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Abstract

Silver-containing nanofibers are of great interest recently because of the dual benefits from silver particles and

nanofibers. Silver nanoparticles are extensively used for biomedical applications due to the antibacterial and

antiviral properties. In addition, silver nanoparticles can excite resonance effect of light trapping when pairing with

dielectric materials, such as polymer. Comparing to the traditional fabrics, polymer nanofibers can provide larger

number of reaction sites and higher permeability contributed to their high surface-to-volume ratio and high

porosity. By embedding the silver nanoparticles into polymer nanofiber matrix, the composite is promising

candidates for biomaterials, photovoltaic materials, and catalysts. This work demonstrates and evaluates the

methods employed to synthesize silver nanoparticle-containing nanofibers and their potential applications.
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Review

Due to their antibacterial [1–3], fungicidal [4–6], and

antiviral [7–10] properties, silver particles have drawn

tremendous academic and industrial interests. Besides of

the benefits of their biomedical applications, when the size

of silver particles decreases to nanoscale, the high surface

area and surface energy make silver nanoparticles one of

the best candidates for catalysis and optical absorption.

The silver nanoparticles enable surface plasmon reso-

nances when being placed in dielectric environment,

leading to higher optical absorption efficiency [11].

Therefore, the applications of silver nanoparticles expand

from biology, electronics, textile industries, and catalysis

material to optical and photovoltaic materials, such as

solar cells. Fibers with nanostructures have also been

intensively investigated because of its high surface-to-

volume ratio. Compared to traditional materials, mem-

branes and films composed of nanofibers have extremely

high surface area and nanometer grade micropores, which

can provide both larger number of reactive sites for

chemicals and excellent filtration property and breathability

when being used as insulating fabrics and biomaterials such

as wound dressing and protective textiles.

With the merits of both advantages of antibacterial

and optical enhancing properties of silver nanoparticles,

and high surface area and surface energy of nanofibers,

silver-containing nanofibers can be directly used as

films, coatings, and fibers in electronics, sensors, multi-

spectral filters, catalytic materials, water treatment, and

nanopaints. Although a variety of metal nanoparticles

including Au, Pt, and Pd have been prepared in organic

solvent with the presence of different polymers, such as

polyvinylpropelene (PVP) and polyacrylic acid (PAA),

there are handful paper published reporting the prepar-

ation process of silver nanoparticle-containing polymer

nanocomposites. In response to the rapid growing

interest in this type of materials, this work is focusing on

critical review of the synthesis and applications of silver

particle-containing nanofibers.

Synthesis of Silver Nanoparticles

Depending on the reducing sources and methods, there

are mainly two methods to prepare silver nanoparticles.

Physical routes normally employ laser impulse energy to

reduce silver from bulk to atoms and ions. Chemical

methods utilize reducing agents to reduce silver ions

from their precursors into metallic silver atoms.
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Physical Method

One major route to obtain silver nanoparticles is phys-

ical method utilizing dispersion/condensation and laser

ablation from metallic bulk materials in liquid solution

(Fig. 1). Cotton-Chumanov [12] and Fojtik [13] proposed

a method to produce silver nanoparticles from silver

plates immersed in liquid phases and illuminated by

high-energy laser beam. This method is the most exten-

sively used method nowadays. Researchers, i.e., Mafune

[14, 15] and González-Castillo [16] postulate that the

metal plate absorbs a great part of the laser impulse

energy and forms a hot plasma containing a high

concentration of silver atoms and ions. The liquid phase

serves as a cooling medium to cool down the heat from

plasma. Hence, the physicochemical properties of the

solution affect the rate of nanoparticle formation, their

shape, size, and polydispersity [17].

One of the advantages of using laser ablation is that

no chemical agents are needed in this process; therefore,

no additional purification is required for the obtained

silver nanoparticle colloids, and it can be directly used

for further applications. Although this method has been

widely developed and investigated, there are still some

contradictories on the relationship between the silver nano-

particle sizes and power of laser beam. Generally, most re-

ported work shows that the size of nanoparticles increases

linearly with the power of laser beam [12, 18–20].

Another physical method is evaporation and conden-

sation. It is normally carried out in a tube furnace at

room atmospheric pressure [21]. Various metallic parti-

cles have been prepared using this technique such as

Au, Ag, and PbS [22]. In the evaporation/condensation

process, the primer of silver-containing organics is

placed in the boat of the heating center. After the other

non-silver elements are evaporated and carried away by

the carrier gas, leaving only the silver particles in the

furnace, the evaporation/condensation technique is easy

and straightforward; however, the major drawback of

this technique is large energy consumption and slow

process.

In addition to the abovementioned methods, another

extensively used method is electrochemical route, where

silver nanoparticles are prepared in a special electro-

chemical cell [23]. In this electrochemical cell, an exter-

nal electric field is applied to silver anode. The silver

ions are reduced on platinum cathode and form clusters,

which subsequently become silver nanoparticles. This

method can be conducted at room temperature, and the

size of silver nanoparticles can be controlled by the

current density [24].

Chemical Method

Chemical reduction is the most employed way to pre-

pare silver nanoparticle as stable colloidal dispersion in

water and other organic solvents. Many studies have

shown that after the silver ions are reduced to silver

atoms, they will further agglomerate into oligomeric

clusters, leading into the formation of silver nanoparti-

cles. Normally, to produce silver nanoparticles, the most

frequently used precursors for chemical reduction are

silver nitrate [25–28], silver acetate [29, 30], silver citrate

[30–32], and silver chlorate [30, 31, 33]. Among various

reducing agents, the most commonly used reductants

are borohydride, citrate, ascorbate, and compounds with

hydroxyl or carboxyl groups such as alcohol, aldehydes,

carbohydrates, and their derivatives [34–37].

It has been found that the growth mechanism of silver

nanoparticles is strong influenced by the properties of

reducing agents. Strong reducer composition, such as

borohydrates, generates monodispersed silver nanoparti-

cles with larger sizes, while the mild reductants such as

ascorbate and citrate create smaller numbers of nuclei at

a slow rate, which in turns promotes the generation of

silver nanoparticles with smaller sizes and wider

dispersion [38, 39].

It is also interesting to mention that the dispersion

medium plays an important role in particle sizes and

morphologies of silver nanoparticles during chemical

reduction. The dispersion medium, which refers to the

solution and solvent system, serves as a protective agent,

which can be absorbed or bind onto the particle surface,

to avoid the agglomeration of the particles [40, 41]. Poly-

mers are best candidates for stabilizing the silver nano-

particles. Poly(vinylpyrolidone) (PVP), poly(methylacrylic

acid) (PMAA), poly(methylmethacrylate) (PMMA), and

poly(ethylene glycol) (PEG) are the mostly used poly-

mers as stabilizer.

Fig. 1 Schematic of experiment setup for silver nanoparticle production

with laser ablation
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Other Methods

Besides the physical and chemical methods, other alter-

native techniques have also been employed to synthesize

silver nanoparticles including biological and photochem-

ical routes. In the case of biological synthesis, natural

sources such as plants, bacteria, and fungi are used as

stabilizers and reducing agents to control the growth of

silver particles. In biosynthesis of silver nanoparticles,

the biomass or biological system used normally contains

functional groups with reducing capacity, and it interacts

with preformed nanoclusters or nuclei of silver metal

present in the system to form silver nanoparticles. Vari-

ous resources used in this method have been reported

[40] including peptides [41, 42], bacteria [43–46], and

fungi [47–49]. This strategy has drawn great interests

due to the ease of handling [40].

Photochemical preparation suggests another way of

thinking silver nanoparticle growth. Generally, it uses

light, i.e., UV light to transform colloidal solutions of

spherical silver nanoparticles into stable larger nanopar-

ticles with different shapes and sizes [50–52]. In photo-

chemical method, solutions of colloid silver are prepared

as the primary source of silver nanoparticles. This

process usually involves photoreduction of silver salts,

such as silver nitrate and silver perchlorate and the pres-

ence of polymer stabilizers including PVP, PMMA, and

PMAA. The photochemical growth of silver nanoparti-

cles can be controlled by choosing the light sources and

the concentrations of polymer stabilizer [51, 53].

Preparation of Nanofibers Containing Silver Nanoparticles

Ag (0)-polymer nanocomposites have been synthesized

through different methods by introducing precursors of

silver salts into polymer matrix followed by either

chemical reduction or laser ablation and further process-

ing to form silver-bonded polymer micelles or silver-

embedded fibers.

Depending on the method of silver particle prepar-

ation, the synthesis of Ag (0)-polymer nanocomposites

can be one step or two steps. In a one-step method, sil-

ver precursor and polymer, which serves as stabilizer for

solver nanoparticles, share the same solvent. Selective

solvents must be used in this method so that both the

precursor and polymer can be dissolved. In addition, the

solvents, normally are ethanol and methanol, should be

able to reduce the silver precursors into silver nanoparti-

cles. After a homogeneous solution system is obtained, it

is then further subjected to electrospinning to produce

silver nanoparticle-containing nanofibers. While in the

two-step method, instead of being reduced by solvent,

the transformation of the silver precursors into silver

nanoparticles requires an additional step. In this method,

the silver precursor, which is usually silver nitrate, is in-

troduced to polymer solution. After a homogeneous

dispersion is achieved, the solution is then subjected to

laser ablation or chemical reduction. Plasma treatment

has been reported to be an effective way to produce

silver nanoparticle in nylon 6 solution [54]. Chemical

reduction has also been employed to prepare silver

nanoparticles in polypyrrole (PPy) solution [55]. At the

second step, electrospinning is employed to make the

silver particle suspended polymer solution into nanofiber

composites. Although the one-step method is simpler

and requires less treatments and processing than the

two-step method, it is more selective to polymers and

solvents. For the two-step method, because the silver

particle reduction and nanofiber formation are per-

formed in two separated steps, it does not need a solvent

that is able to reduce silver precursors and there are

more options for the solution systems. Theoretically, any

polymer that is of interest can be used in the two-step

method to load silver nanoparticles.

Electrospinning is a versatile and reliable technique to

produce micro- or nanofibers. Electrospinning is a fiber

forming process, where a high voltage is used to create

an electrically charged jet of polymer solution or melt

from the needle. When the voltage is high enough, the

electrostatic forces overcome the surface tension of the

polymer, and the jet is stretched and travels toward the

collecting plate. The polymer solidifies during the travel-

ing, often producing nanometer scale fibers. Nanofiber

formation by electrospinning is affected by spinning

parameters including solution properties and concentra-

tion, hydrostatic pressure in capillary tube, electric po-

tential at the capillary tip, the tip-to-collector distance,

and the chamber condition [56]. Figure 2 shows a regu-

lar electrospinning setup for nonwoven nanofibrous

mats.

By electrospinning, the nanofibers embedded with sil-

ver nanoparticles can be prepared, and the morphology

can be controlled by the electrospinning parameters.

Fig. 2 Schematic of electrospinning setup [53]
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Another method involving in chemical reduction of

silver particles requires only one step. In this method,

precursors of silver salts are added into polymer solu-

tions using reducing agent as the solvent, such as etha-

nol, methanol, and formic acid [57], while the polymer

serves as the stabilizer during silver nanoparticle forma-

tion to prevent them from aggregating. This mixed silver

precursor-polymer solution system is then objected to

electrospinning to obtain silver-containing nanofibers.

By designing the geometries of the collecting target,

nanofibers with various architectures can be obtained. It is

reported that Ag/PVP nanofibers with nonwoven, aligned,

and crossed patterns have been produced via coaxial elec-

trospinning [58]. The resultant silver-containing nanofi-

bers with different patterns are shown in Fig. 3 [58].

Applications of Silver Nanoparticle-Containing Nanofibers

With merits of the antibacterial and fungicidal proper-

ties of silver nanoparticles and high surface-to-volume

ratio of nanofibers, the application of the silver-

containing nanofibers expands from biomedical applica-

tions to optical materials.

Antimicrobial Materials

The mechanism of antibacterial function of silver nano-

particles is associated with the interaction between silver

and the thiol group compound in bacterial fungal cells

and fungus (Fig. 4). Although the exact mechanism re-

mains unknown, it has been reported that structural

changes are found in bacterial and fungal cells after the

contact with silver nanoparticles. Comparing to regular

silver particles, silver nanoparticles have favorable anti-

bacterial and antifungal properties due to their ex-

tremely large surface area which allows better contact

with microorganisms of bacteria and fungus. In addition,

the silver nanoparticle gel not only attaches on cell

membranes but also penetrates into the bacteria and

fungus. After silver enters the cells, it binds to the cell

wall and membrane and inhibits the respiration process

[59]. In the case of Escherichia coli, the uptake of

phosphate and releasing of mannitol, succinate, proline,

and glutamine is inhibited by the presence of silver.

Therefore, silver nanoparticles can be used as ef-

fective growth inhibitor in various microorganisms,

and they are applicable to different antibacterial con-

trol system [60, 61].

Studies have assessed the antibacterial performances of

silver-containing nanofibers against both Gram-positive

and Gram-negative microorganisms [54, 58]. In these

studies, different polymers including nylon 6 and

polyacrylonitrile (PAN) are used to prepare the silver-

containing nanofibers. Although they are synthesized

with one-step and two-step methods, respectively, both

of these hybrid nanocomposites present promising anti-

bacterial properties. Take nylon 6 as an example, the

pure nylon 6 does not present any antibacterial activity,

while after adopting silver nanoparticles in the polymer

matrix, it shows a 99.9 % inhibition to E. coli when the

silver precursor concentration is 0.5 wt.% and 99.9999 %

inhibition when the concentration increases to 1.25 wt.%

[57] (Fig. 5). These properties make the silver-containing

nanofibers an excellent candidate for wound dressing

and biotextile materials.

Researchers have also compared the antibacterial

properties of silver-containing nanofibers with other

commonly used polymers for wound healing without the

presence of silver nanoparticles. The results show that

the silver nanoparticle-coated polymer (PVA (polyvinyl

alcohol)-Ag) possesses the best antibacterial perform-

ance and the highest healing efficiency as listed in

Table 1 [62]. As it can be seen from the figure, PVA

containing Ag nanoparticles exhibits the best healing

power. The depth and area of wounds become the

smallest among all the wounds treated with other nine

membranes, including cotton gauze, PVA-crosslinked

(crosslinked PVA), PVA-p-coated (wool protein-coated

PVA), PVA-p-cospin (wool protein/PVA coelectrospun

nanofibers), PCL (poly -caprolactone), PCL-p-coated

(wool protein-coated), PAN, PAN-PEU (polyurathane),

and control (without using any wound dressings) after

Fig. 3 Confocal images silver-containing nanofibers with a nonwoven, b aligned, and c crossed structures [54]
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16 days. This indicates that with the strongest anti-

bacterial ability, the wounding area treated with PVA

membranes containing silver nanoparticles recovers the

best and fastest.

Photovoltaic Devices

The resonance effect of silver nanoparticles has been in-

vestigated and discussed by a large number of research.

When the silver nanoparticles are paired with a dielec-

tric material, the surface plasmons are excited with a

combine character of electromagnetic wave and surface

charge [63]. As strong light scattering elements, silver

nanoparticles scatter lights and the light is then collected

and trapped between the silver nanoparticles and dielec-

tric thin films [11, 64]. Silver nanoparticle-containing

nanofibers provide the environments of metallic nano-

particles and dielectric material (polymer), which has

great potential to excite surface plasmons while compact

in size, making it a perfect candidate for being used in

organic solar cells to improve light absorption and trap-

ping. It has been a great challenge to use thin polymer

films to enhance the efficiency of light trapping and en-

vironment coupling for organic photovoltaic (OPV) de-

vices. The silver-containing nanofibers make it possible

to solve this long remained problem. Benefitted from the

surface plasmon resonance effect of silver nanoparticles,

and the mechanical flexibility and extremely high surface

area of nanofibers, the energy harvesting is greatly

enhanced. By employing the hybrid material of silver

nanoparticle and PVP nanofibers as a thin layer in

organic solar cells, research has suggested that an

increase of 18.9 % in power conversion efficiency (PCE)

has been reached. In this study, the nanofibers with

three different patterns are prepared by electrospinning.

They are nonwoven, aligned, and crossed, respectively.

With confined geometries, charge drift velocity is

improved, which further leads into smaller electrical re-

sistance. In addition, the silver/PVP excites plasmon

resonance with the nearby photoactive layer and leads to

enhanced radiative energy transfers (Table 2).

Catalyst for Hydrolysis/Electrolysis of Polymer Matrix

Another application to include silver nanoparticles in

polymer nanofibers is to speed up the hydrolysis of the

bulk material. Silver nanoparticles exhibit strong cata-

lytic properties for hydrolysis and electrolysis of organic

materials when being fabricated into silver nanoparticle/

polymer composites [65, 66]. In addition, the catalytic

activity can be tailored by controlling the size of silver

particles and polymer matrix. Generally, the smaller par-

ticle size presents higher catalytic activity [66] with lar-

ger number of reaction sites, kink sites per surface area

[67]. This size dependence becomes even more signifi-

cant when the particle size shrinks to nanoscale. Studies

have synthesized silver nanoparticles using a chemical

reduction method, followed by embedding them into the

polyvinyl acetate (PVAc) polymer matrix [68], to prepare

silver nanoparticle PVAc nanocomposite. By introducing

silver nanoparticles into polymer matrix, the hydrolysis

of this hybrid material can be accelerated. The silver

nanoparticles demonstrate a strong connection with the

PVAc polymer chain, meaning that they can be remained

in the matrix and continuously act as catalyst even when

the backbone of polymer chains is broken down during

hydrolysis. With the presence of silver nanoparticles, the

hydrophobic PVAc polymer become hydrophilic and is

subsequently dissolved in selective solvents, resulting in

accelerated hydrolysis.

Fig. 4 Illustration of the interaction between silver nanoparticles and

bacterial cells

Fig. 5 Antibacterial test plates of Bacillus cereus and E. coli a, c before and b, d after treatment with Ag/PAN nanofibers prepared from plasma-treated

AgNO3/PAN solution. AgNO3 concentration 1.25 % [54, 57]
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Water Filtration and Treatment

Among different kinds of nanosized antibacterial mate-

rials, i.e., ZnO, MgO, and TiO2, the silver nanoparticles

have reported to be the most effective antimicrobial

agent [69–77]. When paring with hydrogen-bonded

multilayers assembled on magnetic microspheres, it can

be delivered and localized in a specific region without

contaminating the surrounding by using magnetic fields

[78]. A composite of bifunctional Fe3O4 at silver nano-

particles with both superparamagnetic and antibacterial

properties has been prepared and proved to have excel-

lent antibacterial ability against E. coli, Staphylococcus

epidermis, and Bacillus subtilis [79]. In addition to the

benefits of supermagnetism, which allows the material

to be easily removed from water, mesoporous polymer

nanofiber membranes can be designed with specific pore

sizes and desired filtration properties to enhance the water

treatment efficiency and recyclability. The nanocompos-

ites of supermagnetics/silver nanoparticle/polymer nanofi-

ber can be a promising water disinfectant [79, 80].

Antimicrobial Nanopaints

Silver nanoparticles in silver nanoparticle/polymer nano-

composites are highly stable due to the polymer matrix.

They can be sustained at up to 200 °C without signifi-

cant oxidation and aggregation, which enables the pro-

duction of silver nanoparticle embedded homogeneous

paints. In the application of silver nanoparticle/polymer

nanopaint, the silver nanoparticles are synthesized in

polymer solution with the one-step method, followed by

a drying process. The resultant silver nanoparticle-

embedded drying oil is an excellent coating material and

can be applied on various surfaces including wood, glass,

and polystyrene [81]. The surface coated with the nano-

paints exhibits outstanding antibacterial properties by

killing both Gram-positive human pathogen and Gram-

negative bacteria [81].

Conclusions

Silver nanoparticles are widely used in biomedical mate-

rials because of their antibacterial property. Their appli-

cations also extend to optical and photovoltaic materials

due to the light scattering effect on the metallic spher-

ical particles and the potential to convert light into sur-

face plasmon. Silver nanoparticles can be synthesized by

chemical and physical methods with the presence of

reducing agents, or laser ablation, respectively. The pre-

paration of silver nanoparticles can be processed in

selective polymers, i.e., PVP, PAA, and PVAc, and these

polymers can be further prepared into nanofibers. Poly-

mer nanofibers possess excellent mechanical properties

and especially high surface-to-volume ratio and micro-

porous structure, leading to larger number of reaction

sites with chemicals and high permeability comparing to

traditional fibers and membranes. Therefore, with the

combined advantages of silver nanoparticles and poly-

mer nanofibers, the hybrid material—silver nanoparticle-

containing nanofibers and silver-containing polymer

nanocomposites, has drawn tremendous interests for

applications in biomaterials, catalysis, and photovoltaic

materials. Electrospinning technique employs high voltage

to prepare polymer solution into nanofibers. Preparation

of polymer nanofibers containing silver nanoparticle be-

comes feasible via electrospinning. It can be one step or

two steps depending on the process of reducing silver par-

ticles. In this work, the methods employed to prepare the

hybrid material—silver nanoparticle-containing nanofibers

and their applications, are presented and reviewed.
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