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Automatic human motion tracking in video sequences is one of the most frequently tackled tasks in computer vision community.

e goal of human motion capture is to estimate the joints angles of human body at any time. However, this is one of the most
challenging problem in computer vision and pattern recognition due to the high-dimensional search space, self-occlusion, and
high variability in human appearance. Several approaches have been proposed in the literature using di�erent techniques. However,
conventional approaches such as stochastic particle �ltering have shortcomings in computational cost, slowness of convergence,
su�ers from the curse of dimensionality and demand a high number of evaluations to achieve accurate results. Particle swarm
optimization (PSO) is a population-based globalized search algorithm which has been successfully applied to address human
motion tracking problem and produced better results in high-dimensional search space.
is paper presents a systematic literature
survey on the PSO algorithm and its variants to human motion tracking. An attempt is made to provide a guide for the researchers
working in the �eld of PSO based human motion tracking from video sequences. Additionally, the paper also presents the
performance of various model evaluation search strategies within PSO tracking framework for 3D pose tracking.

1. Introduction

Human motion tracking is a general requirement in many
real-time applications including automatic smart security
surveillance [1], human computer interaction (HCI), 3D
animation industries [2],medical rehabilitation [3], and sport
science (e.g., for movement and behaviour analysis). In order
to improve the feasibility, in such applications, the research
on articulated human motion tracking and pose estimation
has been continuously growing in the past few years [4–12].


e primary objective of markerless articulated human
motion tracking is to automatically localize the pose and
position of a subject from the video stream (sequences of
images). 
is task is formulated by rendering a human body
model on the images to identify themodels con�guration that
is the best availablematch of the input images. Onemajor line
of approach in the research is based on articulated models
[4–12]. 
e interest in this area owed two bene�ts: �rstly, it

generates results in the form of model con�guration for each
frame that can be useful for various higher-order processing
tasks such as character animation and 3D movies. Secondly,
the human models are suciently capable to give abundant
information of kinematic human body motion. However, the
key challenge in the approach is the high-dimensionality of
the search space involved, due to the large number of freedom
typically present in an articulated human body �gure.


e human motion tracking is a very complex task due
to the high-dimensional parametric search space and large
number of degree of freedoms involved. Other challenges
include variation of cluttered background, occlusion, ambi-
guity, and illumination changes. To address human motion
tracking challenges,manymethods and algorithms have been
proposed in the literature using di�erent techniques.
e �rst
solutions emerging from the computer vision community
are particle �ltering (PF) variants [4, 5, 13–15]. In particular,
the condensation algorithm is mostly widespread used in
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human motion tracking [16]. However, it su�ers from the
dimensionality issue when used for the humanmotion track-
ing problem. To address this issue, [5] introduced annealed
particle �lter (APF), an approach that merges condensation
and simulates annealing in an attempt to improve the tracking
results as well reduce the number of particles. 
e APF
performs a multilayer particle evaluation, where the �tness
functions in the initial layers are smoothed to avoid the search
from being trapped in local minima. In the last layers, �tness
function is more peaked in order to concentrate the particles
to solution regions. To represent the posterior distribution
adequately, the particle �lter solutions critically rely on a
large number of particles which consequently increases the
computational complexity beyond practical use when a wide
variety of motion is considered [6, 7, 11, 12, 17].

Partition sampling [15] is another approach to reduce the
system complexity. 
e technique was initially introduced in
[18] to address the high cost e�ect of particle �lters while
trackingmultiple objects. Later on, it was successfully applied
in hand tracking. In general terms, partitioned sampling (PS)
is a strategy that consists of dividing the complete state into
several substates “partitions,” consecutively employing the
dynamics for every partition followed by a suitable weighted
resampling procedure. In point of fact, partition sampling
can abbreviate the high dimensionality problem in another
situation also.


epartitioned sampling (PS) is di�erent from theAPF in
a way that it applies strong partition of the search space. 
e
main problem consists of determining the optimal partition.
In an attempt to solve this, Bandouch et al. [13] proposed a
method that combines both PS and APF known as PSAPF.

e APF is incorporated into a PS framework by utilizing
an appropriate weighted resampling in each subspace. 
is
approach is able to deal with high dimensionality, but it
su�ers from high cost of employing a very large number of
evaluations per frame (around 8000). Generally, the common
human pose tracking approaches rely on �ltering algorithms,
but the conventional �ltering algorithms have some short-
comings, such as computational expensive, slowness of their
convergence, and they su�er from the curse of dimensionality
and they need to rely on simple human models (which lead
to suboptimal tracking results) or require a high number of
evaluation to achieve accurate results [6, 7, 11, 12, 19].

Many real-world problems such as the articulated human
motion tracking and pose estimation problem can be formu-
lated as multidimensional nonlinear optimization problems
of parameters with variables in continuous domains. In the
past few years, evolutionary computation approaches (e.g.,
GA, PSO, DE, etc.) are most widely used to solve continuous
optimization problems including human motion tracking
and pose estimation.

Particle swarm optimization (PSO) [20] is a population-
based stochastic optimization algorithm, which is originally
inspired from social behaviour of bird �ocking or �sh
schooling. 
e PSO has a capability of simple computation
and rapid convergence as a stochastic search scheme. PSO
has been successfully applied in several areas including
human motion tracking and pose estimation [6–12] and, in
the other optimization areas, the PSO give competition to

the genetic algorithms. Currently, the PSO and its variants
are most extensively used in the literature for video-based
articulated human motion tracking and pose estimation as
they o�er several advantages, for example, ability to solve
highly nonlinear problem, robust and reliable performance,
global and local search capability, and little or no prior
information requirement and it has fewer parameters to
adjust [6, 7, 11, 12].

In the PSO tracking framework, articulated human
motion tracking problem is formulated as amultidimensional
nonlinear optimization problem.
e�nal tracking results are
then obtained by optimizing a �tness function that computes
the match between the observed image and the 3D body
model. Generally, the main aim of �tness function is to
evaluate how well a candidate pose hypothesis matches the
observation, that is, the images from all cameras views at
each time instant.Many �tness functions have been proposed
in the literature including optical �ow, appearance model,
skin, color, and contours-based �tness function. However,
most common approaches rely on silhouettes and edges
based �tness function [4–7, 11, 12] because it provides an
appropriate trade-o� between robustness and speed. Figure 1
illustrates the general optimization framework. Within this
framework, many tracking task can be reformulated as
a global optimization problem, in which a metaheuristic
algorithm is used to the optimized model parameters. In this
paper, we employ the latter approach; we �nd the optimal
body model con�guration by maximizing a �tness function
representative of the similarity between the model and image
observation under investigation.


e standard PSO is generally used to �nd a single
optimum in a static search space. In contrast, the nature
of pose estimation and tracking problem is dynamic where
optimum changes over time or frames. 
us, the standard
PSO cannot be used directly to the problem, it is necessary
to modify the PSO algorithm to better suit this problem.

PSO has the capability to �nd the best value for inter-
acting particles; unfortunately, the standard PSO also suf-
fers from the curse of dimensionality, which has led to
many variants speci�cally adapted for pose tracking. Also,
its convergence speed becomes very slow near the global
optimum when it is applied to high-dimensional parametric
search space. 
erefore, PSO generally failed in searching
for a global optimal solution. 
e existence of local optimal
solutions is not the sole reason for this phenomenon. It
is because the particles velocities sometimes failed into
degeneracy leading to the restriction of successive range in
the subplain of the whole search hyperplain. In spite of its
reported success, the second major issue in using PSO for
articulated humanmotion tracking problem is that of particle
diversity loss. Generally, it occurs due to convergence of the
prior level of optimization, and all the particles may be close
to previous optimum position and the swarm has shrunk.

e swarm may be able to �nd the optimum eciently if
the position of new optimum still lies within the region of
shrinking swarm because of its diversity. However, the true
optimum can never be found if the current optimum lies
outside of the swarm because of the particles low velocities
whichwill inhibit rediversi�cation and tracking.. However, in
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Figure 1: Illustration of general optimization process.

the dynamic optimization problem, it is necessary to control
the particle diversity within the swarm with respect to time.

In order to overcome the above-mentioned issues, several
variants of PSO algorithm have been proposed for pose
tracking in the literature using di�erent techniques such as
hierarchical search optimization [6, 7, 11, 12, 21, 22] and
global-local re�nement process [10, 23]. Some adaptive ver-
sions of PSOhave been presented to incorporate the strengths
of other evolutionary and stochastic �ltering algorithms like
hybrid versions of PSO [23–26] or the adaptation of PSO
parameters [27]. Although these improvements lead to the
avoidance of local optima, the problem of early convergence
by the degeneracy of some dimensions still exists, even
in the absence of local minima. 
us, the PSO algorithm
performance is still limited in high-dimensional parametric
search space.


ere are many survey works that deliver an e�ective
overview of articulated human body pose estimation and
analysis [1, 28–33]. However, these survey works cover only
general overview of human motion tracking and pose esti-
mation. To the best of our knowledge, there is no systematic
survey in the literature that provides the details of PSO based
approaches for human pose tracking. Recently, some surveys
have given the overview of PSO in data cluster analysis
application [34, 35].

In that point of view, di�erent variants of PSO with
di�erent techniques have been proposed to improve the
performance of the PSO in pose tracking. 
erefore, the
main aim of this work is to present a systematic literature
survey by reviewing PSO algorithm and its variants as applied
to human pose tracking. An attempt is made to provide a
guide for the researchers who are working or planning to
work in the �eld of PSO based human motion tracking from
video sequences. Additionally, the paper will also focus on
the various model evaluation search strategies within PSO

tracking framework for 3D pose tracking, in order to identify
their potential eciency worth for e�ective pose recovery
in high-dimensional search space. For example, �rst is the
holistic (global optimization) approach, where all the human
body parameters or variables are optimized jointly. Second
is the hierarchical search optimization, where articulated
structure of human body considering independent branches,
namely, the limbs and head is optimized. 
erefore, it is
possible to apply a hierarchical search where there are
independent search processes working on smaller spaces, and
then the problem can be more easily solved. Finally, one can
see the discussion of the evaluated work and it highlights
the gaps for future work and provides directions of future
research.

2. Particle Swarm Optimization (PSO)

A short perception of tracking process in a stochastic opti-
mization prospective has been given in this section to indicate
how PSO will work on tracking application and how it is able
to achieve good performance. 
e fundamental concept of
PSO algorithm with its variants also has been discussed.

2.1. Motivation. Fundamentally, video-based tracking is the
process of automatically localizing the subject pose and
position in a video stream. In the PSO context, the tracking
problem can be understood as follows: imagine a certain
object (food) in the image (state space) being explored. A
set of particles (birds) are randomly distributed in the image
space (state space). None of the particles (birds) knows the
location of the object (food). However, every particle (birds)
knows whether it is progressing closer to or further away
from the object (food), through an objective function (sense
of smell or sight).
e question arises as how to �nd the object
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(food) e�ectively by utilizing collectively and eciently all
the particles information. 
e PSO algorithm is an attempt
to provide a framework for the question.

In video-based articulated human motion tracking, the
data of concern is in a time sequence. 
us, the tracking
process is considered as a dynamic optimization problem. In
this context, the object’s height and shape may change with
time; the objective function is hence temporally dynamic.
Such dynamic optimization problem can be solved by using
two e�ective principles: �rstly, by utilizing the temporal con-
tinuity information among two consecutive frames e�ectively
and, secondly, by maintaining the particle diversity during
each optimization process [6, 7, 11, 12, 27].

2.2. Standard Particle Swarm Optimization. Before starting
the discussion on standard PSO algorithm, we �rst intro-
duce some necessary notations and assumptions which are
used in PSO algorithm. Assume an �-dimensional solution
space Ω. Let us consider that the �th particle position and
velocity are represented as x� = (��1, ��2, . . . , ���) and v� =(V�1, V�2, . . . , V��), respectively. 
e individual best position(p�) is originated by �th particle so far (personal best) and

expressed by p� = (��1, ��2, . . . , ���) and overall best of
all the particle value (g) (global-best) is de�ned as g =(�1, �2, . . . , ��). 
e standard particle swarm optimization
(PSO) can be brie�y summarized in the following paragraph.

Particle swarm optimization (PSO) [20] is a population-
based stochastic optimization algorithm. 
e main motiva-
tion for the development of this algorithm was based on the
simulation of simpli�ed animal social behaviors such as bird
�ocking or �sh schooling. 
e algorithmmaintains a swarm,
consisting of � particles where each particle is representing
a candidate solution to the optimization problem under
consideration. If the problem is described with � variables,
then each particle denotes an �-dimensional point in the
search space. A cost (�tness) function is used in the search
space to measure the �tness of particles. 
e particles are
randomly generated in the solution search space, having
its position adjusted according to its own personal best
experience and best particle position of the swarm.


e PSO is initialized with a set of random particles{x�}��=1 (� number of particles) and the search for optimal
solution iteratively in the search space. Each particle has a

corresponding �tness value as well as its own velocity v�.

e �tness value is calculated by an observation model and
the velocity provides the direction of particle movement. In
each iteration, the �th particle movement depends on two
key factors: �rst its individual best position (p�), which is
originated by �th particle so far and second, the global best
position (g), is the overall global best position that has been
generated by entire swarm. In the (	 + 1)th iteration, each
particle updates the position and velocity by utilizing the
following equations:

v
�
�+1 = 
v�� + �1�1 (p�� − x��) + �2�2 (g� − x��) , (1)

x
�
�+1 = x�� + v��+1, (2)

Swarm
in�uence

Current motion
in�uence

Particle swarm
in�uence

parpos i
t+1

gbest

parval i
t+1

parpos i
t

pbest i
t

t

x

x

g

v

p

Figure 2: Illustration of particle’s position update in PSO.

where v�� and x�� denote the velocity vector and the position
vector of �-particle, respectively, at t-iteration. 
e particle
velocity constraint is one of the importantmechanismswhich
is used for controlling particle movement in search space and
is also useful for making balance between exploitation and
exploration. 
e speci�c acceleration parameters are �1 and�2 which represent the positive constants which are called as
cognitive and social parameters; both control the in�uence
balance of the personal best and global best particle posi-
tion; �1, �2 are random numbers obtained from a uniformly
distribution function in the interval [0, 1]; 
 is the inertia
weight parameter that has been used as velocity constraint
mechanism [6].
e inertia weight plays an important role for
controlling the trade-o� between global and local search.
e
high value of inertia weight 
 promotes particles to explore
in large space (global search) whereas small inertia weight 

promotes particles to search in smaller area (local search).
In the following, at the starting of the search (
 = 
max),
high inertia value is importedwhich decreases until it reaches
(
 = 
min) the lowest value. Figure 2 illustrates a schematic
view of updating the position of a particle in two successive
iterations.

Here, at each iteration, global best g and individual best

p� positions are computed a�er invoking the �tness function

(cost function) at each position x��. Generally, a greater
�tness value corresponds to a more optimal position. 
e
best position of a particle is updated only when the present
position value is higher than the former best value. Among
all of the individual best position values, the position with
the highest �tness value is considered as global best. It can be
expressed mathematically as follows:

p
�
� = {x

�
�, if � (x�� > � (p��))
p��, otherwise,

g = argmax
p��

{� (p��)} ,
(3)

where �(p��) is the �tness value at the position x��. 
e
processwill continue until the terminating conditions aremet
(typically a maximum number of iterations).
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e PSO has good balance between exploration and
exploitation and plays an important role in avoiding prema-
ture convergence during the optimization process. In fact,
in a number of works, PSO has been successfully applied in
articulated human motion tracking and has been reported to
give good accuracy with less computational cost in compari-
son to particle �ltering approach [6–12]. Pseudocode for PSO
algorithm is presented in Algorithm 1.

3. PSO to Human Motion Tracking

In the computer vision community, articulated human pose
tracking is a long standing problem and still it is considered as
a dicult problem because of themany challenges it presents.
First, it is a high-dimensional problem because large number
of variables is used to cover full human body pose estimation
and to obtain accurate results. 
is is a crucial problem
in pose tracking. 
e solution to this problem requires a
search strategy that can eciently explore wide sections of
the search space. Second, the computing power is a limiting
factor. 
e operations needed to evaluate the solutions are
computationally very expensive. 
erefore, it is important
and essential to have good solutions in few iterations as
possible. Finally, an appropriate balance is needed between
local and global search. In most of the situations, local search
can deliver good solutions; however, the problemof occlusion
and ambiguities in the con�guration of camera lead us to
use the global optimization so that a correct solution can be
achieved a�er the con�icting situation is �nished.

As we have stated previously, human pose tracking prob-
lem can be formulated as a multidimensional nonlinear opti-
mization problem that search the best possible joint angle of
the human bodymodel given the information available in the
prior and the current images [19]. In the past decades, various
stochastic �ltering (e.g., PF, APF, PSAPF, etc.) and nature-
inspired evolutionary algorithms (e.g., GA, PSO, PEA (prob-
ability evolutionary algorithm), QICA (quantum-inspired
immune cloning algorithm), QPSO (quantum-PSO), etc.)
have been developed for human pose tracking. It has been
proven by many researchers that evolutionary algorithms are
viable tool to solve complex optimization problems and can
be successfully implemented for solving human pose tracking
problem. Among them, the PSO algorithm gained popularity
in the last few years in the domain of humanmotion tracking
and pose estimation. It is because of its simplicity, �exibility,
and self-organization. 
e PSO also successfully combined
with other techniques such as dimensionality reduction
and subspace learning to address the human pose tracking
problem [7, 36–38].

3.1. Literature Survey. Initially, Ivekovic and Trucco [22]
have applied PSO for upper body pose estimation from
multiview video sequences. 
e PSO algorithm is applied
in 20-dimensional search space. 
e optimization process is
executed in 6 hierarchical steps which are based on model
hierarchy. However, the approach is only performed in static
upper body pose estimation. Similarly, Robertson and Trucco
[21] used an approach where the number of optimized

parameters is iteratively increased so that a superset of
the previously optimized parameters is optimized at every
hierarchical stage.

John et al. [6] proposed a hierarchical version of PSO
(HPSO) to the human motion tracking using a 31 DOF
(degree-of-freedom) articulated model with great success.
In order to overcome the high dimensionality, the 31-
dimensional search space is divided into 12 hierarchical
subspaces. Additionally, the estimates obtained from each
subspace are �xed in the following optimization stages. As
they have stated, their approach results outperforms PF,
APF, and PSAPF. HPSO algorithm reduces the computation
cost massively in the comparisons of the stochastic �ltering
approaches. However, this approach has some shortcoming
that the HPSO algorithm failed to escape the local maxima
calculated in the previous hierarchical levels which as a result
may produce inaccurate tracking.Moreover, the �nal solution
tends to dri� away from the true pose, especially at low frame
rates. Zhang et al. [11] applied the PSO stochastic algorithm
to estimate the full articulated human body motion. 
is
method also estimates pose in a hierarchical fashion by
prescribing some space constraints into each suboptimization
stage. To maintain the diversity of particles, the swarm
particles are circulated according to a weak transition model,
and the temporal continuity information is also utilized.

Krzeszowski et al. [10] present a global-local particle
swarm optimization method for 3D human motion capture.

is system divides the entire optimization cycle into two
parts; the �rst part of optimization cycle estimates the whole
body and the second part re�nes the local limb poses using
less amount of particles. A similar approach called global-
local annealed PSO (GLAPSO) is presented by Kwolek et al.
[9]. 
is algorithm maintains a pool of candidate instead of
selecting global best particle, to improve the algorithm ability
to explore the search space. One hybrid approach is presented
by Kwolek et al. [23], in which particle swarm optimization
with resampling is used to articulate human body tracking.

e system employs a resampling method to select a record
of the best particle according to the weights of particles
making up the swarm which leads to the reduction of the
premature stagnation. Kwolek [26] applied PSO algorithm to
track the human motion from multiview surveillance video.

is approach also estimates the body pose hierarchically.
Krzeszowski et al. [39] proposed an approach which com-
bines the PSO and PF (PF + PSO), where the particle swarm
optimization algorithm is employed in the particle �ltering to
shi� the particles towards more promising region of human
body model. Similarly, [24, 25, 40] introduced annealed
PSO based particle �lter (APSOPF) algorithm for articu-
lated human motion tracking. 
e sampling covariance and
annealed factor are incorporated into the velocity-updating
equation of PSO which results in constraining particle to
most likely the reason of pose space and reducing generation
of invalid particles. However, both of the above-discussed
approaches obtained good accuracy but are computationally
heavy.

Ivekovic et al. [41] proposed an adaptive particle swarm
optimization (APSO) to reduce the computational complex-
ity of the system. 
is system uses black-box property of
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Set parameters �,�1, �2, Vmax
, 


max
, 


min
.

// Initialization

Initialize a population of� particles with random position (x�) and velocity (v�).
foreach Particle � ∈ 1 → � do

p�(0) = x�
Compute the �tness value �.
end for
Initialize the inertia weight 
.
Select the best particle in the swarm p�(0).
// Iteration process
for 	 = 1 to maximum number of iterations do
foreach particle � ∈ 1 → � do

update velocity v�� and position x�� for the particles.
employ the inertia weight update rule.

compute particles �tness value �(x��).
update best particles: p�� and g�.
end for
if convergence criteria are met then
Exit from iteration process;

end if

Algorithm 1: Pseudocode for particle swarm optimization (PSO).

HPSO in which it requires no parameters value input from
the users, and it adaptively changes the search parameters
online based on the types of pose estimation in the previous
frame. Yan et al. [42] adopt annealed Gaussian based par-
ticle swarm optimization (AGPSO) for 3D human motion
tracking. In this approach, the observation is designed as a
minimized Markov Random �eld (MRF) energy. Kiran et
al. [43] present a hybrid PSO called (PSO + K) for human
posture classi�cation. Initially, the PSO algorithm is applied
to search the optimal solution in parametric search space and
then it passed to K-means algorithm which has been used
to re�ne the �nal optimal solution. Zhang [44] introduces
another hybrid PSO algorithm for humanmotion tracking in
monocular video. In order to construct theweight function of
particles, color, edge andmotion cues are integrated together.
To escape from the local minima, simulated annealing (SA)
algorithm incorporated into PSO.
is approach yields better
results than both the standard PSO and APF algorithms.

Ugolotti et al. [17] introduced two algorithms for model
based object detection, namely, particle swarm optimization
(PSO) and di�erential evolution (DE). PSO is clearly and
consistently superior compared with the DE for model based
tracking. Similarly, Bolivar et al. [19] report the comparisons
between evolutionary and particle �ltering algorithms. As
they stated that, for the human motion tracking, the hier-
archical version of PSO (H-PSO) is better than all �ltering
as well as evolutionary algorithms except hierarchical covari-
ance matrix adaptation evolutionary strategy (H-CMAES).

eir comparisons results are tested on HumanEva-I-II
datasets. Fleischmann et al. [12] proposed a so� partitioning
approach with PSO (SPPSO). In this approach, the optimiza-
tion process is divided into two stages where in �rst stage
important parameters (typically torso) are optimized and in

second stage all remaining parameters are optimized jointly
and called global optimization which re�nes the estimates
from the �rst stage.
e approach obtained good results at low
frame rates (20 fps) sequences but, at normal frame (60 fps), it
received almost similar results as HPSO. However, they used
global optimization in second stage; therefore, the approach
is computational costly.

In the user-friendly human computer communication,
nonintrusive human body tracking is a key issue. 
is is one
of the most challenging problems in computer vision and at
the same time one of the most computationally demanding
tasks. Conventionally, the human pose tracking approaches
need to execute the various tasks step-by-step to obtain
good tracking results (i.e., foreground/background removal,
edge detection, and model rendering and optimization).

erefore, the implementation of such techniques in CPU
(central processing unit) leads to longer processing time
and higher computational cost. From this point of view, the
GPU architecture bene�ts from the property of execution of
thousands of threads concurrently because of the massive
�ne grain parallelization. In order to take GPU architectures
bene�t, there are some publications that discuss the imple-
mentation details of the PSO and its variants on GPU.

Kwolek et al. [8] proposed parallel version of PSO known
as latency tolerant parallel particle swarm optimization. In
this algorithm, multiple swarms are present that are executed
in parallel on multiple computers which are connected
through peer-to-peer network which exchange the informa-
tion about the location of the best particles as well as its
corresponding �tness function of a subswarm.
is informa-
tion about the location of global particles and corresponding
�tness value is transferred asynchronously a�er each opti-
mization iteration without blocking the sending thread. 
e
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mutual exclusive memory is used to store these best values.
A�er each iteration, the value of global particle is veri�ed
by processing thread for its performance over other particles
provided by other computers. If value is better than previous,
then the value of best particle gets updated and optimization
process continues. 
e main novelty of this work lies in
the asynchronous exchange mechanism for the best particle
information during the multiple calls of PSO. 
eir result
demonstrates that latency tolerant parallel particle swarm
optimization is able to give real-time results. Zhang and
Seah [45] proposed another hybrid approach that is called
Niching swarm �ltering (NSF) with local optimization. In
the NSF framework, ring topology based bare bones particle
swarm optimization algorithm (BBPSO) and particle �lter
algorithms have been integrated. 
is approach in tracking
unconstrained human motions without using strong prior
information of the dynamics and its GPU implementation
shows that approach is able to give real-time results.

Mussi et al. [46] developed an approach to articulated
human body tracking from multiview video using PSO
running on GPU.
eir implementation is far from real-time
and roughly requires 7 sec per frame, but they clearly demon-
strate that the formulation of algorithm in GPU decreases
the execution time prominently without compromising the
accuracy of post estimation. Krzeszowski et al. [47] report
GPU-accelerated articulated human motion tracking using
PSO, and they show that their GPU implementation has
achieved a speedup of more than ��een times than the CPU
implementation with a 26 DOF 3D model.

Real-time tracking performance of human motion is
critical formany applications. In order to compile this, Zhang
et al. [48] introduced GPU-accelerated based multilayer
framework for real-time full body motion tracking. In their
multilayer pose tracking framework �rst layer, they applied
the NSF stochastic search to �t the body model to images
and, in the second layer, the estimation is re�ned hierarchi-
cally using local optimization. 
e volume with appearance
reconstruction observation has been used to measure the
pose hypothesis and 3D distance transform (DT) is employed
to increase the algorithm speed. 
e GPU implementation
is done using CUDA (compute uni�ed device architecture),
which signi�cantly accelerates the pose tracking process.

eir results demonstrate that NFS algorithm outperforms
other state-of-the-arts algorithms in CPU implementation as
well as in GPU. Similarly, Rymut and Kwolek [49] present
a GPU-accelerated PSO for real-time multiview human
motion tracking. In this approach, they demonstrated how
particle swarm optimization algorithm works on GPU for
articulated human motion tracking and also demonstrated
the parallelization of the cost function.

As we have indicated previously, the PSO also is success-
fully combined with other techniques such as dimensionality
reduction and subspace to address the human pose tracking
problem. For example, John et al., 2010 [7], introduced
a hybrid generative-discriminative approach for marker-
less human motion capture using charting and manifold
constrained particle swam optimization [7]. 
e charting
algorithm has been used to learn the common motion in a
low-dimensional latent search space and the pose tracking

is executed by a modi�ed PSO called manifold constrained
PSO. Mainly this PSO variant is designed to polarize the
search space for the best next pose. Similarly, Saini et al.
[37] proposed a low-dimensional manifold learning (LDML)
approach for human pose tracking where a hierarchical-
charting dimension reduction technique has been used to
learn motion model. In order to escape from local minima,
the quantum-behaved particle swarm optimization (QPSO)
has been used for pose tracking in low-dimensional search
space. Li and Sun [50] proposed a generative method
for articulated human motion tracking using sequential
annealed particle swarm optimization (SAPSO). Simulated
annealed principle has been integrated into traditional PSO
to get global optimum solution more eciently. 
e main
novelty of their approach is the use of principal component
analysis (PCA) to reduce the dimensionality and learn the
latent space human motions.

Note that most of the above-discussed PSO based
approaches rely on silhouette and edge based �tness function
[4–11, 24, 25, 40, 41]. 
e main reason is that both generic
features have been shown to deliver an appropriate trade-o�
between robustness and speed.However, in some approaches,
the use of skin color leads to failure because of the in�uence of
lightning on skin color which varies from person to person.
Table 1 summarizes the above research contributions.

3.2. Discussion. PSO has been applied in a number of areas
as a technique to solve large, nonlinear complex optimization
problems. However, the applications of PSO in computer
vision and graphics are still rather limited [52]. Few PSO vari-
ants have been developed with di�erent techniques for pose
tracking. According to literature review, in most of the cases,
the hierarchical version of PSO (HPSO) is most e�ective for
pose tracking. To get fast and real-time tracking results, many
variants of PSO have been implemented on GPU. However,
the PSO still requires much investigation to improve the
tracking performance and also other key features that would
make such algorithms techniques suitable for pose tracking.
Furthermore, many variants of PSO have not been used yet
in pose tracking such as multiobjective PSO, multiswam PSO
as well as many others which have been discussed [34]. Some
future works and research trends to address the pose tracking
problem are as follows: development of multiswarm PSO
algorithm, subswarm method, such as [53], developing new
�tness and measuring functions, new approach for search
space partitioning, some dimensional reduction techniques,
which can be easily incorporated to PSO, new sensitivity
analysis of PSO parameters, and others.

4. Pose Evaluation Techniques

In the last decade, many stochastic �ltering and nature-
inspired algorithms have been proposed in the literature
using di�erent techniques for human pose tracking. Among
the many nature-inspired algorithms, pose tracking with
particle swarm optimization techniques has found success in
solving pose tracking problem because PSO is well suited for
parameter-optimization problems like pose tracking. In order



8 Mathematical Problems in Engineering

Table 1: Resume of the research description and the contribution by di�erent authors. Methods are listed in the chronological order by the
�rst author.

Publications
Pose eval.
techniques

Number of
stages

Algorithm DOF Remarks

Ivekovic and Trucco (2006) [22] HP 6 PSO 20

e approach is only performed for upper body
pose estimation

Robertson and Trucco (2006) [21] HP 6 Parallel PSO 24

e approach is only performed for upper body
pose estimation

John et al. (2010) [6] HP 12 HPSO 31


e algorithm is unable to escape from local
maxima which is calculated in the previous
hierarchical levels. However, the approach is
computationally more ecient than the
competing techniques

Ivekovic et al. (2010) [41] HP 12 APSO 31
Computationally very inexpensive that is
useful for real-time applications

Mussi et al. (2010) [46] HP 11 PSO 32


e approach has been implemented in GPU
which signi�cantly saves the computational
cost when compared to sequential
implementation

John et al. (2010) [7] HP 12
Manifold

constrained
PSO

31

Charting a nonlinear dimension reduction
algorithm has been used to learn motion model
in low-dimensional search space. However, the
approach has not been tested with public
available dataset

Krzeszowski et al. (2010) [39] Holistic ∗ PF + PSO 26

Mobility limitation is imposed to the body
model and is computationally expensive.
Moreover, approach has not been tested with
publicly available dataset

Zhang et al. (2010) [40] Holistic ∗ APSOPF 31

e approach is able to alleviate the problem of
inconsistency between the observation model
and the true model

Yan et al. (2010) [42] Holistic ∗ AGPSO 29 Computationally very expensive

Kiran et al. (2010) [43] — — PSO + K —

e approach is only tested for posture
classi�cation

Zhang et al. (2011) [11] HP 5 PSO 29

e approach produces good tracking results
but su�ers from heavy computational cost due
to more numbers of �tness evaluation

Krzeszowski et al. (2011) [10] HP 2 GLPSO 26


e approach su�ers from error accumulation
and mobility limitation is imposed to the body
model. Moreover, approach was not tested with
publicly available dataset

Kwolek et al. (2011) [9] HP 2 GLAPSO 26


e approach saves the computational cost by
using 4 core processor computing powers.
However, the approach was not tested with
publicly available dataset

Kwolek et al. (2011) [8] Global ∗ latency
tolerant

parallel PSO
26


e approach demonstrates the parallel nature
of PSO and its strength in computational cost
as compared to multiple PC (8) versus single
PC (1)

Kwolek (2011) [26] HP 3 PSO 26
Tracking in surveillance videos which can
contribute toward the view-invariant action
recognition

Kwolek et al. (2012) [23] Holistic ∗ RAPSO,
APSO

26

e approach produced better results than PF
and APF, but su�ers from large computational
cost

Zhang and Seah (2011) [45] HP 5 NFS, BBPSO 36
NFS algorithm produces good tracking results
and their GPU implementation is able to give
real-time results
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Table 1: Continued.

Publications
Pose eval.
techniques

Number of
stages

Algorithm DOF Remarks

Ugolotti et al. (2013) [17] HP 11 PSO, DE 32
Article demonstrates the strengths of two
evolutionary approaches (PSO and DE) on
GPU implementation

Fleischmann et al. (2012) [12] SP 2 SPPSO 31

e so� partitioning strategy overcomes the
error accumulation issue. However, SPPSO
su�ers from heavy computation cost

Li and Sun (2012) [50] — — SAPSO —

Principal component analysis (PCA) has been
used to reduce the dimensionality and learn
the latent space human motion which is the
main novelty of the work

Saini et al. (2012; 2013) [37, 38] HP 12 QPSO 31

H-charting algorithm has been used to reduce
the search space and learn the motion model.
Proposed QPSO algorithm is able to escape
from local minima

Zhang et al. (2013) [48] HP 2 NFS 36

New generative sampling algorithm with a
re�nement step of local optimization has been
proposed. Moreover, the approach does not
rely on prior strong motion. Due to GPU
implementation approach, it is able to give
real-time performance

Nguyen et al. (2013) [51] HP 10 HAPSOPF —

e body pose is optimized hierarchical
manner in order to reduce the computational
cost of APSOPF

Zhang (2014) [44] Holistic ∗ SAPSO —

e main novelty of work is color, edge, and
motion cue are integrated together to construct
the weight function

Rymut and Kwolek (2014) [49] Holistic ∗ PSO 26

Parallelization of the cost function is the main
novelty of the work. Furthermore, CPU versus
GPU performance has been demonstrated for
human motion tracking

∗indicate that all the parameters are optimized together (global/holistic optimization); HP represents the hard partitioning and SP represents the so�
partitioning. 
e number of stages indicates the stages which are used by authors to obtain the solution.

to improve the eciency of PSO algorithms, researchers have
proposed di�erent variants of PSO algorithm with di�erent
techniques such as hierarchical optimization, di�erent �tness
functions, di�erent search space partitioning, and di�erent
pose re�nement process.


e complexity of the human kinematic structure and
the large variability in body shape between individuals imply
that there are many parameters that need to be estimated
for a full body model that is o�en over 35 (in our case
31), even for coarse models. When de�ning the problem
as an optimization of an objective function over the model
parameters, the search space becomes very high dimensional.
However, exploring high-dimensional state space in practical
time becomes problematic. 
erefore, in order to reduce
the complexity, di�erent types of search strategy have been
utilized in pose space within PSO tracking framework such as
hierarchical search with so� and hard partitioning. Accord-
ing to the literature review, there are two techniques that
can be applied to solve the problem: holistic and hierarchical
techniques. Figure 3 illustrates the taxonomy of pose tracking
approaches within PSO tracking framework. 
e graphical

Pose tracking problem in PSO 
tracking framework 

Holistic approach Hierarchical search approach

Hard search space partitioning (HP) So� search space partitioning (SP) 

Figure 3: Detailed taxonomy of pose tracking approaches within
PSO tracking framework.

representation of di�erent partitioning strategy is illustrated
in Figure 4 [12].

4.1. Holistic Optimization. In the holistic approach, all human
pose parameters are optimized jointly, also known as global
optimization. Fundamentally, this approach is more appro-
priate because it makes no assumptions about the indepen-
dence of the body parts which results in more robustness to
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Figure 4: Illustration of di�erent partitioning strategy using two level optimizationwhere x�−1 represents the initial and x� the new estimation.

error. In practical, due to high dimensionality, the recovery
of complete 3D body pose parameters jointly is very dicult
especially in real-time situation because this process required
more computing time to evaluate the solution.
e exponen-
tial growth of the search space with large number of variables
is the main drawback of the holistic approach. Furthermore,
a small deviation in the higher nodes of the hierarchy a�ects
their lower children. However, good quality results can be
received in the early search stages for the lower nodes, but
it might be discarded later by changes in one of their parents.
Finally, the main drawback of global optimization is that it
is computationally very expensive. Figure 4(a) demonstrates
the global optimization process where the optimizer searches
the whole search space (grey) at once.

4.2. Hierarchical Search Approach. Computational complex-
ity of global optimization approach is very high due to large

number of variables to cover full human body pose estima-
tion. In this situation, the hierarchical search takes advantage
by considering the each human body parts independently.

erefore, it is possible to apply a hierarchical search in
which there are independent search processes working on
smaller spaces. Despite this, several researchers have applied
hierarchical partitioning schemes in the search space accord-
ing to the limb hierarchy to reduce the complexity of high-
dimensional search [6, 7, 11, 21, 41, 46, 51] and also they proved
that hierarchical search approaches is more appropriate than
holistic approaches.
e hierarchical search approach further
can be classi�ed in two classes: hard search space partitioning
(HP) and so� search space partitioning (SP).

4.2.1. Hard Search Space Partitioning (HP). Hierarchical opti-
mization along with the global-local PSO which divides the
optimization process intomultiple stages in which a subset of
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parameters is optimized while the rest of the parameters are
�xed, disabling the optimizer from re�ning the suboptimal
estimate from the initial stage. In other words, in hierarchical
schemes, the search space is partitioned according to the
model hierarchy. 
e most important parameters are opti-
mized �rst (typically torso), while the less important are kept
constant. 
is is termed as hard partitioning of the search
space. Figure 4(b) illustrates the hierarchical optimization
where, in �rst stage, parameter �1 is optimized and �2 is kept
constant. Similarly, during the second stage, parameter �2 is
optimized and �1 is kept constant.
4.2.2. So	 Search Space Partitioning (SP). Hierarchical hard
search space partitioning (HP) approaches are very e�ective
to reduce the e�ect of computational complexity [6, 7, 11,
21, 46]. But the pose estimation approach which is divided
into hierarchical stageswith hard partitions su�ers from error
accumulation, especially low frame rate sequences. 
e error
accumulation occurs due to objective function for one stage
being unable to evaluate completely independently from
subsequent stages. To avoid error accumulation issue, some
of the researchers have applied so� partitioning approach in
search space [12].


e major di�erence between hard and so� partitioning
is that previous optimized level (parameters) allowed some
variation in the following level to re�ne their suboptimal
from the initial stage. 
e so� partitioning approach reduces
the search space not as much as hard partitioning, but the
search space is much smaller than in a global optimization.
Figure 4(c) demonstrates the so� partitioning scheme where
the initial stage is equivalent to the hierarchical scheme,
but �1 allowed some variation during the second stage
optimization which results in the optimizer to �nd a better
estimate.

Hierarchical search approaches are very e�ective to
reduce the e�ect of computational complexity [6, 7, 11,
21]. However, hierarchical search approach also has many
drawbacks. Firstly, incorrect pose estimation (due to noise
or occlusion) for the initial segment can distort the pose
estimates for subsequent limbs. 
erefore, an error in the
estimation of the �rst node compromises the rest of the nodes
irrevocably [13]. Secondly, the optimal partitioning may not
be obvious and itmay change according to time. Table 1 shows
the summary of some popular PSO based approaches and
also display their pose evaluation techniques along with the
number of stages used to evaluate the solution.

4.3. Discussion. Wenotice that each author has used di�erent
number of stages in hierarchical search optimization to
estimate a complete human body. However, based on the
literature, it is still unclear how many hierarchical partitions
are sucient to obtain good quality of results and also
which order of partition is the best (e.g., which body part
needs to be estimated �rst, leg or arms?). In the noise
free data, this does not make a sense but, in noisy data
observation practices, it makes inaccurate estimation in the
early partition which results in inaccurate next partition
outcome. Additionally, many researchers have proved that

hierarchical search approaches are very e�ective to reduce the
e�ect of computational complexity [6, 7, 11, 21, 46]. However,
still it is not clear which hierarchical search space partitioning
is e�ective for pose tracking.

In order to investigate above mention issues, we have
implemented PSO algorithm using Brown University com-
putational tracking framework [4]. 
is framework covers
the APF implementation. We substituted our PSO tracking
code in their framework in place of the APF code while
other parts of the framework are kept the same. Firstly, we
have tested various model evaluation search strategies in 3D
pose tracking to identify their potential eciency worth for
e�ective pose recovery in high-dimensional search space.
Secondly, we also have investigated di�erent order of body
partitions for PSO (i.e., �rst leg or arms and vise verse) and
�nally we have tested di�erent hierarchical body partitions to
identify howmany hierarchical partitions are good enough to
get good quality results with considerable computational cost.

5. Quantitative and Visual Results

In this section, we have shown some results of the test that we
have performed using PSO algorithm.
e parameter settings
for PSO algorithm are presented in Table 2. Additionally, for
the global PSO optimization, 60 particles and 60 iterations
are used. 
e presented PSO algorithm is run in Brown Uni-
versity framework with windows, 3.20GHz processor. 
e
quantitative comparison is carried out in three prospective:(1)Comparison of holistic and hierarchical algorithms search
with both so� partitioning and hard partitioning; (2) an
extensive experimental study of PSO over range of values
of its parameters and; (3) computation time. 
e complete
experiment was carried out using Lee walk dataset [4]. 
is
dataset was captured by using four synchronized grey scale
cameras with 640 × 480 resolutions. 
e main reason to use
Lee walk dataset is that it contains ground-truth articulated
motion which is allowed for a quantitative comparison of
the tracking results. As in [54], the error metric calculated is
de�ned as the average absolute distance between the �marker
actual position � and the estimated position �̂:

� (�, �̂) = 1�
�∑
�=1

������ − �̂����� . (4)

Equation (4) gives an error measure for a single frame of
the sequence. 
e tracking error of the whole sequence is
calculated by averaging that for all the frames.

In hierarchical search, we have divided complete search
space into 6 di�erent subspaces and correspondingly exe-
cuted the hierarchical optimization in 6 steps in which we
have considered that it will provide an appropriate balance
between global and local search. 
e six steps are the global
position and orientation of the root followed by torso and
head and �nally the branches corresponding to the limbs (as
illustrated in Figure 5 where LUA and LLA represent the le�
upper arm and le� lower arm resp.; similarly LUL and LLL
represent the le� upper leg and le� lower leg respectively;
similar representation is on right side for the right body
parts), which are optimized independently. In hierarchical
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Table 2: Setting for PSO algorithm.

Algorithm Parameters Fitness function Body model

PSO
� = 20; �1, �2 = 2.0;


max
= 2.0; 


min
=0.1;Max iteration = 30

Silhouette + edge� = �� + ��
Truncated cones (Balan et al.

(2005) [4]
31 DOF (John et al. (2010) [6];
Fleischmann et al. (2012) [12])

Chain 2 Chain 3 Chain 4 Chain 5

HeadLUL

LLL

RUL

RLL

RUA

RLA

TOR

LUA

LLA

Figure 5: Standard kinematic tree representation of human model.

search, with hard partitioning, the estimate obtained for each
subspace is unchanged once it is generated and only one limb
segment at a time is optimized and the results are propagated
down to the kinematic tree. While in so� partitioning, the
previously optimized parameterswhich are positioned higher
in the Kinematic tree allowed some variation in the following
optimization stage.
us, the current estimates can be re�ned
from their parents. 
e variations in the previous optimized
parameters are set empirically.

5.1. Accuracy. Figure 6 shows the average 3D tracking error
graph between ground-truth pose and estimated pose with
3600 evaluation per frame on Lee walk sequences. 
e
hierarchical search with so� partitioning approach performs
better than the other two approaches, particularly at 20 fps.
However, the di�erence is very less pronounced at 60 fps.
e
highest �uctuations correspond to the fast limbs movements,
especially the lower arms and legs. As we have noticed that
as the number of evaluation increases, the likely range of
variation in the 3D error becomes narrower and it increases
the tracking performance. Table 3 displays the average 3D
tracking error for Lee walk sequences and Figure 7 shows
each evaluating approach tracking results for a few frames
with corresponding 3D error.

5.2. Varying the Number of Particles. We have evaluated the
PSO performance by varying the number of particles for both
hierarchical hard and so� partitioning. However, to keep the
computational time feasible on our hardware, the range of�

Table 3: 3D distance tracking error calculated for Lee walk
sequences (5 runs).

Search strategies Error [mm] 20 fps Error [mm] 60 fps

Holistic (global PSO) 84.00 ± 17.00mm 48.20 ± 8.00mm

Hierarchical search
with hard partitioning
(H-HP)

68.20 ± 14.00mm 46 ± 6.20mm

Hierarchical search
with so� partitioning
(H-SP)

46.30 ± 14.20mm 38.00 ± 4.00mm

Table 4: PSO’s 3D error in mm on Lee walk 20 fps with varying
numbers of particles and likelihood evaluation.

Algorithm

Hierarchical search
with hard
partitioning
(H-HP)

Hierarchical search
with so�

partitioning
(S-HP)

PSO (30 particles) 58.80 ± 16.00mm 42.10 ± 10.80mm

PSO (40 particles) 52.10 ± 12.00mm 38.40 ± 14.10mm

PSO (50 particles) 50.60 ± 6.00mm 34.20 ± 12.80mm

is limited. 
e experiments have been tested with 30, 40, and
50 particles for over �ve trials. Table 4 shows the results. As
predicted, we notice that the accuracy and consistency have
been improved as the value of � increases and also it has
increased the computational time. More number of particles
in PSO is able to estimate pose more accurately and avoid
the error propagation. However the number of likelihood
evaluations per frame and computational cost increases with�: (i.e., 30 particles result in 5400 likelihood evaluations, 40
particles in 7200, and 50 particles in 9000 evaluations per
frame).
e complete set of experiments to evaluate the values
of� a�er which no signi�cant bene�t happens is beyond the
scope of our hardware.

5.3. Computation Time. 
e computation time is the major
factor in the pose tracking. Generally, it takes from seconds
to minutes to estimate the pose in one frame for MATLAB
implementations [4, 6, 7, 54]. 
is means that tracking an
entire sequence may take hours. However, the computation
time vastly depends on the number of likelihood evaluation
and model rendering. As we have used the same num-
ber of likelihood evaluation for all search strategies, the
computation time for holistic is much higher than other
hierarchical search approaches. Furthermore, when it comes
to a hierarchical search approaches, the hard partitioning
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Figure 6: 
e distance error graph for hierarchical so� partitioning, hard partitioning, and holistic (global) strategies using Lee walk
sequence, at 20 fps (a) and 60 fps (b).

computation time is less than so� partitioning. 
e com-
mutation time can be massively cut down by using more
numbers of partitioning in the search space (similar to
[6, 41, 46]). 
us, the conclusions can be drawn based on
the experimental results; the hierarchical search with hard
partitioning approach is more useful than the other two
approaches to reach near to real-time performance. However,
the PSO results are still far from being real time, which would
be necessary for many applications. 
e fast and real-time
performance can be obtained by using graphics processing
hardware.

In our experiment, we have investigated di�erent order
of body partitions for PSO (i.e., �rst arms or legs). We have
tested both cases, but the order of partitioning did not have
any in�uence on the quality of tracking in our experiments.
Finally, in order to identify that how many hierarchical body
partitions are good enough to get good quality results and
which can have considerable computational load, we have
tested PSO algorithm with di�erent optimization stages. We
have tested that two-stage optimization similar to [8–10, 12,
23], �ve-stage optimization [11], six-stage optimization [19],
seven-stage optimization, [13] and twelve-stage optimization
[6, 7, 41]. In our experimental results, we found that six-
stage optimization provides good tracking accuracy than
the other optimization stages. It is because the six stages
provide more appropriate balance between global and local
search than others. However, there is no signi�cant di�erence
in tracking accuracy between six optimization stages and
the other stages. 
e approaches which uses more number
of optimization stages like [6, 7, 41, 46] are able to cut
down computational cost massively. While the two stage
optimization approaches [8–10, 12, 23] su�er from high

computational cost because of the involvement of global
optimization in the second stage. 
erefore, the approach
is not suitable for real-time applications. Furthermore, the
tracking accuracy strongly depends on the quality of the
image likelihood. 
e best tracking performance is obtained
combining silhouette and edge in the likelihood evaluation.
When it comes to an individual likelihood evaluation, the
silhouette likelihood evaluation is reported to perform better.

5.4. Discussion. Based on the experimental results, a set
of conclusion can be drawn. First, the hierarchical search
approaches are more appropriate than holistic (global) in
terms of high and robust tracking accuracy with very
less computational cost. 
e hierarchical search with so�
partitioning approach is only suitable for low frame rates
sequences, but, in high frame rates, it produces very near
results as hard partitioning approach. 
e so� partitioning
approach has more computational cost than hard partition-
ing. Second, the PSO algorithm did not have any in�uence
on the tracking quality when the order of partitioning is
changed (i.e., �rst leg or arms and vise verse). Finally, the six-
stage optimization provides an appropriate balance between
global-local search; therefore, it has good accuracy than other
stages.

6. Conclusion


is paper has presented a review of previous research
works in the �eld of particle swarm optimization and its
variants to pose tracking problem. Additionally, the paper
has presented the performance of various model evaluation
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Figure 7: Tracking results are shown for a few frames with corresponding 3D error, and typical results are obtained on Lee walk sequences
at 20 fps ((a) hierarchical so� partitioning, (b) hierarchical hard partitioning, and (c) global PSO).

search strategies in 3D pose tracking using PSO algorithm.
Research shows that PSO algorithm applied to pose tracking
in multidimensional search space has shown outstanding
performance as compared to the stochastic particle �ltering
algorithms. However, convergence speed is still limited when
the search is for global optima. Furthermore, the modi�ed
PSO and its hybridization with other algorithms such as par-
ticle �lter, simulated annealed, etc. and/or the combinations
with other techniques such as dimensional reduction and
feature selection can be successfully applied to pose tracking

problem and provides better results. Our implementation
of PSO algorithm results shows that the hierarchical search
approach is very e�ective for pose tracking and it can reduce
the computation cost massively and produce robust and
reliable tracking results.
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