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Abstract— Literature reviews on Multi-Robot Systems (MRS)
typically focus on fundamental technical aspects, like coordina-
tion and communication, that need to be considered in order to
coordinate a team of robots to perform a given task effectively
and efficiently. Other reviews only consider works that aim
to address a specific problem or one particular application
of MRS. In contrast, this paper presents a survey of recent
research works on MRS and categorises them according to
their application domain. Furthermore, this paper compiles a
number of seminal review works that have proposed specific
taxonomies in classifying fundamental concepts, such as coor-
dination, architecture and communication, in the field of MRS.

I. INTRODUCTION

Since the late 1980s researchers have been motivated to

design and build teams of robots with the ability of working

together on some given task. This motivation stems from the

fact that in many applications, Multi-Robot Systems (MRS)

bring about several advantages over Single Robot Systems. In

particular, MRS are generally more time-efficient, less prone

to single-points of failure, and typically exhibit multiple

capabilities, which in many cases yield a more effective solu-

tion to a given problem. In early works, researchers observed

natural systems, such as a swarm of bees, ants and even

humans, to study how a group of individual entities can work

together to perform a given task. The multidisciplinary nature

of these early studies, eventually led to MRS being applied

in several different application domains such as surveillance,

search and rescue, foraging, exploration, cooperative manip-

ulation, and transportation of objects, among others. This

paper reviews a number of prominent and recent research

works that aim to address various problems appertaining to

six main application domains of MRS.

In Section II we compile a number of previous surveys

on MRS and categorise them in six broad categories, while

in Section III we present a number of recent research works

on MRS and organise them according to their application

domain. We believe that this new categorisation can be

very useful to researchers who are mainly interested in one

particular domain. Furthermore, this survey can also help

promote the migration of ideas across different application

domains of MRS. Finally in Section IV, we draw a number of

conclusions about the current and most prominent challenges

in the field of MRS.
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II. RELATED WORK

The majority of literature review papers on Multi-Robot

Systems (MRS) focus on classifying the most fundamental

aspects of an MRS, such as coordination and communication.

In [1] Farinelli et al. classify these MRS features into two di-

mensions. The first, termed the coordination dimension, deals

with the different classes of cooperation schemes, such as

whether the system is centralized or decentralized, strongly

cooperative (i.e. following a strict protocol), or weakly co-

operative, among others. The system dimension classifies the

existing types of communication schemes and team decom-

position attributes. Similarly, in [2] Parker classifies MRS

according to their architecture, the heterogeneity in the team,

the type of communication scheme adopted, and the different

types of task allocation schemes. In this work, Parker also

briefly reviews some works according to their application

domain. However, the latter is not an extensive literature

review of such works. A similar reviewing approach that

categorises works based on the foundation topics of MRS,

namely coordination, task allocation and cooperation, is also

adopted in [3]–[5]. Furthermore, in contrast to these works,

in [6] Gerkey and Matarić focus on one particular aspect

of MRS, namely Multi-Robot Task Allocation (MRTA), and

propose a taxonomy of task allocation schemes. The same

taxonomy is also used in [7].

Alternatively, a literature review may also focus on par-

ticular schemes forming part of the main components in an

MRS. In [8], Bernardine Dias et al. focus on classifying what

they call market-based coordination approaches, which is a

type of MRTA scheme. Such coordination schemes require

the robots to bid for the tasks that they are able to perform.

Furthermore, detailed reviews in the area of swarm robotics

are properly surveyed in [9]–[11], while those reviewing

biologically-inspired research include [12]. We encourage the

interested reader to refer to these works for more details.

In recent years, considerable attention has been given to

human-robot interaction (HRI). In this light, Goodrich et al.

[13] provide an extensive review of the history of HRI, as

well as a review of works that introduced HRI to the field

of MRS. In this work the author identifies the main topics in

the field of HRI and provides a list of challenges that could

shape the future of this interesting research area. Similarly,

Chen et al. [14], propose a review of the human factors

in systems exhibiting HRI, focussing on human supervision

of multiple robots, and maintaining the human operator’s

situation awareness while retaining authority in the decision-

making process. Both Goodrich et al. and Chen et al. provide

indicators to the current open challenges in this area.



Moreover, some review papers focus on specific problems

in MRS, such as formation control of robots in a team.

Guanghua et al. [15] review such works in light of the type

of formation architecture, and the existing formation control

strategies employed. In the latter classification the authors

classify the reviewed approaches according to the follow-

ing categories: behaviour-based approaches, leader-follower

approaches, virtual structure approaches, artificial potential

functions or graph-based approaches. In [16], the authors

review the mathematical problem of flocking, together with

existing flocking control strategies. Other problem-specific

reviews focus on patrolling algorithms [17], robotic urban

search and rescue [18], and autonomous underwater vehicles

[11], [19]. The review papers referred to in this section

have been grouped in six broad categories in Table I. In

contrast to the survey works mentioned in this section, this

paper’s contribution lies in a review of recent and notable

works in MRS categorised according to the most prominent

application domains of the field.

III. APPLICATION DOMAINS

During the years a number of general application domains

in Multi-Robot Systems (MRS) have been proposed. For

instance, both Parker [2] and Farinelli et al. [1] list the

main application domains in the field of MRS. However, the

aim of these works is not to review prominent and recent

applications of MRS, but rather to provide a review of the

main technical aspects and challenges of the field. The scope

of this section is to address this gap, and classify recent

works on MRS according to their application domains.

A. Surveillance and, Search and Rescue

Surveillance and, search and rescue applications have at-

tracted considerable attention from the MRS community over

the years. This is due to the relevance of such applications in

daily life. Surveillance applications were initially reserved to

patrolling or surveying indoor areas [21]. However, with the

introduction of unmanned aerial vehicles (UAVs), researchers

have expanded their study to include the surveillance of

outdoor areas, such as areas far out at sea [22]. One of the

main challenges in these applications is that of persistent

surveillance due to the fact that one-time coverage and ex-

ploration algorithms cannot be used directly to continuously

patrol and monitor the same area [23]. Nigam et al. [23]

propose a novel control policy for persistent surveillance that

maintains optimal performance through a formally-derived

and scalable heuristic method. In this work, the environment

TABLE I

SUMMARY OF REVIEW PAPERS

MRS Main Principles [1]–[8]

Swarm Robotics [9]–[11]

Biologically-Inspired Works [12], [20]

Human-Multi-Robot Interaction [13], [14]

Problem-Specific Works [15]–[18]

Autonomous Underwater Vehicles [11], [19]

is divided into grid cells, where each cell is attributed with

an age and the goal is to minimize the overall age of all the

cells. A control policy called the Multi-Agent Reactive Policy

is proposed to control the UAVs performing surveillance. A

similar approach is adopted in [24] where the authors solve

the task of persistent surveillance through the Vehicle Routing

Problem.

Task allocation is another challenge in such applications

because the solution to this problem must be time-efficient.

In [25], the authors make use of a market-based strategy

where the robots bid for locations that must be surveyed. In

contrast, Jeon et al. [26] calculate costs for a set of tasks,

and allocate the mission tasks to the robots according to these

costs.

Over the years disasters such as the Fukushima nuclear

accident in 2011 have enabled researchers to deploy ad-

vanced MRS in real-life applications, mostly for search and

rescue. For example, in [22] the authors propose a cooper-

ative scheme for a multi-robot team for the surveillance of

shipwreck survivors at sea. Using satellite imagery the user

can plan the mission waypoints, which are then followed by

an Unmanned Surface Vehicle (USV) carrying a UAV. When

the USV arrives at the designated way-point, the UAV takes

off and uses a grid-like search pattern and image processing

to localize survivors.

Another example is that of Gregory et al. [27], who ad-

dress a humanitarian assistance and disaster relief applicaton.

In this work the authors focus on simultaneously evaluating

the damage done to the environment, and localising the

victims according to two types of goals, namely, goals

established from prior maps, and dynamic goals established

according to the sudden detection of victims. The novelty of

this work lies in addressing unreliable autonomy and com-

munication by modelling unknown travel costs in a dynamic

variant of the Capacitated Team Orienteering Problem [28].

Moreover, in [29], the authors also address the humani-

tarian relief problem through an implementation of a het-

erogeneous robotic system. This system features land and

marine mobile stations that are responsible for coordinating

and supporting UAVs and fast-speed land or marine robots.

The authors propose solutions to two coordination technical

challenges. The first entails the localization and landing of

the UAVs —achieved through the use of visual SLAM—

and UAV battery replacement to mitigate the limited energy

constraint, which is a very common problem in MRS. In

this work the authors also propose a collaboration scheme

for the team of UAVs based on dynamic communication,

target identification and triangulation.

B. Foraging and Flocking

The task of foraging is often synonymous with swarm

robotics, which is inspired by natural colonial systems such

as those of bees and ants. This is because very often, the

decentralized team only requires implicit communication

to cooperatively collect randomly distributed objects and

transport them to a “home” location. In [30] Parker proposes

ALLIANCE, a fault-tolerant framework that assigns tasks



to robots according to their motivation and capabilities —

modelled through a behaviour set—to do these tasks. This

framework was applied to the foraging task of cleaning up

hazardous waste, where the task allocation and coordination

among the team involved assigning the robots to move the

waste or report back to the base station. In another behaviour-

based approach [31], Schneider-Fontán and Matarić assign

segments from a territory to each robot for clean-up and

object collection, as opposed to the task assignment used in

[30]. One challenge in this domain is the optimal sharing

of navigational space. In [32] Lein and Vaughan propose

an algorithm that reduces mutual spatial interference and

exploits a non-uniform distribution of robots during foraging.

To achieve this, the authors propose a technique named

adaptive bucket brigade foraging, where the robots remain

within a variable space distribution within the environment.

Furthermore, since foraging is a task associated with natural

systems, a number of works adopt particle swarm optimiza-

tion (PSO). Particularly, Couceiro et al. [33] study the robotic

Darwinian PSO under communication constraints in the team

[33]. From these works one can conclude that in general,

foraging is not implemented using complex explicit com-

munication schemes. The preferred choice of architecture is

often decentralized, in order to allow the team members to

achieve the task with minimal interference between them.

The task of flocking, also called shepherding, is considered

to be a trait of swarm robotics. Some works make use of

behaviour-based models and the generation of safe zones,

such that the members in the MRS can follow a direction and

stay in line with the flock to maintain cohesion, but at the

same time maintain enough distance between them to avoid

collision [34]. In these cases, a decentralized architecture

is often adopted. Moreover, in [35] Sakai et al. propose a

novel flocking algorithm that treats all detected objects as

obstacles, irrespective of whether they are truly obstacles

or form part of the team. They argue that such a method

limits the amount of information handled by the team since

velocity information on neighbouring robots is not required.

On the contrary, in [36] Gu and Wang propose a leader-

follower flocking technique, which requires the followers to

communicate with their neighbours to exchange information

about the estimated position of the flocking centre. Moreover,

in [37] the authors apply reinforcement learning together

with flocking control to enable a decentralized MRS to

learn how predators should be avoided while maintaining

the connectivity required for flocking. Additionally, in [38]

the authors propose a control algorithm that allows a flock

to navigate around obstacles. Similar to foraging, in flocking

we can see a trend in the use of a decentralized architecture.

However, the complexity of the task increases in flocking

applications since the team must not only coordinate to avoid

spatial interference, but also to maintain connectivity among

the entities.

C. Formation and Exploration

In formation applications, the team of robots must main-

tain some strict arrangement while at the same time avoid

obstacles in its path. This problem becomes more complex

than flocking since an obstacle must be collectively avoided

without any of the team members leaving the formation for

a long while. A common solution is the leader-follower

approach where a trajectory-planning algorithm is imple-

mented on the leader robot and formation constraints—

distances from the leader—restrict the followers to maintain

formation around the leader [39]. Recent research is also

adopting computational intelligence methods in formation

applications. In [40], Wang et al. solve the optimal formation

problem by using a recurrent neural network. Shape theory is

used to generate a set of feasible formations and the proposed

optimal formation solution chooses the one that has the

minimum distance from the initial formation. Alternatively,

the work reported in [41] adopts fuzzy logic to achieve

formation control. Additionally, the work in [42] adopts

control schemes, such as Model Predictive Control, in order

to establish formation in the team.

In contrast to formation, in exploration the robots in a

team must distribute themselves in an unknown environment

in order to explore the area. The coordination of such

a system brings about many challenges, particularly those

related to connectivity and battery-life problems. In [43]

Banfi et al. address the problem of communication constraint

by proposing an exploration strategy under recurrent connec-

tivity. The robots only need to connect to the base station if

new observations are made, hence allowing the members to

disconnect for long periods of time until new information is

obtained. Moreover, Cesare et al. [44] address the problems

of communication and battery life. They propose a state-

based approach in which a robot explores and shares infor-

mation only if it is within the communication range and its

battery levels are above a certain threshold. If the robot does

not have enough energy to continue exploring, it waits for

another robot to meet it, and then uses its remaining energy

to relay the information to base. This rendezvous solution to

overcome communication limitations is also used in [45].

Other works in this domain focus on exploration strategies

that are tailor-made for a particular MRS. For instance, in

[46] the authors propose a circle partitioning method that

segments the environment into sections and assigns each

robot to a particular sub-region. In [47] the authors use a

flooding algorithm that aims at reducing the exploration time

and minimize the overall distance travelled by the robots

during exploration. A number of works even propose explo-

ration strategies that emerge from a graph-based approach,

such that optimal coordination can be achieved when having

a known number of robots exploring an area [48].

D. Cooperative Manipulation

The box-pushing problem has become synonymous with

MRS and it has been studied in several early works [49]–

[51]. In one of these works, namely that by Brown and

Jennings [52], the authors implement a pusher/steerer system

where the object is moved from one place to another by

small mobile robots. The steerer robot is pre-programmed

with a trajectory and the pusher robot exerts a force onto the



object, such that the steerer can follow its programmed path

by setting its heading. Hence, communication is evidently

absent from such a system. Alternatively, in [53] Sieber et al.

propose a novel linear state feedback controller to surround

an object with a formation of robots in order to transport

said object. In this work the authors propose a suboptimal

control law similar to the linear quadratic regulator (LQR)

approach, which is used to regulate the way that a group

of robots form an assembly around an object to transport it.

Other works which adopt this formation control for object

manipulation and transportation include [54] and [55].

More recently, Amanatiadis et al. [56] propose the system

AVERT which is used to extract and transport vehicles from

a specific location. The novelty of this work is focussed

on lifter mobile robots used in a system that applies the

concept of trajectory planning (using the D* Lite method),

obstacle detection, and makes use of intercommunication in

order to exchange control and trajectory information with

a command base. As opposed to the previously mentioned

works, the approach proposed in the AVERT project requires

a stable communication among the team members, which

is often missing in traditional pusher-steerer or formation-

based cooperative manipulation algorithms. In view of the

solutions presented in these works, one may also think of

foraging as another solution to cooperative object transporta-

tion and manipulation, since this involves the collection and

transportation of items to some base location.

E. Team Heterogeneity

Heterogeneity in a team of mobile robots enables the

team to handle complex tasks more efficiently and effectively

by exploiting the benefits of the diverse capabilities of its

members. In this work, we shall analyse heterogeneity from

two perspectives, namely, human-robot heterogeneity and

heterogeneous robot teams.

A human-robot interaction (HRI) may be present in a

system where the human is supervising and commanding

a team of multiple robots. In [57] Rossi et al. propose

a scheme where the human operator communicates with

a whole team of robots to assign tasks and specify the

members which must perform each task through speech

utterances. In this case this study focuses on how speech

may be segmented to simultaneously address multiple robotic

recipients. Similarly, Cacace et al. [58] apply an HRI to a

search and rescue application. In their proposed scheme they

exploit human gestures and speech to select a desired robot

for a task in a nonverbal and implicit manner. Robot selection

is estimated by a probability that a particular command

given by the user infers a set of capabilities which the

robot possesses. For instance, the command “take off” shall

probably be directed to an aerial vehicle and therefore, given

more information, the algorithm proposed by Cacace et al.

can select which aerial vehicle needs to take off. In [59],

the authors also propose a scheme that seeks to establish an

effective cooperation between a human and a team of robots

during navigation.

The element of heterogeneity in a robot team is even

evident in the earlier works of MRS. The framework AL-

LIANCE, proposed by Parker [30], supports and exploits the

inherent differences in a team of diverse robot platforms.

This is achieved by tailoring the motivational behaviour

model and behaviour sets according to the capabilities of

the robots. Similarly, Gerkey and Matarić [60] propose a

market-based planner system named MURDOCH for task

allocation in a robotic team. In MURDOCH task messages

are published over a network with a subject relating to the

capabilities required from a robot to perform that task, leav-

ing only those capable robots to subscribe to these messages.

In the framework ASyMTRe [61], Tang and Parker propose

an algorithm that decomposes a general task into sub-tasks

according to pre-defined schema which reflect the different

capabilities of the robots. These schema are then connected

to assign the subtasks to the team members. Furthermore,

Jeon et al. [26] propose a scheme with leader/follower

roles for robots which are meant to survey an area and act

in the event that an intruder is detected. These roles are

defined according to the ability of the robot. A mission is

decomposed into tasks, which are then assigned to the robots

whose capabilities make them the most adequate to perform

them. Similarly, in [58] and [62] we see search and rescue

MRSs, where robots with different capabilities, such as to

provide aerial views [58], or extinguish fires and transporting

victims [62], are assigned to specific tasks. Additionally, the

element of heterogeneity is strong in ground-to-aerial vehicle

cooperation as seen in [63]–[65].

F. Adversarial Environment

In 1997 RoboCup was founded with the aim of promoting

research in robotics and artificial intelligence. This compe-

tition has shifted some of the research attention onto MRS

in adversarial environments, such as those found in soccer

competitions or battlefields. In [66] Weigel et al. propose

a novel approach that tracks the ball and the adversarial

players, and at the same time it strategically coordinates

the team. In the mission to win against the other team, a

specific role requiring a number of skills, is assigned to each

robot such that, each team member can then adopt adequate

behaviour from a behaviour set. A similar approach is also

adopted in [67], where Browning et al. propose a hierarchical

architecture of Skills, Tactics and Plays to execute low-level

actions, decide on the skills to use, and coordinate the activity

among the team. Furthermore, this problem has also been

solved by using reinforcement learning techniques, as has

been done in [68] and [69]. Alternatively, MRS have also

been involved in different adversarial environments, such

as in battlefields. For instance, in [70] Zhang et al. use a

genetic algorithm to enable robots to learn not to enter their

adversaries’ defence region, where they may be “killed”.

Similarly, this problem has also been studied and solved

in [71] and [72]. Using a somewhat different approach, in

[73] the authors look at the adversarial environment as being

inherent to an auction system, where each member bids for

a task to perform in a mission.



IV. CONCLUSIONS

In this paper, we have reviewed and classified prominent

and recent works according to six main application domains

in the field of MRS. From this survey of works it is

possible to draw up a number of conclusions about the

current challenges facing this field and its research direc-

tion. Primarily, it is clear that in most application domains,

limited communication among the team members, is one

of the major difficulties that needs to be solved in order

to design an efficient and robust system. Another pressing

issue, especially in multi-UAV applications, seems to be

energy consumption and limited battery life. Researchers are

proposing methods on how this constraint is incorporated in

the solution of a particular task. Finally, the introduction of

a human-in-the-loop is another promising research avenue to

address a number of challenging real-life scenarios. However,

this creates new challenges of its own, particularly due to the

complex interaction that exists between a human being and

a machine, which is naturally more pronounced in a human-

to-many-machines applications.
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