
Journal of Computing and Information Technology - CIT 22, 2014, 2, 69–84
doi:10.2498/cit.1002381

69

A Review on Modern Distributed
Computing Paradigms: Cloud
Computing, Jungle Computing
and Fog Computing

Majid Hajibaba and Saeid Gorgin
Department of Electrical and Information Technology, Iranian Research Organization for Science and Technology (IROST),
Tehran, Iran

The distributed computing attempts to improve perfor-
mance in large-scale computing problems by resource
sharing. Moreover, rising low-cost computing power
coupled with advances in communications/networking
and the advent of big data, now enables new distributed
computing paradigms such as Cloud, Jungle and Fog
computing.

Cloud computing brings a number of advantages to
consumers in terms of accessibility and elasticity. It is
based on centralization of resources that possess huge
processing power and storage capacities. Fog computing,
in contrast, is pushing the frontier of computing away
from centralized nodes to the edge of a network, to enable
computing at the source of the data. On the other hand,
Jungle computing includes a simultaneous combination
of clusters, grids, clouds, and so on, in order to gain
maximum potential computing power.

To understand these new buzzwords, reviewing these
paradigms together can be useful. Therefore, this paper
describes the advent of new forms of distributed com-
puting. It provides a definition for Cloud, Jungle and
Fog computing, and the key characteristics of them are
determined. In addition, their architectures are illustrated
and, finally, several main use cases are introduced.

Keywords: distributed system, cloud computing, jungle
computing, fog computing

1. Introduction

The introduction of computer networks in the
1970s led to the development of distributed sys-
tems (Andrews, 1999). A distributed system is
a collection of independent computers that ap-
pears to the user as a single computer (Tanen-
baum & Steen, 2006) and provides a single sys-
tem view. The coordinated aggregation of these

distributed computers allows access to a large
amount of computing.

Up to this time, a few technologies emerged
in the distributed systems. Peer-to-peer (P2P)
network is one of the primary distributed sys-
tems. However, an important class of dis-
tributed systems is the distributed computing
system which uses for high performance com-
puting tasks (Tanenbaum & Steen, 2006). In
this way, with low-cost and more powerful per-
sonal computers, as well as high-speed net-
works, Cluster computing has become widely
popular. Other well-known distributed comput-
ing paradigms, including Grid computing and
Cloud computing, appeared with the evolution
of the Internet in the mid-1990s and 2007, re-
spectively.

Cloud computing has become the hottest tech-
nology within a few years (Qian, Luo, Du, &
Guo, 2009). But, according to Gartner Hype
Cycle for Emerging Technologies, 2013, Cloud
computing has passed the “peak of inflated ex-
pectations” and is headed into the “trough of
disillusionment” with two to five years away
from its mature. (Gartner inc., 2013). There-
fore, the trend in distributed systems is changing
toward the use of newer computing paradigms.

Jungle computing came on the scene as a new
paradigm to achieve better performance by us-
ing diverse and highly non-uniform distributed
computing systems (Seinstra, et al., 2011; Ka-
hanwal & Singh, 2012). Also, Fog computing

70 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

extended the Cloud computing paradigm to the
edge of the network, in 2012, to enable a new
kind of applications and services (Bonomi, Mil-
ito, Zhu, & Addepalli, 2012). A taxonomy of
distributed computing paradigms is shown in
Figure 1.

Distributed Computing

P2P
Computing

Cluster
Computing

Utility
Computing

Grid
Computing

Cloud
Computing

Fog
Computing

Jungle
Computing

Figure 1. Taxonomy of distributed computing.

In this paper, we review these two new dis-
tributed computing paradigms, Jungle comput-
ing and Fog computing, along with Cloud com-
puting which is related to them. We name
these three as modern distributed computing
paradigms. A review of these models and their
characteristics helps to better understand mod-
ern distributed computing paradigms and their
similarities and differences.

The rest of the paper is organized as follows.
The Cloud computing model, characteristics
and concepts are explained in Section 2. In
Section 3, the Jungle computing is described
and its characteristics are delineated. In Sec-
tion 4, Fog computing and its characteristic are
introduced. Finally, in Section 5, we conclude
the paper with a summary of our review.

2. Cloud Computing

2.1. Overview

Cloud computing is neither a completely new
concept (Antonopoulos&Gillam,2010; Halpert,
2011) nor a new technology (Halpert, 2011;
Yang, Chen, & Chen, 2012). It is just a new
business operationalmodel originated fromother
existing technologies such asVirtualization,SOA
and Web2. Several definitions of Cloud com-
puting exist in the academic and the commer-
cial world (Buyya, Broberg, & Goscinski, 2011;
Mell & Grance, 2009; Armbrust, et al., 2009;
Vaquero, Rodero-Merino, Caceres, & Lindner,

2009; Forrest & inquiries, 2009), but we com-
bine those definitions into a new one:

Cloud is a parallel and distributed system con-
sisting of a shared pool of virtualized resources
(e.g. network, server, storage, application, and
service) in large-scale data centers. These re-
sources can be dynamically provisioned, recon-
figured and exploited by a pay-per-use eco-
nomic model in which consumer is charged
on the quantity of cloud services usage and
provider guarantees Service Level Agreements
(SLA) through negotiationswith consumers. In
addition, resources can be rapidly leased and
released with minimal management effort or
service provider interaction. Hardware man-
agement is highly abstracted from the user and
infrastructure capacity is highly elastic.

Data center #1

Cloud
manager

Data center #3

Data center #2

Figure 2. Cloud computing architecture.

Figure 2 depicts an abstract view of Cloud com-
puting architecture. The aim is to concen-
trate computation and storage in data centers,
where high-performance machines are linked
by high-bandwidth connections, and all of these
resources are carefully managed. The end-users
make the requests that initiate computations and
receive the results (Hayes, 2008).

In spite of the existing differences among def-
initions of Cloud computing, it has some basic
characteristics that are described in Table 1.

There are some other characteristics of Cloud
computing that are summarized in (Gong, Liu,
Zhang, Chen, & Gong, 2010).
In addition to the outstanding characteristics,
Cloud computing brought cost saving for con-
sumers through removing capital expenses
(CapEx) as well as reducing operating expenses
(OpEx). In CapEx, this saving is achieved by
eliminating the total cost of the entire infrastruc-
tures. In OpEx, saving is achieved by sharing

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 71

Characteristic Comment

Virtualization

Hardware Virtualization mediates access to the physical resources, decouples applications from
the underlying hardware and creates a virtualized hardware platform using a software layer. This
software layer is virtual machine monitor (VMM), also called hypervisor, which creates and runs
virtual machines (VM). A virtual machine is like a real computer, except that it uses virtual
resources.
Using Virtualization, virtual resources are isolated from each other and are independent of partic-
ular hardware, thus enabling the assignment of virtual resources to another physical hardware in
case of capacity constraints or hardware failures.
Through Virtualization, the underlying architecture is abstracted from the user while it still
provides flexible and rapid access to it.

Multitenancy

This feature allows several customers (tenants) to share data center infrastructure, without
being aware of it and without compromising the privacy and security of each customer’s data
(through isolation). Even though multitenancy is cost-effective, it causes performance degra-
dation in simultaneously accessing shared services (multi-tenant interference) and performance
unpredictability.

Service
oriented
architecture
(SOA)

In this architecture everything is expressed and exposed as a service (Buyya, Broberg, &
Goscinski, 2011) which delivers an integrated and orchestrated suite of functions to an end-user
through composition of both loosely and tightly coupled functions (Vouk, 2008). Abstraction and
accessibility are two keys to achieve the service oriented conception (Gong, Liu, Zhang, Chen, &
Gong, 2010).

On-demand
self-service

Cloud computing allows self-service access so that customers can request, customize, pay, and use
services, as needed, automatically, without requiring interaction with providers or any intervention
of human operators (Mell & Grance, 2009; Buyya, Broberg, & Goscinski, 2011).

Elasticity
(dynamic
provisioning)

To provide the illusion of infinite resources, more virtual machines (on two or more physical
machines) can be quickly provisioned (scale out), in the case of peak demand, and rapidly
released (scale in), to keep up with the demand. Also, more virtual resources (on a single physical
machine) can be provisioned when the work load increases (scale up) and released when the work
load decreases (scale down). These scaling methods can automatically be done according to the
user’s predefined conditions (Auto Scaling).

Broad
network
access

Services are available over the network and accessed through standard mechanisms that can be
achieved by heterogeneous thin or thick client platforms such as mobile phones, laptops and PDAs
(Mell & Grance, 2009).

Resource
pooling

The Cloud provider offers a pool of computing resources to serve multiple consumers using a
multi-tenant model, with different physical and virtual resources. Location transparency in the
Cloud that hides resource’s physical location from the customer (but provider may offer location
at a higher level of abstraction, like country) provides more flexibility to Cloud providers for
managing their own resource pool.

Business
model

Cloud computing is mainly supported by gigantic IT companies. They plan that all investments
on Cloud computing should get return on investment (ROI) in the near future (Gong, Liu, Zhang,
Chen, & Gong, 2010). Still, there are many business models that can be used in Cloud computing,
Cloud providers often employ a pay-per-use service-driven model.

Measured
service

Cloud computing is based on the concept of utility computing which provides computing services
through an on-demand, pay-per-use billing method. Cloud systems can transparently monitor,
control and measure service usages for both the provider and the consumer by leveraging a
metering capability at some level of abstraction appropriate to the type of service, similar to what
is being done for utilities such as Electricity, Gas, Water, Telecommunication, etc.

Customization
Cloud computing allows users to deploy specialized virtual appliances and to be given privileged
(root) access to the virtual servers in order to consider the great disparity between user needs in a
multi-tenant environment (Buyya, Broberg, & Goscinski, 2011).

Table 1. Cloud computing characteristics.

the cost of electricity, system admins, hardware
engineers, network engineers, facilities man-
agement, fire protection, and insurance or local
and state taxes on facilities. There are other
hidden OpEx costs that a Cloud instance can
eliminate, such as purchasing and acquisition
overhead, asset insurance, and business inter-

ruption planning and software (Joyent, 2012).

The development of Cloud computing tech-
nology faced many critical obstacles such as
security, availability, accountability, confiden-
tiality, privacy, data provenance, data lock-in,
Cloud interoperability, lack of standardization,

72 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

SLA issues, customization, performance unpre-
dictability, technology bottlenecks, etc., which
are addressed in many researches (Vouk, 2008;
Armbrust, et al., 2009; Dikaiakos, Katsaros,
Mehra, Pallis, & Vakali, 2009; Zhang, Cheng,
& Boutaba, 2010; Jansen, 2011; Hu, et al.,
2011; Akande, April, & Van Belle, 2013; Xiao
& Xiao, 2013).

At least three deliverymodels exist on theCloud:
Software as a Service (SaaS), Platform as a
Service (PaaS), and Infrastructure as a Service
(IaaS) deployed as public, private, community,
and hybrid Clouds. These service types and
boundaries are elaborated in the following sec-
tions.

2.2. Delivery Models

Consumers purchase Cloud services in the form
of infrastructure, platform, or software.

Infrastructure services are considered to be the
bottom layer of Cloud computing systems (Nur-
mi, et al., 2009). Infrastructure as a Ser-
vice (IaaS) offers virtualized resources (such as
computation, storage, and communication) on-
demand to the infrastructure specialists (IaaS
consumers) who are able to deploy and run ar-
bitrary operating systems and customized ap-
plications. IaaS Cloud providers often provide
virtual machines (VMs) with a software stack
that allows to make them customized, similar to
physical servers. They grant privileges to users
for doing some operations on their virtual server
(such as starting and stopping it). Therefore, an
infrastructure specialist does notmanage or con-
trol the underlying Cloud infrastructure while
having control over operating systems, stor-
age, deployed applications, and possibly limited
control of some networking components, e.g.
host firewalls (Marinescu, 2013). This type of
service is particularly useful for start-ups, small
and medium businesses (SMBs) with rapidly
expanding or dynamic changes, that do not want
to invest in infrastructure. IaaS providers fo-
cus on availability guarantees, specifying the
minimum percentage of time the system will
be available during a certain period in terms
of SLA (Buyya, Broberg, & Goscinski, 2011).
The SLA for the IaaS is the most complex as
the infrastructure specialists have control over
the virtual machines (Myerson, 2013).

Another service in the Cloud that offers a higher
level of abstraction to make a Cloud easily
programmable is known as Platform as a Ser-
vice (PaaS) (Buyya, Broberg, & Goscinski,
2011). PaaS Cloud providers provide a scal-
able platform with a software stack containing
all tools and programming languages supported
by the provider. They allow developers (PaaS
consumers) to create and deploy applications
without the hassle of managing infrastructure,
and regardless of the concerns about processors
and memory capacity. Therefore, the devel-
oper does not manage or control the underlying
Cloud infrastructure including network, servers,
operating systems or storage while having con-
trol over the deployed applications and possibly
application-hosting environment configurations
(Mell & Grance, 2009). PaaS is not useful
for portable applications, applications written
in a special programming language, or appli-
cations that need specific hardware or software
to run. Besides the infrastructure availability,
PaaS providers try to guarantee the accessibil-
ity and accuracy of their platform in terms of
SLA. The SLA for the PaaS is not as complex
as the SLA for the IaaS in which the developers
have control over the application development
life cycle, but not over the virtual machines.

Delivering applications supplied by service pro-
viders at the highest level of abstraction in
the Cloud to the end-users (SaaS consumers)
through a thin client interface such as a web por-
tal is known as Software as a Service (SaaS).
SaaS Cloud providers supply a software stack
containing an operating system, middlewares
such as database or web servers, and an in-
stance of the Cloud application, all in a vir-
tual machine. Therefore, the end-user does not
manage or control the underlying Cloud infras-
tructure including network, servers, operating
systems, storage, or even individual application
capabilities, with the possible exception of lim-
ited user-specific application configuration set-
tings (Marinescu, 2013).
SaaS alleviates the burden of software mainte-
nance for customers and simplifies development
and testing for providers (Buyya, Broberg, &
Goscinski, 2011). SaaS providers try to guar-
antee end-user access to the latest update of the
SaaS application on a twenty-four hour, seven
days a week (24x7) basis at a high rate and the
number of end-users that can be served simul-
taneously in terms of SLA. The SLA for the

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 73

SaaS is the simplest as the end-users only have
access to the SaaS application. These three de-
livery models are demonstrated in Figure 3.

Virtualization Layer

Datacenter Infrastructure (Server, Network, Storage, ...)

OS OS

Platform(s) Platform Platform

Application(s) Application(s) Application

OS

SaaSPaaSIaaS

End UserDeveloperInfrastructure Specialist

Figure 3. Infrastructure as a Service, Platform as a
Service, Software as a Service.

Amazon EC2, Google App Engine and Sales-
force.com are three main use cases of cloud
service models that offer IaaS, PaaS and SaaS
respectively.

2.3. Deployment Models

There are four general Cloud deployment mod-
els known as private, public, community, and
hybrid Cloud.

In Private Cloud, the infrastructure is owned and
exclusively used by a single organization, and
managed by the organization or a third-party
and may exist on or off the premises of the
organization. Many organizations, particularly
governmental or very large organizations, em-
braced this model to exploit the Cloud benefits
like flexibility, reliability, cost reduction, sus-
tainability, elasticity, and so on. However, they
are often criticized for being similar to tradi-
tional proprietary server farms and for not pro-
viding benefits such as no up-front capital costs
(Zhang, Cheng, & Boutaba, 2010).

InCommunityCloud, the infrastructure is shared
by several organizations and supports a specific
community with shared concerns such as mis-
sion, security requirements, policy, and com-
pliance considerations (Mell & Grance, 2009).

It may be owned and managed by the organi-
zations or by a third-party and may exist on-
premises or off-premises.

In Public Cloud, the infrastructure exists on the
premises of the Cloud provider and is avail-
able to the general public or a large industry
group, and is owned by an organization selling
Cloud services. There are three major Public
Cloud computing styles based on the underly-
ing resource abstraction technologies, including
Amazon EC2, Google App Engine and Win-
dows Azure (Qian, Luo, Du, & Guo, 2009).
However, a public Cloud can use the same hard-
ware infrastructure (with large scale) as a Pri-
vate one (Marinescu, 2013). In contrast with
Private, Public Cloud lacks fine-grained control
over data, network and security settings, which
hampers their effectiveness in many business
scenarios (Zhang, Cheng, & Boutaba, 2010).
This model is suitable for small and medium
businesses (SMBs) to support their growing
business without huge investment in the infras-
tructure.

Sometimes the best infrastructure to fit an or-
ganization’s specific needs requires both Cloud
and on-premises environments. InHybridCloud,
the services within the same organisation are a
composition of two or more Clouds (Private,
Community, or Public) to address the limita-
tions of each model with more scalability and
flexibility whilst both saving money and pro-
viding additional security. On the down side,
Hybrid Cloud environments involve complex
management and governance challenges.

Some other deployment models, such as Vir-
tual Private Cloud and Managed Cloud are well
known but not widely used. Virtual Private
Cloud is a Private Cloud that leverages a Pub-
lic Cloud infrastructure using advanced network
capabilities (such as VPN) in an isolated and
secured manner. Managed Cloud is a type of
private Cloud that is managed by a team of ex-
perts in a third-party company. Managed Cloud
includes access to a dedicated, 24 × 7 × 365
support team via phone, chat, online support,
and so on to support Cloud servers from the OS
up through the application stack. Amazon VPC
(Amazon VPC, n.d.) and Rackspace Managed
Cloud (Rackspace, n.d.) are examples of Vir-
tual Private Cloud and Managed Cloud, respec-
tively. There are also Managed Virtual Private

74 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

Public Cloud

Private Cloud
Virtual Private

Cloud
Free User

User at ORG A

Community
Cloud

Hybrid Cloud

User at ORG B

User at ORG C

User at ORG D

Figure 4. Cloud computing deployment models.

Cloud such as HP Helion Managed Virtual Pri-
vate Cloud (HP Helion Managed Virtual Private
Cloud, n.d.).

Figure 4 illustrates the abovementioned deploy-
ment models.

3. Jungle Computing

3.1. Overview

Jungle computing is a simultaneous combina-
tion of several distributed and high performance
computing systems to achieve peak performance
as well as reduce programming complexity.
Jungle computing system is highly heteroge-
neous. It may include clusters, grids, clouds,
supercomputers, and even mobile devices, pos-
sibly with accelerators such as GPUs and FP-
GAs (Drost, et al., 2012).

Traditional distributed systems are more equip-
ped with state-of-the-art many-core technolo-
gies such as multi-core processors, processor
clusters, GPUs, as well as supercomputers on-
chip. Although these devices often provide or-
ders of magnitude speed improvements, they
make computing platforms more heterogeneous
and hierarchical and vastly more complex to
programand use (Seinstra, et al., 2011). Further
complexities because of urgent desire for scala-
bility and several issues like data distribution,
software heterogeneity, and ad-hoc hardware
availability force scientists into concurrent use
of multiple platforms (Seinstra, et al., 2011).
These platformsmayuse differentmiddle-wares,
programming interfaces, access policies, and
protection mechanisms. Furthermore, the di-
verse computing paradigms differ in usage mo-
del. As an example, a stand-alone machine is
usually permanently available, a Grid resource
will have to be reserved, whilst a Cloud requires
a credit card to gain access (Drost, et al., 2012).

SuperComputer
Standalone
Machine Desktop GridsMobile Device

Cloud

Cluster
Interface

Supercomputer
Interface

Cloud
Interface

Standalone Machine
Interface

Mobile Device
Interface

Desktop Grid
Interface

GRID

Grid
Interface

Middleware

Arbitrary
application

Jungle

Local-area

Wide-area

Local-area

node
node

Lo
ca

l-a
re

a

Wide-area

Figure 5. Jungle computing architecture.

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 75

This new distributed computing model makes
available a diverse collection of resources to
research scientists. These resources can be
independent computers, supercomputers, clus-
ter systems, grids, desktop grids, clouds, etc.,
which are all connected via fast networks. By
looking at such systems from a high-level per-
spective, it can be seen that all these systems
consist of a number of basic computing nodes.
Each node has local memories and processors,
and is capable of communicating over a local-
area (multi-node) or wide-area (multi-local-
area) connection and create a Jungle (multi-
wide-area), as is shown in Figure 5.

Jungle computing systems, in the worst case, in-
clude all computing platforms depicted in Fig-
ure 5. However, in practice, every possible sub-
set of this figure represents a realistic scenario
for Jungle computing system. Hence, if there
are fundamental methodologies working in the
worst case scenario, it can make sure that the
solution applies to all possible scenarios.

For each used resource in the Jungle, the arbi-
trary application may have to be re-compiled, or
even partially re-written, to handle the changes
in available software and hardware (Drost, et al.,
2012). Moreover, to run any application, a dif-
ferent middleware interface for each resource
should be available.

Once an application has been successfully star-
ted in a Jungle, another aspect that hinders the
use of Jungle computing systems is the lack of
connectivity between resources. Resources, es-
pecially clusters and supercomputers, are usu-
ally not designed for communication with the
outside world. Traditional tightly coupled HPC
tools are not particularly suited for distributed,
heterogeneous and hierarchical environments.
Therefore, a Jungle computing platform over-
comes these problems in order to simultane-
ously and transparently use all of the available
computing powers. Consequently, Jungle must
have at least the following characteristics (Se-
instra, et al., 2011) which are listed in Table 2.

Characteristic Comment

Resource
independence

Resources differ considerably in their details such as processor architecture, amount of
memory and performance. This feature hides the physical characteristics of resources from
the applications or end-users interacting with those resources.

Middleware
independence and
interoperability

Middleware independence allows a Jungle to embrace new middleware technologies with
minimal impact on their applications, thereby it eliminates the need for implementing a
different interface for each middleware and provides interoperability between middlewares.

Robust
connectivity and
globally unique
resource naming

This feature is needed to remove connectivity problems such as communication problems with
firewalls, transparent renaming of IP addresses, and multi-homing (machines with multiple
addresses).
Resource names must be globally unique within a Jungle so that when a user or application
on the Jungle specifies a resource name, the connection is routed to that resource. These
resources can have the same name in their local system.

Malleability
Jungle with malleability will be able to adapt to resource changes. Malleability provides
tolerance to the variations in resources availability, e.g., reservations ending, in order to
correctly handle joining and leaving.

System-level
fault-tolerance

This feature ensures that the Jungle computing system can be used by the end-user, even when
something goes wrong in one or more elements in the hardware configuration. In case of a
failure, the failing resource has to be replaced by a backup system.

Application-level
fault-tolerance

This feature can complement system-level fault-tolerance by restoring the state of the
applications that ran on a failed resource.

Parallelization

This feature relieves programmers from the tedious and error-prone manual parallelization
process and makes programming models available to end-users. It hides all or most of the
inherent complexities of parallelization by converting automatically sequential program into
parallel program utilizing all available resources.

Integration with
external software

This feature is needed for integrating black box legacy codes such as system-level soft-
ware (e.g., specialized communication libraries) and architecture-specific compute kernels
(e.g., CUDA-implemented algorithms for GPU-execution) with a software system for Jungle
computing.

Table 2. Jungle computing characteristics.

76 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

Computational astrophysics, climate modelling
(Drost, et al., 2012), remote sensing (Kessel, et
al., 2014), image analysis, drug designing, as-
tronomy or Neuroinformatics (Seinstra, et al.,
2011) are some examples of the applications
that can benefit from Jungle computing systems.

3.2. Computing in the Jungle

In this section, we briefly describe two software
platforms designed to support Jungle comput-
ing. First, the Ibis high-performance distributed
programming system (Seinstra, et al., 2011),
and next the Constellation (Maassen, Drost,
Bal, & Seinstra, 2011) that is a platform for
creating flexible and efficient applications for
Jungle computing systems, will be described.

3.2.1. Ibis

Ibis (Ibis: Computing in the Jungle, n.d.), is
an open source Java distributed computing soft-
ware platform with an integrated, layered archi-
tecture that offers an efficient and transparent
solution for Jungle computing. The aim of Ibis
is to create an efficient Java-based platform for
distributed computing that combines all of the
fundamental methodologies into a single inte-
grated programming system to simplify the pro-
gramming and deployment of Jungle Comput-
ing. Ibis provides high-level, architecture- and
middleware-independent interfaces that allow
transparent implementation of efficient applica-
tions. These features provide robustness and dy-
namic variations in the availability of resources
(Seinstra, et al., 2011).

The Ibis platform consists of two distinct sub-
systems, which provide all functionality that is
traditionally associated with programming lan-
guages and communication libraries, as well
as operating systems. The former is Ibis Dis-
tributedDeployment System which allows users
to easily start and deploy any application in
the Jungle, while the latter is Ibis High Per-
formance Programming System which allows
programmers to write applications specifically
designed to run in a Jungle computing system.
An overview of the Ibis architecture is depicted
in Figure 6, whilst detailed architecture can be
seen in (Bal, et al., 2010).

Figure 6. Overview of the Ibis architecture (Drost, et al.,
2012).

Ibis is designed in a modular way and consists
of a number of sub-projects, which are possible
to be used individually. Each sub-project solves
a specific problem. Some of them are showed
in Table 3.

Although Ibis is written in Java, it interfaces
easily with the existing software and supports
running any application written in any program-
ming language such as C, C++, FORTRAN,
MPI, or otherwise (Drost, et al., 2012).

The Ibis platform meets the characteristics of
Jungle computing (Seinstra, et al., 2011) as pre-
sented in Table 4.

3.2.2. Constellation

Ibis/Constellation, or in brief Constellation, is
a lightweight software platform specifically de-
signed for distributed, heterogeneous and hier-
archical computing environments. As addition
to the Ibis project, it enables applications to ef-
ficiently run on Jungle computing systems. In
addition, Constellation makes it straightforward
to re-targeting applications to completely differ-
ent computing environments (Maassen, Drost,
Bal, & Seinstra, 2011).

In Constellation, applications consist of multi-
ple distinct, loosely coupled activities that com-
municate using events, with certain dependen-
cies between them. Each activity represents a
distinct action that needs to be performed by
the application. Multiple implementations of

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 77

Sub-
system

Sub-
project Problem to solve Comment

Zorilla
Building a (desktop)
grid quickly with as
little effort as possible

Zorilla is a lightweight, easy-to-use and fully P2P middleware,
with no central components (to hinder scalability or fault-
tolerance), that creates a single distributed environment from any
available set of computer resources on the systems ranging from
clusters and desktop grids, to grids and clouds (N. Drost, 2011).

JavaGAT

Confusing with com-
plicated middleware
such as Globus 2, SSH,
gLite, Globus 4, etc.

Java Grid Application Toolkit is a generic and simple interface
that provides a uniform interface. It sits between applications
and numerous types of middleware, such as Globus, gLite, SSH
or Zorilla, and offers a single and consistent system that dynam-
ically forwards application calls on the JavaGAT API to one or
more middlewares that implement the requested functionality
(Nieuwpoort, Kielmann, & Bal, 2007).

Ib
is

D
is

tr
ib

ut
ed

D
ep

lo
ym

en
tS

ys
te

m

IbisDeploy
Thinking in terms of
middleware
operations

The IbisDeploy is a library for deploying applications in the Jun-
gle by end-users that allows the user to manually load resources
and applications, to add new resources to a running application
and to pause and resume applications at any time.

Smart-
Sockets

Communication
through firewalls,
NATs, non-routed
networks, etc.

SmartSockets, a communication library, offers a single integrated
solution that automatically discovers a wide range of connectivity
problems and attempts to solve them with little or no support
from the user, behind a simple interface that closely resembles
sockets (Maassen & Bal, 2007).

IPL

Fault-tolerance,
portability,
streaming,
malleability and
multi-threading for
customized Jungle
applications

The Ibis Portability layer, a low level message-based communi-
cation library, is the interface between Ibis implementations for
different architectures and the runtime systems that provide pro-
gramming models suitable for writing applications, specifically
for the use in a Jungle, to support fault-tolerance and malleability.

Ibis RMI
Performance problems
in RMI applications

Ibis RMI is an efficient re-implementation of Remote Method
Invocation (RMI), which is an object-oriented form of Remote
Procedure Call (RPC).

Ib
is

H
ig

h
Pe

rf
or

m
an

ce
Pr

og
ra

m
m

in
g

Sy
st

em

Satin
Difficulty in writing
parallel applications

It is a transparent, high-level and efficient divide-and-conquer
programming model that recursively splits a program into sub-
tasks and then waits until the sub-tasks are completed. Using
the Satin model, parallelization is obtained automatically for
divide-and-conquer applications.

MPJ/Ibis Using customized
MPI

It is an MPI version implemented completely in Java, and so is
platform independent for using customized MPI.

JEL

Dealing with real-
world Jungle comput-
ing systems, in which
resources can crash
and can be added or
deleted

Join-Elect-Leave (JEL), a unified model for tracking resources
in dynamic and distributed environments, is based on the concept
of signalling (i.e., notifying the application when resources have
Joined or Left the computation) and Elections (i.e. selecting
resources with a special role). It names resources globally unique
and keeps a track of the available resources at runtime.

Table 3. Ibis sub-projects.

an activity may be created to support different
hardware architectures and they may consist of
a script, C, CUDA, OpenMP or MPI, etc. Con-
stellation uses Executors to represent hardware
capable of running activities. An executor may
represent a single core of a machine, a single
machinewithmultiple cores, a specialized piece
of hardware (e.g., a GPU), an entire Cluster, and
so on (Maassen, Drost, Bal, & Seinstra, 2011).

It is very easy to exploit new resources by de-
ploying extra executors on those new resources.
Figure 7 shows an abstract of the Constellation
architecture.

This approach to application development vastly
reduces the programming complexity (Maassen,
Drost, Bal, & Seinstra, 2011), which is the aim
of Jungle computing. Instead of creating a sin-
gle application capable of running in a complex

78 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

Characteristic of
Jungle Computing Ibis

Resource independence Since Ibis is a Java-based platform, JVM Virtualization provides resource independence.
Middleware
independence and
interoperability

JavaGAT provides this functionality using adapters which interact with a middleware
to start the required task. JavaGAT will automatically select the appropriate adapter for
each resource, and adapters are easily added, if needed.

Robust connectivity
and globally unique
resource naming

These features are supported by the SmartSockets and the JEL, respectively.

Malleability
System-level
fault-tolerance

These features provided by the Satin, the IPL and resource tracking mechanisms of
the JEL, which is an integral part of the IPL. Zorilla also supports fault tolerance and
malleability by implementing all functionality using peer-to-peer techniques.

Application-level
fault-tolerance

Application-level fault-tolerance can be built on top of the system-level fault-tolerance
mechanisms provided by the IPL.

Parallelization
This requirement is fulfilled through a number of programming models such as Satin
model implemented on top of the IPL.

Integration with
external software

This is achieved through JNI (Java Native Interface) or through adaptor interfaces
(plugins).

Table 4. Ibis vs. Jungle characteristics.

distributed and heterogeneous environment, it
is easier and often faster to just create several
independent activities targeted at smaller and
simpler homogeneous environments.

Using equi-kernels, which are different imple-
mentations of the same kernel functionality,
integration with external software is provided
while maintaining resource independence. By
including a default equi-kernel for each opera-
tion, the Constellation can transparently exploit
special hardware and codes, without failing to
operate when such hardware is not available
(Kessel, et al., 2014). Furthermore, the match-
making mechanism and labelling approach of
Constellation makes it very simple to config-
ure. Matchmaking (Raman, Livny, & Solomon,

Figure 7. An abstract of the Constellation architecture
(Maassen, Drost, Bal, & Seinstra, 2011).

1998) is one of the main problems in heteroge-
neous applications that gives the right activities
to the right resource while Labelling allows an
application to tag different types of activities
and hardware (Maassen, Drost, Bal, & Seinstra,
2011).

At last, Constellation meets the characteristics
of Jungle computing by leveraging Ibis plat-
form that fully provides middleware indepen-
dence, robust connectivity, and system-level
fault-tolerance, while it offers mechanisms to
support for malleability and application-level
fault-tolerance (Kessel, et al., 2014).

4. Fog Computing

4.1. Overview

The term Fog computing has been embraced
by Cisco Systems as a new paradigm (Bonomi,
Milito, Zhu, & Addepalli, 2012). Fog com-
puting is a systematic, highly virtual, secure,
and network-integrated platform that provides
computing, storage, and networking services
between end points and traditional Cloud com-
puting data centers (Bonomi, Milito, Zhu, &
Addepalli, 2012). It is a model in which data,
processing and applications are concentrated in
devices at the network edge, rather than exist-
ing almost entirely in the Cloud, to isolate them

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 79

from the Cloud systems and place them closer
to the end-user, which is the aim of Fog com-
puting.

The Fog is organizationally located below the
Cloud and serves as an optimized transfermedium
for services and data within the Cloud, which is
depicted in Figure 8.

Cloud
compute, network, storage, ...

compute, network,
storage

Internet
Internet Access

 Point

Fog Fog compute, network,
storage

Fog

Core

 Geographical Distributed Edges

compute, network,
storage

Figure 8. Fog computing architecture.

The Fog computing happens outside the Cloud
and ensures that Cloud services, compute, stor-
age, workloads, applications and big data can be
provided at any edge of the network (Internet)
in a truly distributedway. By controlling data in
various edge points, Fog computing integrates
core Cloud services to turning data center into
a distributed Cloud platform for users. In other
words, FOG brings computing from the core to
the edge of the network (fog).

In this context, it may be just another name
for Edge computing (Bonomi, The Smart and
Connected Vehicle and the Internet of Things,
2013). Edge Computing is pushing the fron-
tier of computing applications, data, and ser-
vices away from centralized nodes to the log-
ical extremes of a network. It enables analyt-
ics and knowledge generation to occur at the
source of the data. This approach requires lever-
aging resources that may not be continuously
connected to a network such as laptops, smart-
phones, tablets and sensors (LaMothe, 2013).
Two systems that can provide resources for
computing near the edge of the network are
the MediaBroker (Lillethun, Hilley, Horrigan,
& Ramachandran, 2007) for live sensor stream
analysis, and Cloudlets (Satyanarayanan, Bahl,

Caceres, & Davies, 2009) for interactive ap-
plications. However, neither currently sup-
ports widely distributed geospatial applications
(Hong, Lillethun, Ramachandran, Ottenwälder,
& Koldehofe, 2013).

Users are clamoring for access to the massive
quantities of information at any time, in any
place and with any device that is extremely
dispersed and produced by and about people,
things, and their interactions. The flexibility of
the Cloud makes it a good choice for this need.
As the technology advances, the question for
many businesses is how they can benefit from
big data and how to use Cloud computing to
make it happen. In order to make an effective
and optimized Cloud model, businesses require
a new approach to crunching huge quantities of
data and delivering them to their users via ge-
ographically distributed platforms and not via
the Cloud which is located in one place. Thus,
the idea of Fog computing has emerged to dis-
tribute all data and place it closer to the end-user,
eliminate service latency, improve QoS and re-
move other possible obstacles connected with
data transfer. Because of its wide geographi-
cal distribution, the Fog paradigm is well posi-
tioned for big data and real time analytics and it
supports mobile computing and data streaming.

Fog computing is not a replacement for Cloud
computing. It is just an addition which devel-
ops the concept of Cloud services. Services
are hosted at the network edge or even end de-
vices such as set-top-boxes or access points,
etc. Conceptual Fog computing builds upon ex-
isting and common technologies like Content
Delivery Networks (CDN), but based on Cloud
technologies it should ensure the delivery of
more complex services (Buest, 2013; Kleyman,
2013). However, developing applications us-
ing fog computing resources is more complex
(Hong, Lillethun, Ramachandran, Ottenwälder,
& Koldehofe, 2013).

A number of characteristics that make the Fog
computing a non-trivial extension of the Cloud
computing are listed in Table 5.

80 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

Characteristic Comment

Proximity of
data to
end-users

Services would be located closer to end-user to improve latency concerns and data access.
Instead of storing information in centralized data center sites far away from end-user, the
Fog computing ensures direct proximity of the data to the customer.

Hierarchical
organization

To support low-latency and scalability, the Fog computing platform follows a multi-tier
architecture from the core to the edges. Also, the control and management are hierarchical
to support interplay with the Cloud.

Edge location,
location awareness,
low latency

The Cloud is too far from many mobile users for latency-sensitive applications. Fog
computing extends existing Cloud services by spanning up an edge network which consists
of many distributed endpoints (Buest, 2013). Fog collectors at the edge ingest the data
generated by sensors and devices. Fog nodes provide localization, therefore enabling low
latency and context awareness (Bonomi, Milito, Zhu, & Addepalli, 2012).

Dense
geographical
distribution

In sharp contrast to the more centralized Cloud, the services and applications targeted
by the Fog demand widely distributed deployments (Bonomi, Milito, Zhu, & Addepalli,
2012). This feature includes a faster elicitation and analysis of big data, a better support
for location-based services (by the entire WAN links can be better bridged) as well as the
capabilities to evaluate data massively scalable in real-time (Buest, 2013).

Large-scale
sensor
networks

Fog uses sensor networks in a large scale to monitor the environment. The Fog computing
makes possible not only Internet of Things (IoT) development, but also Ubiquitous Com-
puting (UC) approaches, by extending cloud computing services to include smart sensors
and intelligent devices (Madsen, Albeanu, Burtschy, & Popentiu-Vladicescu, 2013).

Large number
of nodes

Fog computing involves a very large number of nodes as a consequence of the wide
geo-distribution, as evidenced in sensor networks in general (Bonomi, Milito, Zhu, &
Addepalli, 2012).

Support for
mobility

Administrators are able to control where users are coming in and how they access the
information and support location-based mobility demands and don’t have to traverse
the entire WAN (Kleyman, 2013). This improves user performance, quality of service
(Rudenko, 2013), security and privacy issues.

Real-time
interactions

In the Cloud, edge devices must communicate across the Internet to reach the cloud
data centers. This causes WAN latencies that can be high and interfere with interactive
applications. In contrast, in the Fog, servers belong to the same network as the end-users.
Therefore, Fog includes interactive applications rather than batch processing and so,
real-time data analytics become more prevalent on Fog computing.

Predominance of
wireless access

Fog is drop-based (Rudenko, 2013) with a wireless connection and extremely low power
to support mobility, scalability, etc. in a really distributed network. Smart connectivity
of intelligent devices supporting wireless communication with existing networks and
participating to computational tasks using network resources is an important objective
within IoT vision (Madsen, Albeanu, Burtschy, & Popentiu-Vladicescu, 2013).

Heterogeneity

Fog nodes come in different form factors and will be deployed in a wide variety of envi-
ronments (Bonomi, Milito, Zhu, & Addepalli, 2012). These resources are highly dynamic
and heterogeneous at different levels of network hierarchy to support low latency and
scalability requirements of applications (Hong, Lillethun, Ramachandran, Ottenwälder, &
Koldehofe, 2013).

Dynamic per
user optimization

Unlike the Cloud that is separated from the user by wide area networks (WAN), a Fog
server has the distinct advantage of knowing the network conditions local to an end-user.
This is because the Fog server belongs to the same network as the end-users. So the
Fog server can have knowledge of each user. Knowledge of the user’s behaviour can
help dynamically select the best parameters. Specifically, the Fog server can use this
information to customize the optimization (Zhu, et al., 2013).

Interoperability
and federation

Fog components are able to interoperate with different providers seamless support of
certain services (such as streaming) that are federated across domains (Bonomi, Milito,
Zhu, & Addepalli, 2012).

Integration with
the Cloud and
support for
on-line
analytic

Cloud provides global centralization, whilst Fog provides localization. Many applications
require both Fog localization and Cloud globalization, particularly for analytics and Big
Data (Bonomi, Milito, Zhu, & Addepalli, 2012). Fog platform supports real-time,
actionable analytics, processes and filters the data, and pushes to the Cloud that is global
in geographical scope and time (Cisco, 2013). With Fog services, it is able to enhance
the Cloud experience by isolating user data that needs to live on the edge. From there,
administrators are able to tie-in analytics, security or other services directly into their
Cloud model (Kleyman, 2013).

Table 5. Fog computing characteristics.

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 81

Already, we are seeing everything-as-a-service
models. This means that the future of the com-
puting paradigms must support the idea of the
Internet of Thing (IoT) in order to successfully
emerge, wherein sensors and actuators blend
seamlessly with the environment around us and
the information is shared across platforms in
order to develop a common operating picture
(Gubbi, Buyya, Marusic,&Palaniswami, 2013).
Fog computing supports emerging Internet of
Thing applications that demand real-timeor pre-
dictable latency such as industrial automation,
transportation, sensor networks and actuators.

This model is called Fog computing simply be-
cause the Fog is a Cloud close to the ground and
Fog promises to take hardware and software
virtualization back down from cloud to earth,
where it belongs. Therefore, the differences be-
tween the Fog and the Cloud can be summarized
in “The Ground” term (Nemirovsky, Milito, &
Yanuzzi, 2012), which is described in Table 6.

The basic technology for Fog computing is the
concept of drop (Rudenko, 2013). A drop is a
chip of a microcontroller with built-in memory
and data transfer interface, which is combined
with wireless connection Mesh chip. Such a
drop works on a small battery which is enough
for a couple of years. Users can connect differ-
ent temperature, light, voltage sensors, etc.

With the help of such mini-chips it is possible
to create really distributed network of data or
devices all around the planet. Constant data
circulation in the world makes providers cre-
ate new technologies for their local storage and
caching. The drops allow keeping the data close

to a user instead of storing them in a data center
somewhere far away. It helps to avoid possible
delays in data transfer (Rudenko, 2013).

The concept of Fog computing is not some-
thing to be developed in the future. It is al-
ready here and a number of distributed com-
puting and storage start-ups are adopting the
phrase (Kleyman, 2013). A lot of companies
have already introduced it, while other compa-
nies are ready for it (Rudenko, 2013). Actually,
any company which delivers content can start
using Fog computing. A good example is Net-
flix (NetFlix, n.d.), a provider of media content,
who is able to reach its numerous globally dis-
tributed customers. With the data management
in one or two central data centers, the deliv-
ery of video-on-demand service would not be
efficient enough. Fog computing thus allows
providing very large amounts of streamed data
by delivering the data directly into the vicinity
of the customer (Buest, 2013). Another use
case is Symform (Symform, n.d.), a Cloud stor-
age provider, which uses a decentralized, dis-
tributed, virtual, and crowd-sourced Cloud. Its
approach can provide better disaster resilience
than data centers hundreds of miles apart. It can
do that in a way that is extremely cheap, and in
some cases free (Perry, 2013). Smart Grid is an-
other rich Fog use case (Bonomi, Milito, Zhu,
& Addepalli, 2012). It is the next generation
of computing and provides tremendous value to
providers and users.

Letter Comment
T Tiered organization involving multiple administrations in the access
H Hierarchical control and management supporting interplay with the Cloud
E Expanded mobility model
G Geo-distribution of computational power with strong focus on service locality
R Real-time analytics at different tiers
O Orchestration involving coordinated control and actuation in multi-tier settings
U Unified exposure of virtualized resources (consolidated Virtualization)
N Negligible latency
D Distributed policy exposure and policy management involving multiple tiers

Table 6. Differences between the Fog and the Cloud.

82 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

5. Conclusion

The future of computing is heading toward
using shared heterogeneous resources and is
concerned about Big Data. These require-
ments result in emerging new distributed com-
puting paradigms. In this article, we have
strived to clarify modern distributed comput-
ing paradigms, namely Cloud, Jungle and Fog
computing.

InCloud computing, resources aremoving away
from end-users towards centralized systems that
possess huge processing power and storage ca-
pacities. In this model, problems arise for
latency-sensitive applications,which require no-
des in the vicinity to meet their delay require-
ments and users have no control over the man-
ner in which they can access their data. Fog
computing, in contrast, at a really distributed
level, provides computing services between end
points and traditional Cloud computing data
centers, away from centralized nodes to the edge
of a network. On the other hand, distributed
computing infrastructures such as Cloud, Clus-
ter or Grid currently are undergoing revolution-
ary change and becoming more heterogeneous
and hierarchical. This leads scientists to use a si-
multaneous combination of heterogeneous, hi-
erarchical, and distributed computing resources
as a Jungle computing system, to access more
computing power.

Cloud computing has got the momentum in the
distributed computing in recent years and may
be mature with new technologies and paradigms
such as Jungle and Fog. It is obvious that Cloud
computing is used in Fog computing and may
or should be used in Jungle computing. There-
fore, bear in mind that knowing Cloud comput-
ing is essential in distributed computing. On
the other hand, since Cloud computing may not
be a mainstream technology in the near future,
as Grid computing is no longer a concept to be
discussed, it is useful to take a glance at the
other, newly distributed computing paradigms.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their valuable comments and sug-
gestions to improve the quality of the paper.

References

[1] A. O. AKANDE, N. A. APRIL, J.-P. VAN BELLE, Man-
agement Issues with Cloud Computing. Second In-
ternational Conference on Innovative Computing
and Cloud Computing, (2013) New York, NY,
USA: ACM, pp. 119–124.

[2] AMAZON VPC, (n.d.). Retrieved from Amazon:
http://aws.amazon.com/vpc/

[3] G. R. ANDREWS, Foundations of Multithreaded,
Parallel, and Distributed Programming. Addison-
Wesley, 1999.

[4] N. ANTONOPOULOS, L. GILLAM, Cloud Comput-
ing: Principles, Systems andApplications. Springer,
2010.

[5] M. ARMBRUST, A. FOX, R. GRIFFITH, A. D. JOSEPH,
R. H. KATZ, A. KONWINSKI, M. ZAHARIA, Above
the Clouds: A Berkeley View of Cloud Comput-
ing. EECS Department, University of California,
Berkeley, 2009.

[6] H. E. BAL, J. MAASSEN, R. V. NIEUWPOORT, N.
DROST, N. PALMER, G. WRZESINSKA, C. JA, Real-
world distributed computing with Ibis. IEEE Com-
puter, (2010), 54–62.

[7] F. BONOMI, The Smart and Connected Vehicle and
the Internet of Things. Workshop on Synchroniza-
tion in Telecommunication Systems (WSTS), (2013)
San Jose, California, USA.

[8] F. BONOMI, R. MILITO, J. ZHU, S. ADDEPALLI, Fog
Computing and Its Role in the Internet of Things.
Proceedings of the First Edition of the MCC Work-
shop on Mobile Cloud Computing, (2012), pp.
13–16.

[9] R. BUEST, Fog Computing: Data, Information, Ap-
plication and Services need to be delivered more
efficiently to the end user. (2013, October 19). Re-
trieved from clouduser.de:
http://clouduser.de/en/analysis/fog-
computing-data-information-application-
and-services-needs-to-be-delivered-
more-efficient-to-the-enduser-22362

[10] R. BUYYA, J. BROBERG, A. GOSCINSKI, CLOUD
COMPUTING Principles and Paradigms, (1 ed.).
Wiley, 2011.

[11] CISCO. Fog Computing, Ecosystem, Architecture
and Applications. (2013). Retrieved from
http://www.cisco.com/web/about/ac50/ac
207/crc new/university/RFP/rfp13078.html

[12] CSA, Security Guidance for Critical Areas of Focus
in Cloud Computing V2.1.. Cloud Security Alliance,
2009.

[13] M. D. DIKAIAKOS, D. KATSAROS, P. MEHRA, G.
PALLIS, A. VAKALI, Cloud Computing: Distributed
Internet Computing for IT and Scientific Research.
IEEE Internet Computing, (2009), 10–13.

A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and... 83

[14] GARTNER, INC., Gartner’s 2013 Hype Cycle for
Emerging Technologies Maps Out Evolving Rela-
tionship Between Humans and Machines, (2013)
Stamford, Connecticut, USA: Gartner.

[15] N. DROST, J. MAASSEN, M. A. MEERSBERGEN, H. E.
BAL, F. I. PELUPESSY, S. P. ZWART, F. J. SEINSTRA,
High-performance Distributed Multi-model/Multi-
kernel Simulations: A Case-study in Jungle Com-
puting. IEEE International Parallel and Distributed
Processing Symposium Workshops, (2012) Shang-
hai, China: IEEE, pp. 150–162.

[16] W. FORREST, Clearing the Air on Cloud Computing.
McKinsey & Company, 2009.

[17] C. GONG, J. LIU, Q. ZHANG, H. CHEN, Z. GONG, The
Characteristics of Cloud Computing. 39th Interna-
tional Conference on Parallel Processing Work-
shops, (2010) San Diego, CA: IEEE, pp. 275–279.

[18] J. GUBBI, R. BUYYA, S.MARUSIC, M. PALANISWAMI,
Internet of Things (IoT): A vision, architectural el-
ements, and future directions. Future Generation
Computer Systems, 29(7) (2013), 1645–1660.

[19] B. HALPERT,Auditing Cloud Computing: A Security
and Privacy Guide. John Wiley & Sons, 2011.

[20] B. HAYES, Cloud Computing. Communications of
the ACM, (2008), 9–11.

[21] K. HONG, D. LILLETHUN, U. RAMACHANDRAN, B.
OTTENWÄLDER, B. KOLDEHOFE, Mobile Fog: A
Programming Model for Large–Scale Applications
on the Internet of Things. Proceedings of the sec-
ond ACM SIGCOMM workshop on Mobile cloud
computing, (2013) New York, NY, USA: ACM, pp.
15–20.

[22] HP HELION MANAGED VIRTUAL PRIVATE CLOUD,
(n.d.). Retrieved from HP:
http://www8.hp.com/us/en/business-ser-
vices/it-services.html?compURI=1079571

[23] F. HU, M. QIU, J. LI, T. GRANT, D. TYLOR, S. MC-
CALEB, R. HAMNER, A Review on Cloud Com-
puting: Design Challenges in Architecture and
Security. Journal of Computing and Information
Technology, (2011), 25–55.

[24] IBIS: COMPUTING IN THE JUNGLE, (n.d.). Retrieved
from VU University Amsterdam:
www.cs.vu.nl/ibis/

[25] W. A. JANSEN, Cloud Hooks: Security and Privacy
Issues in Cloud Computing. the 44th Hawaii In-
ternational Conference on System Sciences, (2011)
Washington, DC, USA: IEEE Computer Society,
pp. 1–10.

[26] JOYENT, The Compelling Economics of Cloud Com-
puting. Joyent, 2012.

[27] P. KACSUK, Z. NÉMETH, T. FAHRINGER, Distributed
and Parallel Systems: From Cluster to Grid Com-
puting. Springer, 2007.

[28] B. KAHANWAL, T. P. SINGH, The Distributed Com-
puting Paradigms: P2P, Grid, Cluster, Cloud, and
Jungle. International Journal of Latest Research in
Science and Technology, (2012), 183–187.

[29] T. V. KESSEL, N. DROST, J. MAASSEN, H. BAL, F.
SEINSTRA, A. PLAZA, Towards a High-Performance
Distributed CBIR System for Hyperspectral Remote
Sensing Data: A Case Study in Jungle Comput-
ing. In High-Performance Computing on Complex
Environments (E. JEANNOT, J. ZILINSKAS), (2014).
Wiley.

[30] B. KLEYMAN, Welcome to Fog Computing: Ex-
tending the Cloud to the Edge. (2013, August
23). Retrieved from Data Center Knowledge:
http://www.datacenterknowledge.com/
archives/2013/08/23/welcome-to-the-fog-
a-new-type-of-distributed-computing/

[31] R. LAMOTHE, Edge Computing. Richland, USA:
Pacific Northwest National Laboratory, 2013.

[32] D. LILLETHUN, D. HILLEY, S. HORRIGAN, U. RA-
MACHANDRAN, MB++: An integrated architec-
ture for pervasive computing and high-performance
computing. International Conference on Embedded
and Real-Time Computing Systems and Applica-
tions, (2007) Daegu, South Korea: IEEE, pp.
241–248.

[33] J. MAASSEN, H. E. BAL, SmartSockets: Solving the
Connectivity Problems in Grid Computing. Pro-
ceedings of the 16th International Symposium on
High Performance Distributed Computing, (2007)
Monterey, California, USA: ACM, pp. 1–10.

[34] J. MAASSEN, N. DROST, H. E. BAL, F. J. SEINSTRA,
Towards jungle computing with Ibis/Constellation.
Workshop on Dynamic Distributed Data-intensive
Applications, Programming Abstractions, and Sys-
tems, (2011) New York, NY, USA: ACM, pp.
7–18.

[35] H. MADSEN, G. ALBEANU, B. BURTSCHY, F.
POPENTIU-VLADICESCU, Reliability in the Utility
Computing Era: Towards Reliable Fog Comput-
ing. International Conference on Systems, Signals
and Image Processing (IWSSIP), (2013) Bucharest,
Romania: IEEE, pp. 43–46.

[36] D. C. MARINESCU, Cloud Computing: Theory and
Practice. Morgan Kaufmann, 2013.

[37] P. MELL, T. GRANCE, The NIST Definition of Cloud
Computing. Information Technology Laboratory:
National Institute of Standards and Technology,
2009.

[38] J. M. MYERSON, Best practices to develop SLAs for
cloud computing. IBM, 2013.

[39] N. DROST, Zorilla: a peer-to-peer middleware
for real-world distributed systems. Concurrency
and Computation: Practice & Experience, 23(13)
(2011), 1506–1521.

[40] M. NEMIROVSKY, R. MILITO, M. YANUZZI, Fog
Computing. Barcelona Supercomputing Center,
2012.

[41] NETFLIX, (n.d.). Retrieved from
http://www.netflix.com

84 A Review on Modern Distributed Computing Paradigms: Cloud Computing, Jungle Computing and...

[42] R. V. NIEUWPOORT, T. KIELMANN, H. E. BAL, User-
friendly and reliable grid computing based on im-
perfect middleware. Proceedings of the ACM/IEEE
Conference on Supercomputing, (2007) Reno,
Nevada, USA.

[43] D. NURMI, R. WOLSKI, C. GRZEGORCZYK, G.
OBERTELLI, S. SOMAN, L. YOUSEFF, D. ZAGOROD-
NOV, The Eucalyptus Open-source Cloud-
computing System. Proceedings of the 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid, (2009) Shanghai, China:
IEEE Computer Society, pp. 124–131.

[44] T. PERRY, What Comes After the Cloud? How About
the Fog? (2013, Feburay 8). Retrieved from IEEE
Spectrum: http://spectrum.ieee.org/tech-
talk/computing/networks/what-comes-
after-the-cloud-how-about-the-fog

[45] L. QIAN, Z. LUO, Y. DU, L. GUO, Cloud Computing:
An Overview. the 1st International Conference on
Cloud Computing(CloudCom 09), (2009) Berlin,
Heidelberg: Springer, pp. 626–631.

[46] RACKSPACE, (n.d.). Retrieved from
http://www.rackspace.com

[47] R. RAMAN, M. LIVNY, M. SOLOMON, Matchmaking:
istributed resource management for high throughput
computing.Procceding of the Seventh IEEE Interna-
tional Symposium on High Performance Distributed
Computing, (1998)Chicago, IL,USA, pp. 140–146.

[48] E. RUDENKO, Fog Computing Is a New Concept of
Data Distribution. (2013, December 5). Retrieved
from CloudTweaks:
http://www.cloudtweaks.com/2013/12/fog-
computing-is-a-new-concept-of-data-
distribution/

[49] M. SATYANARAYANAN, P. BAHL, R. CACERES, N.
DAVIES, The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Computing, (2009),
14–23.

[50] F. J. SEINSTRA, J. MAASSEN, R. V. NIEUWPOORT,
N. DROST, T. V. KESSEL, B. VAN WERKHOVEN, A.
H. BAL, Jungle Computing: Distributed Super-
computing Beyond Clusters, Grids, and Clouds. In
Grids, Clouds and Virtualization (M. CAFARO, G.
ALOISIO), (2011) pp. 167–199. London: Springer.

[51] SYMFORM, (n.d.). Retrieved from
http://www.symform.com/

[52] A. S. TANENBAUM, M. V. STEEN, Distributed sys-
tems: Principles and Paradigms, (2nd Edition).
Pearson Prentice Hall, 2006.

[53] L. M. VAQUERO, L. RODERO-MERINO, J. CACERES,
M. LINDNER, A break in the clouds: towards a cloud
definition. ACM SIGCOMM Computer Communi-
cation Review, 39(1) (2009), 50–55.

[54] M. A. VOUK, Cloud Computing – Issues, Research
and Implementations. Journal of Computing and
Information Technology, (2008), 235–246.

[55] Z. XIAO, Y. XIAO, Security and Privacy in Cloud
Computing. IEEE Communications Surveys & Tu-
torials, (2013), 843–859.

[56] C.T. YANG, B.-H. CHEN, W.-S. CHEN, On Imple-
mentation of a KVM IaaS with Monitoring System
on Cloud Environments. In Communication and
Networking (T.-H. KIM, H. ADELI, W.-C. FANG, T.
VASILAKOS, A. STOICA, C. Z. PATRIKAKIS, Y. XIAO),
(2012) pp. 300–309. Berlin: Springer.

[57] Q. ZHANG, L. CHENG, R. BOUTABA, Cloud comput-
ing: state-of-the-art and research challenges. Jour-
nal of Internet Services and Applications, (2010),
7–18.

[58] J. ZHU, D. S. CHAN, M. S. PRABHU, P. NATARAJAN,
H. HU, F. BONOMI, Improving Web Sites Perfor-
mance Using Edge Servers in Fog Computing Ar-
chitecture. IEEE Seventh International Symposium
on Service-Oriented System Engineering, (2013)
IEEE, pp. 320–323.

Received: March, 2014
Revised: June, 2014

Accepted: June, 2014

Contact addresses:

Majid Hajibaba
Department of Electrical and Information Technology

Iranian Research Organization for Science and Technology (IROST)
Tehran

Iran
e-mail: hajibaba.m@irost.ir

Saeid Gorgin
Department of Electrical and Information Technology

Iranian Research Organization for Science and Technology (IROST)
Tehran

Iran
e-mail: gorgin@irost.ir

MAJID HAJIBABA received his MS degree in computer science from Iran
University of Science and Technology. Currently, he is a Ph.D. student
at Iranian Research Organization for Science and Technology. His re-
search in Ph.D. is focused on distributed computing. Other research
interests include programming languages, compilers, software testing,
cloud computing, big data and high performance computing.

SAEIDGORGIN received theBS andMS degrees in computer engineering
from the South Branch and the Science and Research Branch of Azad
University of Tehran in 2001 and 2004, respectively. He received the
Ph.D. degree in computer engineering from Shahid Beheshti University
in 2010. He is currently an assistant professor of computer engineering
in the Department of Electrical and Information Technology of Iranian
Research Organization for Science and Technology. His research inter-
ests include computer arithmetic, cryptography, VLSI design, and high
performance computing.

