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Abstract

Subsampling is an effective way to deal with big data problems and many subsampling ap-
proaches have been proposed for different models, such as leverage sampling for linear regression
models and local case control sampling for logistic regression models. In this article, we focus
on optimal subsampling methods, which draw samples according to optimal subsampling prob-
abilities formulated by minimizing some function of the asymptotic distribution. The optimal
subsampling methods have been investigated to include logistic regression models, softmax re-
gression models, generalized linear models, quantile regression models, and quasi-likelihood esti-
mation. Real data examples are provided to show how optimal subsampling methods are applied.

Keywords Asymptotic mean squared error; big data

1 Introduction
As we step into the big data era, more and more attention is focused on how to deal with
data with enormous size and complex frame under limited computational resources. In the field
of statistics, various techniques were developed to analyze massive datasets, such as divide-
and-conquer method (Lin and Xie, 2011), online updating for streaming data (Schifano et al.,
2016), stochastic gradient descent (Toulis et al., 2017), random projection (Drineas et al., 2011;
Mahoney, 2011) and subsampling (Drineas et al., 2006; Ma et al., 2015; Wang et al., 2018, 2019).

Subsampling method draws a subdata set from the full dataset and estimates the interested
parameters by the chosen subdata. The fundamental concern of the subsampling method is how
to select the subdata. The more informative observations we choose, the better approximation
performance we could expect. Hence, uniform subsampling is not preferred because every obser-
vations are treated equally no matter how much information one observation carries. For linear
regression, leverage sampling has been discussed by Drineas et al. (2006); Mahoney (2011), and
it was named algorithm leveraging in Ma et al. (2015); Ma and Sun (2015). The subsamples
obtained by this method are drawn from the full dataset with replacement based on the normal-
ized leverage scores or their variants. The asymptotic normality and asymptotic unbiasedness
of the leveraging sampling estimator were studied in Ma et al. (2020). The leveraged volume
sampling was proposed by Derezinski et al. (2018) for linear regression, which yields an un-
biased coefficient estimator and has the same tail bonds as leverage sampling. Besides these
probabilistic methods for linear models, a deterministic method named information-based opti-
mal subdata selection (IBOSS) was proposed by Wang et al. (2019) aiming at finding a subdata
that has maximal information matrix under D-optimality. This method is also applicable under
divide-and-conquer setting, which was discussed in (Wang, 2019a). The IBOSS approach was
extended to include the logistic regression in Cheng et al. (2020). The local case control sam-
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pling for logistic regression was proposed by Fithian and Hastie (2014), which draws samples by
Poisson subsampling and determines whether one observation is in or not in the sample using
information from both the response and covariates. By extending the idea of the local case con-
trol sampling, a local uncertainty sampling algorithm was introduced by Han et al. (2020) for
softmax regression. Pronzato and Wang (2021) proposed an algorithm for steaming data where
the subdata is selected sequentially based on the estimated quantile.

Optimal subsampling method is a probabilistic approach, where subsamples are expected
to be drawn based on the optimal subsampling probabilities that are derived by minimizing
the asymptotic covariance matrix of the random sampling based estimators under certain op-
timality criterion. The optimal subsampling method for logistic regression was introduced by
Wang et al. (2018), which formulates the optimal subsampling probabilities by minimizing the
asymptotic mean squared error (MSE) of the subsample estimator. Since the expressions of the
optimal subsampling probabilities involves the maximum likelihood estimator (MLE) of the full
data, the authors proposed a two-stage adaptive algorithm which uses a pilot sample estima-
tor to substitute the full data MLE. This method was named as optimal subsampling methods
motivated from the A-optimality criterion (OSMAC), and was improved in Wang (2019b) by
adopting unweighted target functions for subsamples and Poisson subsampling. In addition to lo-
gistic regression, OSMAC was investigated to include softmax regression (Yao and Wang, 2018),
generalized linear models (Ai et al., 2019), quantile regression (Wang and Ma, 2020) and quasi-
likelihood (Yu et al., 2020). This article aims at introducing the optimal subsampling method
and illustrates its practical implements in R (R Core Team, 2020) with the following real data
examples.
– Income dataset (Dua and Graff, 2017). This dataset was extracted from 1994 Census database

and aimed at predicting whether one person’s annual income is over 50000 or not based on
various personal information such as age, education level, gender and financial situation.

– Bike sharing dataset (Fanaee-T and Gama, 2014). Bike sharing system monitors bike rental
situation hourly. It records the hourly weather information and working day information.
This dataset intends to modeling the hourly bike rental numbers under different conditions.

– Physicochemical properties of protein tertiary structure dataset (Dua and Graff, 2017). This
dataset was extracted from Critical Assessment of protein Structure Prediction and provides
information of the protein structure. We are going to model the association between the size
of the residue and other given information of the protein.
The rest of the paper is organized as follows. Section 2 talks about the adaptive optimal sub-

sampling method for logistic regression and softmax regression. Section 3 presents more efficient
algorithms for logistic regression by introducing unweighted estimator and Poisson subsam-
pling into the adaptive optimal subsampling method. Section 4 discusses the adaptive optimal
subsampling method for generalized linear models. Section 5 shows the application of optimal
subsampling for quantile regression. A brief summary is presented in Section 6.

2 Optimal Subsampling Methods under the A-optimality Crite-
rion

Suppose that {xi , yi}Ni=1 are N independent and identically distributed observations, where xi ∈
Rd, i = 1, 2, ..., N , are covariates, and yi, i = 1, 2, ..., N , are responses. For a logistic regression,
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Algorithm 1 General Subsampling Algorithm.
Subsampling with replacement:

– Assign subsampling probabilities {πi}Ni=1 to each observation.
– Draw n data points with replacement based on {πi}Ni=1, and denoted the subsample as

{x∗
i , y

∗
i , π

∗
i }ni=1.

Estimation: Obtain the regression coefficient estimator β̂sub by maximizing

�∗(β) =
n∑

i=1

y∗
i β

Tx∗
i − log{1 + exp(βTx∗

i )}
π∗

i

. (1)

yi ∈ {0, 1} is a binary variable. Given xi , the response yi satisfies that

P(yi = 1|xi ) = p(xi , β) = exp(xT
i β)

1 + exp(xT
i β)

, i = 1, 2, ..., N,

where β ∈ Rd is the unknown regression coefficient, and can be estimated by the MLE β̂MLE,
which is the maximizer of

�(β) =
N∑

i=1

[
yix

T
i β − log{1 + exp(xT

i β)}] .

This optimization problem can be solved by the Newton-Raphson method in O(ηNd2) time
where η is the number of iterations for the Newton-Raphson method to converge. To reduce
the computational burden when N is large, an optimal subsampling method named OSMAC
targeting at approximating the full data MLE β̂MLE was proposed in Wang et al. (2018). To
begin with, we introduce the general subsample estimator obtained by a subsample drawing
from the full dataset with arbitrary subsampling probabilities {πi}Ni=1 in Algorithm 1.

It has been proved that β̂sub is consistent to β̂MLE and the approximation error β̂sub− β̂MLE is
asymptotically normal conditional on the full data. The underlying idea of the OSMAC is to find
the optimal subsampling probabilities which minimize the asymptotic variance-covariance matrix
of β̂sub − β̂MLE, denoted as VN . To compare matrices, A-optimality criterion is adopted, which
minimizes the trace of this asymptotic variance-covariance matrix. The optimal subsampling
probabilities under A-optimality criterion are

π
optA
i = |yi − p(xi , β̂MLE)|‖M−1

L xi‖∑N
j=1 |yj − p(xj , β̂MLE)|‖M−1

L xj‖
, i = 1, ..., N, (2)

where ML = N−1 ∑N
i=1 p(xi , β̂MLE){1 − p(xi , β̂MLE)}xix

T
i . To reduce the computational burden,

L-optimality is also considered, intending to minimize the trace of the asymptotic variance-
covariance matrix of ML(β̂sub − β̂MLE). Thus, the L-optimal subsampling probabilities minimize
tr(MT

L VNMT
L ) and have expressions

π
optL
i = |yi − p(xi , β̂MLE)|‖xi‖∑N

j=1 |yj − p(xj , β̂MLE)|‖xj‖
, i = 1, ..., N. (3)

Both A- and L- optimal subsampling probabilities depend on the responses and covariates, and
contain β̂MLE, which is the quantity that we are approximating. To solve this problem, a pilot
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Algorithm 2 Adaptive optimal subsampling algorithm for logistic regression.
Pilot sampling:

– Run Algorithm 1 with subsample size n0 and subsampling probabilities π0
i . Obtain the

pilot subsample estimator β̂sub,0.
– Store the pilot subsample and the corresponding subsampling probabilities

{x∗0
i , y∗0, π∗0

i }n0
i=1.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities

π̂
optA
i = |yi − p(xi , β̂

sub,0)|‖M̂L(β̂sub,0)−1xi‖∑N
j=1 |yj − p(xj , β̂MLE)|‖M̂L(β̂sub,0)−1xj‖

, or (4)

π̂
optL
i = |yi − p(xi , β̂

sub,0)|‖xi‖∑N
j=1 |yj − p(xj , β̂MLE)|‖xj‖

(5)

under selected optimality criterion, where

M̂L(β̂sub,0) = 1

n0N

n0∑
i=1

p(x∗0
i , β̂sub,0){1 − p(x∗0

i , β̂sub,0)}x∗0
i (x∗0

i )T

π∗0
i

.

– Run Algorithm 1 with subsample size n1 and subsampling probabilities {π̂optA
i }Ni=1 or

{π̂optL
i }Ni=1.

– Record the second step subsample and the corresponding subsampling probabilities
{x∗1

i , y∗1
i , π∗1

i }n1
i=1.

Estimation: Combine pilot sample and second step sample, and denote the combined sample
as {x∗

i , y
∗
i , π

∗
i }n0+n1

i=1 . Obtain the final estimator β̃OS by maximizing

�∗
sub(β) =

n0+n1∑
i=1

y∗βTx∗
i − log{1 + exp(βTx∗

i )}
π∗

i

.

sample estimator is used to substitute β̂MLE in (2) and (3). The pilot sample can be drawn from
the full dataset by uniform subsampling or case control subsampling whose subsampling prob-
abilities are π0

i = N−1 and π0
i = (2

∑N
i=1 yi)

−yi (2N − 2
∑N

i=1 yi)
yi−1, respectively. Furthermore,

ML can be approximated by the pilot sample to reduce the computational complexity. It takes
O(Nd2) time to compute π

optA
i , and O(Nd) time to compute π

optL
i . The OSMAC is summarized

in Algorithm 2.
Theorem 6 in Wang et al. (2018) has proved the asymptotic normality of β̃OS conditionally

on the full data and the pilot sample estimator. The convergence rate is at the order of n
−1/2
1 ,

which is not related to the full data size. This means that even the full data size increases,
the information contained in the subsample may not change. In addition, Algorithm 2 is an
adaptive algorithm in that the approximately optimal subsample probabilities rely on the pilot
sample estimator. Thus an inaccurate pilot sample estimator may affect the accuracy of the
final estimator. Algorithm 2 greatly reduces the computational cost compared with the full data
computation, but still needs to process every observation in the full dataset when calculating the
approximately optimal subsampling probabilities, making the computational time at the order
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of N .
For faster calculation, the variance-covariance matrix of β̃OS can be estimated by

Ṽ OS = (M∗
L)−1V ∗

Nc(M
∗
L)−1, (6)

where

M∗
L = 1

(n0 + n1)N

n0+n1∑
i=1

p(x∗
i , β̃

OS){1 − p(x∗
i , β̃

OS)}x∗
i (x

∗
i )

T

π∗
i

, and

V ∗
Nc = 1

(n0 + n1)2N2

n0+n1∑
i=1

{y∗
i − p(x∗

i , β̃
OS)}2x∗

i (x
∗
i )

T

(π∗
i )2

.

Note that the Algorithm 2 is built under the circumstance that the regression model is
correctly specified. Another thing is that, when practically implementing Algorithm 2, the second
stage sample size should be always much larger than the pilot sample size. This is a theoretical
assumption ensuring the asymptotic normality of β̃OS, and it makes the second stage sample
much more influential to the subsample target function. These two statements are applicable to
all optimal subsampling methods in this article.

2.1 Optimal Subsampling Method for Softmax Regression
The OSMAC was investigated to include softmax regression, which is also called multinomial
logistic regression, in Yao and Wang (2018). Suppose that the categorical response of the softmax
regression contains K + 1 distinct outcomes, say yi ∈ {0, 1, ..., K}. The softmax regression has
the following form

P(yi = k|xi ) = exp(xT
i βk)∑K

j=0 exp(xT
i βj )

, k = 0, 1, ..., K, (7)

where βk is the unknown coefficient for category k. Let β0 = 0 for identifiability. The unknown
parameter for the whole model is denoted as β = (βT

1 , βT
2 , ..., βT

K)T, and (7) becomes

P(yi = 0|xi ) = p0(xi |β) = 1

1 + ∑K
j=1 exp(xT

i βj )
,

P (yi = k|xi ) = pk(xi |β) = exp(xT
i βk)

1 + ∑K
j=1 exp(xT

i βj )
.

Under this model, the log-likelihood function for the observed dataset {xi , yi}Ni=1 is

�so(β) =
N∑

i=1

⎡
⎣ K∑

k=1

I (yi = k)xT
i β − log

⎧⎨
⎩1 +

K∑
j=1

exp(xT
i βj )

⎫⎬
⎭

⎤
⎦ .

Maximizing this log-likelihood function, we can obtain the full data MLE β̂MLE though Newon-
Raphson method. By deriving the variance-covariance matrix of a general subsample estimator
for softmax regression, the optimal subsampling probabilities are

π
optA
so,i (β̂MLE) = ‖M−1

S {si (β̂MLE) ⊗ xi}‖∑N
j=1 ‖M−1

S {sj (β̂MLE) ⊗ xj }‖
, under A-optimality criterion, and (8)
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π
optL
so,i (β̂MLE) = ‖si(β̂MLE)‖‖xi‖∑N

j=1 ‖sj (β̂MLE)‖‖xj‖
, under L-optimality criterion, (9)

where MS = N−1 ∑N
i=1 �i (β̂MLE) ⊗ (xix

T
i ); �i(β) is a K × K matrix whose k-th diagonal el-

ement is �i,(k,k)(β) = pk(xi , β) − p2
k(xi , β) and k1k2-th off-diagonal element is �i,(k1,k2)(β) =

−pk1(xi , β)pk2(xi , β); and si(β) ∈ RK with k-th element being si,k(β) = I (yi = k) − pi(k, β).
With the strategy that uses pilot sample estimator to replace β̂MLE when calculating optimal
subsampling probabilities, we have the adaptive optimal subsampling algorithm for softmax
regression.

2.2 Income Dataset
The behavior of Algorithm 2 is illustrated by the income dataset (Dua and Graff, 2017), which
contains 48842 observations in total. The response is an indicator variable which shows whether
one person’s income is over 50K or not, and around 24% of participants have income exceeding
50K. We use 5 continuous covariates to build the logistic model, which are age, final weight
(fnlwgt), education (edu), capital loss (loss) and working hours per week (hours). The original
dataset was partitioned into training dataset and test dataset. We combined these two datasets,
selected variables involving in the logistic model, and name this newly generated data as adult1.
Applying glm function in stats package (R Core Team, 2020) to adult1, we can obtain the
coefficient estimator for the covariates using the following chunk of code.

adult <- read.table("Code/adult.data", sep = ",")
test <- read.table("Code/adult.test", sep = ",", skip = 1)
test$V15 <- gsub("\\.", "", test$V15)
adult <- rbind(adult, test)
adult1 <- subset(adult, select = c("V1", # age

"V3", # fnlwgt
"V5", # edu
"V12", # loss
"V13", # hours
"V15", # income
NULL))

adult1$V15 <- as.numeric(adult1$V15 == " >50K")
income.glm <- glm(V15 ~ ., data = adult1, family = "binomial")
summary(income.glm)

##
## Call:
## glm(formula = V15 ~ ., family = "binomial", data = adult1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -3.0587 -0.6890 -0.4364 -0.1376 3.0926
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
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## (Intercept) -8.587e+00 9.436e-02 -91.009 < 2e-16 ***
## V1 4.594e-02 9.518e-04 48.266 < 2e-16 ***
## V3 6.007e-07 1.148e-07 5.231 1.68e-07 ***
## V5 3.410e-01 5.315e-03 64.156 < 2e-16 ***
## V12 5.616e-04 2.643e-05 21.244 < 2e-16 ***
## V13 4.202e-02 1.033e-03 40.669 < 2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 53751 on 48841 degrees of freedom
## Residual deviance: 42995 on 48836 degrees of freedom
## AIC: 43007
##
## Number of Fisher Scoring iterations: 5

It is seen that every covariates is statistically significant, and as any covariate increases, the
probability for a person with an income larger than 50K increases.

In the following, we implemented Algorithm 2 to adult1 by function AdpOptSubLog, in
which the subsample estimator is calculated through svyglm function from survey package
(Lumley, 2020) along with weights option.

X <- cbind(1, as.matrix(adult1[, -dim(adult1)[2]]))
y <- adult1$V15
set.seed(123)
AdpOptSubLog(X, y, r0 = 500, r = 1000, optmethod = "A", data = adult1,

covariate = "V1 + V3 + V5 + V12 + V13")

## coefficients stdErr Zvalue Pvalue
## intercept -8.791713e+00 3.895829e-01 -22.566987 9.147120e-113
## beta1 4.269838e-02 5.432964e-03 7.859132 3.868057e-15
## beta2 1.528809e-06 5.649197e-07 2.706241 6.804961e-03
## beta3 3.535131e-01 2.817009e-02 12.549236 4.013658e-36
## beta4 8.640746e-04 1.386894e-04 6.230288 4.655796e-10
## beta5 4.168246e-02 5.534931e-03 7.530801 5.043002e-14

In the function AdpOptSubLog, X is the covariate matrix, y is the response variable with
numerical format, r0 stands for the pilot sample size, r stands for the second step sample size,
and optmethod indicates the optimality criterion, which can be “A” and “L”. The output gives
coefficient estimators and estimated standard errors, along with the z statistics and p values used
to test whether the MLE for the corresponding covariate equals to 0 or not. For an arbitrary
βj , the z statistic is calculated by

zj = β̃OS
j√
Ṽ OS

jj

,
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where
√

Ṽ OS
jj is the estimated standard error and the estimated standard error is the squared

root of j -th diagonal element of Ṽ OS in (6).

3 More Efficient Optimal Subsampling for Logistic Regression
In this section, we introduce two approaches proposed by Wang (2019b) to improve the OSMAC,
where the first one is to use unweighted subsample estimators and the other one is to adopt
Poisson subsampling.

3.1 More Efficient Unweighted Estimator
In Algorithm 2, β̃OS is obtained by maximizing weighted target function because the expression
of the optimal subsampling probabilities involves yi . From (1), we can see that data points
with higher subsampling probabilities contribute relatively less towards the weighted target
function. Note that the higher subsampling probability one data point has, the more information
that observation carries. Thus, the weighted target function cannot utilize the information of a
sample as efficient as an unweighted target function. Given a subsample {x∗

i , y
∗
i }ni=1, the general

unweighted subsample estimator β̂sub
uw proposed by Wang (2019b) is obtained by maximizing

�∗
uw(β) =

n∑
i=1

[
y∗

i β
Tx∗

i − log{1 + exp(βTx∗
i )}

]
.

The β̂sub
uw is biased and a bias correction procedure is needed. Algorithm 3 summarizes how to

implement unweighted estimator in the optimal subsampling method and how to correct the
bias.

3.2 Poisson Subsampling
Besides subsampling with replacement, Poisson subsampling was considered in Wang (2019b).
For Poisson subsampling, each observation is assigned to a subsampling probability and we
decide to include a data point into a sample by conducting a Bernoulli trail with the assigned
subsampling probability as the successful rate. The observations in the subsample drawn by
Poisson subsampling can be independent to each other unconditionally to the full data. That
means, we can calculate the subsampling probabilities for i-th observation and decide whether
to include i-th observation into subsample only based on the information of the i-th data point.
Whereas for the subsampling with replacement, we have to draw a large indexes of samples
from N numbers with pre-specified subsampling probabilities. For enormously large N such that
N exceeding the memory limit of the computer, the subsampling with replacement fails to be
applied. Another advantage of Poisson subsampling is that no replicate observation exists in
the subsample. Furthermore, the sample size is a random variable for Poisson subsampling,
and we need to use the expected sample size to control it. The procedure of a general Poisson
subsampling is described in Algorithm 4.

To keep all those features of Poisson subsampling, given a pilot sample with corresponding
subsampling probabilities {x∗0

i , y∗0
i , π∗0

i }n∗
0

i=1 and the pilot coefficient estimator β̃ps,0, the approx-
imated optimal subsampling probabilities under A-optimality and L-optimality criteria are

π
optA
ps,i (β̃ps,0) = |yi − p(xi , β̃

ps,0)|‖M−1
P (β̃ps,0)xi‖

φoptA(β̃ps,0)
, i = 1, ..., N, and (11)
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Algorithm 3 Efficient adaptive optimal subsampling algorithm.
Pilot sampling:

– Assign subsampling probabilities π0
i = c

1−yi

0 c
yi

1 to each data point, where c0 = c1 = 1
N

for uniform subsampling and c0 = 1/(2N − 2
∑N

i=1 yi), c1 = 1/(2
∑N

i=1 yi) for case control
subsampling.

– Draw n0 data points with replacement based on {π0
i }Ni=1 and denote the sampled dataset

as {x∗0
i , y∗0

i }n0
i=1.

Estimation for pilot sampling:
– Obtain the unweighted estimator β̂sub,0

uw by maximizing

�∗0
uw(β) =

n0∑
i=1

[
y∗0

i βTx∗0
i − log{1 + exp(βTx∗0

i )}].

– Correct bias and the pilot sample estimator is β̃sub,0
uw = β̂sub,0

uw + (log(c0/c1), 0, ..., 0︸ ︷︷ ︸
d−1

)T.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities {π̃i}Ni=1 based on (4) or (5)

with β̂sub,0 being substituted by β̃sub,0
uw .

– Sample n1 data points with replacement based on {π̃i}Ni=1 and denote the sampled dataset
as {x∗1

i , y∗1
i }n1

i=1.
Estimation for second step sampling:

– Obtain the unweighted estimator β̂sub,1
uw for second step sample by maximizing

�∗1
uw(β) =

n1∑
i=1

[
y∗1

i βTx∗1
i − log{1 + exp(βTx∗1

i )}].

– The second step estimator is obtained by correcting bias, say β̃sub,1
uw = β̂sub,1

uw + β̃sub,0
uw .

Combination: The final estimator β̃sub
uw is obtained by

β̃sub
uw =

{
�̈∗0
uw(β̂sub,0

uw ) + �̈∗1
uw(β̂sub,1

uw )
}−1 {

�̈∗0
uw(β̂sub,0

uw )β̃sub,0
uw + �̈∗1

uw(β̂sub,1
uw )β̃sub,1

}
,

where

�̈∗0
uw(β) =

n0∑
i=1

p(x∗0
i , β){1 − p(x∗0

i , β)}x∗0
i (x∗0

i )T;

�̈∗1
uw(β) =

n1∑
i=1

p(x∗1
i , β){1 − p(x∗1

i , β)}x∗1
i (x∗1

i )T.

The variance-covariance matrix of β̃sub
uw can be estimated by

Ṽ sub
uw =

{
�̈∗0
uw(β̂sub,0

uw ) + �̈∗1
uw(β̂sub,1

uw )
}−1

[ n0∑
i=1

{y∗0
i − p(x∗0

i , β̂sub,0
uw )}2x∗0

i (x∗0
i )T

+
n1∑
i=1

{y∗1
i − p(x∗1

i , β̂sub,1
uw )}2x∗1

i (x∗1
i )T

] {
�̈∗0
uw(β̂sub,0

uw ) + �̈∗1
uw(β̂sub,1

uw )
}−1

. (10)
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Algorithm 4 Poisson subsampling.
Input: {xi , yi, πi}Ni=1, n is the expected sample size, πi � 1/n

Output: Sample set S
Initialization: S ← ∅

for i in {1, 2, ..., N} do
u ∼ Unif(0, 1),
if u < nπi then
S ← S ∪ (xi , yi, πi),

end if
end for

π
optL
ps,i (β̃ps,0) = |yi − p(xi , β̃

ps,0)|‖xi‖
φoptL(β̃ps,0)

, i = 1, ..., N, respectively, (12)

where

φoptA(β̃ps,0) =
n∗

0∑
j=1

|y∗0
j − p(x∗0

j , β̃ps,0)|‖M−1
P (β̃ps,0)x∗0

j ‖
(n0π

∗0
j ) ∧ 1

,

φoptL(β̃ps,0) =
n∗

0∑
j=1

|y∗0
j − p(x∗0

j , β̃ps,0)|‖xj‖
(n0π

∗0
j ) ∧ 1

,

MP (β̃ps,0) = 1

N

n∗
0∑

i=1

p(x∗0
i , β̃ps,0){1 − p(x∗0

i , β̃ps,0)}x∗0
i (x∗0

i )T

(n0π
∗0
j ) ∧ 1

,

and n1 is the expected sample size. The adaptive optimal subsampling method with Poisson
subsampling is described in Algorithm 5.

3.3 Income Dataset

Algorithm 3 is realized by function AdpOptUWLog. The following code applies the function
AdpOptUWLog to the income dataset. The standard errors are calculated from (10).

AdpOptUWLog(X, y, r0 = 500, r = 1000, optmethod = "A", data = adult1,
covariate = "V1 + V3 + V5 + V12 + V13")

## coefficients stdErr Zvalue Pvalue
## intercept -8.474380e+00 3.510944e-01 -24.137046 1.021383e-128
## beta1 4.719963e-02 4.355923e-03 10.835736 2.330840e-27
## beta2 5.618032e-07 4.707567e-07 1.193405 2.327110e-01
## beta3 3.268313e-01 2.371188e-02 13.783442 3.206122e-43
## beta4 8.420474e-04 1.227689e-04 6.858799 6.944199e-12
## beta5 3.945990e-02 4.427490e-03 8.912477 4.990482e-19

Function AdpOptPosLog is coded according to Algorithm 5, and apply this function to the
income dataset using the code below.



Optimal Subsampling Methods for Massive Datasets 161

Algorithm 5 Efficient adaptive optimal subsampling algorithm using Poisson subsampling.
Pilot sampling:

– Run Algorithm 4 with expected sample size n0 and subsampling probabilities π0
i .

– Obtain a pilot sample with sample size n∗
0, say {x∗0

i , y∗0
i , π∗0

i }n∗
0

i=1.
Estimation for pilot sampling:

– Obtain β̂ps,0
uw by maximizing

�∗0
ps,uw(β) =

n∗
0∑

i=1

(n0π
∗0
i ∨ 1)

[
y∗0

i βTx∗0
i − log{1 + exp(βTx∗0

i )}] .

– Correct bias and the pilot sample estimator is β̃ps,0
uw = β̂ps,0

uw + (log(c0/c1), 0, ..., 0︸ ︷︷ ︸
d−1

)T.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities {πoptA

ps,i (β̃ps,0
uw )}Ni=1 or

{πoptL
ps,i (β̃ps,0

uw )}Ni=1 based on (11) or (12).
– Run Algorithm 4 with expected sample size n1 and subsampling probabilities

{πoptA
ps,i (β̃ps,0

uw )}Ni=1 or {πoptL
ps,i (β̃ps,0

uw )}Ni=1 to obtain the second step sample, denoted as
{x∗1

i , y∗1
i , π∗1

i }n∗
1

i=1, where n∗
1 is the true sample size.

Estimation for second step sampling:
– Obtain β̂ps,1

uw for second step sample by maximizing

�∗1
ps,uw(β) =

n∗
1∑

i=1

(n1π
∗1
i ∨ 1)

[
y∗1

i βTx∗1
i − log{1 + exp(βTx∗1

i )}] .

– The second step estimator can be obtained by correcting bias, say β̃ps,1
uw = β̂ps,1

uw + β̃ps,0
uw .

Combination: The final estimator β̃ps
uw is obtained by

β̃ps
uw =

{
�̈∗0
ps,uw(β̂ps,0

uw ) + �̈∗1
ps,uw(β̂ps,1

uw )
}−1 {

�̈∗0
ps,uw(β̂ps,0

uw )β̃ps,0
uw + �̈∗1

ps,uw(β̂ps,1
uw )β̃ps,1

uw

}
,

where

�̈∗0
ps,uw(β) =

n∗
0∑

i=1

p(x∗0
i , β){1 − p(x∗0

i , β)}x∗0
i (x∗0

i )T;

�̈∗1
ps,uw(β) =

n∗
1∑

i=1

p(x∗1
i , β){1 − p(x∗1

i , β)}x∗1
i (x∗1

i )T.

The variance-covariance matrix of β̃ps
uw can be estimated by

Ṽ ps
uw =

{
�̈∗0
ps,uw(β̂ps,0

uw ) + �̈∗1
ps,uw(β̂ps,1

uw )
}−1

[ n∗
0∑

i=1

{y∗0
i − p(x∗0

i , β̂ps,0
uw )}2x∗0

i (x∗0
i )T

+
n∗

1∑
i=1

{y∗1
i − p(x∗1

i , β̂ps,1
uw )}2x∗1

i (x∗1
i )T

] {
�̈∗0
ps,uw(β̂ps,0

uw ) + �̈∗1
ps,uw(β̂ps,1

uw )
}−1

. (13)
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Table 1: MSE, averaged second step sample size and running time of different methods for the
income data when n0 = 500 and n1 = 1000 are fixed for 1000 replications. The sample size for
uniform subsampling is n0 +n1 for fair comparison. A.S. Sample Size means the averaged second
step sample size used for each algorithm.

Method MSE A.S. Sample Size CPU Seconds

Algorithm 2 optA 0.170 1000 41.598
Algorithm 2 optL 0.271 1000 39.590
Algorithm 3 optA 0.127 1000 33.067
Algorithm 3 optL 0.271 1000 31.369
Algorithm 5 optA 0.106 1041.478 38.790
Algorithm 5 optL 0.238 1020.293 36.681

LCC 0.0176 13824.657 153.129
Uniform 0.317 NA 6.860

Full data CPU seconds: 230.116

AdpOptPosLog(X, y, r0 = 500, r = 1000, optmethod = "A", data = adult1,
covariate = "V1 + V3 + V5 + V12 + V13")

## [[1]]
## coefficients stdErr Zvalue Pvalue
## intercept -8.662216e+00 3.204785e-01 -27.0290055 6.743402e-161
## beta1 5.055410e-02 4.467591e-03 11.3157404 1.096725e-29
## beta2 4.838215e-07 5.175832e-07 0.9347705 3.499066e-01
## beta3 3.597660e-01 2.232577e-02 16.1143842 2.021679e-58
## beta4 7.112636e-04 1.103245e-04 6.4470131 1.140759e-10
## beta5 3.299479e-02 3.512693e-03 9.3930180 5.830516e-21
##
## [[2]]
## pilot.sample.size second.sample.size
## 1 493 1107

Because the sample size for Poisson sampling is random, we record the true sample size in
both stages. In AdpOptPosLog, r0 and r, which are the expected pilot sample size and expected
second stage sample size, respectively, are set to be 500 and 1000. We can see, in this example,
the true pilot sample size is 493 and true second stage sample size is 1107. The optmethod could
be “A”, “L” and “LCC”, where “LCC” represents the local case control sampling introduced in
Fithian and Hastie (2014), and the second step estimator is used as the final estimator. When
selecting optmethod = "LCC", r is not meaningful since the subsampling probabilities at second
stage become |yi − p(xi , β̃

ps,0
uw )|. The expected sample size is determined by the discrepancy

between the real value and estimated probabilities, and is at the same order of N .
Table 1 compares the statistical efficiency and computing efficiency of the proposed algo-

rithms with uniform subsampling and local case control sampling for the income dataset. The
statistical efficiency is measured by MSE, where MSE is calculated by S−1 ∑S

i=1 ‖β̃∗
i − β̂MLE‖2

with S being the number of replications and β̃∗
i being the final estimator of the targeted algo-

rithm for i-th replication. All computations are processed on a MacBook Pro with a 2.5 GHz



Optimal Subsampling Methods for Massive Datasets 163

Intel Core i7 processor and 16 GB memory. Table 1 shows that the uniform subsampling takes
the least time since only one sampling step is involved and no need to compute the subsampling
probabilities. The performances of all proposed algorithms in estimation efficiency are better
than the uniform subsampling. Among these approaches, the local case control sampling is the
most efficient one in approximating β̂MLE because this method draws greatly more second step
samples than others. As a consequence, the local case control sampling has a heavier computa-
tional burden than the proposed algorithms. Obviously, directly calculating β̂MLE with the full
data is the most time consuming method. For the statistical efficiency of these three proposed
algorithms, Algorithm 5 outperforms the other two, and Algorithm 2 is the least efficient one,
indicating that using unweighted estimator and Poisson subsampling helps improve the estima-
tion accuracy. In addition, it can be seen that Algorithms under L-optimality are less efficient
in coefficient estimation but more efficient in terms of computing time than Algorithms under
A-optimality.

4 Optimal Subsampling Method for Generalized Linear Models
Consider a generalized linear model with expression

f (yi |xi , β) = h(yi) exp
[
yig(xT

i β) − c{g(xT
i β)}], (14)

where h(·), g(·) and c(·) are known functions. The β̂MLE can be obtained by maximizing

�glm(β) =
N∑

i=1

log f (yi |xi , β)

through the Newton-Raphson method, which can be achieved in O(ηNd2) time, where η is
the number of iterations for the Newton-Raphson method to converge. Assign subsampling
probabilities to each observation. Draw n observations with replacement and denote them as
{x∗

i , y
∗
i , π

∗
i }ni=1. The subsample estimator β̂

glm
sub is obtained by maximizing the weighted target

function

�∗
glm(β) =

n∑
i=1

log f (y∗
i |x∗

i , β)

π∗
i

. (15)

By minimizing the asymptotic MSE of β̂
glm
sub , the optimal subsampling probabilities under A-

optimality criterion are

π
optA
glm,i (β̂MLE) = |yi − ċ{g(xT

i β̂MLE)}|‖M−1
G (β̂MLE)ġ(xT

i β̂MLE)xi‖∑N
j=1 |yj − ċ{g(xT

j β̂MLE)}|‖M−1
G (β̂MLE)ġ(xT

j β̂MLE)xj‖
, (16)

where ċ(·) and ġ(·) are the first-order derivatives of c(·) and g(·); and

MG(β̂MLE) = 1

n

n∑
i=1

{
g̈(xT

i β̂MLE)xix
T
i [ċ{g(xT

i β̂MLE)} − yi] + c̈{g(xT
i β̂MLE)}ġ2(xT

i β̂MLE)xix
T
i

}
,

with c̈(·) and g̈(·) being the second-order derivatives of c(·) and g(·). The optimal subsampling
probabilities under L-optimality criterion are

π
optL
glm,i(β̂MLE) = |yi − ċ{g(xT

i β̂MLE)}|‖ġ(xT
i β̂MLE)xi‖∑N

j=1 |yj − ċ{g(xT
j β̂MLE)}|‖ġ(xT

j β̂MLE)xj‖
. (17)
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We need O(Nd2) time to compute π
optA
glm,i (β̂MLE) and O(Nd) time to compute π

optL
glm,i(β̂MLE). From

(15), we can see that the weighted target function is easily inflated by extreme small subsampling
probabilities. To solve this, the authors in Ai et al. (2019) used a threshold to constraint the
value of |yi − ċ{g(xT

i β)}| from below. In such way, given a pilot sample estimator β̂glm,0 and a
pre-specified threshold δ, the approximated optimal subsampling probabilities are

π̂
optA
glm,i (β̂

glm,0) = max{|yi − ċ{g(xT
i β̂glm,0)}|, δ}‖M−1

G (β̂glm,0)ġ(xT
i β̂glm,0)xi‖∑N

j=1 max{|yi − ċ{g(xT
i β̂glm,0)}|, δ}‖M−1

G (β̂glm,0)ġ(xT
j β̂glm,0)xj‖

(18)

under A-optimality criterion and

π̂
optL
glm,i(β̂

glm,0) = max{|yi − ċ{g(xT
i β̂glm,0)}|, δ}‖ġ(xT

i β̂glm,0)xi‖∑N
j=1 max{|yi − ċ{g(xT

i β̂glm,0)}|, δ}‖ġ(xT
j β̂glm,0)xj‖

(19)

under L-optimality criterion. The adaptive optimal subsampling algorithm for generalized linear
regression is summarized in Algorithm 6. It has been proved in Ai et al. (2019) that the resultant
estimator of Algorithm 6 is asymptotically normal and the rate of convergence is O(n

−1/2
1 ) under

some mild assumptions.

4.1 Poisson Regression
Poisson regression is widely used for modeling count data, and is one of the generalized linear
models. Under (14), the poisson regression has h(yi) = 1/(yi !), g(xT

i β) = xT
i β and c(·) = exp(·),

and is of the form

f (yi |xi , β) = 1

yi ! exp
{
yix

T
i β − exp(xT

i β)
}
. (21)

Given a prior estimator β̂glm,0, the approximated optimal subsampling probabilities in (18) and
(19) become

π̂
optA
pr,i (β̂glm,0) = max{|yi − exp(xT

i β̂glm,0)|, δ}‖M−1
P (β̂glm,0)xi‖∑N

j=1 max{|yi − exp(xT
i β̂glm,0)|, δ}‖M−1

P (β̂glm,0)xj‖
and (22)

π̂
optL
pr,i (β̂glm,0) = max{|yi − exp(xT

i β̂glm,0)|, δ}‖xi‖∑N
j=1 max{|yi − exp(xT

i β̂glm,0)|, δ}‖xj‖
, respectively, (23)

where MP = 1
N

∑N
i=1 exp(xT

i β̂glm,0)xix
T
i . Plug in (21), (22) and (23) into Algorithm 6, and we

can have the adaptive optimal subsampling algorithm for poisson regression.

4.2 Bike Sharing Dataset
The bike sharing dataset, which models the number of bikes rented hourly under different condi-
tions, is used to demonstrate the effectiveness of the Algorithm 6 to the poisson regression. This
dataset contains 17379 observations, and 4 covariates are included to the model, consisting of
a binary variable “workingday” to indicate whether a certain day is a working day or not,
3 continuous variables which are “temp” (temperature), “hum” (humidity) and “windspeed”
(windspeed). The organized dataset is named hour1 and the coefficient estimator for hour1 is
computed by glm using family = "poisson". The following code shows how to obtain the MLE
for the full dataset.
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Algorithm 6 Adaptive optimal subsampling algorithm for generalized linear models.
Pilot sampling:

– Assign π0
i = N−1 to each observation.

– Choose n0 data points with replacement and record the subsample as {x∗0
i , y∗0, π∗0

i }n0
i=1.

– Obtain the pilot sample estimator β̂glm,0 by maximizing

�∗0
glm(β) =

n0∑
i=1

log f (y∗0
i |x∗0

i , β)

π∗0
i

.

Second step sampling:
– Calculate the approximate optimal subsampling probabilities {π̂optA

glm,i (β̂
glm,0)}Ni=1 or

π̂
optL
glm,i(β̂

glm,0) based on (18) or (19).
– Draw n1 samples with replacement based on those approximate optimal subsampling prob-

abilities.
– Record the second step subsample and the corresponding subsampling probabilities

{x∗1
i , y∗1, π∗1

i }n1
i=1.

Estimation: Combine the pilot sample and second stage sample and denote it as
{x∗

i , y
∗, π∗

i }n0+n1
i=1 . Obtain the final estimator β̃glm by maximizing

�∗
glm(β) =

n0+n1∑
i=1

log f (y∗
i |x∗

i , β)

π∗
i

.

Estimate the variance-covariance matrix of β̃glm by

Ṽ = (M∗
G)−1V ∗

G(M∗
G)−1, (20)

where

M∗
G =

n0+n1∑
i=1

g̈(β̃T
glmx∗

i )x
∗
i (x

∗
i )

T[ċ{g(β̃T
glmx∗

i )} − y∗
i ] + c̈{g(β̃T

glmx∗
i )}ġ2(β̃T

glmx∗
i )x

∗
i (x

∗
i )

T

(n0 + n1)Nπ∗
i

,

V ∗
G =

n0+n1∑
i=1

[y∗
i − ċ{g(β̃T

glmx∗
i )}]2ġ2(β̃T

glmx∗
i )x

∗
i (x

∗
i )

T

(n0 + n1)2N2(π∗
i )2

.

hour <- read.csv("Code/hour.csv")
hour1 <- subset(hour, select = c("workingday",

"temp",
"hum",
"windspeed",
"cnt",
NULL))

hour.glm <- glm(cnt ~ ., data = hour1, family = "quasipoisson")
summary(hour.glm)

##
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## Call:
## glm(formula = cnt ~ ., family = "quasipoisson", data = hour1)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -25.178 -10.343 -3.115 4.743 43.828
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.01970 0.03597 139.55 < 2e-16 ***
## workingday 0.03050 0.01393 2.19 0.028568 *
## temp 1.82930 0.03359 54.45 < 2e-16 ***
## hum -1.35761 0.03528 -38.48 < 2e-16 ***
## windspeed 0.19668 0.05418 3.63 0.000284 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## (Dispersion parameter for quasipoisson family taken to be 134.8556)
##
## Null deviance: 2891591 on 17378 degrees of freedom
## Residual deviance: 2158367 on 17374 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 5

We choose quasipoisson for the family option in glm function to deal with the over-
dispersion problem for the bike sharing dataset. The small p values show that every covariate
is significant to the model at 5% significance level. As we can see, the expected count of rented
bikes in working days is greater than that in non-working days. The increase of temperature or
windspeed has a positive influence to the number of rented bikes, and the increase of humidity
has a negative effect on the number of rented bikes.

Next, we implement function AdpOptSubPoi, which is coded by Algorithm 6, to the bike
sharing dataset using the following code.

y <- hour1$cnt
X <- cbind(1, as.matrix(hour1[, -dim(hour1)[2]]))
AdpOptSubPoi(X, y, r0 = 200, r = 500, optmethod = "A",

delta.quant = 0.05)

## coefficients stdErr Zvalue Pvalue
## intercept 5.14630395 0.13783088 37.337816 3.997503e-305
## beta1 0.07447008 0.06144731 1.211934 2.255376e-01
## beta2 1.74470616 0.13251485 13.166118 1.374867e-39
## beta3 -1.56200797 0.15372749 -10.160889 2.963612e-24
## beta4 0.24731077 0.19582335 1.262928 2.066151e-01

The above result is given by setting the pilot sample size as 200 and the second stage
sample size as 500 under A-optimality criterion. The option dalta.quant = 0.05 indicates that
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Table 2: MSE and running time of different methods for the bike sharing dataset when n0 = 200
and n1 = 500 are fixed for 1000 replications.

Method MSE CPU Seconds

Algorithm 6 optA 0.103 11.184
Algorithm 6 optL 0.116 10.727

Uniform 0.149 9.516
Full data running time: 62.379

δ is chosen as the 5% quantile of |yi − exp(xT
i β̂glm,0)|. The weighted subsample estimator is

obtained by glm using weights option and the standard errors are estimated using (20).
To demonstrate the effectiveness of the proposed algorithm, we compare the MSE and

running time of different methods. Table 2 shows that Algorithm 6 is better than uniform
subsampling in estimation accuracy, and is computationally more efficient compared with the
full data computation.

5 Optimal Subsampling Method for Quantile Regression
The adaptive optimal subsampling algorithm for quantile regression was discussed in Wang
and Ma (2020). The quantile regression estimates a specified quantile of the response variable
conditional on the covariate variable, and has form

qτ (yi |xi) = xT
i β,

where τ represents that the τ -th quantile of yi given xi is measured. The full data estimator
can be solved in O(N5/2d3) time by interior point method (Portnoy et al., 1997). Draw a sub-
sample with size n based on the probability distribution {πi}Ni=1, and record the sampled data
with its subsampling probability as {x∗

i , y
∗
i , π

∗
i }ni=1. The subsample estimator β̂

qr
sub is obtained by

minimizing

Q∗
sub(β) = 1

n

n∑
i=1

(y∗
i − βTx∗

i ){τ − I (y∗
i − βTx∗

i < 0)}
Nπ∗

i

. (24)

The optimal subsampling probabilities under A-optimality are

π
optA
qr,i = |τ − I (yi − xT

i β < 0)|‖MQxi‖∑N
j=1 |τ − I (yj − xT

j β < 0)|‖MQxj‖
, i = 1, ..., N,

where MQ = 1
N

∑N
i=1 fε(0, xi)xxT

i and fε(0, xi) is the density function of yi − xT
i β at 0 given xi .

The difficulty to estimate fε(0, xi) makes A-optimal subsampling probabilities hard to compute.
Thus, for quantile regression, L-optimal subsampling probabilities are more favorable, which are

π
optL
qr,i (β) = |τ − I (yi − xT

i β < 0)|‖xi‖∑N
j=1 |τ − I (yj − xT

j β < 0)|‖xj‖
, i = 1, ..., N. (25)

The time complexity for computing π
optL
qr,i (β) is O(Nd). Based on the L-optimal subsampling

probabilities, the authors proposed an iteratively adaptive optimal algorithm to obtain the
coefficient estimator and its estimated variance. This algorithm is stated in Algorithm 7. It has
shown that the rate of convergence of the final estimator is (n1R)−1/2 in Wang and Ma (2020).
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Algorithm 7 Iteratively adaptive optimal subsampling algorithm for quantile regression.
Pilot sampling:

– Assign π0
i = N−1 to each observation.

– Choose n0 data points with replacement and record the subsample and associated subsam-
pling probabilities as {x∗0

i , y∗0, π∗0
i }n0

i=1.
– Obtain the pilot sample estimator β̂qr,0 by minimizing (24) with {x∗0

i , y∗0, π∗0
i }n0

i=1 plugged
in.

– Calculate the approximate optimal subsampling probabilities π̂
optL
qr,i (β̂qr,0) based on (25).

Iterative second step sampling:
for r in {1, 2, ..., R} do

– Draw n1 samples with replacement based on π̂
optL
qr,i (β̂qr,0) and denote the subsample

and corresponding subsampling probabilities as {x∗1
r,i , y

∗1
r,i , π

∗1
r,i }n1

i=1.
– Obtain the subsample estimator β̂

qr
r by minimizing (24) with {x1

i , y
1
i , π

∗
i }ni=1 replaced

by {x∗1
r,i , y

∗1
r,i , π

∗1
r,i }n1

i=1.
end for

Estimation: The final estimator is

β̃qr = 1

R

R∑
r=1

β̂qr
r

and its estimated variance-covariance matrix is

Ṽ qr = 1

νR(R − 1)

R∑
r=1

(β̃qr − β̂qr
r )(β̃qr − β̂qr

r )T, (26)

where

ν = 1 − n1R − 1

2

N∑
i=1

{π̂optL
qr,i (β̂qr,0)}2.

5.1 Physicochemical Properties of Protein Tertiary Structure Dataset

We apply the Algorithm 7 to the physicochemical properties of protein tertiary structure dataset
(Dua and Graff, 2017), which contains 45730 observations and the response variable is the size
of the residue ranging from 0 to 21 Armstrong. We use 8 covariates describing the features of the
residue to build quantile regression model based on the dataset casp. The parameter estimators
of casp are calculated with function rq from quantreg package (Koenker, 2020) by selecting
option method = “pfn” by the following chunk of code.

casp <- read.csv("Code/CASP.csv")
casp <- casp[, -which(colnames(casp) == "F3")] # F3 = F2/F1
fit.full <- rq(RMSD ~ ., tau=0.75, data = casp, method="pfn")
summary(fit.full)

##
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## Call: rq(formula = RMSD ~ ., tau = 0.75, data = casp, method = "pfn")
##
## tau: [1] 0.75
##
## Coefficients:
## Value Std. Error t value Pr(>|t|)
## (Intercept) 14.28730 0.44468 32.12969 0.00000
## F1 0.00135 0.00016 8.35146 0.00000
## F2 0.00363 0.00007 52.87650 0.00000
## F4 -0.14037 0.00232 -60.43679 0.00000
## F5 0.00000 0.00000 -3.92747 0.00009
## F6 -0.03302 0.00251 -13.16472 0.00000
## F7 -0.00011 0.00006 -1.79549 0.07258
## F8 0.02824 0.00094 29.91801 0.00000
## F9 -0.10077 0.00887 -11.35847 0.00000

From the result, we know that, at 5% significance level, the seventh covariate (Euclidian
distance) is not significant to the model and all others are significant.

Algorithm 7 is realized by QuanSub as follows, in which the option r0 and r are pilot
sample size and second stage sample size, respectively, working as n0 and n1 in the Algorithm 7,
and RR is the same as R in the Algorithm 7. The option tau = 0.75 indicates that we are
modeling 75-th quantile of the size of the residue based on the covariates. The optmethod can
be L and uniform, which implies optimal subsampling under L-optimality criterion and uniform
subsampling, respectively.

X <- cbind(1, as.matrix(casp[, -1]))
y <- casp$RMSD
QuanSub(X, y, r0 = 200, r = 1000, RR = 10, tau = 0.75,

optmethod = "L")

## coefficients stdErr Zvalue Pvalue
## intercept 1.650621e+01 2.122373e+00 7.777244 7.412151e-15
## beta1 1.863738e-03 4.138735e-04 4.503158 6.695106e-06
## beta2 3.619006e-03 1.245316e-04 29.060951 1.119019e-185
## beta3 -1.414209e-01 6.622824e-03 -21.353567 3.612864e-101
## beta4 -7.255863e-06 2.649310e-06 -2.738774 6.166870e-03
## beta5 -3.774362e-02 8.541898e-03 -4.418645 9.932166e-06
## beta6 -4.081346e-04 1.372780e-04 -2.973052 2.948541e-03
## beta7 2.866351e-02 2.840549e-03 10.090833 6.065278e-24
## beta8 -1.329846e-01 3.951277e-02 -3.365611 7.637438e-04

The standard errors are obtained from (26), and z statistics and p values are to test whether
the true value of corresponding parameter equals to 0 or not, where z statistics are acquired
by dividing coefficient estimators by standard errors. All p values are small demonstrating that
every parameter is significant under a relatively low significance level.

We also compare the performance of Algorithm 7 with uniform subsampling. Table 3 indi-
cates that, comparing with the uniform subsampling, Algorithm 7 is more efficient in estimation
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Table 3: MSE and running time of different methods for physicochemical properties of protein
tertiary structure dataset when n0 = 200 and n1 = 1000 are fixed for 1000 replications.

Method MSE CPU Seconds

Algorithm 7 3.464 62.113
Uniform 4.718 41.921

Full data running time: 121.077

accuracy. Even though Algorithm 7 takes more time in computing than uniform subsampling,
it is still computationally more efficient compared with full data calculation.

6 Summary
In this paper, we demonstrate the effectiveness of the optimal subsampling methods to reduce
the computational burden for massive datasets, and illustrate the application of the optimal
subsampling methods to logistic regression, generalized linear models and quantile regression by
real data examples. The coefficient estimators obtained by the optimal subsampling methods
always maintain nice statistical properties, such as consistency and asymptotic normality, making
it possible to perform statistical inferences, including making hypothesis tests and constructing
confidence intervals, based on the subsample.

This review focuses on the application of optimal subsampling methods, and the discussion
mainly focuses on presenting optimal subsampling probabilities and practical algorithms. Theo-
retical properties of the resultant coefficient estimators are not discussed in details. In practical
applications, problems more complex than what we have discussed can occur, and further efforts
are necessary to develop suitable sampling approaches. Subsampling for big data is a promising
method for estimation efficiency and computational efficiency tradeoffs. It is quite now, and
much work is needed. We hope this review can be a starting point for practitioners to use the
optimal subsampling methods.

Supplementary Material
The R functions mentioned in the paper for the optimal subsampling algorithms and all datasets
can be found on the Journal of Data Science website.
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