
Citation: Majout, B.; El Alami, H.;

Salime, H.; Zine Laabidine, N.; El

Mourabit, Y.; Motahhir, S.;

Bouderbala, M.; Karim, M.; Bossoufi,

B. A Review on Popular Control

Applications in Wind Energy

Conversion System Based on

Permanent Magnet Generator PMSG.

Energies 2022, 15, 6238. https://

doi.org/10.3390/en15176238

Academic Editor: Konstantin Suslov

Received: 26 July 2022

Accepted: 23 August 2022

Published: 26 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

A Review on Popular Control Applications in Wind Energy
Conversion System Based on Permanent Magnet
Generator PMSG
Btissam Majout 1, Houda El Alami 1, Hassna Salime 1, Nada Zine Laabidine 1, Youness El Mourabit 2 ,
Saad Motahhir 3 , Manale Bouderbala 1 , Mohammed Karim 1 and Badre Bossoufi 1,*

1 LIMAS Laboratory, Faculty of Sciences Dhar El Mahraz, Sidi Mohammed Ben Abdellah University Fez,
Fez 30050, Morocco

2 National School of Applied Sciences, Abdelmalek Essaadi University, Tetouan 93000, Morocco
3 Engineering, Systems and Applications Laboratory, ENSA, SMBA University, Fez 30050, Morocco
* Correspondence: badre.bossoufi@usmba.ac.ma

Abstract: There has always been a high expectation that wind generation systems would capture
maximum power and integrate properly with the grid. Utilizing a wind generation system with
increased management to meet the growing electricity demand is a clever way of accomplishing
this. However, wind power generation systems require a sophisticated, unique, and dependable
control mechanism in order to achieve stability and efficiency. To improve the operation of the wind
energy conversion method, researchers are continually addressing the obstacles that presently exist.
Therefore, it is necessary to know which control can improve the whole system’s performance and
ensure its successful integration into the network, despite the variable conductions. This article
examines wind turbine control system techniques and controller trends related to the permanent
magnet synchronous generator. It presents an overview of the most popular control strategies
that have been used to control the PMSG wind power conversion system. Among others, we
mention nonlinear sliding mode, direct power, backstepping and predictive currents control. First, a
description of each control is presented, followed by a simulation performed in the Matlab/Simulink
environment to evaluate the performance of each control in terms of reference tracking, response
time, stability and the quality of the signal delivered to the network under variable wind conditions.
Finally, to get a clear idea of the effect of each control, this work was concluded with a comparative
study of the four controls.

Keywords: wind energy conversion system; sliding mode control; direct power control; backstepping
control; predictive currents control; permanent magnet synchronous generator; mppt control

1. Introduction

In recent years, all human activities have depended on electrical energy, especially
those contributing to economic and social development. This development has led to
increased global consumption of electrical energy in recent years [1–3]. According to the
latest report by Renewable Energy Policy Network for the 21st Century (REN21, 2015a,
p. 27), global energy consumption has been dominated by fossil fuel energy sources (oil,
natural gas, and coal), at a level of about 78.3% in 2013. This means that fossil fuels
mainly meet energy demand, even though they are the primary source of greenhouse gases
(GHG) [2–4]. The presently observed increase in concentrations of these greenhouse gases
(GHGs) leads to global warming (Intergovernmental Panel on Climate Change (IPCC),
2007). Many environmental issues result from these climate changes, such as cyclones of
unprecedented strength, heat waves, snowstorms, floods, etc. Therefore, preventing the
catastrophic consequences of climate change requires the stabilization of the atmospheric
concentration of carbon dioxide (CO2) (IPCC 2007) [4–7].
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To deal with this situation, leaders of nations are increasingly turning to renewable
energy sources as a solution to meet human needs while preserving the environment [8].
Among renewable energy sources, wind energy has received a significant amount of
attention. It is widely used, and has become competitive with conventional energy sources
over the last few decades. As a result, the capacity of wind turbines installed worldwide
is rising speedily. The World Wind Association forecasts that wind installed capacity
can reach 1600 GW by the end of 2030 [9]. Several facts justify the importance given to
wind energy, among other renewable energies: it is cost-effective, faster to install, easier
to maintain, more reliable, and more efficient. Also, wind farms can be either onshore or
offshore [10].

Many structures have been designed in order to implement a wind energy system;
for example, there are some equipped with doubly fed induction generators (DFIG’s) and
squirrel cage induction generators (SCIG’s). The only issue with these machines is that
they require a multistage gearbox as well as an excitation. For this reason, PMSG has
been attracting researchers in recent years due to its higher efficiency and reliability, better
performance and its capability to operate at low speed, which eliminates the need for a
gearbox; also, this method of control is suitable for low maintenance usage [10,11]. As
shown in Figure 1, the machine is mechanically coupled to the blades, and electrically
connected to the constant frequency three-phase grid network via a power electronic inter-
face (back-to-back converter). The latter consists of a machine-side converter (MSC) and a
grid-side converter (GSC) interconnected through a common DC link with an intermediate
capacitor. This structure allows the generator’s power to be controlled and adapted to the
grid code while operating in fluctuating wind conditions [12,13].
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In general, the operating region of a wind energy conversion system can be classified
into four distinct zones according to the wind speed, as illustrated in Figure 2 [14]. In
Zone 1, the system is idle, since the wind speed is too low to start spinning the WT rotor;
hence, no power is generated. In Zone 2, the wind speed exceeds the WT’s cut-in speed
(Vcut-in). As a result, the system starts generating power within a range of wind speeds. In
this zone, the system is controlled to maximize the produced power given the wind speed
variation using the MPPT algorithm, and to reduce the system’s oscillation by setting the
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pitch angle reference at its optimal value. In Zone 3, the wind speed exceeds the rated
speed (Vn). In this case, the WT is controlled by a pitch angle controller to maintain rated
power generation during gusty wind speeds. Finally, the wind speed in Zone 4 is more
than the cut-out speed (Vcut-out) of the WT which can cause damage to the wind turbine. In
this situation, an emergency device stops the wind turbine to protect it from damage [15].
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However, ensuring optimal operation and improving the quality of the power pro-
duced by WECS depends not only on the speed control of the PMSG but also on how
the back-to-back converters are controlled. Among the control strategies proposed in
the literature, vector control (VC) has been one of the control strategies used on a large
scale to achieve control objectives. This control includes flux-oriented control (FOC) and
voltage-oriented control (VOC) methods. Its principle is to make PMSG similar to a direct
current machine using the proportional integrator regulator (PI) [16–18]. Nevertheless, the
determination of PI gains requires a knowledge of the machine parameters, which makes
the control sensitive to the variation of the parameters and thus leads to the deterioration
of the system’s performance. To eliminate the reliance on machine parameters, Takahashi
and Depenbrock proposed the direct power control (DPC), a robust technique that does not
require the mathematical model of the system [19]. Unlike other methods, the converter
switching states in this control are selected directly from a switching table based on the
digital errors between the commanded and estimated values of active and reactive power
generated by the hysteresis controllers, without the need for PWM modulation blocks and
internal regulation loops. However, despite the numerous benefits of this control, it suffers
from variable switching frequency and active and reactive power ripples, which limit the
DPC’s robustness [20,21].

Other alternatives have been proposed in the literature. As reviewed in [22], SMC
is a nonlinear control based on the Lyapunov function. This control is attractive and
recommended for many applications. It reduces the complexity of high-order systems to
lower-order state variables by forcing the system state trajectory to attain a predesigned
sliding surface in finite time and then remain there. However, this control suffers from the
chattering phenomena caused by the discontinued term used in the SMC control law.

Meanwhile, Backstepping has piqued the researchers’ interest due to its capacity
to stabilize the system despite substantial wind variance, which is due to the use of the
Lyapunov function in each design step [23]. The principle of this control is to decompose a
complex nonlinear system into a sequence of cascaded first-order subsystems where each
subsystem acts as a virtual control for the next, which guarantees a good equilibrium state
convergence. However, like any other method, this control has its drawbacks. The major
one is the “explosion of terms”, a flaw created by the repetition of the differentiation of
virtual inputs [24].
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To address all of these issues, the researchers tried to improve the classical controls
by modifying the controllers’ designs. These modifications are made by either adding
observers, using an adaption mechanism or intelligent techniques (fuzzy logic and neuron
network), increasing the controller order, or combining two or more different controllers.
However, there is a difficulty with these methodologies in terms of calculation time and
practical implementation [25–28]. For this reason, the model predictive control (MPC) has
become the most common solution referenced in the past few years due to its simplicity,
rapid dynamic response, multivariable control, immediate consideration of non-linear
constraints, and ability to be implemented in the electronic boards such as DSpace and
FPGA [29,30].

The main contribution of this work is to present a careful overview of the most
important techniques that are used to control the PMSG wind power conversion system,
varying from classical to modern control design. Therefore, a review of SMC, DPC, BSC,
and MPC is given first, followed by the description of the design of these techniques, and
finally, the application of the technique on both the machine side and the grid side. Due
to the importance of MPPT control in WECS, this study also includes a synthesis of this
control. In addition, a simulation test in Matlab/Simulink was performed under a real
wind profile to display the effects of each control on the PMSG wind energy conversion
system. As a result, this paper can be considered a useful reference that can help new
researchers better understand WECS, especially those equipped with permanent magnet
synchronous generators, in terms of conception, issues, and control, as well as provoking
further research in the wind energy field.

2. Sliding Mode Control
2.1. Review of the Sliding Mode Control

In the late 1950s, Prof. V. I. Utkin and Prof. S. V. Emelyanov described a new sort
of nonlinear control based on the Lyapunov function, called sliding mode control (SMC).
This control is well-known for its robustness, high accuracy, and simplicity. It can ensure
excellent tracking even when the system is subjected to internal parameter fluctuations
and external disturbances [31,32]. Other than PMSG-based wind power systems, SMC has
been successfully applied in many different wind power system structures [33–38]. This
control is considered an effective way to transform a relatively high-order system into a
lower-order system, which facilitates the controller design, since there is much knowledge
in the literature on designing control and analyzing stability for low-order systems. Its
principle is to alter the dynamics of the nonlinear system by applying a discontinuous
control signal that forces the system to lie on the prescribed sliding surface of the system’s
normal behavior [39]. However, the basic SMC configuration suffers from the steady
chattering phenomenon induced at the steady state [40] due to the discontinuous term used
in the SMC structure. This phenomenon causes the system response to chatter, leading to
high degradation in the system performance and affecting the quality of the injected current
(high THD) [41–43]. Therefore, there was a need to develop the conventional SMC design
to overcome this issue. Many researchers attempted to overcome the chattering problem
by proposing several new SMC configurations [44,45]. The following figure shows the
improved control structures of SMC that have been proposed to improve the conventional
SMC (Figure 3).
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Among all sorts of suggested methods that have attempted to improve the first-order
SMC, the high-order SMC control has received much attention in recent years due to
its prominent advantages [38]. The main idea of this control is to reduce the chattering
phenomenon and at the same time to preserve the advantages of the original approach; by
acting on the higher-order time derivatives of the system’s deviation from the constraint
instead of influencing the first derivative of the deviation as it happens in the standard
sliding modes. Based on the several references, the most successful version of the HOSMC
is the super-twist algorithm. Its high performance was shown in a variety of industrial
applications [44,46,47].

The terminal SMC (TSMC) scheme is also a class of SMC [48–54]. Unlike HOSMC,
the basic idea of this control is to achieve finite-time system convergence with a minimum
output control level by using fractional order terms [51]. However, the fractional-order
terms in the sliding manifold cause a singularity problem in this method, affecting the
system’s stability. More advanced versions of this control are proposed to address the
singularity problem and accelerate the convergence of the basic TSMC, such as the nonsin-
gular TSMC [49–51] and the fast TSMC [52–55]. Meanwhile, the authors in [56] attempted
to extend SMC by adding an integral action to the sliding surface. This integral term forces
the system to start on the manifold at the initial condition and constrains it during the entire
closed-loop response of the system. As a result, the chattering phenomena are reduced.
However, to ensure a good balance between robustness and chattering phenomena, this
control requires sufficient skill to adjust the controller gain parameters [57,58].

Other techniques have been used to suppress the chattering problem, such as adapta-
tive SMC [59–62], perturbation observer-based sliding-mode control [63,64], and predictive
sliding mode control [65] and reaching law SMC [66,67]. This last technique consists in



Energies 2022, 15, 6238 6 of 41

replacing the discontinuous function “Sign” used on the sliding mode control design with
other mathematical functions such as the saturation function, hyperbolic tangent function,
and exponential function [68–71].

Besides all the previous proposed techniques and for the same purpose, another
method for designing the SMC controller, called “hybridization”, has been proposed in
the literature. This method consists of combining the SMC with other techniques [59,72].
In [59], Lin & Chen used genetic algorithms to optimize the SMC and FLC combination and
thus reduce the “chattering” phenomenon in the system. In [73,74], the authors combined
the sliding mode control and the H∞. This technique was used to define the sliding mode
attractive control part, which is the primary cause of the chattering phenomena.

On the other hand, literature [75] proposes a combination of SMC with other nonlinear
control called “backstepping” to optimize a linear induction machine performance. As
described, this suggestion was validated through field-programmable gate array (FPGA).
This approach was later successfully applied in a variable-speed wind turbine power sys-
tem [63], providing good results under fluctuating wind speeds. Elsewhere, literature [64]
presented sliding mode-based direct power control to control wind power systems under
unbalanced grid voltage conditions, and literature [70–76] wisely chose to integrate SMC
with artificial neural networks.

Table 1 summarizes the different techniques used for SMC control that are found in
the literature.

Table 1. Various techniques used for SMC control.

Techniques Researchers

Sliding Mode Control

Hight order Valenciaga F et al. [38]

Second order Matraji I et al. [39]; Benbouzid M et al. [40];
Xiaoning S et al. [41]; Benelghali S et al. [42]

Super twisting Phan D et al. [43]; Zholtayev D et al. [44]; Yaichi I et al. [45];

Terminal Shihua L et al. [48];

Integral Saravanakumar R et al. [56]; Jun Liu et al. [57]; Muhammad M et al. [58];

H∞ technique Kharabian B et al. [60]; Lian J et al. [61];

Backstepping-SMC Faa-Jeng L et al. [62]; Rajendran S et al. [63];

Direct power control Shang L et al. [64]; Benbouhenni H et al. [65];

Fuzzy logic Diab A. A. Z et al. [66]; Yin, X.-X et al. [67];
El Karaoui I et al. [68]; Saghafinia A et al. [69];

Artificial neural network Hong C-M et al. [70]; Mohammad B et al. [71];

Adaptive model Baek S et al. [72]; Ton Hoang Nguyen et al. [73];

Observer Kim H et al. [77]; Mi Y et al. [78–80];

Reaching law Mozayan S. M et al. [81]; Fallaha, C.J. et al. [82]; El Makrini I et al. [83]

2.2. Application of Sliding Mode Control on the PMSG Wind Power System

The sliding surface used in this study is as follows [31]:

S(x) =
(

d
dt

+ δ

)n−1
× e(x) (1)

S(x) represents the sliding surface proposed by J. SLOTINE. Variable n is the order of
the system, δ is a positive constant, and e(x) is the error between the desired signal xre f and
the state variable x [32]. With n = 1, the tracking error dynamics of the proposed sliding
surface become:

S(x) = e(x) = xre f − x (2)
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To attain a commutation around the surface, the equivalent SMC formula u(t) is devel-
oped as the addition of two expressions (see Figure 4). Term ueq is an equivalent control
that characterizes the system’s behavior on the sliding surface, while un is a switching
control based on a discontinuous function. This latter is employed to satisfy the conditions
of attractiveness and stabilization [37]. Therefore, the sliding mode control law can be
presented as:

u(t) = u(t)eq + u(t)n (3)

With,
un = Kn sgn(Sn) (4)

Kn is a switching gain, and sgn(Sn) is a discontinuous mathematical function.
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This section aims to determine the switching control inputs for the MSC and GSC.
During this process, the controller design of each side will be built systematically, as
explained below.

2.2.1. Machine-Side Control

The chosen surfaces that were used to control the machine-side converter MSC are as
follows: {

S(isd) = e(isd) = isd_re f − isd
S
(
isq
)
= e
(
isq
)
= isq_re f − isq

(5)

The chosen surfaces’ derivatives are as follows:{ .
S(isd) =

disd_re f
dt − disd

dt.
S
(
isq
)
=

disq_re f
dt − disq

dt

(6)

Replacing disd
dt and disq

dt with their expression given by Equation (A6) in Appendix A,
respectively, in Equation (6) gives:

.
S(isd) =

disd_re f
dt + Rs

Lsd
·isd − p·Ω· Lsq

Lsd
·isq − Vsd

Lsd.
S
(
isq
)
=

disq_re f
dt + Rs

Lq
·isq + p·Ω· Lsd

Lsq
·isd + p·Ω·∅ f

Lsq
− Vsq

Lsq

(7)

Replacing vsdq with
(

vsdq_eq + vsdq_n

)
in Equation (7) gives:


.
S(isd) =

disd_re f
dt + Rs

Lsd
·isd − p·Ω· Lsq

Lsd
·isq −

(vsd_eq+vsd_n)
Lsd.

S
(
isq
)
=

disq_re f
dt + Rs

Lsq
·isq + p·Ω· Lsd

Lsq
·isd + p·Ω·∅ f

Lsq
− (vsq_eq+vsq_n)

Lsq

(8)

The control principles are clearly shown in the Equation (8).
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During the sliding mode and in the steady-state,
.
S(x) = 0 and vsdq_n = 0. There-

fore, the expression of the equivalent control components vsdq_eq can be deduced from
Equation (8) as follows: vsd_eq = Lsd

[ disd_re f
dt + Rs

Lsd
·isd − p·Ω· Lsq

Ld
·isq

]
vsq_eq = Lsq

[ disq_re f
dt + Rs

Lsq
·isq + p·Ω· Lsd

Lsq
·isd + p·Ω·∅ f

Lsq

] (9)

Whereas vsdq_n is given by the following equations:{
vsd_n = Kd·sign(S(isd))
vsq_n = Kq·sign

(
S
(
isq
)) (10)

As explained previously, each control approach component should be calculated by
adding two terms

(
vsdq_eq + vsdq_n

)
. Therefore, the MSC controller becomes as follows: vsd = Lsd

[ disd_re f
dt + Rs

Lsd
·isd − p·Ω· Lsq

Lsd
·isq

]
+ Ksd·sign(S(isd))

vsq = Lsq

[ disq_re f
dt + Rs

Lsq
·isq + p·Ω· Lsd

Lsq
·isd + p·Ω·∅ f

Lsq

]
+ Ksq·sign

(
S
(
isq
)) (11)

In this study, the direct current reference isd_re f is set to zero to maximize the elec-
tromagnetic torque Tem, while the quadrature current reference isq_re f is derived from the
speed controller. Hence, the isq_re f expression can be presented as:

isq_re f = isq_re f _eq + isq_re f _n (12)

isq_re f = −
2
3
· Jtot

p·∅ f

[
.

Ωre f +
f

Jtot
·Ω− 1

Jtot
·Tturb

]
+ KΩ·sign(S(Ω)) (13)

where Ωre f is deduced from the MPPT control strategy (Figure 5).
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2.2.2. Grid-Side Control

The grid-side converter maintains a constant capacitor voltage and adjusts the d-axis
and q-axis currents frequency, thus ensuring good power transmission into the grid [36].
Therefore, two sliding mode controllers have been designed to control GSC’s components
(igd, igq) (Figure 5).
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The following equations present the sliding surfaces chosen to control this side:{
S
(

igd

)
= e
(

igd

)
= igd_re f − igd

S
(
igq
)
= e
(
igq
)
= igq_re f − igq

(14)

Terms ig_ref and igd_ref are the direct and the quadrature grid currents references, re-
spectively.

The grid side converter controller (GSC) can be designed using a mechanism similar
to that used to control the machine side converter (MSC).

v f d = v f d_eq + v f d_n (15)

v f q = v f q_eq + v f q_n (16)

With, v f q_eq = L f

[ digd_re f
dt +

R f
L f
·igd − wg·igq +

Vgd
L f

]
v f q_n = K f d·sign

(
S
(

igd

)) (17)

{
v f q_eq = L f

[ digq_re f
dt +

R f
L f
·igq + wg·igd +

Vgq
L f

]
v f q_n = K f q·sign

(
S
(
igq
)) (18)

Hence, the GSC controller becomes as follows:v f d = L f

[ digd_re f
dt +

R f
L f
·igd − wg·igq +

Vgd
L f

]
+ K f d·sign

(
S
(

igd

))
v f q = L f

[ digq_re f
dt +

R f
L f
·igq + wg·igd +

Vgq
L f

]
+ K f q·sign

(
S
(
igq
)) (19)

where igq_re f is deduced from the reactive power Qg_re f the expression which is fixed to
zero to achieve a unity power factor control, while igd_re f is generated by the dc-link voltage
regulator, as shown in Figure 5. Figure 5 illustrates the general structure of SMC within the
PMSG-wind energy conversion system.

The SMC controllers’ stability in both MSC and GSC was examined using a Lyapunov
stability analysis. Therefore, two Lyapunov functions (VMSC, VGSC) were chosen for this
study. {

VMSC = 1
2 (S

2
isd

+ S2
isq

+ S2
Ω)

VGSC = 1
2 (S

2
igd

+ S2
igq
)

(20)

where VMSC was used for the MSC, whereases VGSC was used for the GSC.
To achieve stability with Lyapunov function, the switching gains (KΩ, Ksd, Ksq, K f d

and K f q) that are used in the switching control must be set to positive values while the

derivative function should be negative (
.

VMSC < 0
.

VGSC < 0). Functions VMSC and VGSC’s
time derivatives are as follows:{ .

VMSC = Sisd ·
.
Sisd + Sisq ·

.
Sisq + SΩ·

.
SΩ < 0

.
VGSC = Sigd ·

.
Sigd + Sigq ·

.
Sigq < 0

(21)

Replacing each surface
.
S(x) with its expression in Equation (21) gives:

.
VMSC = −Kd·Sisd ·sign(S(isd))− Kq·Sisq ·sign

(
S
(
isq
))
− KΩ·SΩ·sign(S(Ω))

.
VGSC = −K f d·Sigd ·sign

(
S
(

igd

))
− K f q·Sigq ·sign

(
S
(
igq
)) (22)

Replacing sign(S(x)) with its expression in Equation (22) gives:
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
.

VMSC = −KΩ·|SΩ| − Kd·
∣∣Sisd

∣∣− Kq·
∣∣∣Sisq

∣∣∣
.

VGSC = −K f d·
∣∣∣Sigd

∣∣∣− K f q·
∣∣∣Sigq

∣∣∣ (23)

When KΩ, Ksd, Ksq, K f d and K f q are positive constants, the
.

VMSC and
.

VGSC are negative.
Hence, the Lyapunov condition is satisfied, and the proposed control’s objectives are
achieved.

3. Direct Power Control
3.1. Review of Direct Power Control

The principle of direct power control (DPC) was first developed by “T.Ohnishi” [84]. A
few years later, the DPC control was advanced by researchers “Noguchi” and “I.Takahachi” [85].
The active and reactive power control is guaranteed using an instantaneous power control
loop to ensure the decoupling between the two powers while providing a unity power
factor [86].

Over the years, researchers have used DPC in different modes where control algo-
rithms can be classified under two broad categories: virtual flux-based DPC and voltage-
based DPC. Early DPC commands were based on predefined switching tables and hysteresis
controllers. Depending on the outputs of these controllers, the switching states of the dif-
ferent power converters can be realized, which leads to the desired active and reactive
power generation. In addition, the determination of the flux vectors [87–90] and the syn-
chronization with the grid voltage [91–96] have been elaborated through the predefined
switching tables. The major disadvantage of DPC based on switching tables lies in the high
sampling frequency required in order to obtain relatively satisfactory performance. We can
also add the undesirable effect of the variable switching frequency on the total harmonic
distortion (THD). Indeed, the THD in this kind of control using hysteresis controllers
remains considerably high compared to other control algorithms.

The diagram in the following figure illustrates the different control algorithms based
on the DPC principle, either for the voltage-based DPC or the virtual flux-based DPC
(Figure 6).
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As discussed previously, the predictive control of the model became the most em-
ployed algorithm in the DPC strategy, based on either the voltage or the virtual flow [84–89].
The precision and efficiency of the DPC control that adapts the predictive model remains
superior compared to the DPC that uses predefined vector selection tables. The major
problem of the DPC control based on the predictive model resides in the variable switching
frequency of the power converters. Nevertheless, studies have been performed incorporat-
ing modulation blocks into the design of control algorithms to achieve symmetrical and
constant switching frequencies to minimize the undesirable effects of variable switching
frequencies. These solutions employ sequences of vectors synchronized via well-defined
sampling periods. However, the algorithms employed in these solutions require a more
complex calculation than do the traditional algorithms.

Predictive DPC can be subdivided into two broad categories, namely, predictive DPC
based on vector duty cycle control [97–99] and predictive DPC based on spatial vector
modulation (SVM) [100]. The SVM technique requires a referential transformation to
present the virtual flux and the grid voltage to offer the sequence and the duration of the
vectors applied to the converter. In addition, it requires a powerful calculator that makes it
possible to put the various complex operations in force [101–112].

It should be noted that there are also other techniques used for voltage-based DPC con-
trol, such as sliding mode [113–116], fuzzy logic [117,118], and adaptive technique [119,120].
However, these latter techniques require sophisticated computational resources for their im-
plementation. A technique that does not require this kind of robust computation is the DPC
technique based on the proportional-integral (PI) regulator with the SVM technique pro-
posed by Malinowski et al. [121]. However, the design requires additional parameterization
to calculate the PI controller gains.

In addition, the various techniques employed for DPC control tend to minimize
undesirable defects, improving the performance demonstrated by DPC control. The key
points required for these control techniques are minimization of ripples due to the use of
electronic switches and the reduction of the total harmonic distortion (THD) of electric
currents. However, the techniques discussed above consider that the supply voltage is
purely balanced and sinusoidal, which is unrealistic in the presence of static converters.
Therefore, authors in [122,123] have attempted to study the behavior of the DPC control
under unfavorable conditions regarding wave distortion and supply voltage imbalance.
The techniques “output regulation subspaces” (ORS) [122] and “vector duty cycle control”
(VDC) [123] are used starting from the control based on predefined tables and using the
technique of the voltage-based DPC.

The DPC technique used under unfavorable conditions is significantly less present in
the literature. For example, the operation under an unbalanced supply voltage is presented
in the studies [124–127], where the extraction of the virtual flux and grid current parameters
becomes complicated. On the other hand, authors in [94,119] attempted to extend DPC by
employing the p-q extension theory mentioned in [128].

Table 2 summarizes the different techniques used for the DPC control found in the
literature.

Table 2. Various techniques used for DPC control.

Techniques Researchers

Virtual flux

Proportional-Integral PI Malinowski M et al. [121]

Vector Duty Cycle Control Predictive Antoniewicz P et al. [100]

SVM Predictive Tao YK et al. [115]; Cho Y et al. [110]

Table Baktash A et al. [87]; Razali A et al. [88]; Zhi D et al. [89];
Malinowski M et al. [90]
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Table 2. Cont.

Techniques Researchers

Voltage

Model Predictive Kwak S et al. [97,99]; Cortes P et al. [98]

Vector Duty Cycle Control Predictive Zhang Y et al. [111]; Fischer JR et al. [112]; Bouafia A et al. [113];
Restrepo JA et al. [114]

SVM Predictive Hu J et al. [103,106]; Choi D et al. [104]; Aurtenechea S et al. [105];
Song Z et al. [107]; Vazquez S et al. [108]; Zhang Y et al. [109]

Model Adaptive Portillo R et al. [119]; Vazquez S et al. [120]

Vector Duty Cycle Control Table-based Zhang Y et al. [123]

Output Regulation Subspaces
Table-based Escobar G et al. [122]

Sliding Mode Hu J et al. [116]

Fuzzy Logic Bouafia A et al. [117,118]

3.2. Application of Direct Power Control on the PMSG Wind Power System
Grid Side Converter

From the block diagram in Figure 7, the grid-side static converter is a three-phase
inverter connected to the grid through a filter. The DC voltage at the terminals of the
capacitor and the current iond represent the electrical input quantities of the inverter. At
the output, the inverter generates three-phase currents denoted i f ,abc and alternating three-
phase voltages denoted Vf ,abc. The output of the inverter is connected to the grid through
a filter of resistor R f and inductance L f . On the other side, the grid voltages will be
represented by Vg,abc. Terms (So,abc; So,a′b′c′ ) represent the switching functions of the arms
of the three-phase inverter.
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In order to model the electronic switches, we consider that IGBT transistors form them
antiparallel to diodes. As a hypothesis, they are all considered ideal, meaning they have
an instantaneous response to control signals. The closed position is equivalent to zero
resistance, and the open position is equal to infinite resistance.

The mathematical model of the switching functions of the arms of the converters
(inverter) is defined by:

Si =

{
1,→ Si′ = 0
0,→ Si′ = 1

(24)

With: i = oa, ob, oc.
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The capacitor “C” is crossed by a current “iC” which will be defined by:

iC = ired − iond = C·dUC
dt

(25)

Moreover,
ired = Sraisa + Srbisb + Srcisc (26)

The expression of the voltage Uc will then be:

C·dUC
dt

= Sraisa + Srbisb + Srcisc − iond (27)

The system of equations will represent the output voltages:
Vf a =

2Soa−Sob−Soc
3 UC

Vf b = 2Sob−Soa−Soc
3 UC

Vf c =
2Soc−Sob−Soa

3 UC

(28)

The current iond will be defined by:

iond = Soai f a + Sobi f b + Soci f c (29)

The three-phase output currents of the inverter i f ,abc are determined by the system of
equations: 

R f i f a + L f
di f a
dt = Vf a −Vga =

2Soa−Sob−Soc
3 UC −Vga

R f i f b + L f
di f b
dt = Vf b −Vgb = 2Sob−Soa−Soc

3 UC −Vgb

R f i f c + L f
di f c
dt = Vf c −Vgc =

2Soc−Sob−Soa
3 UC −Vgc

(30)

The DPC control algorithm is generally based on the voltages represented in the
reference plane (α-β). The space vector converter voltage is described in terms of switching
states and voltage UC by:

Vαβ =

√
2
3

(
Soa + Sobej( 2π

3 ) + Socej( 4π
3 )
)

UC (31)

According to this last equation (Equation (31)), the spatial voltage vectors Vk generated
by a two-level inverter can be represented in Table 3, where two vectors of the eight possible
combinations are inactive and equal to zero.

The relation which links the voltage vector Vg,αβ and the current transit vector to the
grid ig,αβ can be represented by:

Vg,αβ = L f
di f ,αβ

dt
+ R f i f ,αβ + Vαβ (32)

a. Switching table-based direct power control

The principle of table-based DPC control needs the output variables of the hysteresis
comparators and the voltage sector θR−i as shown in Figure 8.
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The position of the voltage vector is obtained by using the following formula:

∠θR = tan−1
(

Vgβ

Vgα

)
(33)

The role of hysteresis comparators is decisive in arriving at active and reactive power
control signals. The switching table is built according to several criteria: the number of
sectors chosen, the dynamic performance, and the type of hysteresis controller used (two
or three levels).

Usually, the vector plane is divided into 6 sectors. They are defined by:

(2n− 3)
π

6
≤ θRn < (2n− 1)

π

6
(34)

With: n = 1, 2, . . . , 6.

Table 3. Voltage vectors and switching states.

Soa, Sob, Soc VK vα vβ

1, 0, 0 V1 =
√

2
3 UCej0

√
2
3 UC 0

1, 1, 0 V2 =
√

2
3 UCej π

3

√
1
6 UC

1√
2

UC

0, 1, 0 V3 =
√

2
3 UCej 2π

3
−1√

6
UC

1√
2

UC

0, 1, 1 V4 =
√

2
3 UCejπ −

√
2
3 UC 0

0, 0, 1 V5 =
√

2
3 UCej 4π

3
−1√

6
UC

−1√
2

UC

1, 0, 1 V6 =
√

2
3 UCej 5π

3

√
1
6 UC

−1√
2

UC

0, 0, 0 V0 = 0 0 0

1, 1, 1 V7 = 0 0 0

Table 4 summarizes the states of evolution of the active and reactive powers according
to the vectors selection with six sectors.
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Table 4. Inverter switching table for 6 sectors.

θR
θR1

[−30◦,30◦]
θR2

[30◦,90◦]
θR3

[90◦,150◦]
θR4

[150◦,210◦]
θR5

[210◦,270◦]
θR6

[270◦,360◦]Active Power:
dPg

Reactive Power:
dQg

1
0 V6(1,0,1) V1(1,0,0) V2(1,1,0) V3(0,1,0) V4(0,1,1) V5(0,0,1)

1 V0(0,0,0) V7(1,1,1) V0(0,0,0) V7(1,1,1) V0(0,0,0) V7(1,1,1)

0
0 V6(1,0,1) V1(1,0,0) V2(1,1,0) V3(0,1,0) V4(0,1,1) V5(0,0,1)

1 V1(1,0,0) V2(1,1,0) V3(0,1,0) V4(0,1,1) V5(0,0,1) V6(1,0,1)

b. Dynamics performance:

Voltage vectors affect the instantaneous active and reactive power dynamics. Therefore,
the expressions of the power dynamics can be formulated by:

dPg

dt
=

1
L f

(
V2

gα + V2
gβ

)
− 1

L f

(
VgαVcα + VgβVcβ

)
(35)

dQg

dt
=

1
L f

(
VgαVcβ −VgβVcα

)
(36)

With:
Vcα and Vcβ: represent the Concordia components of the inverter output voltage.
The combinations of each inverter voltage vector used for the instantaneous power

variation are summarized in Table 5 [129]. In this table, the sign (+) means a minor variation,
while the sign (++) means a significant variation. As can be seen from the table, we have
the following combinations:
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Figure 9 illustrates the general structure of DPC of the PMSG-wind energy conver-
sion system. 

An increase in reactive power is obtained by applying the voltage vectors VK, VK+1, VK+2.
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A decrease in reactive power is obtained by applying the voltage vectors VK−1, VK−2, VK+3.
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A decrease in reactive power is obtained by applying the voltage vectors VK, VK−1.
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Figure 9 illustrates the general structure of DPC of the PMSG-wind energy conversion
system.
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The design of switching tables employed in DPC control algorithms is a hot topic for
researchers. Most of the research works summarized in Table 6 use simplifying assumptions
for their work, and in most cases, they have assumed that the network voltage is ideal,
which is not always the case in practice. Table 6 summarizes a performance comparison
between different employed table-based DPC techniques, namely, VF-DPC, V-DPC and
RV-DPC.
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4. Backstepping Control
4.1. Review of Backstepping Control

In recent years, many researchers have been interested in recursive techniques in
design controllers for nonlinear systems. Backstepping is a systematic method for non-
linear control design; it can be applied to a general class of systems. Its name refers to
the recursive nature of the procedure conception [140]. The backstepping controller’s
principle converts a complex system into cascaded first-order subsystems. First, a small
subsystem is considered for which a virtual control law is designed. Then the design is
extended over several stages until the final control law for the overall system is constructed.
Hence, nonlinear systems become linear despite the uncertainties. During the conception,
a Lyapunov function of the controlled system is successfully constructed, increasing the
system stability [141–144]. There are two types of backstepping techniques. The first type is
called the non-adaptive backstepping control. This technique is used when the parameters
of the studied system are known. The second type is called adaptive backstepping control.
The adaptation law is used to estimate the various unknown parameters so that they
converge towards their own values without affecting the system’s overall stability. Hence,
the system becomes insensitive to parametric variations [145].

The main drawback of the classical BSC is a phenomenon called “explosion of terms”.
This phenomenon occurs when virtual inputs are differentiated several times. As a result,
the complexity of the controller increases, especially for higher-order systems, which makes
the practical implementation of the control more difficult [145]. Many solutions have been
introduced in the literature to improve the classical BSC.

The following figure shows the improved control structures of SMC that have been
proposed to improve the conventional BSC (Figure 10).
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Many adaptations have been made to the backstepping controller design to solve the
abovementioned problem. In [145] authors proposed a nonlinear adaptive filter with a
positive time-varying integral function to avoid the issue of the explosion of complexity
caused by the recursive procedure. This filter may effectively eliminate the effect raised
by the boundary layer error at each step. In [146] authors proposed a specific control
parameter that is based on the fuzzy rules. This control uses only one fuzzy system in
each subsystem to approximate the unknown control gain and the unknown nonlinear
function, as well as the differential of the former subsystem’s virtual control. Contrary to
the previous suggestion, Song et al. [147] chose to use both neuro and fuzzy systems in each
subsystem. Meanwhile, Guangming et al. [148] chose to synthesize the fuzzy backstepping
sliding mode tracking control method with the fractional CF technique to overcome such a
shortcoming. In [149], the authors tried to combine the benefits of the disturbance observer
with SMC under the framework of backstepping. Jiuwu et al. [150] combined another type
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of observers controller, extended state observer (ESO), with backstepping controller. This
observer was used to estimate both unmeasured states and output disturbances online. In
the same context, Yeonsoo et al. [151] employed the model predictive technique (MPC) in
the backstepping controller to design the first step’s virtual input.

On the other hand, some authors tried to improve classical backstepping in terms of
robustness, stability, and reference tracking. In this context, Nizami et al. [152] proposed a
new control mechanism based on a Chebyshev neural network embedded in an adaptive
backstepping framework. In [153] authors suggested a robust technique that adaptively
estimates the nonlinear parameter uncertainties. This technique is based on a recurrent
radial basis function neural network uncertainty online observer to solve both parameter
variations and inevitable approximation, while Bossoufi et al. [154] used the rooted tree
optimization (RTO) algorithm. The performance of this technique was confirmed through
a test bench based on a dSPACE card. Integral backstepping is a further enhancement of
the classical backstepping approach. In this technique, an integral action is added to the
error terms to increase the controlled system’s precision and stability [155–158].

Table 7 summarizes the different techniques used for the BSC control found in the
literature.

Table 7. Various techniques used for BSC control.

Techniques Researchers

Backstepping

Filter Liu Y-H [145]; Nizami et al. [152]

Artificial intelligence Shen X et al. [142]; Min W [146]; Song S [147]; Belkhier Y [159]

Integral BSC Makhad M et al. [155]; Loucif, M et al. [157]; Eluri N.V.D.V. Prasad et al. [158]

Disturbance observer Wang F et al. [149];

Extended state observer Jiuwu et al. [150]

MPC-BSC Yeonsoo K et al. [151]

SMC-BSC Rajendran, S et al. [160]

4.2. Application of Backstepping Control on the PMSG Wind Power System

According to backstepping control principles and based on the system equations pre-
sented in the Appendix A, the backstepping control design can be determined by following
successive steps, where each step provides references for the next design step [161–164].

4.2.1. Machine Side Control

Step 1: Mechanical speed controller design:
The following expression can define the tracking error of speed:

eΩ = Ωre f −Ω (37)

Its derivate is given as:

.
eΩ =

.
Ωre f −

.
Ω =

.
Ωre f −

1
Jtot

[
Tturb −

3p
2

((
Ld − Lq

)
isd·isq + isqΦ f

)
− fcΩ

]
(38)

To reduce the speed tracking error, the current components are identified as virtual
control elements and the Lyapunov function is chosen as follows:

V1 =
1
2

eΩ
2 (39)

The Lyapunov function derivative is therefore:
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.
V1 = eΩ·

.
eΩ

= −KΩeΩ
2 + eΩ

Jtot
(−Tturb + fcΩ + KΩ·Jtot·eΩ + 3p

2 isqΦ f ) +
3

2·Jtot
p
(

Ld − Lq
)
isd·isq·eΩ

(40)

To maintain the first subsystem’s stability, the Lyapunov function derivative
.

V1 must
be negative. Therefore, both isd and isq are chosen as follows:{

isd_re f = 0
isq_re f =

2
3·p·Φ f

(Tturb − fcΩ− KΩ·Jtot·eΩ)
(41)

isd_re f and isq_re f will be considered as virtual references for the second step.

Replacing the isd_re f , isq_re f and
.

Ωre f = 0 with their values in Equation (40) gives:

.
V1 = −KΩ·eΩ

2 ≤ 0 (42)

Hence, the system described by Equation (42) becomes stable only if KΩ is fixed to a
positive value.

Step 2: Stator current controller design:
The machine-side converter control voltages vsd_re f and vsq_re f are designed in this

step based on the virtual inputs of the system, which are the stator currents (isd, isq).
The following expressions define the stator current errors:

ed = isd_re f − isd (43)

eq = isq_re f − isq (44)

Based on Equations (43) and (44), the current error dynamic
.

ed and
.

eq can be presented
as follows:

.
ed =

.
isd_re f −

.
isd = 0−

.
isd =

1
Ld

(
Rsisd − pΩLqisq − vsd

)
(45)

.
eq =

.
isq_re f −

.
isq =

2
3·p·Φ f

(− fc
.

Ω− KΩ·Jtot·
.
eΩ) +

1
Lq

(
Rsisq + p·Ld·Ω·isd + p·Ω·Φ f − vsq

)
(46)

With:
.

eΩ =
1

Jtot

[
−KΩ·Jtot·eΩ −

3p
2

Φ f ·eq −
3p
2
·
(

Ld − Lq
)
isd·isq

]
(47)

The
.

eq expression becomes:

.
eq =

2
3·p·Φ f

(
(KΩ·Jtot − fc)

[
Tturb − fc·Ω−

3p
2
·
(

Ld − Lq
)
isd·isq + isqΦ f

])
+

1
Lq

(
Rsisq + pΩLdisd + pΩΦ f − vsq

)
(48)

Another Lyapunov function must be adopted to determine the stator voltage refer-
ences. This function takes into account both the rotation speed error and the stator currents
errors:

V2 =
1
2

(
eΩ

2 + ed
2 + eq

2
)

(49)

Using Equations (45), (47) and (48) the second Lyapunov function derivative becomes:

.
V2 =

(
eΩ

.
eΩ + ed

.
ed + eq

.
eq
)

(50)

.
V2 = −KΩeΩ

2 − Kded
2 −Kqeq

2 +
eΩ
Jtot

(
− 3p

2 Φ f eq − 3p
2 ·
(

Ld − Lq
)
isd ·isq

)
+

ed
Ld

(
Rs isd − pΩLq isq − vsd + Kd Lded

)
+

eq
Lq

[
2Lq

3·p·Jtot ·Φ f

(
(KΩ ·Jtot − fc)

[
Tturb − fc ·Ω− 3p

2 ·
(

Ld − Lq
)
isd ·isq + isqΦ f

])
+ Rs isq + pΩLd isd + pΩΦ f − vsq + Kq Lqeq

] (51)
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According to the Lyapunov theorem, to ensure the stability of the subsystem, the
derivative of V1 must be negative. Therefore, Kd and Kq are fixed to a positive value while
the following voltages are used as reference voltages:

vsd_re f = Rsisd − pΩLqisq + KqLqeq − 3p
2·Jtot

Ld
(

Ld − Lq
)
isd·eΩ

vsq_re f =
2Lq

3·p·Jtot ·Φ f

(
(KΩ·Jtot − fc)

[
Tturb − fc·Ω− 3p

2 ·
(

Ld − Lq
)
isd·isq + isqΦ f

])
+Rsisq + pΩLdisd + pΩΦ f + KqLqeq − 3

2·Jtot
p·isqΦ f ·eΩ

(52)

4.2.2. Grid-Side Converter Control

The GSC is controlled for two main reasons: to keep the DC bus voltage constant and
to ensure that energy is transferred efficiently to the distribution grid [161–164]. Based on
the model of the GSC in the d-q referential presented in the Appendix A, the grid current
and power can be represented as follows:

digd
dt =

v f d
L f
− R f

L f
·igd + wg·igq −

vgd
L f

digq
dt =

v f q
L f
− R f

L f
·igq − wg·igd −

vgq
L f

Pg = 3
2

[
vgd·igd + vgq·igq

]
Qg = 3

2

[
vgq·igd − vgd·igq

] (53)

One can notice that power is directly proportional to the quadrature current component
igq as well as the direct current component igd. The backstepping control can be designed
based on the following steps.

The first step is to define the direct and quadrature grid current errors:

egd = igd_re f − igd (54)

egq = igq_re f − igq (55)

The derivative of the current tracking errors can be expressed as:

.
egd =

.
igd_re f −

.
igd (56)

.
egq =

.
igq_re f −

.
igq (57)

Introducing the Lyapunov function for current errors:

V3 =
1
2

(
egd

2 + egq
2
)

(58)

Taking the derivative of Equation (58) along the dynamics of the system:

.
V3 =

(
egd

.
egd + egq

.
egq

)
(59)

Replacing
.

igd and
.

igq by their expression in Equation (59) gives:

.
V3 = −Kgdegd

2 − Kgqegq
2 + egd

(
v f d

L f
−

R f

L f
igd + ωgigq −

vgd

L f
+ Kgdegd

)
+ egd

(
v f q

L f
−

R f

L f
igq −ωgigd −

vgq

L f
+ Kgqegq

)
(60)

To make the Lyapunov derivative function negative and ensure system stability, both
Kgd and Kgq were fixed to positive values, and the GSC reference voltages were chosen as
follows: {

v f d−re f = R f igd − L f ωgigq − L f Kgdegd + vgd
v f q−re f = R f igq + L f ωgigd − L f Kgqegq + vgq

(61)
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Additionally, the reference value of the direct current was fixed to zero to ensure an
operation with unit power factor while the quadrature current reference was deduced from
the bus regulator as shown Figure 11.

Figure 11 illustrates the general structure of BSC of the PMSG-wind energy conversion
system.
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5. Model Predictive Control
5.1. Review of Model Predictive Control

In recent years, predictive control has emerged as a major control technique appli-
cable to power converters and electric drives. Predictive control (MPC-model predictive
control) uses the system model to predict the future behavior of the process for a specific
control variable and then obtain an optimal action based on the predefined optimization
criteria [132,165–168].

A classification of the different predictive control strategies is shown in Figure 12 [168].
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Predictive deadbeat control calculates the control variable that cancels the error be-
tween the control variable and the reference input. This control technique has a fast dynamic
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response, but its difficulty lies in the system parameters’ variations and disturbances, which
can cause deterioration in the obtained performances.

In addition, model predictive control (MPC) is recognized as a simple and powerful
control strategy for controlling power converters because it is simple to apply in multi-
variable systems, takes into account nonlinearities and constraints of the system to be
controlled, and has a fast dynamic response [169,170]. This technique’s operating principle
is based on using a mathematical model to predict the system’s future behavior, and then
minimize the predefined cost function to achieve the specified control objectives.

MPC applied to power converters can be classified into two major categories: continu-
ous control set MPC (CCS-MPC) and finite control set predictive control (FCS-MPC) [171].
In CCS-MPC, a modulator is required to generate the switching states, leading to a fixed
switching frequency. However, the disadvantage of CCS-MPC is that the nonlinearities
taken in the model lead to a complex optimization problem, which is difficult to solve
online using a conventional hardware platform [171,172].

On the other hand, FCS-MPC predictive control relies on the discrete nature of the static
converters due to the limitation of the number of their switching states. This advantage
has the effect of reducing the calculation burden for both prediction and processing, as
each converter has a limited number of switching states. The prediction procedure is also
limited to these states [173–175]. Then, an optimization selects the optimal state (optimal
voltage vector) to be applied to the charge. The main elements of this control technique are
the mathematical model of the system and the predefined cost function [176–182].

Table 8 summarizes the different techniques used for the predictive control in the
literature.

Table 8. Various techniques used for predictive control.

Techniques Researchers

With Modulator

Deadbeat predictive
control (DBPC) Nguyen, H et al. [183]; Bouderbala, M et al. [184]

Continuous control-set
(MPC-CCS-MP) Balamurugan, A et al. [185,186]

Other predictive control
(GPC, DCC) Shehata, E et al. [187]

Without Modulator

Hysteresis based
(MPC) Prince, M et al. [188]

Trajectory tracking
(MPC) Cortes-Vega, D et al. [189]

Direct model predictive control Yip, S. Y. et al. [190]

Other (P-DPC, M2PC, S-MPC) Shehata, E. G. et al. [191]

5.2. Application of Model Predictive Control on the PMSG Wind Power System

In general, the implementation of FCS-MPC finite-state predictive control consists of
four essential steps [192–195] as described below:

• Reference calculation: In this step, the reference control value x∗(k) (x ∈ voltage,
current, power, torque, flux, etc.) is calculated depending on the application’s nature.

• Prediction: this subsystem predicts the future values of the control variables xP(k + 1)
based on the DT model, the system parameters and the converter switching state
combinations S(K).

• Extrapolation: the future value of the reference control variable x̂∗(k + 1) is estimated
in this step based on the current and past sample values x∗(k), x∗(k− 1).

• Cost Function Minimization: this function is used to minimize the error between the
predicted and extrapolated references g = x̂∗(k + 1)− xP(k + 1).
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The following figure shows the general scheme of the FCS-MPC finite-state predictive
control [196] (Figure 13).
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5.2.1. Machine-Side Control 
As a first step for implementing the MPC control on the MSC side, a continuous-

time dynamic model of PMSG stator currents must be given [197–200]. Considering the 
mathematical model of the PMSG in the dq reference frame shown in the Appendix A, 
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where 

A(t) = ⎣⎢⎢⎢
⎡ −𝑅௦𝐿௦ௗ 𝑤௘(𝑡)𝐿௦௤𝐿௦ௗ−𝑤௘(𝑡)𝐿௦ௗ𝐿௦௤ −𝑅௦𝐿௦௤ ⎦⎥⎥⎥

⎤ ;  B = ⎣⎢⎢⎢
⎡ 1𝐿௦ௗ 00 1𝐿௦௤⎦⎥⎥⎥

⎤ ;  w(t) = ቎ 0−𝑤௘(𝑡)𝜑௥𝐿௦௤ ቏ (63)

The next step in MPC implementation is to use a suitable discretization algorithm to 
convert the above continuous-time CT model into a discrete-time DT model. In this 
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5.2.1. Machine-Side Control

As a first step for implementing the MPC control on the MSC side, a continuous-
time dynamic model of PMSG stator currents must be given [197–200]. Considering the
mathematical model of the PMSG in the dq reference frame shown in the Appendix A, the
continuous-time model of PMSG can be represented in a simplified form as:

d
dt

[
isd(t)
isq(t)

]
= A(t)

[
isd(t)
isq(t)

]
+ B

[
vsd(t)
vsq(t)

]
+ w(t) (62)

where

A(t) =

 −Rs
Lsd

we(t)Lsq
Lsd

−we(t)Lsd
Lsq

−Rs
Lsq

; B =

[
1

Lsd
0

0 1
Lsq

]
; w(t) =

[
0

−we(t)ϕr
Lsq

]
(63)

The next step in MPC implementation is to use a suitable discretization algorithm to
convert the above continuous-time CT model into a discrete-time DT model. In this study
a forward Euler approximation was used to simplify the analysis. This approach takes into
account the future sample (k + 1) as well as the present sample (k), as seen below:{

dx(t)
dt

}
t=kTs

≈ x(kTs + Ts)− x(Ts)

Ts
, x ε

{
isd, isq

}
(64)

This later can be simplified as:

x(k + 1) ≈ x(k) + Ts

{
dx(t)

dt

}
t=k

(65)

After carrying out the required discretization, the discrete time DT model of the PMSG
can be derived from Equation (62) as:[

isd(k + 1)
isq(k + 1)

]
= φ(k)

[
isd(k)
isq(k)

]
+ Γb

[
vsd(k)
vsq(k)

]
+ Γw(k) (66)

With, 

φ(k) ≈ [I + A(k)Ts] ≈

 1− RsTs
Lsd

we(k)LsqTs
Lsd

−we(k)LdsTs
Lsq

1− RsTs
Lsq


Γb ≈ BTs ≈

[ Ts
Lsd

0
0 Ts

Lsq

]

Γw(k) ≈ w(k)Ts ≈
[

0
−we(k)ϕrTs

Lsq

] (67)
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Considering the DT model of the PMSG machine given by Equation (66), the future
behavior of the PMSG currents is predicted by calculating the future value of the currents.
Hence, the predictive dq-axes currents can be represented as follows:[

ip
sd(k + 1)

ip
sq(k + 1)

]
= φ(k)

[
isd(k)
isq(k)

]
+ Γb

[
vp

sd(k)
vp

sq(k)

]
+ Γw(k) (68)

where superscript p denotes the predicted variable.
The predicted MSC voltages vds and vqs are obtained in terms of switching states and

DC-link voltage (uC) by the following model:[
vp

sd(k)
vp

sq(k)

]
= uC(k)

[
sp

sd(k)
sp

sq(k)

]
(69)

uC(k) is the capacitor voltage; sp
s,dq(k) is the dq axis state switching. its expression is as

follows: [
sp

sd(k)
sp

sq(k)

]
=

[
cosθe(k) sinθe(k)
−sinθe(k) cosθe(k)

]
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]sp
sa(k)

sp
sb(k)

sp
sc(k)

 (70)

By substituting Equation (69) into Equation (68), the predicted stator currents model
becomes: [

ip
sd(k + 1)

ip
sq(k + 1)

]
= φ(k)

[
isd(k)
isq(k)

]
+ Γb

(
uc(k)

[
sp

sd(k)
sp

sq(k)

])
+ Γw(k) (71)

On the other hand, the current references at (k) sampling instant are extrapolated to
(k + 1) sampling instant by using first-order Lagrange extrapolation [201–206].{

î∗sd(k + 1) = 2i∗sd(k)− i∗sd(k− 1)
î∗sq(k + 1) = 2i∗sq(k)− i∗sq(k− 1)

(72)

where, î∗s,dq is the extrapolated reference currents while i∗s,dq is the generator reference
currents. to achieve a unity power factor in all operating conditions, the direct current i∗sd is
fixed to zero, whereas the i∗sq is obtained by the MPPT control.

Finally, to minimize the error between predicted and extrapolated references currents,
a cost function is used:

gMSC(k) =
[
î∗sd(k + 1)− ip

sd(k + 1)
]2

+
[
î∗sq(k + 1)− ip

sq(k + 1)
]2

(73)

5.2.2. Grid-Side Control Scheme

The dynamic model of the dq-axis grid currents in the continuous-time domain is
given by:

d
dt

[
igd(t)
igq(t)

]
= C(t)

[
igd(t)
igq(t)

]
+ D

[
v f d(t)
v f q(t)

]
− D

[
vgd(t)
vgq(t)

]
(74)

where

C(t) =

 −R f
L f

wg

−wg
−R f
L f

, D =

[ 1
L f

0

0 1
L f

]
(75)

By following the same procedure that was used for determining the MSC predictive
controller, the GSC cost function can be presented as follows:

gGSC(k) =
[
î∗gd(k + 1)− ip

gd(k + 1)
]2

+
[
î∗gq(k + 1)− ip

gq(k + 1)
]2

(76)

Figure 14 illustrates the general structure of MPC of the PMSG-wind energy conversion
system.
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6. MPPT Control

According to Betz’s law, turbines can not convert more than 16/27 (59.3%) of the
kinetic energy into mechanical energy. This factor is known as Betz’s coefficient and
denoted Cpmax = 0.593. In fact, wind turbines achieve peak values for Cp in the range of
0.45 to 0.50, about 75–85% of the theoretically possible maximum. In this study, the WT
produces maximum power when Cp_max = 0.48. As shown in Figure 15, this maximum
can be obtained when β and λ are equal to their optimum (λopt = 0.8, β = 0◦). Therefore,
in order to keep the power coefficient at maximum, the maximum power point tracking
control strategy (MPPT) must be used [207–209].
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The MPPT algorithm extracts maximum power from available wind speed and turns
the generator at its optimum speed [13]. As depicted in Figure 15, the WT produces the
maximum power when the power coefficient Cp is at its maximum value Cp_max which
depends on the λopt value. Therefore, the turbine’s rotational speed must be constantly
adjusted according to wind speed changes to the specific value that ensure the optimum
tip speed ratio (TSR) λopt. In the literature, various MPPT algorithms for WT have been
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proposed. A review of MPPT Algorithms for WECS is given in [14]. The TSR MPPT
algorithm without speed measurement is widely used, and it is known for its simplicity, as
well as its constant reliability and efficiency. As shown in Figure 16, this control strategy
estimates the wind speed in real time and imposes a reference torque that allows the PMSG
to rotate around its optimal speed.

Then, the estimated value of the wind speed is given by:

vest =
Ωopt·R

λopt
(77)

The expression of the optimum power that can be extracted from the wind is as
follows:

Pturb_opt =
1
2
·ϕ·π·R2·Cp_max(λ, β)·v3

w (78)

The expression of the reference electromagnetic torque becomes:

Tturb_opt =
Pturb_opt

Ω
=

1
2
·ϕ·π·R2·Cp_max

(
λopt, β

)
·v3

w·
1
Ω

(79)
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7. Results and Discussion

To show the effect of each classical control (SMC, DPC, BSC and MPC) on the dynamic
and static performance of the WECS, a simulation test was performed under a variable
wind profile in MATLAB/Simulink software. Figure 17a shows the wind profile that was
used in this simulation.

The principal characteristics of this simulation are described as follows:

• The WECS parameters are mentioned in the Appendix A.
• The wind speed varies between 3.5 m/s and 8.5 m/s for 10 s.
• Grid frequency f = 50 Hz.
• To commute IGBT devices of two-level converters, pulse width modulation (PWM)

was used in both SMC and BSC.
• A phase-locked loop (PLL) was used to synchronize the GSC to the grid in all control

schemes except the DPC control scheme.

Figure 17b shows that the mechanical angular speed shape perfectly follows the set
wind profile. The low value of the speed is due to a large number of poles in the machine.
It can be seen from Figure 17c that the tip speed ratio λ (lambda) and the power coefficient
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Cp are equal to their optimal value references, 8.1 and 0.48, respectively, despite wind speed
changes. Furthermore, the mechanical power has a form similar to that of wind Figure 17d.
These results ensure that the system operates around its optimum rotational speed, proving
the MPPT control’s efficiency.

Figure 18a,b shows the active and reactive powers of the different controls. Figure 18a
illustrates the active power, which has the same shape as the wind profile. However,
negative active power means that the machine is in generator mode. Figure 18b illustrates
the reactive power, which has a zero value, ensuring a unit power factor.
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For all types of classical controls (SMC, DPC, BSC, and MPC) Figure 18a shows that
the active power tracks its reference generated by the MPPT strategy precisely and without
a coupling effect between the two axes, while the stator reactive power Qs (Figure 18b)
remains close to zero to keep the unit power factor, thus optimizing the quality of the
generated electrical energy. The notable difference that can be observed from these figures
(Figure 18a,b) is that the PMSG wind turbine system performs better power oscillation
and overshoot under MPC than the other controls. The chattering problem (high power
oscillation) appears clearly in the shape of both Ps(SMC) and Qs(SMC) of the SMC. Almost
the same problem can be observed in the curve of both the active and the reactive power
(Ps(DPC), Qs(DPC)) produced in the case of DPC control. And, as has been explained, these
two phenomena are caused by the discontinuous function used in the SMC structure,
and the hysteresis controllers used in the DPC design. However, the system’s response
time (Tr(MPC) = 0.05 s) of the predictive technique is a little slower than that of SMC,
BSC, and DPC control which are characterized by a fast response time (Tr(SMC) = 0.025 s,
Tr(BSC) = 0.03 s and Tr(DPC) = 0.048 s) (see zoom(1) Figure 18a). This delay is due to the
excessive computational load of the MPC techniques.
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Figure 19 shows that the magnitude of the injected current varies according to the
variation of the wind while the frequency remains constant at fs = 50 Hz for the four types
of control. At the same time, the waveform of the injected current takes a better sinusoidal
shape under MPC and BSC than that of both the SMC and DPC, where some unwanted
distortion appears in their shapes (see zoom Figure 19a–d).
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On the other hand, it is important to perform a harmonic analysis to check whether the
injected current’s THD rate meets the IEEE standard limit (TDH≤ 5%). Figure 20 illustrates
that the total harmonic distortion achieved by MPC and BSC (THD = 1.23%, THD = 1.91%)
is considerably lower than that achieved by SMC and DPC (THD = 3.12%, THD = 2.77%).
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Figure 20. Spectrum analysis for the current injected ig-a by: SMC (a); DPC (b);BSC (c); MPC (d).

Considering the number of references cited in this work and the simulation results
obtained, it was necessary to add a comparative analysis to this work to have a clear idea
of the properties of each classical control and see its effect on the PMSG wind energy
conversion system, as well as to see the level of agreement between the results obtained
and what is written in the literature. The following table presents a comparative analysis
between the four presented controls (Table 9):

Table 9. Comparison of the four reviewed controls.

Simulations Results Literatures

Controller Tr (s) ξ

%
TDH
%

Ease of
Implementation Remarkable Properties Disadvantages

SMC 0.025 0.25 3.12 Simple

Strong performance in the face
of uncertainties and
disturbances.
The system stability is
guaranteed by using lyapunov
function.

Requires the mathematical
model of the system.
Chattering problem.
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Table 9. Cont.

Simulations Results Literatures

Controller Tr (s) ξ

%
TDH
%

Ease of
Implementation Remarkable Properties Disadvantages

DPC 0.048 0.32 2.77 Very Simple

Easier implementation and
low complexity.
PWM modulation blocks and
internal regulating loops are
not included.

Variable switching frequency.
Large active and reactive
power ripple bands.

BSC 0.030 0.17 1.91 Complicated

Uncertainties can be handled.
Stability is ensured at every
design step using the
Lyapunov function.

Requires the mathematical
model of the system.
Complex design.
Explosion of terms.

MPC 0.05 1.15 1.25 Simple

Easier implementation.
Excellent performance under
varying wind conditions.
High flexibility.

Requires the mathematical
model of the system.
Excessive computational load.

8. Conclusions

This study presented an overview of the most popular control strategies that have been
used to control the WECS based PMSG. The four controls, SMC, DPC, BSC, and MPC, were
successfully reviewed and evaluated. First, the principles of each control were explained,
followed by a discussion of the benefits and drawbacks of using these types of controls
in the PMSG wind energy conversion system. Additionally, the various improvements
applied to the classical controls proposed in the literature were highlighted. The MPPT
control was also used in this work to get maximum power under a rapidly changing wind
profile.

Furthermore, to check on the performance of each control, a simulation test of the
four classical controls was performed in the MATLAB/Simulink software using a variable
wind profile. Finally, a performance comparison between the four classical controls was
presented. The simulation results show that the predictive control outperforms the con-
ventional controls in terms of accuracy, simplicity, precision, reference point tracking, and
the quality of the injected currents. Furthermore, it overcame the drawbacks of traditional
control techniques, exemplified by the chattering phenomena of the SMC control, the
high-power ripples caused by the DPC’s hysteresis comparators, and the complexity of
the backstepping. The simulation results were quite identical to what was published in the
literature. Hence, this work can be considered a useful reference for novice researchers in
the energy field to move ahead in the next decade.
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Nomenclature

Pturb Ψ(d,q) d-q axis flux
vw/Pwind ∅f Generator flux
Ω Pg Active grid power
Ωt Qg Reactive grid power
Tem UC DC-link voltage
Tem_ref Vg(d,q) d-q axis grid voltage
Tturb Vf(d,q) d-q axis filter voltage
Cp(λ, β) ig(d,q) d-q axis grid current
λ if(d,q) d-q axis filter current
β ωg Grid pulsation
ρ Rf Filter resistance
p Lf Filter inductance
S WT Wind turbine
R WECS Wind energy conversion system
Ωe MPPT Maximum power point tracking
Ps MPC Model predictive control
Qs SMC Sliding mode control
Rs DPC Direct power control
Ls(d,q) BSC Backstepping control
Vs(d,q) Tr Response time
is(d,q) THD Total harmonic distortion
fc PMSG Permanent magnet synchronous generator
IGBT PWM Pulse width modulation

Appendix A

Table A1. PMSG and Wind Turbine parameters.

PMSG Parameters Symbol Values Turbine Parameters Symbol Values

Power generator Pn 1.5 MW
Radius of the turbine blade R 55 mPole number P 75

Stator resistance Rs 6.25 × 10−3 Ω Turbine+ generator moment Jtot 10,000 N.m
d axis inductance Lsd 4.229 × 10−3 H Specific density of air ρ 1.22 kg/m3

q axis inductance Lsq 4.229 × 10−3 H Tip-speed ratio λopt 8
Generator flux ∅f 11.1464 Wb Optimal power coefficient Cp_max 0.426Coefficient of friction fc 0.0142 N.m.s/rad

Wind turbine modelling:

The kinetic power Pwind captured by the turbine and the mechanical power Pturb
delivered to the PMSG are quantified by the two equations below.

Pwind =
1
2
·ρ·π·R2·v3

w (A1)

Pturb = Cp(A, β)·Pwind =
1
2
·ρ·π·R2·Cp(A, β)·v3

w (A2)

The mechanical torque Tturb is expressed as the quotient of the power transmitted to
PMSG by its rotor mechanical speed, as follows.

Tturb =
Pturb

Ω
=

1
2
·ρ·π·R2·Cp(λ, β)·v3

w·
1
Ω

(A3)

Cp(A, β) represents the power coefficient of the wind turbine, which describes the
capacity of the turbine to transform the wind kinetic power to mechanical power. Its
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expression depends on the tip speed ratio λ and the pitch angle β [2–6], and it is often
approximated by a specific non-linear function as follows:

Cp(λ, β) = 0.5176
(

116
(

1
λ + 0.08·β −

0.035
1 + β3

)
− 0.4β− 4

)
e
−21( 1

λ+0.08·β−
0.035
1+β3 ) + 0.0068λ (A4)

The tip-speed ratio λ is defined as the ratio between the blades’ speed and the wind
speed:

λ =
Ω·R
vw

(A5)

Permanent Magnet Synchronous Generator Model:

Based on the simplifying conditions, assumptions, and physical laws, the dynamic
model of PMSG in the d-q reference frame can be described as follows:

• Stator Electric equations:{
vsd = Rs·isd +

dΨsd
dt − p·Ω·Ψsq

vsq = Rs·isq +
dΨsq

dt + p·Ω·Ψsd
; we = p·Ω (A6)

• Stator Magnetic equations:

{
Ψsd = Lsd·isd +∅ f

Ψsq = Lsq·isq
(A7)

• Mechanical equations:

{
Jtot· dΩ

dt = Tmec = Tturb − Tem − fc·Ω
Jtot = Jturb + Jg

(A8)

The electromagnetic torque is then calculated as

Tem =
3
2
·p
[(

Lsd − Lsq
)
isd·isq + isq·∅ f

]
(A9)

The active and reactive powers of the stator can be expressed as follows:{
Ps =

3
2
[
vsd·isd + vsq·isq

]
Qs =

3
2
[
vsq·isd − vsd·isq

] (A10)

Grid Model:

The grid voltages in the d-q referential can be presented as follows:{
vgd = v f q + R f ·igd − L f

digd
dt + wg·L f ·igq

vgq = v f q + R f ·igq − L f
digq
dt − wg·L f ·igd

(A11)

The active and reactive powers supplied into the grid are:Pg = 3
2

[
vgd·igd + vgq·igq

]
Qg = 3

2

[
vgq·igd − vgd·igq

] (A12)
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