3D finite
element micro-milling simulations on Al7075-T6 alloy, and
observed that higher cutting width results in higher cutting
forces. According to Komatsu et al. [114], the ratio of force
components (Z to X) is higher in the case of ultrafine grain
steels than at normal grain sizes. The shear force decreases
with ultrafine grain materials while the friction force in-
creases. Ahmadi et al. [124] also observed higher forces for
smaller grain sizes. The cutting forces depend significantly
also on the milling strategies: the forces are usually lower
for up-milling than for down-milling in AISI 1045 steel [38].

2.4 Cutting temperature in micro-milling

Cutting temperature plays an important role in all of metal
cutting processes as it significantly affects tool wear, burr
formation, chip removal mechanisms, and the surface quality

[95, 125]. According to the study made by Mamedov and
Lazoglu [126], cutting temperature also has a direct effect on
residual stresses, 3D distortions, and dimensional accuracy of
the machined micro-features. Wissmiller and Pfefferkorn
[125] pointed out that thermal expansion plays a significant
role in this size range, not as negligible as in the case of
conventional-sized machining operations. Yang et al. [95]
conducted micro-milling experiments on Al2024-T6 alloy
and analysed the cutting temperature. They found that only a
small part of the generated heat is concentrated on the contact
between the tool and the workpiece. It was observed that the
maximum temperature field extends from the rake face
through the corner of the cutting edge to the flank face, as
illustrated in Fig. 7.

Wissmiller and Pfefferkorn [125] investigated the geome-
try of cutting tools and found that shorter edges and shorter
transition sections allow better thermal conduction, thus re-
duced the maximum tool temperature. Mamedov and
Lazoglu [126] conducted micro-milling simulations and
found that the temperatures increased with the chip load.
Thus, increasing the feed leads to an increase in temperatures,
as was confirmed by Wissmiller and Pfefferkorn [125]. In
addition, higher depth of cut values results in higher cutting
temperatures [126]. Nevertheless, the low feed per tooth—
which mainly results in plastic deformation on the workpiece
surface—can results in higher temperature and adhesive wear,
according to Uhlmann et al. [128].

The measurement of cutting temperature during the micro-
milling process is extremely challenging, therefore, many re-
searchers investigated it by simulations. Yang et al. [95] simu-
lated micro-milling process on Al2024-T6 alloy and found that
increasing the radius of the cutting edge (0; 3.2; 5; 7 μm), the
tool temperature decreases (57.5 °C; 51.5 °C; 45.4 °C; 40.4 °C,
respectively). The temperatures obtained here were low com-
pared to conventional sized milling. Balázs and Takács [83]
observed similar results: the results of the finite element simu-
lations of the thin chip removal process showed that the tool

Fig. 7 Cutting temperature zones
in (a) micro-machining and (b)
macro-machining (adapted from
[71, 127])
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temperature is quite low at machining of AISI 1045 steel.
According to the authors, the increase of both feed per tooth
and cutting speed result in increased tool temperature.

Wissmiller and Pfefferkorn [125] simulated the micro-
milling of AISI 1018 steel and resulted in a tool temperature
of 91.85 °C at vc = 37.68 m/min and vf = 200 mm/min, while
49.85 °C tool temperature resulted in Al 6061-T6 alloy at vc =
37.68 m/min and vf = 700 mm/min. Despite the fact that the
feed is lower in the case of steel than in the case of aluminium
alloy, this is not an unexpected result, as the yield-strength of
steel is much higher than that of the aluminium alloy. Pratap
et al. [86] conducted finite element micro-milling simulations
on Ti6Al4V material, and a maximum temperature value of
845.3 °C was determined with the parameters vc = 31.415
m/min, fz = 1 μm and ap = 30 μm. Thepsonthi and Özel
[129] simulated micro-milling of Ti6Al4V and found that
the cutting temperature could reach 420 °C. Based on the
simulations made by Zhou et al. [123] the highest temperature
occurred in the secondary shear zone (210 °C) on NAK80
mirror die steel. Biermann and Steiner [111] did not experi-
ence thermally induced softening in austenitic stainless steel
even at higher cutting speeds, which may be due to the very
short contact time between the workpiece and the tool.

In summary, studying the cutting temperature in micro-
milling is not a very extremely investigated topic, as it is a
very challenging process. The characterising temperatures of
micro-machining are typically lower than in the case of
conventional-sized machining. The maximum temperature
of the micro-sized tool is typically below 100 °C.

2.5 Vibrations in micro-milling

Minimization of tool vibration is one of the main challenges in
conventional sized milling processes because inappropriate
vibration (chatter) often results in accelerated tool wear or
poor surface quality [130–132]. In addition to these difficul-
ties, chatter may cause tool breakage in micro-milling [82,
133]. Due to the size reduction, the micro-milling process

requires small-diameter tools (slender tools), and their stiff-
ness is therefore often one order of magnitude lower than
those used in conventional sizes. This limited stiffness is a
major obstacle, when machining difficult-to-cut materials,
such as hardened steels and titanium alloys [134]. In addition
to the low stiffness of the tools, the high specific cutting
force—at small depth of cut values—also makes the optimi-
zation of the micro-milling process more difficult [135].
However, the stability of the micro-milling process can be
improved by (i) the increased process damping due to the
ploughing phenomenon, and by (ii) the increased contact area
of the clearance surface and the workpiece [102, 136]. Cutting
tool vibration can be modelled using springs and attenuations
[137–139]. Figure 8 compares the macro and micro-cutting
processes from the point of view vibration characteristics. As
it can be seen in the figure, the ratio of cutting force to the
passive force (Fc/Fp) is usually smaller in micro-cutting than
in conventional sized cutting, the vibration in the direction of
the cutting speed is therefore relatively smaller, and the vibra-
tion in the direction of the depth of cut is relatively higher in
micro-cutting.

Mittal et al. [5] stated that limited stiffness is one of the
main obstacles, when machining difficult-to-cut materials
(such as Ti6Al4V). However, this property characteristic can
be improved by using high cutting speeds because the cutting
forces decrease at higher speeds, caused mainly by the re-
duced chip load. Although, at high cutting speeds, dynamic
changes in cutting forces can make the process unstable. In
this case, the heat generation may also be higher, which, com-
bined with the poor thermal conductivity of the workpiece
material (e.g. in polymers), also affects the forces and unstable
behaviour. Gilbin et al. [29] stated that the low stiffness of the
tools also plays a role in the development of dynamic phe-
nomena and significant deflection. They confirmed that the
stabilisation of the tool and cutting process could be achieved
by increasing speeds. Singh et al. [134] also stated that the
chip load should be reduced in the case of high speeds,
but this may result in an intensification of the ploughing

Fig. 8 Comparison of mechanical
models of (a) micro and (b)
macro-sizedmachining (k denotes
the spring constant and d the
damping constant) (adapted from
[5, 139])
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phenomenon, which can result in even an order of mag-
nitude higher vibrations.

As it is well-known, vibrations and chatter often cause poor
surface quality and tool failure due to unstable cutting condi-
tions [37, 38, 134, 140]. Considering the special characteris-
tics of the micro-milling process, such as the (i) small diameter
of tool (< 1 mm), (ii) relatively large tool run-out and (iii)
deformations; it can be concluded that the dynamic behaviour
of the process is extremely complex [38]. The most common
form of self-excited vibration is the regenerative chatter,
which causes instability in the cutting process [5]. This is
one of the main obstacles to improving productivity and com-
ponent quality [141].

Takács et al. [38] demonstrated the presence of strong vi-
bration in the AISI 1045 micromachining through a character-
istic pattern left on the surface and through fast Fourier trans-
formation (FFT) analysis. A similar case can be seen in the
study of Singh et al. [134]. According to Biermann and
Baschin [140], due to the small theoretical chip thickness
and the effect of the cutting edge on chip formation, the re-
generative effects are stronger than atmacro sizes. The authors
emphasise the importance of analysing the cutting forces in
order to control vibrations, deformations and other errors
caused by the low rigidity of the tool. Reducing the feed per
tooth in micro-sizes is not advantageous, as it also changes the
uncut chip thickness, which has a non-linear relationship with
the cutting forces. According to Mamedov et al. [142], great
emphasis should also be placed on the analysis of cutting
forces in the study of the mechanics and dynamics of the
micro-milling process.

Jun et al. [143] presented a dynamic micro-milling model
for predicting cutting forces and vibrations, which also takes
into account spindle errors and cutting tool defects. According
to Moges et al. [3], the instantaneous uncut chip thickness
associated with the cutting edge, which offset is the longest
(compared to the other edges), is greatly influenced by the tool
run-out. Furthermore, this longest-offset-edge often gets a sig-
nificantly higher load and the other edge may not enter the
workpiece or the edge impact’s time is shorter. The difference
in chip load is greater at lower feed per tooth. According to the
authors, in order to accurately predict the geometrical param-
eters of the process, in addition to the tool run-out, the rela-
tionship of the current path of the tool edge with the trajectory
of several preceding tool edges must be taken into account.
Furthermore, the elastic spring-back of the workpiece also has
a significant effect on the process characteristics, when the
chip thickness is below the hmin value. According to
Biermann and Baschin [140], a small corner radius (~ 0.1
mm) can have a beneficial effect on the vibrational trajectories
of the tool and on the reproducibility of the process. The right
selection of tool radius is also important because it significant-
ly affects the minimum chip thickness. In addition, the tool
wear, the tool finishing process (which is often grinding), and

the coating process also affect the condition and stability be-
haviour of the cutting edge.

Yilmaz et al. [37] studied the dynamics of a micro-milling
tool. Their presented method is based on an inverse stability
analysis, where the modal parameters are updated with the
results obtained from the chatter-tests to bring even closer the
dynamic behaviour of tool centre point (TCP). Stability dia-
grams require FRF (frequency response function) analysis of
the TCP, which cannot be determined experimentally due to the
small tool size, so an analytical approach has been presented by
the authors [37]. Singh and Singh [82] also examined tool
dynamics. Finite element modal analysis was used to determine
FRF, and the results were validated experimentally. The differ-
ence between the two methods in the first mode natural fre-
quency was 6.6%. Based on their studies, the first mode natural
frequency was 4851 Hz, the second 5081 Hz, and the third
7170 Hz. In contrast to the data presented above, Takács [74]
found the natural frequency value of bending no. 1 to be more
than 250,000 Hz for similar l/d ratio’s tools.

The determination of stability curves also plays an impor-
tant role in stable chip removal conditions and it is, therefore,
the subject of much research works. Afazov et al. [119] stud-
ied stability limits on AISI 4340 steel. In the study of the effect
of rake angles, lower stability limits, as well as higher forces,
were observed at a rake angle of 0° than at 8°. The increase in
cutting forces and the decrease in stability limits are much
stronger for small cutting edge radiuses and large theoretical
chip thicknesses. According to the authors’ study, the stability
limits can be increased by preheating the workpiece to 600 °C,
which leads to softening of the workpiece, thereby reducing
the cutting forces. In another study, the same authors present-
ed a vibration model, where they found that modal-dynamic
parameters have a significant effect on stability curves, espe-
cially above 35,000 rpm (vc = ~ 55 m/min). With increasing
tool run-out, as well as increasing feed per tooth, the stability
area decreases linearly due to higher forces [139].

Singh et al. [134] modelled the dynamic stability of the
micro-milling process in Ti6Al4V. The estimated and mea-
sured stability limits up to 70,000 rpm show a good agree-
ment, but differ significantly above it. The differences are
explained by the authors with decreasing damping at high
speeds and the Coriolis-effect due to rotational and vibrational
movements. Mokhtari et al. [144] presented a novel method to
study the unstable vibrational behaviour of micro-milling.
Their studies took into account the size effect, the gyroscopic
moment, the rotary inertia, the structural nonlinearities and
process damping. Sahoo et al. [145] proposed an analytical
approach to study cutting forces and dynamic stability. They
combined the finite element modelling with mechanical
modelling, which also takes into account tool run-out, mini-
mum chip thickness, elastic recovery, and the ploughing phe-
nomenon. Mittal et al. [5] conducted micro-milling experi-
ments on Ti6Al4V and found, that a transition at
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47,000 rpm was clearly demonstrated from the cutting force
data, where the process becomes lubrication-sensitive.

2.6 The surface roughness of micro-milled geometri-
cal features

One of the critical quality characteristics of micro-machined
components is the surface quality, so a large area of research
focuses on how factors affect it. Uhlmann et al. [146] conducted
micro-milling experiments on X13NiMnCuAl4-2-1-1 and
found that the cutting edge radius significantly influences the
surface roughness of the machined part. Aramcharoen and
Mativenga [72] experienced the best surface quality on a very
fine-grained AISI H13, when the uncut chip thickness and the
tool radius of the cutting edge were set to the same value. Li and
Chou [147] found that surface quality is closely related to the
wear state of the tool in SKD 61 (38 HRC). It is well-known,
that, as the cutting progresses, the edge rounding increases [95].
According to Zhu and Yu [27], the tool wear also affects sur-
face integrity and product geometry. Oliaei and Karpat [108]
analysed micro-machinability of Ti6Al4V and found that the
increasing cutting speed does not improve the surface quality.
Li and Chou [147] found on SKD 61 that neither the cutting
speed nor the feed (vc = ~ 37.5–75.4 m/min, fz = 1–2 μm) had a
significant effect on surface quality. Kiswanto et al. [98] studied
the micro-milling process with statistical methods, with partic-
ular regard to productivity, and suggested that the use of higher
feed rates is recommended as it does not degrade surface qual-
ity significantly (investigated parameter ranges vc = ~ 22–59.7
m/min, f = 0.05–1 mm/s).

Mian et al. [85] examined surface roughness results by
means of analysis of variance (ANOVA). In contrast to the
previously discussed studies, it was found that in addition to
the ratio of the theoretical chip thickness to the edge radius, the
cutting speed also has a significant effect on the surface rough-
ness. It was found that the cutting speed was the most signifi-
cant parameter to improve surface quality. Uhlmann et al. [128]
analysed micro-milling inWCu. They observed that the surface
roughness increases with decreasing cutting speed, which may
be caused by the formation of a built-up edge. It was found that
increasing the feed per tooth leads to (i) geometric inaccuracy
and (ii) higher abrasive wear, which causes the cutting edge to
round, as well as increasing the plastic deformation on the
workpiece surface. An improvement in surface quality was
achieved with increased cutting speed.

According to Zhang et al. [148], the low stiffness of the tool
during the micro-milling process is one of the biggest obsta-
cles in terms of surface quality. Cutting forces result in con-
siderable tool deformations, which affect the quality of the
machined surfaces, as it is proved by Mamedov et al. [142].
Ahmadi et al. [124] found slightly better surface quality in
Ti6Al4V in the case of finer grain sizes of workpiece material.
Oliaeia and Karpat [149] micro-milled Stavax stainless steel.

It was found that each different cutting width (ae) values have
a preferred feed per tooth value. Lower ae values result in
lower surface roughness. With larger cutting width values,
the surface quality is better at higher feed per tooth values.
An optimum was found at ae = 20% and fz = 4 μm.

Bissacco et al. [84] studied micro-milled surfaces in detail.
The cutter marks on the surface are related to the geometry of
the tool and also includes the accumulation of plastically de-
formed material. In the other case, there is a smear of the
material behind the tool, which generates small waves in the
feed direction. Because of these effects, surface roughness can
only be reduced to a limited value by reducing the tool diam-
eter. In the study of milling strategies in Ti6Al4V by Ahmadi
et al. [124], based on analyses with EBSD, up and down-
milling strategies resulted in a different surface texture. It
was observed that greater compressive deformation occurs in
down-milling than in the up-milling. Aurich et al. [40] inves-
tigated the effect of the spindle tilting angle, and based on their
experiments, tilting the tool also degrades surface quality and
geometry. The significant differences between their simulated
results and their experiments can be traced back to the
ploughing effect, which is significant in micro-milling.

Wang et al. [150] studied the surface characteristics at dif-
ferent stages of tool wear on Ti6Al4V. Based on their inves-
tigations, the main forms of surface defects are: feed marks,
material debris, plastic side flow and material smears. As wear
progressed, mainly material debris and plastic side flow be-
came more significant. Meanwhile, the surface quality on the
up-milled side was better than on the down-milled side.
According to K and Mathew’s [151] micro-milling studies
in Ti6Al4V (using 3–3.5 μm cutting edge-rounding and a
TiAlN coated cutting tool), as the wear progressed, the surface
roughness decreased at a feed rate of fz = 5 μm per tooth, and
the roughness value has a minimum at 700 mm machined
length. In contrast, at fz = 0.3 μm, the roughness increased
with the cutting length. The authors recommended to set the
feed per tooth to a slightly higher value than the cutting edge
radius in order to optimise surface roughness.

2.7 Application of cutting fluid in micro-milling

One of the main purposes of using cooling lubricants is to
increase the quality of machined parts and the economy of
machining. The use of coolants and lubricants in macro sizes
improves the surface quality, has a positive effect on tool wear
and cutting forces [71, 73]. Cutting fluids can be used to reduce
thermal deformations, which also contributes to geometrical
accuracy, as well as chip removal [71, 73, 127]. A significant
challenge with coolants is that they are harmful to the environ-
ment and human health. Therefore, nowadays, environmentally
friendly methods such as dry cutting, minimum quantity lubri-
cation (MQL), nanofluid minimum quantity lubrication and
cryogenic cooling are getting more popular [152–154]. There
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are a lot of researches going on to investigate the effect of
coolants and lubricants on a micro-scale machining.

According to Li and Chou’s [147] micro-groove-milling
experiments on SKD 61, even a small amount of oil (1.88
ml/h) proved to be sufficient for minimum quantity lubrica-
tion, the required air volume was found in 40 l/min. Oil is
required to achieve a long tool life; just using clean air alone
does not increase tool life [147]. Ziberov et al. [155] per-
formed micro-milling experiments on Ti6Al4V material and
observed that the wear behaviour of the tools differs signifi-
cantly at MQL compared to dry machining. In the former, the
secondary clearance surface was mainly worn, while in dry
conditions, cutting edge rounding increased more. In the case
of dry machining, the tool life was longer, reaching the wear
criterion after more than twice the cutting length (lc = 21.0 and
50.4 mm). This may be explained by the built-up edge that
protected the tool. In contrast, in the study made by Li and
Chou [147], it was found that the flank wear reduced to 60%,
when MQL was applied, compared to dry machining.

Kumar et al. [99] conducted micro-milling experiments
and found that coolant-lubricating fluids also influence signif-
icantly burr formation not only cutting temperature or tool
wear speed. Li and Chou [147] performed micro-milling ex-
periments on SKD 61 steel and found that MQL has a bene-
ficial effect on burr formation due to less tool wear. On the
other hand, Ziberov et al. [155] measured higher top burr
heights in Ti6Al4V material with MQL. In dry conditions,
the burr was larger on the down-milling side, but at the min-
imum quantity lubrication, the milling strategies did not show
a significant difference in this respect. Biermann and Steiner
[111] micro-milled X5CrNi18-10, and showed an increase in
the height of the top burr when using MQL, in contrast, flood
lubrication and bath lubrication had a positive effect. The
MQL has a favourable effect on the surface quality [147, 155].

Aslantas et al. [156] studied a newly designed hybrid
cooling lubrication system and based on their experiments on
Ti6Al4V, air at − 10 °C showed a favourable effect with min-
imum quantity lubrication. However, a colder air (− 30 °C) had
a negative effect on tool wear and burr formation due to exces-
sive chip formation. As the cutting length increased, no signif-
icant change in burr size was found, which can be a significant
advantage for micro-milling. In addition, they measured the
lowest Ra value at dry machining. According to Kim et al.
[152], in the micro-milling of Ti6Al4V, nano-sized diamond
grains (35 nm) and cold (− 25 °C, pressure 0.15 MPa) CO2 gas
mixed in the minimum quantity lubrication (vegetable oil was
the base lubricant) are effective solutions for reducing cutting
forces, tool wear, the coefficient of friction and improve the
surface quality. While the first three require a lower concentra-
tion of “nanodiamond” in the nanofluid (~ 0.1 wt.%), a higher
concentration (1.0 wt.%) is required to improve surface rough-
ness. Mittal et al. [5] investigated the effect of different lubri-
cants on the dynamic behaviour of themicro-milling process. A

significant improvement in stability limits was observed with
lubrication in Ti6Al4V, showing a 20% increase at 100,000
rpm. In addition, a limit speed has been established, below
which the process is insensitive, above which it is already sen-
sitive to lubrication.

2.8 Micro-milled workpiece materials

The versatility of micro-milling is demonstrated not only by
the complex geometries, but also by the wide range of ma-
chinable materials. In this chapter, the most important material
characteristics, as well as the special materials and their appli-
cability, are collected.

According to Komatsu et al. [114], smaller grain sizes are
required for higher machining accuracy because the grain size
is relatively large to the depth of cut in the case of micro-
milling. Bissacco et al. [25] also suggested the application of
workpieces with small grain sizes, and highlighted the impor-
tance of homogeneity of workpieces. According to the re-
search work of Mian et al. [85], if the theoretical chip thick-
ness falls below the cutting edge radius or grain size, the
material of the workpiece greatly influences the chip forma-
tion, deformation mechanism and flow. Wu et al. [120]
analysed micro-machinability of copper and found that forces
and specific energy are also higher at smaller grain sizes. This
was explained by the fact that the cutting takes place by the
movement of the dislocations, which are inhibited at the
micro-scale by the grain boundaries. Smaller grain sizes have
longer specific grain boundaries, which means a greater inhib-
itory effect. Based on their results, the effect of grain size is
smaller than that of the edge radius.

Micro-machining researches are carried out in a wide range
of materials, with a very significant proportion of the research
being steels, which is the most widely used metal in the engi-
neering world. For the sake of example, many researchers stud-
ied micro-machinability of AISI 1045 (partly as reference ma-
terial) [4, 38, 46, 77, 88], different stainless steels [43, 84, 114],
and also hardened steels [29, 30, 84, 157]. Several researchers
have also investigated aluminium micromachining [95, 109,
125, 142]. The Al7075-T6 is widely used in the aerospace
industry because its specific material properties are excellent:
it has a good volume-to-weight ratio, high strength and tough-
ness and antioxidant [36]. Copper micromachining is also a
highly researched field [40, 102, 110, 120]. Inconel 718 [41,
85, 158–160], a nickel-based superalloy, has been reported in
several publications. It is characterised by a stable structure,
high hardness, high deformation resistance, good chemical sta-
bility, as well as resistance to heat and corrosion [41]. They are
often used in the aerospace industry, pressure vessels,
armarioum ocean and pollution control [161]. Hard-to-cut ma-
terials can typically be machined at low cutting speeds, but this
makes it difficult to reconcile their machining with efficiency
and economy [41].
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Researchers investigatedWCumicro-milling also, which is
difficult-to-machine due to its microstructural properties, for
example, due to the quality of the material used as an electrode
for electrical-discharge machining (EDM) [128]. Many stud-
ies are also performed on titanium and its alloys [5, 32, 35,
94], which are typically used in the aerospace industry, space
research, biomedical devices, and medicine [32, 35, 40, 162,
163]. It has several favourable properties such as high
strength, corrosion resistance and biocompatibility [35, 124],
but they belong to the group of difficult-to-cut materials [126].
Ti alloys are poor thermal conductors, poor machinability due
to hardening, strong tool wear, and burr formation character-
ize the micro-milling of these materials [32, 35]. According to
Ahmadi et al. [124], the different grain sizes and phases locat-
ed in the microstructure of Ti6Al4V in micro-milling affect
the deformation behaviour of the material significantly. The
smaller grain size and the smaller amount of β phase result in
higher cutting forces within the alloy. In addition, it was found
that the microstructure of the workpiece material also influ-
ences the size of the built-up edge: smaller grain size results in
a larger built-up edge.

Table 2 summarises and categorises the workpiece mate-
rials, which were micro-machined in the reviewed key papers.
We kept the standard used in the sources because in some cases,
the permissible value of the alloy content differs in the different
standards; thus, they cannot be perfectly matched to each other.
Figure 9 shows the distribution of the reviewed scientific works
from the point of view workpiece material groups.

2.9 Micro-milling process monitoring

Themain purpose of process monitoring is tomonitor changes
of the cutting process and/or monitor the condition of the
cutting tool in order to increase quality, efficiency or tool life
[268]. Through its application, it is possible to prevent the
changes with a negative effect. Process monitoring can be
done online (in process) or offline, the former in real-time
and the latter between cutting operations. Certain characteris-
tics can be monitored in-process, such as cutting force, vibra-
tions, power, torque, cutting temperature, and so on. Offline
measurable parameters include tool wear, dimensional toler-
ance, surface roughness, delamination, micro-cracks etc.

As both process and quality characteristics are strongly in-
fluenced by tool wear, it is highly recommended to monitor it,
which can be conducted based on the following two main mea-
surement methods [269, 270]: (i) Direct measurement of tool
wear: in this case, the wear of the tool can be measured directly
(often optically). Its main disadvantage is that there is no cutting
during the measurement (offline), which increases the total op-
eration time. (ii) In the case of indirect measurement, the current
state of the tool can be inferred from other process characteris-
tics. In this case, themeasurement of forces, vibrations, acoustic
emissions [227] and the monitoring of their changes provide

important information (indirect but online). In conventional-
scale milling, tool wear has been studied inmany studies, main-
ly using indirect measurement methods, like measuring vibra-
tion, acoustic emission, and force signals. Intelligent ap-
proaches can be used to process these data, such as neural
networks and clustering [271, 272], adaptive resonance net-
works, and self-organising maps [227].

Zhu and Yu [27] presented a novel image processing based
method for monitoring tool wear. It takes into account the
wear pattern of the entire tool, through that it better reflects
the condition of the tool than the traditional tool wear metrics,
where only a width value is given. The current literature main-
ly uses the latter as a tool wear criterion. In the case of micro-
milling, the wear of the cutting edges will often be different
due to the different load. The effectiveness of the method
presented by Zhu and Yu was also supported experimentally.
Compared to other image processing methods, the presented
technique reduces distortions caused by image background
and noise.

According to Malekian et al. [273], accurate monitoring of
machining typically requires three harmonic signals. In addition
to the dynamometer’s signal, it is advisable to use accelerome-
ters and/or acoustic emission sensors due to the significantly
larger frequency range available. In conventional-sized milling,
the size of flank wear is measured usually. Due to the nature
and difficult-to-measure wear in the case of micro-milling, the
authors measured the corner radius. Neuro-Fuzzy logic was
used to analyse the signals of the process, and it was found that
the combined analysis of the signals of the three sensors leads
to the most accurate result. The model presented by the authors
is suitable for monitoring micro-milling tools and for transmit-
ting warnings to the machine operator, thus minimising tool
breakage and exceeding the tolerance of the part.

Zhu et al. [227] used the hidden Markov model to monitor
the condition of the tool. The authors used the average clear-
ancewear on each edge to rate the wear condition. The authors
recommend the use of the Noisy-robust hiddenMarkovmodel
to monitor the condition of the tool. The efficiency of their
method is 92.5% in copper and 90.5% in steel.

Jemielniak and Arrazola [187] chose to measure clearance
wear to monitor tool condition. Due to the varying load on the
tool, the cutting forces must change periodically. If the tool
run-out does not take into account, the dominant frequency
will be the impact frequency of the cutting edges; otherwise, it
will correspond to the spindle speed. When comparing the
force signals and the acoustic emission (AE) signals, a differ-
ence in the dominant frequencies was found. The latter shows
1207 Hz, and the results of the force measurement show 4828
Hz, which is the fourth harmonic of the impact frequency of
the edges, and it is close to the natural frequency of the force
measuring platform (5080 Hz). According to the authors, the
unfiltered, raw signal can also be used for monitoring appli-
cations, as the relationship between the characteristics of the
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force signal and the wear is important and not their specific
values. Uncertainties can be reduced and minimised by simul-
taneously recording and analysing the signals of multiple sen-
sors. The use of these two sensors has led to good results. In
contrast, the signal from the much cheaper, easy-to-install AE
sensor produced less accurate but acceptable results.

One of the main problems of micro-milling is the premature
failure of cutting tools. To predict tool life, Dai and Zhu [55]
presented an automated machine vision system. In the captured
images, the tool can be in any positions, and the algorithm can
evaluate it correctly. This is based on the fact that the size of the
tool (which perpendicular to the cutting edges of the tool) does

Table 2 Micro-milling publications categorized based on the machined material type

Material categories Publications

Steels AISI 1045: [4], [33], [38], [46], [48], [51], [54], [83], [88], [89], [122], [133], [144], [164], [165], [166], [167], [168]

AISI 1015: [169]
AISI 1018: [125]
AISI 1040: [77]
AISI 1050: [37]
AISI 4340: [119], [139], [170]
AISI P20: [20], [145], [164]

S960QL: [171]
NAK80: [123], [172], [173], [174]
AISI A2—annealed: [175]
42CrMo4: [167]
X13NiMnCuAl4-2-1-1: [146]
SK2: [176]

Hardened steels AISI H13: [2], [30], [42], [72], [80], [164], [177], [178], [179], [180]
Martensitic powder metallurgy steel: [84]

AISI A2: [175]
AISI D2: [181], [182], [183], [184]
SKD 61: [147], [185]

42NiCrMo16: [29]
55NiCrMoV6: [186]
X155CrVMo12-1: [187], [188], [189]

Corrosion resistance steels AISI 304: [34], [106], [58], [190]

12Cr18Ni9: [43]
06Cr25Ni20: [191]
90MnCrV8: [192]
Stavax: [149]
Hastelloy C276: [193]

AISI 304L: [194]
AISI 316L: [195], [49]
AISI 422: [196]
X5CrNi1810: [197], [111], [114]
X2CrNi18-9: [198]
Rochling 2316: [199]

Superalloys Inconel 718: [41], [76], [85], [158], [159], [160], [196], [200], [201], [202]

Inconel 182: [203]
GH4169: [204]

Nimonic 75: [79]
DD98: [205]

Titanium and its alloy Ti-6Al-4V: [5], [32], [35], [70], [82], [86], [94], [108], [113], [124], [126], [129], [134], [150], [151], [152], [155], [156],
[196], [206], [207], [208], [209], [210], [211], [212], [213], [214], [215], [216], [217]

Grade 2: [40], [193], [218], [219], [220]
CP titanium: [221]

TC4: [222]
Grade 12: [223]

Copper and its alloys Copper: [121], [224], [225], [226], [227]

OFC: [110], [120]
OFHC copper: [81], [91], [93], [228]
Brass 360: [229]
Brass260: [39]
CuZn37: [193]

CuZn39Pb1: [102], [230]
CuZn39Pb3: [167]
CuZn40Pb2: [197]
Copper alloy: [231]
Tungsten copper: [6], [128]

Aluminium alloys Al 6061: [45], [78], [92], [109], [116], [117], [125], [148], [232], [233], [234], [235], [117], [236], [237], [238], [239]
Al 7075: [36], [169], [240], [241], [242], [243], [244], [245]

Al 2024: [95], [246]
Al 2124: [58]
Al 6082: [77], [247], [248], [249]
Al 6351: [3]

Al 7050: [142], [250]
AA1100: [98]
AlCu4PbMgMn: [140]

Other materials Monocrystalline silicon: [251], [252], [253], [254], [255]

Cemented carbide: [256], [257]
WC-15Co: [258], [259]
Graphite: [260]
LiNbO3: [261]
NiTi: [112]
PMMA: [262], [263]
QBe1.7: [115]
CFRP: [75]

OFHC single-crystal: [228]
Silicon: [264]
KDP crystal: [44], [101]
Sintered zirconia: [265]
ZrO2: [266]
Glass: [267]
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not change. The image processing method is based on the char-
acteristics of micro-milling, with the exception of the progres-
sive wear phase. In order to predict the wear status of the tool, in
addition to flank wear, a wear land area is recommended. When
the tool arrived at the stage judged to be worn or experienced
abnormal behaviour, they intervened in the process and reduced
the feed. They highlighted that they did not encounter any acci-
dental tool failure during their investigations.

Jáuregui et al. [54] dealt with tool monitoring through the
analysis of force and vibration signals. Fast Fourier transforma-
tion and continuous wavelet transformation (CWT) were used
for the investigations. The analysis of process-specific frequen-
cies was based on the impact frequency of the cutting edges
(IPF). For a tool in a good condition, the harmonic and non-
harmonic components are displayed at the nominal frequency
1xIPF, 2xIPF, 3xIPF and 0.5xIPF, 1.5xIPF, 2.5xIPF.
However, with a worn tool, those harmonic frequencies appear
that are not exact fractions of the IPF. It was found that in the
case of a tool in a good condition, the harmonic and non-
harmonic frequencies are present at the nominal value, while in
the case of aworn tool, the characteristic frequencies are different
or missing. As the wear progressed, the appearance of new fre-
quencies in the vibration signal was observed. FFTs made from
force amplitudes did not provide any convincing evidence that
they could be used as an indicator of tool wear. Similarly, the
study of the effects at nonlinear levels by CWT analysis does not
provide any evidence for a correlation of phenomena.

The main process control methods and monitored charac-
teristics often used in micro-milling are summarised in
Table 3.

3 Micro-milling tools and coatings

In this section, cutting tool geometries and coatings for micro-
milling are reviewed and discussed. Micro-milling tools are

geometrically similar to those used in conventional sizes, but
often show different behaviour in terms of the cutting process.
The key dimensions of the micro-cutting tools are often in the
same order of magnitude as the key dimensions of the chip
removal or burr formation processes, as it was discussed ear-
lier. The micro-cutting tool is relatively slender, which often
results in a difficult-to-estimate process, high vibrations and
short tool life. Figure 10 summarises the micro-milling cutting
tool types which are often used in scientific works or used by
the industry.

End mills are widely used in micro sizes [4, 133, 144, 216],
the geometry of which is similar to those used in macro-sizes.
Commercially one- (Fig. 10a), two- (Fig. 10b) or multi-fluted
versions are available. It is important to highlight that a higher
number of cutting edges often drastically reduce the stiffness
of the cutting tool, therefore, the lower number of cutting
edges is recommended for micro-milling. Nevertheless,
higher number of tool edges may increase the material remov-
al rate (MMR) significantly. These type of the tools are suit-
able to produce structures with quasi-sharp corners. However,
this geometry has many challenges: the corner starts to round
relatively soon due to the wear, which results in significant
changes in the tool geometry, in the process and in the pro-
duced microstructures. The single-fluted geometries are often
made of artificial diamond [204, 255], which can result in a
very sharp cutting edge; however, it often causes higher vi-
brations [109, 140].

Figure 10c shows a schematic of a micro flat end mill with
a corner radius. Recently, this design is very common as it
provides increased edge stability. The corner radius is much
more resistant to wear compared to the previous designs.
Furthermore, these milling tools can produce complex 3D
curved surfaces. In addition, this construction can be used
with increased feed rates in the case of smaller depth of cut
values. In this scenario, the main cutting edge angle is smaller,
which results in the chip thinning phenomena. Due to the

Fig. 9 Micro-milled workpiece
material groups
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radius, there is an increased axial force component, which
causes less bending-directional deformation in the tool than
the cutting force, and also could be suitable to reduce the
vibration [42].

Figure 10d shows the schematic of a ball-end micro mill,
which is also commonly found in the scientific literature [174,
184, 255, 276]. This type is especially suitable to produce
complex 3D geometries. However, it also has difficulties,
e.g. when machining flat surfaces the cutting speed is very
small near the tool centre point (TCP), and the minimum chip
thickness problem comes to view due to the chip thinning
phenomena. However, these difficulties can be solved partly
with the use of push-milling or pull-milling strategies; al-
though, it requires a more complex (4 or 5-axis) machining
centre, which is extremely cost consuming.

The tapered micro-milling tools (Fig. 10e) are also applied
widely, which is suitable to reduce the burr formation [109]. In

addition, there are many papers, where tailored micro-tools
are used for the optimisation of the process [108, 217].

According to Aramcharoen and Mativenga [72], the geom-
etry of the cutting edge plays a major role in terms of surface
quality and burr formation in micro-milling. For better surface
quality, rounded cutting edges or chamfered geometries are
preferred. Afazov et al. [119] studied the effect of the rake
angle on AISI 4340 steel. Higher forces and lower stability
limits were observed at rake angle of γ = 0° than at γ = 8°.
Based on the micro-milling studies in 42NiCrMo16, conduct-
ed by Gilbin et al. [29], it was found that the edge geometry of
micro-mills has a greater role in wear resistance than in the
quality of the machined part. In contrast to macro-milling, a
rake angle of γ = 0° is advantageous in decreasing tool wear,
while its negative effect on the cutting forces is not significant.
Based on the micro-milling experiments performed by Oliaeia
and Karpat [149] in a modified AISI 420 steel, the interaction

Table 3 Most important micro-
milling monitoring methods and
monitored parameters

Authors Monitoring method Monitored parameter

Jemielniak and Arrazola [187]

Malekian et al. [273]

Jemielniak et al. [188]

Ren et al. [189]

Acoustic emission measurement Vibration

Dai and Zhu [55]

Zhu and Yu [27]

Digital image processing Tool wear

Jáuregui et al. [54]

Malekian et al. [273]

Hsieh et al. [176]

Acceleration measurement Vibration

Jáuregui et al. [54]

Jemielniak and Arrazola [187]

Zhu et al. [227]

Piezoelectric-principle based force measurement Cutting force

Malekian et al. [273]

Jemielniak et al. [188]

Li and Liu [274]
Venkata Rao [184]

Lu et al. [275]

Power or energy consumption measurement Cutting force

Peng et al. [191]

Yang et al. [95]

Thermocouple or infrared radiation measurement Cutting temperature

Fig. 10 Schematic geometries of micro-milling cutting tools: (a) single-fluted flat endmill, (b) two-fluted flat end mill (c) end mill with corner radius, (d)
ball-end mill, (e) tapered micro mill
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between the tool wear and the cutting speed is clearly visible,
which is one of the main factors followed by feed per tooth.
Tool wear is one of the most significant limitations of the
micro-milling process, as it is almost unpredictable and also
affects dimensions, surface quality, and tool life [192]. For
this reason, the subject of many scientific researches is the
examination of the geometry of milling tools and the increase
of their performance. Uhlmann et al. [220] attached great im-
portance to edge preparation in the production of micro-mills.
Their studies were shown that immersed tumbling can achieve
better results than polishing and polish blasting methods.
Immersed tumbling on grade 2 titanium reduced active forces
from 7.5 N to 4 N, while average surface roughness (Ra)
increased to 0.67 μm from 0.53 μm. Tools prepared with this
method were also tes ted in micro-machining of
X13NiMnCuAl4-2-1-1. According to the authors, edge prep-
aration can stabilise the cutting edge and reduce tool wear.
Larger cutting edge radius led to longer tool life. The active
forces were almost the same for the prepared and un-prepared
tools, their fluctuation decreased to rβ = 2.9 μm, and then
started to slightly increase [146]. The authors also studied tool
wear on Böhler M261 material quality. During preparation,
processing time was found to be the main factor in forming the
cutting edge radius. No crater-wear-tendency was found for
the geometries developed with the new method. The prepared
tools showed a 14% lower tendency to clearance wear com-
pared to the unprepared ones, while the variance of the results
was reduced by 92% [87].

Micro cutting tools are often coated because coating has
many positive effects on the machining process characteris-
tics, like increasing tool life or reducing cutting force and
vibrations. However, the application of coating increases the
edge radius of the cutting tool, which is often not allowed
because it may increase the ploughing effect and the cutting
force, thus decreases tool life. Aramcharoen et al. [2] analysed
the influences of different coatings on tool wear in a very fine-
grained AISI H13. They showed that TiN, TiCN, TiAlN, CrN,
and CrTiAlN coatings help to reduce edge chipping and in-
crease edge rounding compared to uncoated ultrafine carbide
milling cutter. The TiN and CrTiAlN coatings are suitable for
reducing flank wear. Based on their studies, the TiN coating
showed the best performance in terms of tool wear, machined
surface and burr formation. Furthermore, TiN has the lowest
hardness and the best adhesion. Aslantas et al. [94] analysed
the tool wear of nanocrystalline diamond, TiN, AlCrN coated
tools in Ti6Al4V. In their work, abrasive wear was found to be
significant, and edge chipping and built-up edge formation
were also observed. Each analysed coating reduced the
resulting burr sizes compared to the uncoated tools. The TiN
and AlCrN coatings showed less wear, diameter changes and
burrs than it was observable by using a nanocrystalline dia-
mond or an uncoated tool. De Cristofaro et al. [192] investi-
gated seven different novel coatings (multilayer chromium,

titanium coating, single-layer nanostructured silicon, chromi-
um, and single-layer nanostructured coating with small, me-
dium, and large amounts of silicon) in micro-milling of
1.2842 (62 HRC). The single-layer, nanostructured and low-
silicon coating was found the best: this coating seemed to
suitable for reducing wear while increasing productivity and
reliability, as well as creating a sharp cutting edge. Swain et al.
[79] performed micro-milling experiments on Nimonic 75
(40–41 HRC). They found that the typical failure modes of
tool are the flank wear, the chipping of the tool tip and then
chipping the edge. In the case of the 2 μm thick nanostruc-
tured TiAlN coating, the outstanding performance was ob-
served in terms of wear, diameter reduction and surface integ-
rity compared to the uncoated tool. It was found that the in-
crease of the cutting speed resulted in an increase of the flank
wear, in each coated and uncoated tools.

Hao et al. [257] designed and fabricated polycrystalline
diamond (PCD) micro ball-end mills in order to achieve high
quality when machining micro-lens array of cemented car-
bide. Since the diamond is very sensitive to the vibrations,
the authors calculated the excitation frequency which related
to the milling kinematics and to the number of the cutting
edges. Moreover, modal analysis was conducted, and the nat-
ural frequencies (up to six order) were calculated. Based on
their investigations, a critical overhanging length was deter-
mined for the specified cutting circumstances. Jiao and Cheng
[263] used CVD diamond coated micro ball-end mills for
micro-milling of polymethyl methacrylate components with
a very small surface roughness (nanometric). Four different
milling strategies were studied, and it was found that those
ones, which are suitable for groove-milling, are not necessar-
ily the best choice for preparing larger areas (2 x 2 mm) be-
cause the dynamics of the process also plays a significant role.
When machining larger areas, optical surfaces can be
achieved by joining up-milling and down-milling strategies.
However, the step-over was found as the most significant
factor that is affecting the surface roughness. Hao et al.
[277] studied the fabrication methods for PCD micro-milling
tools with a large aspect ratio. The authors proposed a fabri-
cation method which is combined the pulsed nanosecond and
picosecond laser with precision grinding. The micro tool fab-
ricated was compared with a cemented carbide tool through
micro-milling experiments. The PCD tool produced smaller
surface roughness and forces, while the wear of the tool was
smaller at machining a deep-narrow-slot in an oxygen-free
copper. Oliaei and Karpat [108] investigated the formation
of a predictable, stable built-up edge on Ti6Al4V. As this
can increase the tool life, it can be especially important, when
machining micro moulding tools. Based on their tests, the
built-up edge resulted in higher cutting force and improved
the surface quality. Based on their studies, the small clearance
angle resulted in the most stable conditions in built-up edge
formation, and based on their observations, the performance
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of custom (tailored) tools is acceptable. Nevertheless, it has to
be pointed out that a built-up edge formation is recommended
to be avoided because it is extremely difficult to control its
formation (to stabilise it) and influence.

Tool wear is primarily affected by tool edge geometry and
coating type; however, the effect of primary technological
parameters is also significant [180, 214]. Kuram and Ozcelik
[35] investigated the effect of milling strategies on tool wear
on TiAl4V6 material. At low feed rates (vf = 75 mm/min),
increasing the rotation speed (12,000–28,000 rpm) at the
down-milling and zig-zag paths reduced tool wear, but the
up-milling had a negative effect on the tool wear. At high feed
rates (vf = 150 mm/min), higher the spindle speed increased
the tool wear for all the three strategies, resulting in better
surface quality and smaller Fx and Fy forces. Up-milling is
proposed in the case of low feed rates and high spindle speeds,
and down-milling is more favourable in high feed and spindle
speed. Oliaeia and Karpat [149] conducted pocket milling
experiments on a Stavax stainless steel (25 HRC) with differ-
ent cutting parameters. They found that the cutting speed has
the most significant effect on tool wear, followed by the feed,
depth of cut and cutting width, respectively. According to
Aurich et al. [40], tilting the cutting tool may be advantageous,
since in this case, the end of the tool is in a contact with only
the bottom of the groove for a short length, which may result
in reduced tool wear.

Chi-Hsiang et al. [185] investigated the micro-milling pro-
cess using 2D finite element simulations on SKD61 material.
Based on their simulation results, temperature and cutting
force have the most significant effect on the condition of the
cutting edge, which are important criteria for improving the
performance of the tools. Based on their study, the rake angle
has the largest effect on complex quality characteristics
(37.80% contribution based on ANOVA), so it should be an
important consideration in tool design. The optimal micro-
milling design parameters were defined in γ = 20 °, α = 7 °,
and the cutting parameters in vc = 11.31 m/min and ap = 0.01
mm. Under these conditions, the average cutting length of the
tools was lc = 299 mm.

4 Micro-milling modelling

Sufficiently accurate modelling of the micro-milling processes
is of great importance because cutting force, cutting tempera-
ture, crack propagation, surface roughness, tool wear or tool
breakage etc. can be estimated without numerous experimental
work, which is often time and cost consuming. The micro-
milling process was modelled and simulated by the researchers
using (i) analytical models [78, 148, 239], (ii) numerical models
[117, 191, 249], (iii) regression analysis [42, 171] or (iv) re-
sponse surface methodology [200, 201, 205]. Table 4

summarises the key scientific studies from the past five years
in the topic of modelling of the micro-milling process.

According to de Oliveira et al. [46], the behaviour of the
specific cutting force at micro-sizes is much more sensitive to
cutting conditions than the models set up by Taylor and
Kienzle, which consider only the feed per tooth. The method
proposed by the authors also takes the depth of cut into ac-
count. They also proved that the constants of macro-sized
models cannot be directly adapted to micro-sizes. Biró and
Szalay [171] extended the empirical specific cutting force
model to the region of thin chip removal, and identified a
new breakpoint in the region of the micro-chip removal.

Zhang et al. [148] presented a novel analytical cutting force
model and a model estimating the instantaneous tool deforma-
tion. The run-out of the tool is taken into account, which
includes differences originating form axial and tilt offset, the
trochoidal trajectory and the different tool entry and exit an-
gles. In addition, the size effect was also taken into consider-
ation as a factor, with shear and ploughing dominant parts
separated. During the validation of the results in Al6061-T6,
a good agreement was found in a wide range of cutting pa-
rameters. The presented model is promising for monitoring
the micro-milling process and for its adaptive control. In an
advanced micro-milling force model, Afazov et al. [119] pro-
posed to consider tool run-out, edge radius, cutting speed, tool
helix and rake angle, and workpiece preheating.

Numerical modelling is becoming increasingly important
as modern computers allow increasingly complex simulations
to be performed at significantly lower costs compared to ex-
perimental methods. Jin and Altinas [39] estimated the cutting
forces of micro-milling on Brass 260 material using a finite
element method. Cutting coefficients were taken into account
in the milling model, which includes helix angle, tool trajec-
tory, tool run-out, and the dynamics of the dynamometer.
Based on their results, the estimation of normal directional
cutting forces is accurate, but the feed forces are less reliable
due to the friction model built into the finite element model. If
the friction model can be improved, the estimation accuracy of
the feed forces can be close to the results of the slip-line
model. Lu et al. [76] presented a 3D coupled thermo-
mechanical cutting force model that takes the effect of tool
flank wear into account in nickel-based superalloys.Wear was
studied using a finite element model, which was found to be
an effective method. The model is based on their three-dimen-
sional, dynamic cutting force estimator analytical model pre-
sented earlier [202], which also took size effects, elastic re-
covery, and tool run-out into account.

The force model presented by Mamedov et al. [142] calcu-
lates the actual chip thickness, which considers the trajectory
of the tool as it rotates and translates. In addition, the model
takes into account the ploughing force and the elastic recovery
of the material. The tool deformations may result in the im-
perfection of the produced part; therefore, the monitoring or
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estimating tool deformations is recommended by the re-
searchers. The presented model was validated by micro-
milling experiments on Al 7075. According to Li et al.
[225], it is difficult to accurately model the current
theoretical-chip thickness due to the run-out of the tool and
single-edge-cutting phenomenon. A generic instantaneous un-
deformed chip thickness model has been presented that takes
into account the difficulties mentioned above. In this model,
the trajectory of the tool is taken into account for a complete
cycle. The presented model is much more accurate than the
previous ones, according to the authors. Jun et al. [143] have
also developed a chip thickness model for micro-milling that
takes into account the minimum chip thickness, the elastic
recovery, and the elastic-plastic nature of the workpiece. The
authors also presented a cutting force model that shows the
effect of the size of the stable built-up-edge and the special
cutting mechanism ofmicro-milling caused by the edge radius
and the effective rake angle. The approach of the slip-line
plasticity model also takes into account the chip separation

and the ploughing/rubbing phenomenon, caused by the mini-
mum chip thickness during micro-milling.

Niu et al. [248] investigated the process of chip formation
on Al6082 using an analytical model. Based on their research
results, in the case of carbide tools, the chips formed in suc-
cessive turns are affected by the tool/workpiece material
pairing (affected by the tool/material interfacial pair) and the
tool radius, while in the case of a perfectly sharp diamond tool,
the chips are more separated and remained intact. The finite
element model developed by Chi-Hsiang et al. [185] treats the
tool’s operating rake angle, clearance angle, cutting speed,
and depth of cut as factors. Their model can be a strong ref-
erence for tool manufacturers to design the geometric angles
of micro-milling tools, and the micro-machining process.
Wang et al. [41] developed a model of a micro-milling process
based on finite element simulations on Inconel 718. It has
been found that by increasing the feed and depth of cut, the
presence of continuous chip removal becomes much more
apparent while the forces also increase. Zhou et al. [123]

Table 4 Scientific studies in the modelling of the micro-milling process

Authors Type of modelling Input variables Response variables

Zhang et al. [148] Analytical modelling Run-out, trochoidal trajectory, tool deflection Cutting forces
Instantaneous tool deformation

Biró and Szalay [171] Regression analysis Cutting speed, feed rate, depth of cut,
and milling strategy

Specific cutting force

Jing et al. [216] Mechanic model, FEM hmin, run-out, elastic recovery of the material,
variety of entry and exit angles of the flutes

Cutting force, instantaneous uncut
chip thickness

Zhang et al. [239] Analytical modelling Stochastic tool wear, run-out, trajectory
of cutting edge, hmin, elastic recovery

Surface topography, surface roughness

Zhang et al. [78] Analytical modelling hmin, size effect Burr formation (Poisson and
exit burr size)

Davoudinejad et al. [249] Finite element modelling Spindle speed, depth of cut Thin features

Chen et al. [168] Finite element modelling hmin, tool run-out Surface profile, surface roughness

Peng et al. [191] Finite element modelling Cutting speed, feed rate Temperature and cutting deformation

Wojciechowski et al. [47] Combined numerical-analytical
approach

Geometric errors of the machining system,
tool deformation, minimum UCT,
chip thickness accumulation

Cutting force

Yuan et al. [117] Finite element modelling UCT, exact trochoidal trajectory of tool tip,
run-out, hmin, elastic recovery, variation
entry and exit angles

Strain hardening, strain rate sensitivity,
thermal softening behaviour, and
temperature-dependency

Cutting force

Yadav et al. [215] Finite element modelling Cutting speed Exit burr size on the up-milling side

Balázs and Takács [42] Regression analysis Chip-cross-section, contact length between
the workpiece and cutting edge

Cutting force

Gao et al. [205] Molecular dynamics Cutting speed, feed rate, depth of cut Average surface roughness, easy
slip line, slip behaviour of the lattice

Lu et al. [200] Response surface methodology Spindle speed, feed per tooth, depth of cut Vickers hardness

Lu et al. [201] Response surface methodology Spindle speed, feed per tooth, depth of cut Surface roughness

Gao et al. [205] Response surface methodology Spindle speed, feed per tooth, depth of cut Surface roughness

Abolfazl Zahedi
et al. [278]

Smoother particle hydrodynamics
combined with continuum
finite element analysis

Crystal orientation Cutting force, chip morphology
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investigated the cutting forces of micro-milling through finite
element simulation of orthogonal chip separation in NAK80
steel. The model includes the tool trajectory, run-out, edge
radius, rake angle, the relationship between the workpiece
and the tool, and the mechanical and physical properties of
the material. Based on their simulations, in the range of the
parameters of vc = 12–36 m/min, fz = 0.3–12 μm, the highest
Von Mises stress in the secondary shear zone was 2000 MPa.

Mamedov and Lazoglu [126] investigated the cutting tem-
perature in the primary and secondary deformation zones by
finite element modelling in Ti6Al4V. In their model, the tem-
peratures of the tool and the workpiece are estimated using
analytically estimated shear and frictional heat output. The
model was validated by experiments, where the results
showed a match within 12%. Yang et al. [95] investigated
the temperature distribution for Al2024-T6 micro-machining
using a new thermomechanical model. It was found that with
increasing tool radius (0; 3.2; 5; 7 μm) the temperature of the
tool decreases (57.5; 51.5; 45.4; 40.4 ° C, respectively). These
values are low compared to conventional sized milling. In
addition, the cutting forces increased, but effective stress
showed a decrease. Wissmiller and Pfefferkorn [125] studied
the temperature distribution of micro-mills with a 2D, axially
symmetric, transient finite element modelling in order to de-
velop a strategy that potentially improves tool life andmachin-
ing accuracy through temperature distribution. The modelling
showed a good agreement with the experiments, using the
carefully chosen heat input, the results were more favourable
for steel than for aluminium. Shorter cutting edges and a
shorter transition section are recommended due to the lower
thermal resistance, as it allows faster heat flow, thereby further
reducing the tool temperature.

Beruvides et al. [6] proposed the real-time monitoring of
vibrations, based on a neuro-fuzzy model to estimate the
roughness of micro-machined surfaces. Their method esti-
mates the surface quality with an error of 9.5%. Afazov
et al. [139] presented a novel vibration model (chatter) that
includes the nonlinearity of uncut chip thickness, including
tool run-out as well as tool-holder-spindle dynamics.
According to the authors, the nonlinearity of the cutting force
is mainly caused by the (i) run-out of the tool, (ii) edge radius
and (iii) cutting speed. As the tool run-out increases, the sta-
bility curves shift in the direction of the cutting speed axis, and
the stability range decreases.

Abolfazl Zahedi et al. [272] presented a hybrid method
which combines the smoother particle hydrodynamics (SPH)
with the continuum finite element analysis. The SPH is a
mesh-free method, which is advantageous in the cutting zone
where the strain and the strain-rate are high, while the contin-
uum finite element model is advantageous for the rest of the
workpiece in order to reduce the computational time. In their
study, the effect of different crystal orientations (single crystal
copper) on the cutting force and the chip morphology was

analysed. It was found that the cutting force is the most sen-
sitive in the direction of (101). Taking into consideration all of
the evaluated crystal orientation, the difference in the cutting
force was 33%. The chip morphology was found different in
every orientation. Moreover, the results were verified by or-
thogonal cutting experiments.

The molecular dynamic is a widely used simulation method
due to its special circumstances. The method based on the solv-
ing of Newton’s movement equations, and it describes the inter-
actions of the particles in the atomic level [279]. There are many
papers in the case of nano-scale machining [279–282]; however,
its application is very limited in the studies, which aim the in-
vestigation of the macro or micro-milling processes. Xiao et al.
[283] investigated the transition mechanism from brittle to duc-
tile mode at machining brittle material (6H SiC) with molecular
dynamics method. It was found that the brittle mode machining
can be achieved by the increased undeformed chip thickness.
Based on their study, (i) at 40 nm undeformed chip thickness,
the brittle fractures dominates the material removal, while (ii) at
h = 30–35 nm both the brittle fracture and ductile chip formation
occur. (iii) If the value of h is under 25 nm the dominant mech-
anism is the ductile chip removal. These simulations were ver-
ified by the authors with plunge experiments.

5 Future trends and outlook

As it was highlighted in the introduction, the miniaturisation is
a well-established recent demand of the industrial sectors,
highly encouraged by the recommendations and laws of na-
tional governments and by the European Union [1]; therefore,
current micro-milling technologies are widely investigated
and applied [284]. Nevertheless, there are still many novel
trends and challenges, which have to be worked on in the
future. Although current micro-milling technologies are often
able to generate high-quality micro-features in several mate-
rials, it is highly encouraged: to increase (i) material removal
rate, (ii) tool life, (iii) cost-effectiveness, (iv) flexibility; and
decrease (v) operation time, (vi) burr formation and (vii) sur-
face roughness. These issues could be partly improved by
using the following processes: hybrid micro-milling technol-
ogies, green or sustainable micro-milling, smart micro-milling
or artificial intelligence controlled technologies.

Hybrid micro-milling technologies try to fuse the advan-
tages of the mechanical micro-milling and another advanced
technology to—more or less—increase (i)–(iv) or decrease
(v)–(vii) properties of the process [285]. Ultrasonic
vibration-assisted micro-machining is a promising novel tech-
nology, which is able to decrease the cutting force, burr for-
mation and surface roughness, compared to the mechanical
micro-milling [236, 286–288]. Furthermore, the wettability
of the micro-machined surfaces can be more advantageous,
if the cutting tool or the workpiece is vibrated in an optimised
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ultrasonic frequency. The tool life and the process efficiency
can be increased by the application of laser supported micro-
machining technologies [195, 196, 289, 290]. Their applica-
tion also helps to improve the surface quality.With due regard
to the thermal effects, burr formation can be reduced for
difficult-to-cut materials like titanium alloys or composites
[68, 291]. The cutting forces can be significantly reduced
and it can also be used to process special or brittle materials
(e.g. borosilicate glass). The focused ion beam micro-
machining is also a promising technology, which is able to
generate high-quality micro-features in difficult-to-cut mate-
rials, e.g. an extremely low average surface roughness (Ra =
5.6 nm) could be achieved in polycrystalline materials [256].
Moreover, the micro-milling of soft materials could also be
fairly complicated; however, the ball burnishing technology
[292] can be applied in order to increase the hardness of the
upper surface, which can result in better cutting conditions.

Micro-milling accuracy depends significantly on the key
elements of the machine tool (e.g. spindle, motion axes)
[293, 294]. According to Luo et al. [295], bench-type ultra-
precision machines will be one of the future development
tendencies. They also highlighted that further investigation is
needed to optimise and develop micro-milling tooling fabri-
cation, fixturing and tool condition monitoring methods.

Green or sustainable micro-milling is going to probably
spread more and more due to the increasing attention to the
environment, although it is often a difficult-to-apply or costly
technology [184, 296]. Furthermore, the energy-consumption
minimisation and the refusal of use of application of cutting
fluids (dry machining) often conflict with operation time
minimisation or efficiently. In addition to dry machining, min-
imum quantity lubrication is becomingmore widespread [160,
203] and special (e.g. nanofluid) and hybrid cooling lubrica-
tion systems have also appeared [152, 156, 297], and their use
is expected to increase.

Smart micro-milling or artificial intelligence controlled
technologies tries to minimise operation time, maximise ma-
terial removal rate and increase tool life by the application of
process monitoring and diagnostics. In the future, more indus-
try 4.0 solutions (big data, artificial neural networks, neuro-
fuzzy systems, cloud processing, digital twin etc.) will be
probably implemented into micro-milling processes [227,
298–300]. Not only the process smartening but also the cut-
ting tool smartening will be probably the scope of the near-
future, e.g. realise bio-inspired tool self-sharpening or tool
self-healing [301].

6 Conclusions

In the present paper, current studies dealing with micro-
milling technologies were reviewed with particular attention
to the discussion of the influences of the process parameters

on the cutting force, temperature, vibration and surface rough-
ness. Based on the present review, the following conclusions
can be drawn:

& Micro-milling is suitable for producing complex 3D ge-
ometries in several materials; however, its application still
meets many challenges and difficulties: (i) the tool wear
often result in not only inappropriate machined surfaces
but also in tool breakage; (ii) it is a difficult-to-predict
process due to the size effect, ploughing effect and micro-
structure (e.g. inhomogeneity, material defects) of the
workpiece; (iii) it is challenging to remove micro-
machining induced burr; (iv) inappropriate vibration often
breaks the cutting tool; (v) it is a difficult-to-monitor pro-
cess due to the relatively small forces and measures.

& Chip removal and burr formation mechanisms of micro-
milling significantly differ from the mechanisms known in
macro-sized machining if the size of the theoretical chip
thickness is comparable to the size of the minimum chip
thickness. The ploughing effect often dominates the pro-
cess, and the shearing mechanism is only secondary.

& The cutting force, cutting temperature and vibrations in
micro-milling of quasi-homogeneous materials can be
precisely estimated by experimental or theoretical models.
However, it is still difficult to estimate these parameters if
not only the micro-structure of the workpiece is inhomo-
geneous, but the macrostructure also (e.g. composites or
sandwich structures), and if the machined geometry is
complex (needs 4 or 5 axis movements).

& Both process and quality characteristics are strongly influ-
enced by tool wear in micro-milling, it is therefore highly
recommended to monitor it, which can be conducted
based on direct measurement (often optically), or indirect
measurement (cutting forces, vibrations, cutting tempera-
ture, power etc.) methods. Monitoring and diagnostics of
the micro-milling process are extremely challenging be-
cause the values of monitored parameters are often too
small and difficult to measure.

& Although current micro-milling technologies are often
able to generate high-quality micro-features in several ma-
terials, it is highly encouraged to increase material remov-
al rate, tool life, cost-effectiveness, and flexibility; and
decrease operation time, burr formation and surface
roughness. These issues could be partly improved by
using hybrid micro-milling technologies, green or sustain-
able micro-milling, smart micro-milling or artificial intel-
ligence controlled technologies.
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