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Meshfree methods are viewed as next generation computational techniques. With evident limitations of conventional grid based
methods, like FEM, in dealing with problems of fracturemechanics, large deformation, and simulation ofmanufacturing processes,
meshfree methods have gained much attention by researchers. A number of meshfree methods have been proposed till now for
analyzing complex problems in various 
elds of engineering. Present work attempts to review recent developments and some earlier
applications of well-knownmeshfree methods like EFG andMLPG to various types of structure mechanics and fracture mechanics
applications like bending, buckling, free vibration analysis, sensitivity analysis and topology optimization, single and mixed
mode crack problems, fatigue crack growth, and dynamic crack analysis and some typical applications like vibration of cracked
structures, thermoelastic crack problems, and failure transition in impact problems. Due to complex nature of meshfree shape
functions and evaluation of integrals in domain, meshless methods are computationally expensive as compared to conventional
mesh based methods. Some improved versions of original meshfree methods and other techniques suggested by researchers to
improve computational e�ciency of meshfree methods are also reviewed here.

1. Introduction

Numerical simulation has proved to be a good alternative
scienti
c investigation tool to expensive, time consuming,
and sometimes dangerous experiments in complex engineer-
ing problems. Grid based numerical methods, like FEM,
are widely used for analyzing various engineering prob-
lems. 	ere are two fundamental approaches in grid based
methods: Eulerian and Lagrangian grid. To strengthen the
advantages of each approach and avoid their limitations,
new combined approaches were also developed [1]. But grid
based methods are not well suited to treat the problems of
fracture mechanics with moving material discontinuity, large
deformation problems where excessive mesh distortion takes
place, and when simulation of some manufacturing process
is to be studied.

Bymodifying the internal structure of gird basedmethod,
meshfree methods were developed which are expected to
be more adaptive, versatile, and robust and can deal with

problems where conventional methods are not suitable. 	e
concept of the meshfree methods is to provide accurate and
stable numerical solutions for integral equations or PDEs
with all types of possible boundary conditions with a set of
arbitrarily distributed nodes without de
ning mesh which
connects these nodes [1]. Many meshfree methods have been
developed till now. Earliest meshfree method was developed
in 1977 by Lucy and Gingold and Monaghan as smoothed
particle hydrodynamics (SPH), a meshfree particle method
[2–4]. It was initially developed for modeling astrophysical
phenomena but later widely used for applications of solid
and uid mechanics. Many corrected versions of SPH were
proposed by researches to solve problems of instabilities
and inconsistencies in original SPH model. Later, Nayroles
et al., in 1992, were the 
rst to use moving least square
approximations in a Galerkin method to formulate the so-
called di�use element method (DEM). Based on the DEM,
Belytschko et al., in 1994, advanced remarkably and proposed
the element free Galerkin (EFG) method, which was the
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Figure 1: Procedural steps in meshfree methods.


rst meshfree method based on global weak form [5]. Atluri
and Zhu, in 1998, had originated the meshless local petrov-
Galerkin (MLPG) method, based on local weak form that
requires only local background cells for the integration [6].
Liu and his coworkers proposed reproducing kernel particle
method (RKPM) [7]. Subsequently, other meshfree methods
were developed by researchers, like hp cloud method by
Duarte and Odent 1996; point interpolation method (PIM)
by Liu and Gu, 1999, Wang and Liu, 2000, 2001, 2002, and
meshfreeweak-strong form (MWS) by Liu andGu 2002, 2003
[1]. Some of the important features of meshfree methods are
as follows, which makes them superior [8]:

(a) there is nomesh alignment sensitivity, andmesh used
in background is for integration purpose;

(b) node connectivity is not prede
ned by mesh;

(c) no remeshing is required especially in case of large
deformation and moving discontinuity problems;

(d) shape functions of any desired order continuity can
be constructed;

(e) no postprocessing required for smooth derivatives of
unknowns and their derivatives.

Procedural steps involved in developing solution usingmesh-
free method are shown in Figure 1.

Some review papers have also been presented in the
area of development and applications of meshfree methods,
earlier. Like, Belytschko et al. presented review on meshless
approximation based on MLS, reproducing kernels (RK)
and partition of unity methods (PUM) in 1996. 	e review
included the following aspects: salient features of these meth-
ods, techniques to handle material and geometric disconti-
nuity, implementation issues, like EBCs, coupling with 
nite

elements, computational e�ciency, convergence rate, and so
forth, review of applications of plate and shell problems [9].
Li and Liu, in 2002, reviewed recent development ofmeshfree
particle methods and their application in applied mechanics.
Major approaches reviewed by them were SPH, meshfree
Galerkin methods like DEM, EFG, MLPG, and hp cloud and
some applications of molecular dynamics (MD) [10]. Nguyen
et al., in 2008, presented a review on meshless methods and
its computer implementation aspects with the aim of pro-
viding practical overview of meshless methods based on
global weak form through a simple and well-structured
MATLAB code including intrinsic and extrinsic enrichment,
some boundary condition enforcement schemes and few one,
and two dimensional numerical examples [11]. Liew et al.,
in 2011, presented their review on meshless methods for
laminated and functionally graded plates and shells, wherein
EFG and RKPM methods and their applications, including
static and dynamic analysis, buckling, free vibration, and
non-linear analysis, were in focus [12].

	epresent paper attempts to review recent and some ear-
lier applications of some of the well-known meshfree meth-
ods like EFG and MLPG, without giving mathematical desc-
ription, to structure and fracture mechanics problems. 	e
outline of paper is as follows. Section 2 gives basic concepts of
di�erent aspects in meshfree methods like shape functions,
weight functions, techniques for imposing essential bound-
ary conditions and numerical integration, and so forth.
Section 3 presents review of EFG and MLPG applications
to various structure mechanics problems. Section 4 presents
review of MMs applications to fracture mechanics problems.
While review of some typical applications and techniques
developed for improving computational e�ciency of MMs is
presented in Section 5 followed by conclusion and discussion
of review in Section 6.
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2. EFG and MLPG

Meshfree methods are classi
ed based on use of global or
local weak form to derive systemmatrices. Accordingly, EFG
method is based on global weak form, while MLPG method
is based on local symmetric weak form (LSWF). In both these
methods, approximation is based on moving least square
(MLS) approximants. But in moving least square methods
interpolants do not pass through data point as interpolation
functions are not unity at nodes [5]. Hence, imposition of
essential boundary conditions (EBCs) gets complicated in
these methods. Present section provides basics of shape fun-
ction construction, selection of weight functions, and tech-
niques to impose essential boundary conditions and integra-
tion.

2.1. MLS Approximations. 	e basic idea of MLS approxima-
tion is based on construction of set of nodes in the problem
domain and hence the method is element free [5].

	eMLS approximant �ℎ(�) of the function �(�) de
ned
over the domainΩ is given by

�ℎ (�) = �� (�) � (�) , ∀� ∈ Ω, (1)

where ��(�) are monomial basis functions of order m and
�(�) are vector coe�cients which are functions of space
coordinates �, which can be determined at any point � by
minimizing weighted discrete 	2 norm de
ned as follows,


 (�) =
�
∑
�=1
�� (� − ��) [�� (��) � (�) − ��]2, (2)

where, � is the number of nodes in neighborhood of � for
which weigh function�� (� − ��) cannot be zero and �� is the
nodal value of � at � = ��. On further solution for �(�), 
nal
expression for MLS approximants is given by

�ℎ (�) =
�
∑
�=1
Φ� (�) ��, (3)

where Φ�(�) is called the shape function of MLS approxima-
tion. Detailed shape function construction can be referred
from references [5, 13].

2.2. Selection of Weight Functions. Weight function selection
is also an important parameterwhile developing themeshfree
solution. It should be constructed in such a way that their
value should decrease as the distance from � to �� increase.
Selected weight functions must be positive and the function
and its derivative should be continuous up to required degree
[5]. Some of the weight functions used are as the following.

Gaussian weight function:

�� (�) =
exp [−(��/��)2�] − exp [−(��/��)2�]
1 − exp [−(��/��)2�]

,

0 ≤ �� ≤ ��
= 0, �� ≥ ��,

(4)

spline weight function:

�� (�) = 1 − 6(���� )
2
+ 8(���� )

3
− 3(���� )

4
, 0 ≤ �� ≤ ��

= 0, �� ≥ ��,
(5)

where �� = |� − ��| is the distance from node �� to any point�, �� is the constant controlling shape of the weight function,
and �� is the size of the support. 	ere are several other types
of weight functions used like conical weight function, cubic
spline weight function, and so forth.

2.3. Imposing Essential Boundary Conditions. Because MLS
shape functions used in EFG and MLPG do not satisfy
Kronecker delta criterion, process of imposition of EBCs gets
complicated than FEM. Number of techniques were devel-
oped for enforcing EBCs in the problem like Lagrange multi-
plier, penaltymethod, orthogonal transformation techniques,
coupling with FEM, Nitsche’s method, singular weighing
functions, boundary collocation, and D’Alembert’s Principle.
Out of these techniques, penalty method can be easily
implemented and do not increasemuch computational e�ort.
Detailed description of these techniques can be referred from
references [5, 14–19].

2.4. Integration Techniques. Several di�erent techniques were
suggested for numerical integration of Galerkin weak form.
Gauss quadrature is most commonly employed technique
to evaluate integrals in Galerkin weak form. Integration in
meshfree method is based on background cells which are
independent of nodes. Background cells serve important pur-
pose of identifying nodes contributing to discrete 	2 norm
at a quadrature point [8]. By minimizing the mismatch of
shape function local support domain with integration cells,
integration errors can be minimized and accuracy and con-
vergence can be improved [20]. But because of some inherent
drawbacks like complexity, requirement of higher order
quadrature rules, specialized integration zone patterns, and
so forth, direct nodal integration technique was proposed.
But it led to oscillations in solution due to under-integration
of weak form and vanishing shape functions at nodes. To
alleviate this issue, a stabilized nodal integration technique
was proposed by adding a residual of the equilibrium equa-
tion to the potential energy function which does not need
background cell structure and results in completely meshless
method [21, 22].

3. EFG and MLPG: Structure Mechanics

Meshless methods developed, in their original form, are not
entirely “meshless” and each method falls in one of the
following categories: methods based on global weak form
requiring background cells for integration like EFG, methods
based on local weak form requiring background cells locally
likeMLPG, and particlemethods which require prede
nition
of particles for their volume or mass like SPH [8]. Following
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sections review applications of EFG and MLPG to structure
and fracture mechanics problems.

3.1. Static and Dynamic Analysis. 	e element-free Galerkin
(EFG) method was developed by Belytschko et al. based on
the di�use elements method (DEM) originated by Nayroles
et al. In original form of EFG, moving least square (MLS)
approximants were used to approximate 
eld variables but
due to lack of Kronecker delta property in MLS shape
functions, essential boundary conditions (EBCs) cannot be
imposed in straight forward way as in FEM and some special
techniques are required. Lagrange multiplier technique was
used for enforcing EBCs. Because EFG method is based on
global weak form, it requires a mesh of background cells for
integration in computing the systemmatrices. Proposed EFG
method had advantages like high rate of convergence, no post
processing for unknowns or their derivatives, and suitability
to fracture mechanics problems [5]. Several techniques for
enforcing EBCs inmeshfreeGalerkinmethodwere proposed.
	e same authors proposed modi
ed variational principle
instead of Lagrange multiplier for imposing EBCs in EFG
method [14]. A new technique for imposing EBCs in mesh-
free methods was proposed by Krongauz and Belytschko,
wherein 
nite elements were used along the essential bound-
aries and shape functions of 
nite elements were combined
with approximants used. High rate of convergence was
observed with implementation of present technique [15].
Another boundary condition enforcement technique was
proposed by Günther and Liu by a computationally e�cient
algorithm based on D’Alembert’s principle that can be used
for general constraints and uid structure interface in mesh-
less methods [16]. MLS shape functions used in EFGmethod
aremore complex than piecewise polynomial like shape func-
tions used in FEM; hence Krysl and Belytschko presented
a straightforward way to program the EFG shape function
construction in a way which leads to both a simple interface
to application code and to the implementation of EFG
shape function itself [23]. Dolbow and Belytschko proposed
EFG method implementation with its structured MATLAB
code to benchmark structure problems in one-dimensional
and two-dimensional applications. To enforce EBCs, few
techniques were suggested like Lagrangemultiplier, modi
ed
variational principles, and coupling with 
nite elements [24].
To solve three-dimensional elastic and elastoplastic problems,
EFG method was proposed by Barry and Saigal with variable
domain of inuence approach. Singular weight functions
were utilized in MLS shape functions allowing accurate and
direct nodal imposition of EBCs. Several elastic and small
strain elastoplastic problems were presented [25]. Tiago and
Leitao applied EFG method to free vibration analysis of
beams and plates. Shape functions were constructed by MLS
approximation and kinematic boundary conditions were
imposed by Lagrangemultiplier technique in their work [26].
To improve computational e�ciency of original EFGmethod,
Zhang et al. presented improved EFG (IEFG) method by
employing improved MLS (IMLS) shape functions for two-
dimensional potential problems. MLS approximants yield
precise solution but sometimes 
nal algebra equations are
ill-conditioned, which is undesirable. ImprovedMLS (IMLS)

approximation was proposed by Liew et al. to alleviate
the problem in boundary element method [6]. Proposed
improved EFGmethod uses weighted orthogonal basis func-
tion for construction of MLS shape functions which avoids
ill-conditioned algebra equations as in case of conventional
MLS interpolation. IEFG method uses fewer nodes in entire
domain than conventional EFG method and resulting in
higher computation speed [27]. Proposed IEFG approachwas
extended for solving three-dimensional potential problems
by same authors [28]. In a more recent development, for
two dimensional elastoplasticity problems, complex variable
moving least square approximation (CVMLS) and EFGbased
CVEFG were proposed by Peng et al. With CVMLS, it
becomes possible to select fewer nodes in the meshless
method than are required in themeshless method of theMLS
approximation without loss of precision or in other words,
CVMLS is computationally more e�cient [29]. Presently,
EFG method is one of the most popular meshfree methods,
and applied to many structure and fracture problems, some
of which are reviewed here in subsequent sections.

Another newmeshfree computationalmethodwas devel-
oped and proposed by Atluri and Zhu, known as meshless
Local Petrov Galerkin method (MLPG), based on local weak
form and MLS approximants. EBCs are imposed by penalty
method in MLPG. Selection of trial (shape) function and
test function in MLPG is done from entirely di�erent spaces
and it is considered as a truly meshless method because all
integrals can be easily evaluated over regular shaped domains
and their boundaries. High convergence rate and accurate
values of unknownvariables and its derivativeswere observed
[13]. Elastostatic problems, like an in
nite plate with circular
and elliptical hole, were addressed by the same authors
using MLPG method [30]. MLPG is a general concept;
hence a comparison study of the e�ciency and accuracy of
a variety of meshless trial and test functions for di�erent
variants of MLPG was proposed by Atluri and Shen, wherein

ve types of trial functions and six types of test functions
were explored and six di�erent approaches, popularly known
as MLPG1 to MLPG6, were presented. Numerical results
for standard patch test, Laplace and Poisssion’s equations,
were compared for e�ciency and computational cost and
MLPG5 was found less expensive from computational view
point as it employs local, nodal based test function over
a local subdomain, a Heaviside step function [31]. Long
and Atluri proposed MLPG for bending of thin (Kirchho�)
plates based on MLS approximants and local symmetric
weak form (LSWF). Cubic, quartic, and quintic basis, as well
as the quitic spline weight function was employed in theMLS
computation, while EBCs were enforced by penalty method
in proposed computation [32]. Raju and Phillips had shown
MLPG application for Euler Bernoulli beam problems like
cantilever beam and simply supported beam with various
loading conditions by selecting simple weight functions as
test functions andMLS approximation [33].	e same authors
presented MLPG method for Euler-Bernoulli beams with
radial basis function as trail function instead of GMLS
interpolation functions and test functions as simple weight
function. Radial basis interpolation function yields computa-
tionally simplemethod involving fewermatrix inversions and
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multiplications. E�ectiveness of proposed MLPG method
was evaluated by the number of patch test and mixed
boundary value problems [34]. Li et al. extended MLPG
approach to three-dimensional elastostatic problems by com-
bining two methods of MLPG family, MLPG2 and MLPG5,
in order to achieve high computational e�ciency. MLPG5
was applied to domain from inside to eliminate domain
integration and MLPG2 was applied at nodes on boundaries
and interfaces of material discontinuities so that boundary
conditions and material discontinuities are satis
ed. Results
obtained by application of proposed technique have shown
good agreement with analytical solution [35]. Han and Atluri
developedMLPGmethod for solving three-dimensional elas-
todynamic problems which was derived from LSWF of the
equilibrium equations by general MLPG concept and MLS
shape functions. 	e present numerical technique imposes
a correction to the accelerations to enforce the kinematic
boundary conditions in MLS approximation with explicit
time-integration algorithm [36]. While Long et al. proposed
a new MLPG approach based on MLPG5 and coupled radial
basis function (RBF) with polynomial basis function as trial
function for elastodynamic problems. 	e shape function
constructed possesses Kronecker delta property, hence no
additional treatment to impose EBCs are required. Newmark
family of methods is adopted in time integration scheme and
the technique does not involve any domain or singular inte-
gration [37]. As a new concept,MLPG approach with polygo-
nal sub domains constructed from several triangular patches
rather than typically used circular subdomains was pre-
sented by Pudjisuryadi. Variable domain of inuence (VDOI)
and e�ective stress gradient indicator for assessing local
errors were focused in the study. VDOI helps in alleviating
the problem raised by adaptive meshfree approach where
problem domain is re
ned with new nodes placed in area
where local error exceeds a level but due to constant size of
inuence domain, node density in that area goes too high and

nally it leads to higher computational cost and ine�ective
adaptive technique [38]. In a recent development, a novel
MLPG method with new test function, Guassian test func-
tion, as a schema to solve problems in elastostatic and fracture
mechanics was developed byAbdollahifar et al. Four di�erent
variants of MLPG method, MLPG1, MLPG2, MLPG5, and
MLPG6, can be approached using new test function and
su�ciently accurate results were obtained [39].

3.2. Plates and Shell Problems. Due to the exibility in con-
structing approximation functions with desired smoothness
and accuracy in meshfree methods, they have been success-
fully applied to Kirchho� type of plates and shell problems.
Applications to plates were 
rst investigated by Hein [40] but
due to use of point collocation to enforce EBCs, too small
supports and unsuitable weight functions desired results were
not observed. Lu et al. [41] treated Mindlin-Reissner plates
with linear and quadratic basis EFGmethod, but results were
poor due to shear locking.	e EFGmethod had been applied
to thin (Kirchho�) plates by Krysl and Belytschko, in 1995.
Background quadrilateral elementswere used for the purpose
of Gaussian numerical integration. An attempt to optimize
the accuracy of the method by the choice of the weight

function support size was undertaken [42]. Same authors
applied EFG method to thin shells wherein background ele-
ments were used for surface shape approximation and num-
erical integration. MLS was used in approximating, surface
while EBCs were imposed by Lagrange multiplier. To achieve
consistency, quadratic and quartic polynomial basis was used
along with quartic spline weight function [43]. Liu and Chen
applied EFG method with MLS approximation to static and
free vibration analysis of thin plates of complicated shapes,
that is, rectangular plate, elliptical plate, and complicated
shapes with di�erent boundary conditions. In proposed
approach, for static analysis EBCs were imposed by penalty
method while in free vibration analysis they were imposed by
orthogonal transformation technique [44]. Free vibration
analysis of composite laminates of complicated shapes
through EFG method was carried out by the same authors.
EBCs were imposed by Lagrange multiplier and orthogonal
transformation technique. Numerical examples of square
plate, elliptical plate, and other complicated shapes were
addressed by proposed method [45]. Dai et al. also presented
a meshfree method for analyzing thin and thick laminated
composite plates for static deection and natural frequen-
cies using higher order shear deformation theory. MLS
approximants were applied to construct the shape functions
and variational principle was used to derive the discrete
system equations based on the third order shear deformation
theory (TSDT) of Reddy. EBCs were enforced by a penalty
technique for both the static deection and natural frequency
analysis [46]. 	e same authors presented EFG method for
thermomechanical analysis of FGM plates containing dis-
tributed piezoelectric sensors and actuators with structured
and unstructured (irregular) node arrangement. 	e weak
form was formulated based on FSDT and shape functions
were constructed by MLS functions. EBCs were imposed by
penalty method in proposed Galerkin method. Unstructured
nodes were also giving the desired order of accuracy in results
[47]. Peng et al. proposed EFG method for static analysis
of concentrically and eccentrically sti�ened plates based
on FSDT. 	e inuences of support size and order of the
complete basis function on the numerical accuracy were also
investigated and it was observed that larger support size and
higher order of basis function will furnish better convergence
results [48]. Corrugated plates are widely used in indus-
tries due to their improved strength to weight ratio. 	ey
can be modeled and analyzed either by considering them
as shells or orthotropic plates. For elastic buckling analysis of
sti�ened and unsti�ened corrugated plates with FSDT,mesh-
free Galerkin method was proposed by the same authors.
Corrugated plates were treated as orthotropic plates and
sti�eners were taken as beams. Sti�ness matrix for structure
was obtained by superimposing the strain energy of the
orthotropic plate and the beams and imposing the displace-
ment compatibility conditions between the plate and the
beams [49]. For analyzing elastic bending of sti�ened and
unsti�ened corrugated plates,meshfreeGalerkinmethodwas
proposed by the same authors where MLS shape functions
with full transformation method was employed for enforcing
EBCs [50]. 	e proposed method was extended for solving
nonlinear problems of sti�ened and unsti�ened corrugated
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plates based on FSDT and von Karman large deformation
theory. For validation of proposed approach, di�erent corru-
gated plates were analyzed and results were compared with
results obtained with shell elements in ANSYS [51]. Belinha
and Dinis also proposed EFG method for nonlinear analysis
of plates and laminates with FSDT andMLS approximants as
shape functions. Laminate bending problemswere solved and
results were compared with FEM solution [52]. While two
members of MLPG family, MLPG1 and MLPG5, were used
for three-dimensional static analysis of thick functionally
graded plates by Vaghe
 et al. wherein MLPG1 uses fourth
order spline function as test function and MLPG5 uses
Heaviside step function as test function. Young’s modulus is
considered to be graded through the thickness of plates by
an exponential function while Poission’s ration is taken as
constant while LSWF was derived. 3D MLS approximation
was used for 
eld variables and brick shaped domains were
considered as local subdomains and support domains [53].
Mojdehi et al. also proposed MLPG for three-dimensional
(3D) static and dynamic analysis of thick functionally graded
plates using three-dimensional MLS shape function and
Heaviside step function as test function [54]. In order to
estimate maximum sustainable load by any structure, limit
analysis proved to be useful technique where fundamental
theorems of plastic analysis are used. For such an application
ℎ-Adaptive EFG method with MLS approximation was pro-
posed by Le et al. for limit analysis of plates. Accuracy of limit
analysis is o�en a�ected and decided by local singularities
arising from localized plastic deformations and to capture
it accurately automatic h-re
nement is performed. Taylor
expansion technique is used for error estimation in computed
displacement 
eld to identify the area needing re
nement
[55]. In another steel structural application, use of beamswith
irregular web holes of di�erent shape and arrangement is
widespread. But the behavior of such beams is complicated
due to irregularity of openings and it needs more reliable
technique for their local buckling response. Abidin and
Izzuddin proposed EFGmethod for local buckling analysis of
steel beams with irregular web openings. 	e proposed EFG
approachwas based on general formulation of plate buckling,
where singularity in tangent sti�ness matrix was made up of
material sti�ness matrix and geometric sti�ness matrix. MLS
approximation was used for shape function construction and
the proposed approach was applied to three-dimensional
beam buckling problems [56]. In a recent development,
Jaberzadeh et al. developed EFGmethod for buckling analysis
of inelastic skew plates with or without line supports. 	e
governing di�erential equation for a plate in plastic range
of response is numerically solved with Galerkin method
and Stowell theory for the plastic buckling of at skew
plates with variable thickness is used. MLS approximants are
used for shape function construction and EBCs are imposed
by Lagrange multiplier, nd orthogonal transformation tech-
niques in proposed method [57]. Spatial thin shell structures
are used extensively inmany engineering structures including
aircra�s, pressure vessels, and automobiles due to its out-
standing e�ciency in material utilization. Liu et al. applied
EFG to thin shell structures for static deformation and free
vibration analysis. MLS was used for construction of shape

functions and surface approximation of general spatial shell
geometry and discrete system equations were obtained by
incorporating these interpolations into the Galerkin weak
form. EBCs were imposed by penalty approach, Lagrange
multiplier, and orthogonal transformation techniques [58].
A meshfree method for static analysis of FGM cylinders was
presented by Foroutan et al., wherein mechanical properties
were assumed to vary in radial direction. EBCs were imposed
by transformationmethod andMLS approximants were used
for approximating unknown 
led variable. 	e method was
applied to 
nite and in
nite length cylinders and results
obtained were in good agreement with FEM [59].

3.3. Large Deformation and Contact Problems. Numerical
simulation of contact between two di�erent objects like sheet
metal forming, vehicle crashworthiness, impact, penetration,
and so forth, is a challenging task.While dealing with contact
problems, mesh density must be maintained at a su�ciently
high level around contact region to obtain reasonably accu-
rate results. Li et al. proposed a contact detection algorithm
based on moment matrix of meshfree approximation. 	e
mathematical principle of contact detection algorithm is
that the determinant of moment matrix can automatically
determine Lagrangian movement of continuum and on the
basis of that one can accurately detect contact or penetration
without solving any complex equations. It was implemented
to simulate Taylor bar impact problem which is a deformable
solid bar impacting rigid target problem [60]. Large strain
problems, like hyperelastic materials undergoing large defor-
mations, cannot be handledwith ease in FEMdue to excessive
mesh distortion, but meshfree methods proved to be a good
alternative in those cases. Tiago and Pimenta implemented
EFG with MLS approximant to nonlinear analysis of plates
undergoing arbitrary large deformations which is based on
a uni
ed nonlinear theory of plates allowing arbitrarily large
rotations and displacements. Presented approach was hybrid
in nature where solution was obtained by the independent
approximation of the generalized internal displacement 
elds
and generalized boundary tractions [61]. Hu et al. developed
MLPG approach for large deformation contact analysis of
elastomers like rubber block and compression of rubber ring.
Proposed MLPG approach was based on a local weak form
with RBF coupled with polynomial basis function. In the
present technique, two di�erent sets of equations were used
for nodes on the contact surface and nodes away from contact
surface [62]. Li and Lee developed an adaptive meshless
method, with sliding line algorithm and penalty method
to handle contact constraints, for solving contact problems
involving large deformation in which additional nodes are
added automatically into large error regions. For automatic
node insertion, a modi
ed error estimation (built on two
di�erent support sizes of a basis function) was proposed
to identify regions of large computational errors [63]. A
novel complex variable EFG method, improved complex
variable EFG, for two-dimensional large deformation prob-
lem was developed by Li et al. Based on complex variable
theory and moving least-squares (MLS) approximation, the
improved complex variable moving least-squares (ICVMLS)
approximation was developed. Proposed technique was
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based on Galerkin weak form, while the penalty method
was used to impose EBCs [64]. A recent development in
nonlinear solid mechanics is proposed by Ullah and Augarde
by developing adaptive meshless approach based on EFG
method. An existing error estimation procedure for linear
elastostatic problems is extended for nonlinear problems
including 
nite deformation and elastoplasticity. Proposed
max-ent EFGmethod can handle material and geometrically
nonlinear problems in solid mechanics including a robust
means of transferring data between discretizations [65].

3.4. Sensitivity Analysis and Shape Optimization. Design
sensitivity analysis and shape optimization is applied to
observe and 
nd the variation of response measure like dis-
placement, stress due to variation of some design parameter
that is, geometric parameter, and 
nding optimal layout of a
structure within a speci
ed region. Bobaru and Mukherjee
demonstrated application of EFG to shape design sensitivity
analysis and shape optimization for 2D elasticity problems
wherein EFGwas used 
rst timewith continuous formulation
using material derivative approach. Penalty approach was
used for imposing EBCs and a numerical example of shape
optimization of 
llet was used to demonstrate robustness
and ability of EFG method. 	e presented approach can be
extended to 3D and nonlinear problems. Another application
of EFG to shape optimization in linear thermoelasticity
problem was also demonstrated by the same authors [66, 67].
Zhang et al. proposed meshless computational strategies for
shape optimal design through the composition of behavioral

elds quite similar to Boolean operations in constructive
solid geometry (CSG). A meshless approximation using
nonuniform rational B-spline basis functions was used to
discretize the behavioral 
elds de
ned over the geometrical
primitives while remeshing was performed for only those
primitives that were modi
ed. Due to a tighter integration
between design and analysis, it is termed constructive solid
analysis (CSA) [68]. Juan et al. introduced a technique
to combine EFG with evolutionary structural optimization
(ESO) for topology optimization of the continuum structures
where objective function of the model is to minimize weight
by gradually removing the ine�cient material from the
design domain. Feasibility and e�ciency of the proposed
technique was illustrated with several 2D examples like
cantilever beams and simply supported beams [69].

4. Fracture Mechanics

4.1. Static and Dynamic Fracture. Belytschko et al. developed
EFG method for linear elastic fracture problems in 1994
where “Visibility criterion”was proposed 
rstly tomodel geo-
metric discontinuity (crack) in which domain of inuence for
nodes near the crack are truncated whenever they intersect
the crack surface and hence a node on one side of crack will
not a�ect the point on other side of crack. But “visibility crit-
erion” had di�culty in treating nodes near crack tip. Other
improved techniques for handling discontinuity were also
suggested: di�raction method, transparency method, and
“see through” method or continuous line criterion. Two
methods for enriching EFG approximations for linear elastic

fracture problems were also proposed by Belytschko: extrin-
sic and intrinsic enrichment [70, 71]. Belytschko and Tabbara
proposed EFG approach for dynamic fracture problem in
1996 involving numerical examples of crack propagation at
constant velocity and constant value of dynamic fracture
toughness [72], while for dynamic propagation of arbitrary
three-dimensional cracks, EFG approach was developed by
Krysl and Belytschko. MLS shape function and truncated
Gaussian weight functions were employed in proposed EFG
approach [73]. Belytschko et al. studiedmixedmode dynamic
crack growth in concrete using EFG methods wherein frac-
ture process zone (FPZ) technique was used in formulation
as linear elastic fracture mechanics (LEFM) is not applicable
to concrete and other cement-based materials. Numerical
examples of mode I and mixed mode cracks in concrete
were discussed [74]. Rao and Rahman proposed an e�cient
meshfree method, based on EFG, for linear elastic crack
problems with single and mixed mode loading conditions.
Proposed technique involves a newweight function and exact
implementation of EBCs. Estimated SIFs and neat tip stress

elds were in good agreement with FEM results and exper-
imental values [75]. Tiago and Leitão also applied EFG to
damage analysis of reinforced concrete beams which demon-
strated handling material inhomogeneities, discontinuity in
geometry, and concentrated loads [76]. Lee and Yoon pro-
posed an enhanced EFG method with enhancement func-
tions to improve solution e�ciency for linear elastic fracture
problems where singularity and discontinuity of crack were
modeled with enhancement function and discontinuity func-
tions, respectively. EBCs were imposed by penalty method
and coupling with FEM [77]. Rabczuk and Belytschko pro-
posed a new EFG approach, called EFG-Particle (EFG-P),
for modeling discrete cracks wherein crack growth was
represented by activation of crack surfaces at individual part-
icles and hence crack’s topology representations is not
needed. 	e crack was modeled by local enrichment of trial
and test functions with sign function and it can handle crack
branching and fragmentation also [78]. One of the most
e�cient MLPG variant, MLPG5, was used for analysis of
elastodynamic deformations near crack tip by Kaiyuan et al.
Newmark family of methods was applied into the time inte-
gration scheme. A numerical example of a rectangular plate
with a parallel central crack loaded in tensionwas approached
by proposed technique [79]. EFG method was extended to
solve three-dimensional elastic fracturemechanics problems,
mode I and mode II cracks, by Brighenti. Out of di�erent
ways for modeling geometric discontinuity by EFG meth-
od, “visibility criterion” was used to detect them in present
approach, while Gauss type weight function along with
penalty approach employed to enforce the boundary condi-
tions. Presented approachwas validated by solving thick plate
with an edge crack under tension and 
nite thin plate with
central slant crack under tension [80]. Improved element
free galerkin method (IEFG) with an improved moving least
square approximation (IMLS) was developed for analyzing
two-dimensional fracture mechanics problems by Zhang
et al. Major advantage with IMLS is its greater compu-
tational e�ciency than MLS and it does not lead to ill-
conditioned systemof equations asMLS does sometimes [81].
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	e e�ective and accurate calculation of stress intensity fac-
tors (SIF) is one of the basic problems in LEFM.Twoprincipal
approaches are known for a SIF calculation: local, based on
the use of displacements or tractions near to the crack tip; and
global or energy methods, based on the calculation of the
energy release rate in terms of crack growing. Parvanova
presented a procedure for calculation of SIFs based on
standard appearance of force-displacement curve using EFG
method.	emethodwas used to develop a new idea based on
standard appearance of the force-displacement curve in
LEFM related to the accurate derivation of the SIF for pure
opening mode I type fracture. A MATLAB code for two-
dimensional elasticity problems had been worked out, along
with intrinsic basis enrichment for precise modeling of
the singular stress 
eld around the crack tip [82]. Zhang
and Chen proposed a simpli
ed meshfree method with
Kronecker delta property for incorporation of displacement
boundary conditions for dynamic crack growth problem
wherein the crack was presented by a set of rotated crack
segments that pass through the entire domain of inuence of
themeshfree nodes. Rankine criterionwas used to initiate the
crack and discontinuous displacement 
eld was obtained by
an extrinsic enrichment based on a local partition of unity
concept [83]. Ameshfree analysis of dynamic fracture in thin
walled structures was proposed byGato, where fracture of the
shell is modeled by breaking links between particles once a
certain fracture criterion is met. For validating the proposed
approach, numerical examples of quasistatic tearing of a
square plate, an impact problem and detonation driven
fracture of cylindrical shells were considered. In present
work, it was the 
rst time that the 3D continuum approach
based on Lagrangian kernels was applied to fracture of
thin shells and implementation was done in C++ [84, 85].
In a recent development, a new enrichment criterion for
modeling kinked cracks using EFG method is proposed by
Pant et al. In order to capture crack tip stress singularity,
some additional terms are incorporated in the linear basis
function. 	e proposed criterion is applied for simulating
the quasistatic crack growth in two-dimensional domain
subjected to mixed mode loading [86].

4.2. Composite Solids. Functionally graded materials (FGM)
possesses continuously varying microstructure and material
properties in a predetermined way and they are used in
structures subjected to nonuniform service conditions. Rao
and Rahman proposed EFG approach for calculating stress
intensity factors (SIF) for stationary crack in twodimensional
functionally graded materials of arbitrary geometry. In pro-
posed method, the interaction integral method was extended
for FGM and material properties were taken as smooth
functions of spatial coordinates and two newly developed
interaction integrals were introduced for analysis of basic
modes and mixed mode fracture problems [87]. While two-
dimensional stress analysis problems of anisotropic and
linear elastic/viscoelastic solids with continuously varying
material properties were addressed by Sladek et al., using
MLPG with unit step function as test function in local
weak form which leads to local boundary integral equa-
tions (LBIEs). MLS was adopted for approximating physical

quantities in LBIEs and for time-dependent problems,
Laplace transformation was utilized [88]. Delamination and
matrix cracking are routine damage mechanisms observed
during analysis of laminated structures. Guiamatsia et al. pro-
posed EFG for the 
rst time to simulate delamination (inter-
laminar) and intralaminar matrix microcracking in compos-
ite laminates. Modeling was done at mesolevel, where each
ply represented individually and background integration
cells were arranged per layer in a way that they are not
traversed by material interfaces. Virtual crack closure tech-
nique (VCCT) was used for crack advancement in the pre-
sent technique [89]. Orthotropic composites possess high
speci
c strength and sti�ness characteristics because of their
constituents and extensively applied in various engineering
applications. Ghorashi et al. presented a new approach for
modeling discrete cracks in two-dimensional orthotropic
media by EFGmethod. In proposed approach, recently devel-
oped orthotropic enrichment functions were used which
were used earlier in the extended 
nite element method
along with a subtriangle technique for enhancing the Gauss
quadrature accuracy near the crack [90].

5. Some Typical Applications and
Enhancement of Computational Efficiency

5.1. Typical Applications. Over a period of time in service,
mechanical systems and structures accumulate cracks due
to fatigue. Duot and Nguyen-Dang proposed an enriched
meshlessmethod to analyze fatigue crack growth under cyclic
loading. 	e crack propagation was modeled by successive
linear extensions determined by SIFs obtained a�er each
linear elastic analysis. A 
xed set of three nodes with special
weight function were added at each crack tip to accurately
catch the stress singularities in proposed approach [91]. Use
of modal characteristics, that is, vibration data, like natural
frequency and mode shapes, of structures for detecting and
predicting cracks has become a good alternative approach
because cracked structure’s modal data will be di�erent. In
order to use vibration data for detecting cracks in load carry-
ing systems or structures, two di�erent theoretical modeling
techniques are used: lumped exibility models and continu-
ous models. Andreaus et al. proposed MLPG approach with
MLS shape function for analyzing vibration of beams with
multiple cracks. Lumped exibility model was adopted and
each fatigue crack was modeled as rotational spring in
proposed approach [92]. In impact problems, transition in
failuremode can be observed. Butmost numerical simulation
techniques focus either on brittle failure or ductile failure.
Kaltho� andWinkler conducted experiments on prenotched
specimen of steel plates, subjected to impact loading with
di�erent impact velocities and observed transition in failure
modes. Wang and Liu proposed EFG method for simulating
failure transition from brittle to ductile under 
nite defor-
mation. Johnson-Cook damage model was incorporated in
Galerkin formulation and EBCs were enforced by collocation
method. Node splitting algorithm was used in modeling
crackwhich simpli
es the implementation. Proposedmethod
captured the complicated failure transition phenomenon
accurately [93]. Under combined mechanical and thermal
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loadings, the presence of cracks induces a strong variation
in 
elds, which can a�ect the crack growth direction. While
designing structures for turbines, combustion chambers, and
nuclear pressure vessels, thermoelastic fracture mechanics
aspects need to be considered. Pant et al. proposed intrinsic
enriched EFG to solve thermoelastic fracture mechanics
problem in homogeneous and inhomogeneous materials (bi-
material). 	e thermo-elastic fracture problem was solved
by decoupling it into two separate problems and both the
problems were enriched intrinsically to represent discontinu-
ous temperature, heat ux, displacements, and traction across
crack surfaces. For modeling bi-material interface, jump
function technique had been employed in proposed method
[94]. Extended 
nite elementmethod (XFEM)was developed
to ease di�culties in solving problemswith geometric discon-
tinuity like cracks by adding discontinuous basis function to
standard polynomial basis functions for nodes that belonged
to elements intersected by crack. In a recent development,
advantages of a meshfree method—EFG are combined with
XFEM and extended element free Galerkin method (XEFG)
is proposed to model crack propagation under thermome-
chanical loading by Bouhala et al.. In proposed method,
direction of the crack growth is determined by initially
calculating SIFs using the interaction energy integral, and
then the crack is assumed to propagate in the direction of the
maximum principal stress. Shape functions are constructed
using MLS approximation and cracks; interfaces and crack
tips are modeled with extrinsic local enrichment [95].

5.2. Enhancing Computational E	ciency and Error Control.
Meshfree shape functions are not interpolation functions
and do not possess Kronecker delta properties. Hence impo-
sition of EBCs consumes much computation time. Several
techniques were presented for imposing EBCs, like Lagrange
multiplier, penalty method, orthogonal transformation tech-
niques, coupling with FEM, Nitsche’s method, singular
weighing functions, boundary collocation, and D’Alembert’s
Principle. An overview of existing techniques for enforcing
EBCswas presented by Fernández-Méndez andHuerta.With
focus on meshfree method coupled with 
nite elements and
methods based on modi
cation of Galerkin weak form [17].
Chen and Wang proposed two new boundary condition
treatment techniques, the mixed transformation method
and the boundary singular kernel method, to enhance the
computational e�ciency of meshfree methods for contact
problems in RKPM framework. 	e mixed transformation
method is a modi
cation of a full transformation method
developed previously for meshfree solution of boundary
value problems, while the boundary singular kernel method
introduces singularities into the kernel functions associ-
ated with the restrained nodes [18]. Another set of new
boundary treatment techniques were developed by Ren and
Liew, namely, node interpolation method (NIM) and direct
imposition method (DIM). In NIM, the shape functions
associated with EBCs were constructed using node interpo-
lation and then combined with meshfree shape functions,
while DIM rearranges the discretized system equations, and
directly provides the known values of the essential boundary
conditions in the nodal variable vector [19]. Smoothing

of the approximating functions at concave boundaries and
accelerated calculations of the approximating function in
EFG method was proposed by Belytschko et al. In proposed
method, shape functions of EFG method were modi
ed
and made continuous in domain with concave corners, by
simply rede
ning a parameter governing decay of weight
function [96]. In meshfree methods, for numerical integra-
tion of Galerkin weak form, Gauss integration method is
most commonly used. Dolbow and Belytschko demonstrated
and investigated integration aspects in meshfree methods.
Authors emphasized on source of integration errors and
suggested techniques to minimize them [20]. But a number
of disadvantages have been reported in employing Gauss
integration, like complexity, requirement of higher order
quadrature rules, specialized integration zone patterns, and

so forth. Beissel and Belytschko used direct nodal integration
to avoid background cells, but it led to oscillations in solution
due to underintegration of weak form and vanishing shape
functions at nodes. To overcome it, a stabilized nodal integra-
tion technique, for EFG, was proposed by adding a residual
of the equilibrium equation to the potential energy function.
	e proposed technique does not need background cell
structure and results in completely meshless method [21]. A
stabilized conforming nodal integration (SCNI) method for
elastoplastic contact analysis of metal forming processes was
proposed by Yoon et al. In this approach, strain smoothing
stabilization was introduced to eliminate spatial instability in
collocationmeshfreemethods and convergence was obtained
by introducing an integration constraint (IC) as a necessary
condition for a linear exactness in the mesh-free Galerkin
approximation. Implementation of proposed technique in
linear problems demonstrated a signi
cant reduction in
computational cost with no loss of accuracy and convergent
rate compared to the solution obtained by the use of Gauss
integration [22, 97]. In an another application of meshfree
formulation with SCNI, Wang and Chen proposed locking
free meshfree curved beam formulation based on SCNI with
Kirchho� mode reproducing conditions (KRMC). Proposed
meshfree approximation was constructed to represent pure
bending mode without producing parasitic shear and mem-
brane deformations. Numerical examples of pure bending
of clamped-free curved beam, a nearly straight beam with
tip load and a pinched ring demonstrated the technique
[98]. Khosravifard and Hematiyan presented a technique
for evaluation of regular domain integrals without domain
discretization wherein a domain integral is transformed into
a boundary integral and a 1D integral and then utilized
for domain integrals in meshfree methods based on weak
form like EFG method. Presented technique results in truly
meshless approach with better accuracy and e�ciency. It is
known as Cartesian transformation method (CTM) which
was used earlier for domain integration in boundary element
method by Hematiyan computations, and so forth, Chung
[99].

	ough meshfree methods look quite attractive for solv-
ing a special class of problems, there are issues like error esti-
mate and control, integral evaluation, and accuracy. Errors
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in numerical modeling arise from number of sources like
discretization, quality of mathematical model, rounding o�
operations in computations, and so forth. Chung and
Belytschko, in 1998, proposed estimation of local and global
error in EFG method where in error estimation was based
on di�erence between the values of projected stress and
stress given by EFG method. E�ectiveness of proposed error
estimator was validated by various one-dimensional and
two-dimensional problems [100]. Zhuang et al. investigated
discretization error in EFGmethod. Discretization errors are
arising due to not satisfying governing equation and bound-
ary conditions. Conventional procedures for error analysis
used in FEM cannot be applied straightly in meshfree
approaches. In FEM, it is feasible to uncouple ℎ and � adap-
tivity but in EFG method it is not possible because changing
the density of nodes both changes the error �ℎ and also
changes the space of the shape functions and hence the error
��. Hence it is di�cult to achieve error control and adap-
tivity in meshfree methods. In proposed approach the dis-
cretization error was split into contributions arising from an
inadequate number of degrees of freedom �ℎ and from an
inadequate basis �� [101]. Kim and Atluri proposed a tech-
nique for controlling error and improving solution accuracy
in MLPGmethod by adding and arbitrary placing secondary
nodes where better resolution is needed in the domain. But
the subdomains for the shape functions in the MLS approx-
imation were constructed only from the primary nodes,
and the secondary nodes use the same sub-domains. 	e
proposed technique can become very useful in an adaptive
approach, because the secondary nodes can be easily added
and/or moved without an additional mesh [102].

6. Conclusion and Discussions

Objective of the present work is to provide exposure in
terms of versatility ofmeshfreemethods in handling di�erent
types of engineering problemswithout detailedmathematical
description. Some of the worth notable recent developments
include development of extended element free Galerkin
(XEFG) method for thermo-mechanical crack propagation,
CVEFGusingCVMLS for elastoplasticity problems, ICVEFG
using ICVMLS for large deformation problems, simulation of
failure transition in impact problems by EFG, local buckling
analysis of steel plates with irregular openings by EFG, and
adaptive EFG and MLPG approaches.

	ough MMs have found application in almost all areas
of structure and fracture mechanics, still there are challenges
in developing computationally e�cient algorithmswith accu-
rate nodal integration techniques with scalable implementa-
tion of EBCs. Improved versions of original MMs are also
proposed by many researchers like XEFG, IEFG, CVEFG,
ICVEFG, and so forth, while some of the other techniques for
improving computational e�ciency are reviewed in Section 5.
MMs have exemplary approximation, but the computational
cost is the issue. To alleviate the problem, coupled numerical
methods like FEM-MM have been developed to exploit
potential bene
ts of each method.
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