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ABSTRACT Developing a breast cancer screening method is very important to facilitate early breast cancer

detection and treatment. Building a screening method using medical imaging modality that does not cause

body tissue damage (non-invasive) and does not involve physical touch is challenging. Thermography,

a non-invasive and non-contact cancer screening method, can detect tumors at an early stage even under

precancerous conditions by observing temperature distribution in both breasts. The thermograms obtained on

thermography can be interpreted using deep learning models such as convolutional neural networks (CNNs).

CNNs can automatically classify breast thermograms into categories such as normal and abnormal. Despite

their demostrated utility, CNNs have not been widely used in breast thermogram classification. In this study,

we aimed to summarize the current work and progress in breast cancer detection based on thermography

and CNNs. We first discuss of breast thermography potential in early breast cancer detection, providing an

overview of the availability of breast thermal datasets together with publicly accessible. We also discuss

characteristics of breast thermograms and the differences between healthy and cancerous thermographic

patterns. Breast thermogram classification using a CNN model is described step by step including a

simulation example illustrating feature learning. We cover most research related to the implementation

of deep neural networks for breast thermogram classification and propose future research directions for

developing representative datasets, feeding the segmented image, assigning a good kernel, and building a

lightweight CNN model to improve CNN performance.

INDEX TERMS Breast cancer, convolutional neural network, deep learning, early detection, thermogram.

I. INTRODUCTION

Global cancer data show that breast cancer is the second

most lethal form of cancer worldwide after lung cancer [1].

In 2018, 2 billion new cases of breast cancer were reported

The associate editor coordinating the review of this manuscript and

approving it for publication was Gustavo Callico .

worldwide, where 627,000 deaths. A study in Australia [2]

showed that breast cancer survival is strongly associated

with the size of the tumor at the time of detection, with the

size less than 10 mm, the probability of patient survival is

98%. A cohort study showed that 70% of breast cancer cases

are detected when the tumor size was 30 mm [3]. Breast

cancer usually becomes detectable during screening when
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the tumor is at least 20 mm in size [4]. Therefore, enabling

early detection of breast cancer is crucial to facilitate early

treatment.

Early treatment may be beneficial following identifica-

tion through screening examinations such as clinical-breast

examination (CBE) and breast self-examination (BSE). CBE

is a regular medical examination performed by healthcare

professionals to detect breast lesions, whereas BSE is con-

ducted by an individual to observe physical changes and

appearance of breasts. The practice of BSE empowers women

to take responsibility for their health. Consequently, BSE is

recommended by the World Health Organization for raising

awareness among women at risk [5].

Screening methods produce medical images of breasts.

The interpretation of these images is normally performed by

human experts such as radiologists and doctors. Research

shows that the low diagnostic accuracy of thermograms is

attributed to weak technical ability and expertise in inter-

preting such images. The emergence of various diseases and

limited human labor has motivated researchers and medi-

cal personnel to use computer-assisted technology to facili-

tate breast thermography-based diagnosis and thus minimize

errors. Therefore, a computer system that can automatically

classify thermograms into normal and abnormal categories

is required. Considering this requirement, research toward

finding computer-based solutions to classify medical images

has been continuously growing.

Many computer-asisted methods of diagnosis have been

developed to assist doctors in interpreting themedical images.

During the last decade, significant effort has focused on

the development of deep learning (DL) models. Because

DL models are publicly available, they can be applied

easily using pre-trained networks. In breast cancer detec-

tion, many studies are based on DL using mammograms

[6]–[17], histology images [18]–[21], tomosyntheses [22]–

[25], and ultrasound images [26] have shown satisfactory

accuracies.

In contrast, relatively few studies have contributed to

non-invasive thermal of breasts using the deep neural

network (DNN) technique. Considering current limited

resources, the work on this problem is still at its early

stages. Hence significant effort is required to develop reli-

able non-invasive computer-assisted technology to enable the

early detection of breast cancer. This necessitates a study of

relevant previous, current, and necessary future research on

thermal imaging and DL for breast cancer detection should

be considered of paramount importance. Potential research

could be directed and focused on the substantial outstanding

issues identified in this study.

In this study, we review current progress in breast can-

cer detection using DL and thermography as a non-invasive

approach. We also highlight necessary future research direc-

tions to improve the accuracy of breast cancer detec-

tion using thermal imaging and DL. The state-of-the-art

and contributions of this paper can be summarized as

follows:

• An overview of breast thermography potential for cancer

detection including the availability of the breast thermo-

gram dataset.

• Step-by-step explanation of the CNN concept.

• Simple visualization in feature learning for breast cancer

thermograms.

• A review of the latest progress in thermal imaging and

DL approaches for the early detection of breast cancer.

• To propose the potential research challenges in develop-

ing a fast and an accurate CNN-thermal imaging system

for breast cancer detection.

This study is organized as follows. Section II presents

a review of the available breast cancer screening methods.

Section III explains the concepts involved in breast ther-

mal imaging and its potential for breast cancer detection.

The availability of breast thermogram datasets is explained.

We also outline the characteristics of healthy and cancerous

breast thermograms. Section IV describes the state-of-the-

art of CNN as the well-known image classifier in the DNN

model for thermal breast cancer detection. In Section V,

we discuss previous research on breast thermogram classi-

fication using artificial neural network algorithms and CNN

models. Finally, the manifold challenges in future research,

particularly to improve the accuracy and training speed of

CNN models are highlighted in Section VI.

II. STANDARD SCREENING METHODS

Breast cancer risk assessment is critical for identifying

women who may benefit from more intensive breast cancer

surveillance [27]. Prior to surveillance, one must undergo a

screening test. Currently, the gold standard screening method

for early breast cancer detection is mammography [28], an

X-ray examination, where the breast is placed on a stand

and pressed by a disc to spread the breast tissue evenly and

capture characteristics of microcalcification [29]. Similar to

all X-ray imaging, mammography involves the use of doses of

ionizing radiation to create images. Repeated mammography

screening may increase breast cancer risk due to exposure to

ionizing radiation [30]. A previous study indicated that each

exposure to X-rays increases breast cancer risk by 2% [31].

Another screening technique that uses a small amount

of radioactivity is positron emission tomography (PET).

Radioactive materials termed radiotracers or radiopharma-

ceuticals are injected into the body, such that a part of the

body with greater absorption of radioactive tracers may indi-

cate disease. PET combined with computer tomography (CT)

allows the retrieval of information about the size, shape, and

location of a tumor. Although examination using PET/CT is

non-invasive but the injection procedure is invasive and the

use of radioactive material can be harmful to the patients.

A non-invasive ultrasound breast screening method uses

high-frequency sound waves that bounce off the breast tissue

and are collected as an echo to produce an image. This tech-

nique has limitations in identifying calcifications in women

age above 40 years. When performing ultrasound, specific
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FIGURE 1. Electromagnetic wave spectrum [39].

and improved anatomical knowledge is required as a formal

educational program.

Early detection of breast cancer can also be achieved using

magnetic resonance imaging (MRI) [32], PET/CT [33], and

ultrasound [34]. Using radio waves and magnetic fields,

breast images are obtained when diagnostic mammography

cannot identify a tumor or other possible growth of a lump in

mammograms.MRI scanning is well-adapted to studying soft

tissues. However, in some patients, the procedure can cause

claustrophobia and the procedure involves high expenses.

Recently, a screening method called thermography was

promoted as a risk-free, low-cost, non-contact imaging tech-

nique. Thermography is a non-invasive breast cancer screen-

ing approach that uses a thermal camera to capture breast

images [35]. It allows early detection using thermal anomaly

information of breast asymmetry. Breast cancer can produce

variations in the mammary thermal pattern prior to clini-

cal and mammographic changes (visible breast tissue on a

mammogram) [36]. As also reported previously [37], ther-

mography can detect breast cancer up to 10-years earlier

than mammography; however, thermography has a high false

positive rate depending on the classification technique used

for interpretation [38]. Consequently, a reliable classification

method for breast thermograms is necessary.

III. BREAST THERMAL IMAGING MODALITY

Infrared waves are within the wavelength range of light and

microwaves. All objects can emit infrared radiation as a

function of the temperature of that object. Heating an object

increases the amount of infrared radiation released and causes

it to propagate in shorter waves [40].

Figure 1 shows the electromagnetic spectrum. Infared

wavelength, which are not visible to the human eye, can be

captured using infrared detectors and cameras. Infrared radi-

ation generally covers wavelengths from 0.75 to 1000 µm,

whereas the wavelengths emitted by the human body during

diagnostic measurements are at narrow-band wavelengths,

8 to 12µm,which are termed the long-wave infrared (LWIR).

In medical infrared imaging, this range is known as thermal

infrared (TIR). Within this range, infrared emission usually

occurs as heat or thermal radiation, themeasurement of which

is termed thermography. The image produced by TIR imaging

is called a thermogram [39]. This infrared wave cannot be

visually observed because it lies outside the wavelength of

visible light, but it can be captured using a thermal camera.

A. POTENTIAL OF BREAST THERMOGRAM MODALITY

In general, thermography has two advantages. First, its ther-

mographic nature, which is non-invasive and enables visu-

alization and quantification, facilitates risk-free detection

of breast cancer. Second, thermography facilitates real-time

imaging, allowing data storage on a computer, which can

later be used for data processing [41]. Despite these advan-

tages, thermography is not considered as a replacement for

mammography. As discussed previously [42], mammography

remains the gold standard screening technique and offers an

effective means for early breast cancer detection. However,

certain factors can affect the diagnostic accuracy of mam-

mography [43]. First, mammography primarily depends on

structural distinction and anatomical variation of the tumor

from the surrounding breast tissue. Second, mammography

sensitivity is higher for older women (60–69-years) than for

younger ones (less than 50-years).

Comprehensive research concerning the medical imaging

modalities for diagnosing breast cancer [46] suggests that

thermography is a superior imaging modality for dense breast

tissues and their early detection. This finding is supported

by previous research [47] which indicated that thermography

could be correct from 8–10 years before mammography can

detect a mass. Furthermore, mammography has difficulties in

reading a large, dense, and fibrocystic breasts. As discussed

in a previous study [48], to reliably detect tumors using X-

rays, the density of the lump should be more than that of the

surrounding tissue. Consequently, mammography is mainly

applicable to a woman aged above 45-years. As reported

previously [49], the average size of tumors undetected by
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thermal imaging and mammography is 1.28 and 1.66 cm

respectively indicating that thermography can facilitate ear-

lier tumor detection.

Nevertheless, a further study [50] did not recommend the

use of digital infrared thermal imaging (DITI) for women

with a history of a surgery or core biopsy, despite the fact

that it is non-invasive and painless. This is due to the low

sensitivity of DITI hindering its recommendation as a primary

evaluation or routine basic screening for breast cancer.

A study [51] compared the accuracy of thermography and

mammography in detecting breast cancer verifying that the

accuracy of mammography is higher than that of thermogra-

phy (76.9% versus 67.7%). In conclusion, at that time ther-

mography could not replace mammography as an early breast

cancer detection method. However, the use of thermography

as a companion to mammography is highly recommended to

obtain maximum test results.

B. BREAST THERMOGRAPHY

As discussed in [52], changes in temperature distribution

are a symptom of abnormality in body tissues. A study also

confirm that the thermal distribution of cancerous breast and

tumor volume fraction in the heterogeneous zone influences

the breast surface temperature [53]. However, given the lim-

itations of the human visual system such temperature dif-

ferences are difficult to detect. Therefore, a system that can

detect changes in temperature distribution is required.

In 1957, a study [54] reported thermography as a new tool

for investigating breast lesions. Infrared photons represent

only a narrow-band of the electromagnetic spectrum, but

the information contain within these images is fundamen-

tally associated with the functional status and movement in

the body [55]. Following several decades after the develop-

ment, a new system for acquiring surface thermal patterns of

the breast and image interpretation was developed [56] and

termed thermal texture mapping. Thermal texture maps were

introduced in 2004 to solve the inverse problem of the heat

transfer equation by locating inner abnormal heat sources and

their metabolic status [57].

In 2017, a complementary non-invasive tool for thermo-

gram acquisition was introduced [44]. Its proposed protocol

is shown in Figure 2. In this method, the IR thermographic

device is placed 1.2 m away from the relaxed seated patient.

FIGURE 2. Thermogram acquisition setting [44].

At this distance, the minimummeasurable spot size is 0.5 cm,

which allows the measurement of cancer tumors sized larger

than 0.5 cm. Two types of protocol may be employed in

capturing the image: static and dynamic protocols. The static

protocol involves a single image captured after 10–15minutes

of thermal stabilization during rest, whereas the dynamic

protocol involves a series of thermograms captured every

15 seconds during five minutes.

In the same year, Bhowmik et al. [58] also proposed a stan-

dard breast thermogram acquisition protocol. Factors influ-

encing thermography such as patient’s personal and medical

information as well as room condition were adjusted before

the examination. The acquisition of breast thermograms was

conducted in a black cubicle to acquire a homogeneous back-

ground. A bed-cum-table was designed to assure acclimation

among patients, who were asked to lie down for 15 minutes.

Patients were positioned 1 meter away from the thermal

camera except thosewith a larger-than-average body anatomy

and the best-fitting distance was determined. Images were

captured in the supine, frontal, left lateral, right lateral, left

oblique, and right oblique views.

Figure 3 shows the thermograms of normal and abnor-

mal breasts, with the latter indicating a disease state, down-

loaded from the DMR database [45]. These images show

three patients with different medical histories. Figure 3(a)

shows an image of a healthy patient having undergone no

previous screening test. Figure 3(b) shows an image of a

healthy patient with a history of no complaints and symptoms,

but with warts on the left breast; this patient had undergone

mammography. Figure 3(c) shows an image of a patient

with cancer who had undergone biopsy of the left breast.

The varying temperature distributions among these different

case images are clearly noticeable. These variations are an

important signature of breast thermogram for breast cancer

detection.

It is important to note that the menstruation cycle must

be considered when conducting thermography. A study [38]

found that a patient on the 20th day of the menstruation cycle

has an unstable body temperature resulting in false-positive

interpretation of her breast thermogram. Hence, thermogra-

phy is recommended to be performed within the 5th and

12th or on the 21st day of menstruation to avoid false

interpretation.

C. BREAST THERMAL DATASET

Several studies on breast thermogram acquisition have been

conducted during the last decade. As shown in Table 1,

the first dataset [59] was selected from images taken

in 1984 by Dr. Monique Frize and her team, using the first

generation thermographic camera Thermovision 680Medical

(Agatronics) connected to an OSCAR 780 (Agatronics).

Unlike the large number of mammograms that are

stored in public digital databases, breast thermograms are

stored mainly in private databases. Currently, relatively

few public breast thermogram databases are available, e.g.

PROENG [65] and Silva et al. [45]. Other online datasets
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FIGURE 3. Breast thermograms downloaded from Database for Mastology Research (DMR) [45].

TABLE 1. Breast thermogram dataset.

include those used previously [66] from Ann Arbor Ther-

mography [67], the Thermal imaging lab in the San Francisco

Bay Area [68], the American College of Clinical Thermology

[69], Thermography of Iowa [70], and Sunstate Thermal

Imaging Center in Australia [71].

We suggest that more studies of breast thermogram acqui-

sition with universal standards should be undertaken in the

future to support specialists and researchers in their edu-

cational and research activities. Moreover, datasets are the

primary concern in the training processes of DNNs.

D. BREAST THERMAL FEATURE

A feature is any distinctive aspect or characteristic that is used

to solve a computational task related to a certain application.

Each breast has particular thermographic characteristics or

patterns that do not change over time [38]. Slight temperature

variation in breasts indicates new developments in the breasts

andwarrant further examination. This is based on the assump-

tion that breast temperature should be symmetrical. Thus,

if one breast has cancerous cells, then the two breast thermo-

grams would deviate from each other. In general, the highest

average mean temperature deviation of the patient with breast

cancer and the benign is 0.51◦C, and with the healthy one is

0.85◦C [35].

The symmetry of breast thermograms is described by the

image features which can be used as parameters to classify the

thermograms of patients with and without cancer. Regarding

DL, such features will be used as inputs for the classification

algorithm. Thus, it is important to identify image features

that uniquely describe the symmetry pattern of breast thermal

distribution.

A study [72] proposed a statistical method to identify

parameters that best distinguish healthy, benign, and malig-

nant groups of patients. First, the correlation coefficient of

the variable mean, standard deviation, median, and mode of

the temperature was calculated and tested for significance.

The results showed that the mean, median, and mode have

a low correlation coefficient among the healthy, benign, and

carcinoma cases but a high correlation between breasts in

individual groups. However, the standard deviation shows a

low correlation between the breasts of each case. Second,

using descriptive statistics, the histograms of each breast were

obtained. The histograms of the carcinoma case showed a

significantly different skewness and mean temperature com-

pared with those of normal and abnormal breasts. Figure 4

compares the histograms of healthy and cancerous thermo-

grams to illustrate their differing temperature distributions.

Figure 4(a) shows an image of a healthy patient indicating

no significant differences in the histograms of both breasts.

However, Figure 4(b) shows an image of the patient with

cancer on the left side of the breast. The temperature distri-

bution is asymmetrical and has a different mean temperature

compared with those of normal side.

An investigation to determine the breast thermogram

signatures was further conducted [73] and first- and

second-order of the statistical parameters were analyzed. The

investigation confirmed that among the analyzed first-order

parameters, only mean and skewness were promising for

116180 VOLUME 8, 2020



R. Roslidar et al.: Review on Recent Progress in Thermal Imaging and DL Approaches

FIGURE 4. The histogram of a) healthy and b) cancer thermograms.

successful classification of breast thermograms, but theywere

not effective for separating breast thermograms with and

without tumors when used as inputs for NNs. On the other

hand, the second-order approach (co-occurrence matrix) pro-

vided better results because its difference variance and vari-

ance allow the separation of almost all healthy and malignant

tumor cases.

In Table 2, we present first-order histogram based fea-

tures and co-occurrence matrix based features. An image is

assumed as the function f (x, y) of two space variables x and y.

The value of the function is any discrete value of i within

the range i ∈ [0,L − 1]. For the first order histogram based

features, the intensity-level histogram is [74],

h(i) =

N−1
∑

x=0

M−1
∑

y=0

δ(f (x, y), i) (1)

where δ is the Kronecker delta function,

δ(j, i) =

{

1, j = i

0, j 6= i
(2)

and p(i) is the probability value of image intensity,

p(i) =
h(i)

NM
. (3)

The co-occurrence matrix, hdθ (i, j), is calculated as

described previously [75]. Co-occuring values of i and j are

counted when two pixels with distance d and direction θ

exist. This could result from a symmetric pairs separated by

d and −d or not symmetric pairs separated by d distance.

When the co-occurencematrix hdθ (i, j) is divided by the num-

ber of neighbouring pixels R(d, θ) in the image, the matrix

becomes an estimate of joint probability, pdθ (i, j). For image

f (x, y) with a set of L discrete intensity levels, the matrix

hdθ (i, j) is defined such that its (i, j)th entry is equal to the

number of times that f (x1, y1) = i and f (x2, y2) = j,

where

(x2, y2) = (x1, y1) + (d cos θ, d sin θ ). (4)

A study applied both histogram statistical and gray-level

co-occurrence matrix (GLCM) for the identification of

textural features of breast thermograms [76]. Features

of segmented breast thermograms were extracted using

the first-order statistics of entropy, kurtosis, mean, skew-

ness, standard deviation, and variance. On the other hand,

in GLCM, entities of contrast, correlation, energy, and

homogeneity were used to describe the texture feature. The

mean value was the most significant value of the first-order

statistics to separate cancerous and healthy thermograms.

In texture-related GLCM, contrast, homogeneity, and energy

were justified as the most distinctive values distinguishing

healthy and cancerous thermograms.
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TABLE 2. First-order histogram and co-occurrence matrix based features [74].

IV. DEEP LEARNING FOR BREAST THERMOGRAM

CLASSIFICATION

The neural network is inspired by how neurons in the human

brain work. Each neuron in the human brain is interconnected

and information flows across each of these neurons. In NNs,

each neuron receives input and performs a dot operation

with weights and biases. Weight specifies the strength of the

connection between two nodes. Biases are external values that

increase or decrease the net input of the activation function

[77]. Nodes are the individual processing units in each layer.

Figure 5 illustrates the mathematical model of a neuron.

FIGURE 5. Neural Network resembles human nerves system [78].

A neural network comprises neurons or units with activa-

tion function ϕ(.) and parameter θ = {W,B}, where W is

the vector of weights (kernel) and B is the vector of biases.

Equation (5) represents the convolution operation [77]:

y =
∑

i

wixi + b = ϕ(WT x + B). (5)

The activation function expresses a linear combination of

input x with respect to neurons and parameters, followed

by an element-wise nonlinearity. The transfer or activation

function determineswhether or not the neuron ‘‘active’’ based

on the weighted sum of the input.

Learning from data has two main goals: to understand

the data generation process and data interpretation; and to

predict future observations. Predicting future projects does

not require a probabilistic accuracy rate. However, accuracy is

a focus of medical data interpretation. As applied in detecting

breast cancer, 100% accuracy is required to ensure that the

diagnosis follows the ground truth.

Neural network is a massive parallel distributed processor

made up of simple processing units, which has a natural

propensity for strong experiential knowledge, making it avail-

able for use. The NN algorithm allows the learning of the

qualitative value of an image. Thus, it is appropriate for

application in breast thermogram classification.

A convolutional neural network (CNN) is a deep neural

network algorithm that processes input images by assign-

ing certain learnable weights and biases to map important

features that differentiate one image from others. In this

way, the classification result can be observed as the output.

Figure 6 shows the general architecture of CNNs for classi-

fying the breast thermograms into two classes, healthy and

cancer. Three major considerations must be made: dataset

preparation in image pre-processing, feature learning, and

classification. The classification can be binary (healthy and

cancer), or more classes such as healthy, benign, and malig-

nant. In the following sections, we review the concepts and

related efforts in CNN implementation for breast thermogram

classification.

A. IMAGE PRE-PROCESSING

Image pre-processing aims to improve image data/features by

suppressing unwanted data and enhancing important image

features to increase the performance of the NN model. Image

pre-processing is crucial for NNs given that the success

of the learning process depends on feature learning from

input images. Generally, image pre-processing includes mean
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FIGURE 6. Convolutional Neural Networks for BC early detection using breast thermograms.

subtraction, normalization, PCA whitening, and local con-

trast normalization [79].

The normalization of the breast thermogram temperature

matrix was undertaken previously [80]. The study compared

the classification accuracy of normalized datasets with the

non-normalized breast thermogram temperature matrix. The

result showed that the normalized input has a 16% better

accuracy rate than the non-normalized input.

In addition, common techniques used for breast thermo-

gram pre-processing include resizing, segmentation of the

region of interest (ROI), and augmentation. Image resizing

aims to provide the base size for all input images. The size

of the image comprises its weight; height; and the number

of red, green, and blue (RGB) channels. For example, given

that the breast thermogram has three RGB channels, its size

is 224× 224× 3 with a square size weight and height of 224.

Image segmentation considers only ROI and eliminates

the rest of the image. The ROI of the breast thermogram

should include half of the armpit such that all breast tissue and

nearby ganglion groups are analyzed [35]. A review of ROI

extraction in thermography images for the medical purposes

can be found in previous study [81]. Automatic segmentation

approaches lead to fast and highly reproducible analysis;

thus, it is essential to standardize the anatomical landmarks

of ROI to the edges of the image during acquisition. The

characteristic points chosen prior to developing automatic

segmentation are as follows [81]:

• thermal features or local thermal patterns because the

temperature distribution pattern is different and invariant

in contrast to those of the adjacent regions.

• topographic anatomy, geometric shape, and arrangement

of well-defined anatomical landmarks.

• anthropometric ratios, such that different body propor-

tions show a mutual agreement.

The segmented ROI of a breast thermogram shows a sig-

nificant increase in temperature compared with that in the

neighboring area. As noted in Table 3, various segmentation

techniques were applied to determine the best method to

produce ROI to allow optimum feature extraction. The asym-

metry of breasts with cancer drives breast thermogram seg-

mentation to detect the bifurcation line of the right and left

breasts.

The most challenging part of breast segmentation is identi-

fying the lower breast boundaries and inframammary folds

due to limitations of low contrast. Suganthi and Ramakr-

ishnan [88] proposed anisotropic diffusion filter integration

with the level set framework to avoid smoothing across the

boundary and preserve sharp boundaries. The similarity of

segmented ROIs and the ground truth images achieves aver-

age accuracy of 98%. The level set method was improved by

Golestani [66], for high accuracy with minimum computation

time.

Sathish et al. [89] showed tracing shape edges by applying

a polynomial curve fitting. This method was able to detect

slight concavities in the upper border and convexities in the

lower part. The algorithm was claimed to work more rapidly

than the Hough transformation that is commonly used for

curve extraction.

Pramanik et al. [91] proposed a new multiscale

local intensity measurement function (multisclae spatially

weighted pixel-contribution and shape-feature-embedded

force, MSPSF) to manage complexity arising from intensity

non-uniformity and noise. Segmentation was undertaken

in two steps: MSPSF energy functional and MSPSF-based

level set methods. The MSPF energy functional-based level

set method was used to compute the intensity distribu-

tion of the region and produce sharp discontinuities. The

level set method worked in two stages, to automatically

initialize the complex intensity distribution of breast ther-

mograms and minimize energy. The proposed segmentation

method was found to reduce computation time. In another

proposed segmentation method, Pramanik et al. [92] used

arc-approximation to identify the upper boundary of the

breast alongside triangular-space search (BATS) to trace
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TABLE 3. Segmentation of breast thermogram.

lower boundary curve of the breast region. However, in some

cases, this method failed to segment the breast region

accurately.

Instead of the level set method in which an evolving con-

tour moves toward the target boundary, a recent segmentation

method proposed by Koshki et al. [93] located the initial

contour within the desired object and converged to the outside

contour pixels with similar intensity to average intensity.

This extending contour level set model can extract objects in

multi-region images such as breast thermograms.

Another process in preparing the dataset before feeding it

to the NN is augmentation. This process aims to deal with
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limited datasets. The works in [94] convey four types of data

augmentation; horizontal and vertical flip, rotation between

0–45 degrees, 20% zoom, and normalized noise.

The quality of the dataset fed into the NNs also affects the

accuracy of image classification. Another study [95] evalu-

ated the visual quality of color image datasets in four DNN

models: Caffe Reference [96], VGG-CNN-S [97], VGG-16

[98], and GoogLeNet [99]. The images downloaded from the

dataset in a study [100] were conditioned with five types

of distortion: JPEG compression, JPEG2000 compression,

noise, blur, and contrast. Their subsequent classification con-

firmed that the accuracy of networks decreases as image

quality degrades. The worst falloff occurred in the Caffe

and VGG-CNN-S networks. In the deeper networks, i.e.

VGG-16 and GoogLeNet, the performance decreased more

slowly because the depth structure has more capability in

learning image features. This result also demonstrated that

noise, contrast, and JPEG distortions significantly degrade

classification accuracy.

B. CONVOLUTIONAL NEURAL NETWORKS

NNs are commonly used for recognizing and detecting

objects in image input data. In general, CNN is similar to

other NNs, having weight, bias, and the activation func-

tion when processing inputs. However, CNNs enable feature

extraction to learn patterns from high-dimensional inputs.

This process is termed convolution and is executed in a

convolutional layer (feature extraction layer). As shown in

Figure 6, CNN has two major layers: feature extraction and

fully connected.

1) FEATURE EXTRACTION LAYER

The feature extraction layer performs encoding to gener-

ate image features. Here, one input image is encoded to

be a feature map containing numbers that represent image

characters. This layer comprises two execution parts: con-

volution and pooling. The convolution part is structured

such that a filter (kernel) with a certain size is formed.

Given that the breast thermogram comprises three color chan-

nels (RGB), there are three kernels in accordance with the

channels.

In simple words, a filter (kernel) slides along the width and

height of the input feature map, with each slide denoting the

dot product operation of each part of the input feature map

with the appropriate kernel value. This operation is called

convolution. For example, a 2D input feature map has a size

of 4× 4 and a convolution filter sized 2× 2. The convolution

layer multiplies the filter with the same size as the input

region by 2 × 2. This procedure is repeated until the whole

input area is multiplied by the filter. The resulting values are

summed to generate one output, which is called the feature or

activation map. The number of feature maps depends on the

size of the kernel.

When creating the convolution operation, we have to con-

sider the size of the stride and padding. Stride is the parame-

ter that determining the steps along the horizontal followed

by vertical positions. For example, if the stride is 2, the

kernel steps 2 pixels horizontally and 2 pixels vertically [79].

A smaller stride results in more detailed information retrieval;

however, not all small sized strides will introduce good per-

formance.

Theoretically, the output dimension will always be smaller

than the input dimension, except a kernel sized 1 × 1 with

stride of 1. Given that the output will be used as the input

for the next convolutional layer, more information will be

rendered unnecessary. To overcome this problem, one can

apply padding into the input. Padding is the parameter deter-

mining the number of pixels (with zeros) to be added at each

side of the input to manipulate the output dimension of the

convolutional layer (feature map). By applying padding at all

input sides, the output dimension can be set to be equal or

to not decreases, allowing the deeper convolutional layer to

be applied; this enable more features to be extracted. Padding

also improves DNN performance by allowing the convolution

filter identify true information among zeros.

The output of the feature layer is a feature map, which is

then fed into the pooling layer. The pooling layer comprises

one filter with a certain size of stride. In the convolutional

layer, feature maps are up-sampled, whereas in the pool-

ing layer, feature maps are down-sampled. In other words,

the dimensions of the feature map in the pooling layer are

reduced to avoid overfitting. There are two commonly used

types of pooling activation functions that are usually being

used: max pooling and average pooling. The maximum value

of the feature maps is selected in max pooling, whereas

the average value of all feature maps is selected in average

pooling.

CNN layers are often followed by a non-linear activation

function. To overcome this condition, the activation function

takes a real-valued input and compresses it within a small

range such as [0, 1] and [-1, 1]. The non-linear function allows

NNs to learn non-linear mapping. It works as a switch that

decides whether or not a neuron activates if provided with

certain inputs. Common activation functions used in DNN are

the sigmoid, tanh, and ReLu functions [79].

In the learning features, CNNs iterate convolution and

max pooling processes many times to recognize the char-

acteristics (features) of the input. Figure 7 illustrates the

convolution process in CNN using breast thermograms as

the input images. Given that the input has three channels

(RGB), the kernel volume also comprises three individual 2D

kernels. Each channel convolves with one kernel. The size of

the kernel is determined according to the number of feature

maps.

Figure 8 shows the visual results of the convolutional

stage of NN in learning the features of a cancerous breast

thermogram. In total, 32 feature maps were generated by

a pre-trained CNN of MobileNetV2 [102] using one breast

thermogram. The feature maps are stored in the pooling and

the position of a pixel in the activation function of a channel

corresponds to the same position in the original image. Each

tile in the grid of the feature map represents the convolution
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FIGURE 7. Visualization of convolutional process of a cancerous breast thermogram; modified from a previous study [101].

FIGURE 8. Feature mapping of a cancerous breast thermogram with a size of 224 × 224 into 32 feature maps.

result of the input image with a specific kernel. White pixels

represent strong positive activations, black pixels represent

strong negative activations, and gray pixels a less strong

activations on the input image. A white pixel at some loca-

tions in a channel indicates that the channel is strongly acti-

vated at that position [103].
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As shown in Figure 8, some feature maps provide impor-

tant information on the input image, whereas other maps fail

to describe the value of the feature extracted. This indicates

that some kernels fail to detect the significant information

in textural features. Interpretation of feature mapping results

indicates which kernel strongly extracts the input feature.

Assigning a good kernel should reduce the training time nec-

essary to learn the input feature, thus making the simulation

more rapid.

2) FULLY-CONNECTED LAYER

Feature maps resulting from the convolutional layer are in

the form of a multidimensional array. Thus, it is necessary

to flatten or reshape the feature map into a one-dimensional

array (vector) before it is used as the input for the fully

connected layer. In other words, fully connected layers cor-

respond to convolutional layers with a filter size of 1 × 1.

A fully-connected layer is also known as a dense layer,

in which each input is connected to each output by learnable

weights. When features are extracted by convolutional layers

and down-sampled by pooling layers, they are mapped by a

subset of fully-connected layers to the final outputs of the

network, such as probabilities of each class in classification

tasks. The final fully-connected layer typically has the same

number of output nodes as classes [104].

C. IMAGE CLASSIFICATION

Image classification is the process of classifying images

according do their visual content. The training process for

NNs involves recognizing breast thermograms with given

label e.g., healthy and cancer. This challenge is known as

supervised learning [105].

When classifying an object into different categories, CNNs

often make decision from a probabilistic point of view, which

is termed inference. This means that output probabilities will

be an array of numbers between 0 and 1. One common type

of output model is the softmax function which calculates the

probability distribution of an event. In CNNs, the softmax

function calculates the probability of an output image over

the possible target classes. The softmax function is defined

as follows [104]:

σ (z)j =
exp(zj)

∑K
k=1 exp(zk )

for j = 1, · · · ,K , (6)

where zj is a number of inputs layer to the output layer and k

indexes of the output units.

D. BACKPROPAGATION

Backpropagation is performed in the final layer of CNNs and

is used only during training. Here, NNs learn from errors

during training. This process updates weights such that the

biases are zero based on the difference in the target output

(ground truth) and predicted output. Loss and optimization

functions are applied to reduce the bias (error). The mean

square error and common loss function in the classification

problem involves a cross-entropy loss defined as follows [79]:

L(p, y) = −
∑

yn log(pn), n ∈ [1,N ] (7)

where y denotes target output, p is the probability of each

output class, and n denotes the neurons. There is a total N

neurons, therefore p, y ∈ RN. The probability of each class

can be calculated using the softmax function.

An optimization algorithm is applied to reduce loss. Cur-

rently, the most popular optimizer in training samples is

the stochastic gradient descent (SGD) given that it per-

forms a parameter update for each training sample [106].

Considerable amount of research has aimed to accelerate

gradient descent, such as limited-BFGS [107], parallelized

SGD [108], and stochastic variance reduced gradient [109].

In 2014 Adam optimizer was introduced as superior opti-

mizer for used in training DNNs [110]. The Adam optimizer

requires low memory and is an adaptive learning rate opti-

mizer. Nonetheless, in some cases, SGD exhibits better result.

Since then, many studies have been conducted to address the

limitation of the Adam optimizer such as Adagrad [111] and

RMSProp [112].

V. RESEARCH ON BREAST THERMOGRAM

CLASSIFICATION

In a cohort study in 2002, E. Y. K. Ng initiated works of

early breast cancer detection using NNs [38]. Four back-

propagation NNs were developed to examine the accuracy

of detection based on breast thermograms. This examination

classified the breast cases into normal, benign, and malignant

groups. Although its accuracy rate was poor, this study con-

firmed the potential of using breast thermograms with NNs

to detect breast cancer at an early stage. Subsequently, more

approaches were developed, as shown in Table 4.

In 2004, Jakubowska applied artificial NN (ANN) with

non-linear discriminant analysis (NDA) [113]. This technique

was found to reduce false positive errors. In the same year,

Koay implemented two backpropagation techniques of ANN,

resilient backpropagation, and Levenberg-Marquardt (LM)

algorithms [59]. Backpropagation NNs were trained using

18 images and validated with 19 breast thermograms. Input

data comprise five statistical parameters from two conditions,

whole breast and breast quadrant. The ANN with the LM

algorithm showed the best results by correctly predicting all

images with breast quadrant statistics.

In 2008, an advanced integrated technique of artificial NNs

and bio-statistics was conducted in [114]. They implemented

ANN of radial basis function network (RBFN). The predic-

tion in identifying breast cancer in healthy and cancerous

classes resulted 80.95% for accuracy rate with 100% sensi-

tivity and 70.6% specificity.

Acharya et al. applied SVM to classify breast thermograms

into normal and malignant [115]. Textural features extracted

from the co-occurrence matrix were fed into the SVM clas-

sifier and resulting in an accuracy of 88.10%. The study

[116] compared these three classifiers: SVM, Naïve Bayes,

and k-NN. Twenty textural features based on GLCM were
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TABLE 4. Works on breast thermogram classification using artificial
neural networks.

used to group the negative and positive masses of breast. The

resulting accuracy rates were 85%, 80%, and 92.5% for SVM,

Naïve Bayes, and k-NN, respectively. A further study [89]

classified normal and abnormal breast thermograms based

on GLCM textural features and histograms. To improve the

accuracy rate, SVM was tested with various kernel func-

tions such as linear, radial basis function (RBF), polynomial,

quadratic, andmultilayer perceptron. In total, 79 data samples

were used to train the algorithm, and one sample for testing.

SVM RBF was found to outperforms the classification by

90% accuracy, 87.5% sensitivity, and 92.5% specificity.

In 2012, Nicandro et al. proposed a thermogram diag-

nostic technique using the Bayesian network classifier [117]

allowing the visualization of interactions between chosen

variables. However, their result showed a low accuracy

(71.88%) and very low specificity (37%). EtehadTavakol

et al. performed breast thermogram classification using adap-

tive boosting resulting in higher accuracy rate in detecting

malignant and non-malignant cases 95%, and benign and

normal 83%.

Throughout these studies, the objective of improving the

maximum accuracy to 100% has been targeted. The optimiza-

tion of NN approaches using the DL approach has motivated

the implementation of the DNN model in classifying the

breast thermal medical imaging. The implementation of CNN

for breast cancer detection based on breast thermogram is

outlined in Table 5.

In 2018, a study [119] applied the DNN model Inception-

v3 [99] coupled with SVM to classify breast thermograms

TABLE 5. Works on breast thermogram classification using deep learning.

into binary classes: healthy and sick images. To deal with

the limited breast thermogram dataset, this study applied the

image pre-processing. Following pre-processing of augmen-

tation, the breast thermograms were fed into the integrated

classifier of DNN Inception-v3 [126] and SVM [127] to train

the networks, but not all features were classified properly.

Although this result was not completely satisfying, it repre-

sented a significant advancement in the application of DL.

A study [120] applied a multilayer perceptron DNNmodel

to classify breast thermogram in four classes. Although

its accuracy was at 95%, feature extraction was performed

conventionally.

Breast infrared imaging classification was previuosly

achieved by applying CNN as a classifier for static and

dynamic images [121]. This research aimed to address

the problem of limited datasets by conducting some

pre-processing techniques. Four strategies were used to eval-

uate protocols of static and dynamic image acquisition [45].

The first strategy assigned all data (20 images) in a single

array. The second involved use of all 20 images of a patient set

and computation of their mean value. Third, the first and last

images with a significant difference were chosen, and their

mean was computed. The last method used image subtraction

of the last and first images to produce transformed image

for use as an input for the training network. These strategies

enabled the reduction in the required dataset size to achieve
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an effective model. In this study, the CNNs architecture com-

prised two convolutional layers and two max pooling layers.

The output layer is a fully connected layer with two classes:

healthy and unhealthy, and the networks were optimized

using the Adam optimizer. The proposed model resulted in

accuracies of 98% for the static protocol and 95% for the

dynamic protocol.

A comparison of the performance of CNN for early

detection of breast cancer based on infrared thermogra-

phy was undertaken previously [124]. CNN architectures

of ResNet18, ResNet34, ResNet50, ResNet152, VGG16,

and VGG19 were implemented using Fast.ai and Pytorch

libraries. The result of this comparison showed that

ResNet34 and ResNet50 provided 100% accuracy in blind

validation; however, ResNet50 was claimed to be less stable

compared to ResNet34.

Another study compared CNN performance between

dense and lightweight NNs [122]. The comparative study

was performed by fine-tuning the pre-trained networks

using the MatLab DL toolbox [90]. The pre-trained net-

works of ResNet101 and DenseNet201 were used as dense

NNs, and MobileV2 and ShuffleNetV2 as lightweight

NNs. During data training process, the results showed that

MobileNetV2 outperforms all other pre-trained models in

training effort, although it has lower sensitivity than deep

DenseNet201.

A comparison of the performance of DL models using

transfer learningwas also performed [123]. Using 173 images

from DMR [45], 7 CNN pre-trained architectures were com-

pared. The CNN model VGG-16 exhibited a higher perfor-

mance than AlexNet, GoogLeNet, ResNet-50, ResNet-101,

Inception-v3, and VGG-19.

Recently, a study [94] demonstrated the influence of data

pre-processing, data augmentation, and database size on the

proposed CNN model. Augmented thermogram databases

were used to train SeResNet [128], ResNet50 [129], VGG16

[98], Inception-v3 [126], InceptionResNetV2 [130], and

Xception [131] CNNmodels. After pre-training, it was found

that the simpler CNN models resulted in higher performance

metrics. The authors also compared several backpropaga-

tion optimizers. The GAP layers, Adam, RMSProp, and

SGD optimizer were implemented and observed during the

experiment. They found that GAP layers and Adam opti-

mizers yielded the best results. Finally, a proposed CNNs

model based on the experiment result was built and was

able to classify the breast thermograms with an accuracy

of 92%.

Another study implemented image segmentation prior to

feeding the input into CNN [125]. The thermography breast

images were segmented using the combination curvature

function k and gradient vector flow method. These ther-

mograms were classified into binary classes of normal and

abnormal using a CNN model based on the CNN model

proposed by LeCun et al. [132]. Although the accuracy rate

was 100%, the simulation time was not mentioned in the

discussion.

Most previous studies have shown that DNNs with shallow

layers perform particularly well by virtue of their ability to

decrease simulation time while maintaining high accuracy.

Models with shallow architectures and few parameters are

robust against overfitting problems involved inDL algorithms

and can harness the ability to learn data using hidden layers.

Moreover, because there are only two to four classes assigned,

the use of a simple CNN models is a good decision for the

purpose of breast thermogram classification.

VI. FUTURE WORKS

Based on our review of the literature, it is affirmed that

DL implementation in medical image classification results

in higher accuracies than other neural network (NN) meth-

ods. When detecting breast cancer using DL, two crucial

points must be addressed: how to detect at an early stage

and use of a high accuracy rate. A DL algorithm requires

large datasets to ensure 100% accuracy validation. Thus,

to enable the effectiveness of DL in classifying breast thermo-

grams, the availability of a representative dataset is essential.

To enable early detection, pre-screening examination can be

conducted by breast self-examination (BSE) method. Hence,

a DL algorithm should be lightweight to allow the installation

of an application in a portable device capable of supporting

self-screening. Breast thermograms with an ROI as an input

should support less computation for a lightweight model.

To facilitate these requirements, we recommend that future

efforts should take into account the production of the rep-

resentative dataset, assembling segmentation and augmen-

tation algorithms, assigning a good kernel, and building a

lightweight CNN model.

1) REPRESENTATIVE DATASET

The availability of representative dataset is important for the

training process. More datasets will increase the robustness

of the training performance, taking into account the datasets

used to train the CNN model. The number of training data

should also be balanced for the assigned classes.

Studies addressing dataset acquisition should be con-

ducted to support the early screening methods. Current pub-

lic datasets are available in only two classes, healthy and

sick, which are insufficient for comprehensive early screen-

ing. Early screening methods should ideally be capable of

identifying tumors with sizes of less than 20 mm (at the

pre-cancerous stage). Thus, we suggest three classes of

dataset should be provided: class I comprising a healthy

breast thermogram, class II comprising patients with a

tumor size of less than 20 mm, class III comprising breast

thermograms from patients with tumor sizes larger than

20 mm [133].

2) AUTOMATIC SEGMENTATION AND AUGMENTATION

Prior to feeding inputs into CNNs, image pre-processing of

breast thermograms should be performed to facilitate a fea-

ture extraction processes. Image pre-processing at this point

could include the denoizing input images and taking ROIs of
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the breast thermograms. Another pre-processing that should

be improved is the data augmentation.

Feeding only the ROI portion into further considerations

may accelerate the feature mapping operations in the con-

volutional layer because only the important parts of the

breast thermograms are learned. Previous studies have shown

that accuracy can be increased when the input images are

segmented. Thus, ROI segmentation needs to be targeted.

Segmentation of breast thermogram must cover all breast tis-

sue and nearby the ganglion area. A representative ROI could

be achieved using a good segmentation algorithm. A means

of automatic ROI segmentation should be built and assembled

to the CNN algorithm. This would reduce computation time

and may increase classification accuracy rates.

Moreover, data augmentation is an effective approach to

deal with limited datasets. It allows synthetic transformations

of the input. Dataset translation and similar approaches are

invariant in convolution and pooling techniques. Thus, they

are useful techniques for improving data learning and increas-

ing interpretation accuracy.

3) GOOD KERNEL

CNN enables automatic feature extraction. Therefore, theo-

retically, determining which features characterize the healthy

and cancerous image is not necessary. However, given that

we consider the knowledge of important features in breast

thermogramswhen designing a DLmodel, we can shorten the

feature learning process. This can be achieved by assigning

a good kernel that accurately maps important features. Sub-

sequently, convolutional calculation may be minimized and

classification simulation may proceed more efficiently.

4) MOBILE LIGHTWEIGHT

In supporting early stage breast cancer detection, a portable

breast cancer detector has been proposed [134]. However,

the NN algorithm applied here has not yet achieved 100%

accuracy. Nonetheless, CNN has shown better performance

in classifying images and current CNN models are built

for many classes with many parameters. Because there are

only between two and four classes in breast cancer detec-

tion projects, CNN can be constructed within the constraints

imposed by lightweight model.

Designing a simple CNN with adequate layers and good

kernels can speed up convolution computation. A lightweight

mobile model will enable the development of an BSE

application for a portable device. This would better enable

self-screening examination for early breast cancer detection.

Consequently, research should focus on integrating thermog-

raphy and DL approaches in line with the development of

portable screening devices.

VII. CONCLUSION

Early detection of breast cancer remains the cornerstone

of breast cancer control. Breast self-examination is recom-

mended by the World Health Organization to raise women

awareness of breast cancer risks. Thermography has been

proposed as an early detection screening method, and we

believe that it provides a promising development towards a

self-screeningmethod that can detect breast cancer at an early

stage. An overview of breast thermogram potential indicates

that the early symptoms of breast cancer can be observed by

identifying the asymmetrical thermal distributions between

the breasts.

The asymmetrical thermal distribution on breast thermo-

grams can be evaluated using computer-assisted technol-

ogy. The use of this technology can minimize errors. Our

review has shown that the current NN models have led to

an increased in accuracy of breast cancer thermogram clas-

sification, particularly in distinguising between healthy and

cancerous cases. Nevertheless, the performance of the NNs

model must be improved.

Future research needs to work toward improved classifi-

cation of breast thermograms. This will require providing

representative datasets, preparing good ROIs, assigning good

kernels, implementing lightweight CNN models. Achieve-

ment of these objectives will shorten the time involved in

convolution computation and increase accuracy rates. A risk-

free screening method using thermography could then be

proposed for self-breast screening method at an early stage

without requiring physical involvement.

REFERENCES

[1] IAFR Cancer. Global Cancer Observatory. Accessed: Jun. 30, 2019.

[Online]. Available: http://gco.iarc.fr/

[2] C. Nickson and A. M. Kavanagh, ‘‘Tumour size at detection according to

different measures of mammographic breast density,’’ J. Med. Screening,

vol. 16, no. 3, pp. 140–146, Sep. 2009.

[3] S. A. Narod, ‘‘Tumour size predicts long-term survival among women

with lymph node-positive breast cancer,’’ Current Oncol., vol. 19, no. 5,

pp. 249–253, Sep. 2012.

[4] OncoLink Team. (Jan. 2020). All About Breast Cancer. [Online]. Avail-

able: https://www.oncolink.org/cancers/breast/all-about-breast-cancer

[5] Breast Cancer: Prevention and Control, World Health Org., Geneva,

Switzerland, 2019.

[6] Z. Jiao, X. Gao, Y. Wang, and J. Li, ‘‘A deep feature based framework for

breast masses classification,’’ Neurocomputing, vol. 197, pp. 221–231,

Jul. 2016.

[7] H. Chougrad, H. Zouaki, and O. Alheyane, ‘‘Deep convolutional neu-

ral networks for breast cancer screening,’’ Comput. Methods Programs

Biomed., vol. 157, pp. 19–30, Apr. 2018.

[8] M. A. Al-Masni, M. A. Al-Antari, J.-M. Park, G. Gi, T.-Y. Kim, P. Rivera,

E. Valarezo, M.-T. Choi, S.-M. Han, and T.-S. Kim, ‘‘Simultaneous

detection and classification of breast masses in digital mammograms via

a deep learning YOLO-based CAD system,’’Comput. Methods Programs

Biomed., vol. 157, pp. 85–94, Apr. 2018.

[9] J. Arevalo, F. A. González, R. Ramos-Pollán, J. L. Oliveira, and

M. A. G. Lopez, ‘‘Representation learning for mammography mass

lesion classification with convolutional neural networks,’’Comput. Meth-

ods Programs Biomed., vol. 127, pp. 248–257, Apr. 2016.

[10] N. Dhungel, G. Carneiro, and A. P. Bradley, ‘‘The automated learning

of deep features for breast mass classification from mammograms,’’ in

Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham,

Switzerland: Springer, 2016.

[11] M. G. Ertosun and D. L. Rubin, ‘‘Probabilistic visual search for masses

within mammography images using deep learning,’’ in Proc. IEEE Int.

Conf. Bioinf. Biomed. (BIBM), Nov. 2015, pp. 1310–1315.

[12] J. Gallego-Posada, D. A. Montoya-Zapata, and O. L. Quintero-Montoya

‘‘Detection and diagnosis of breast tumors using deep convolutional

neural networks,’’ in Proc. 17th Latin Amer. Conf. Automat. Control,

2011, pp. 1–9.

116190 VOLUME 8, 2020



R. Roslidar et al.: Review on Recent Progress in Thermal Imaging and DL Approaches

[13] T. Kooi, G. Litjens, B. van Ginneken, A. Gubern-Mérida, C. I. Sánchez,

R.Mann, A. den Heeten, and N. Karssemeijer, ‘‘Large scale deep learning

for computer aided detection of mammographic lesions,’’ Med. Image

Anal., vol. 35, pp. 303–312, Jan. 2017.

[14] A. Akselrod-Ballin, L. Karlinsky, S. Alpert, S. Hasoul, R. Ben-Ari, and

E. Barkan, ‘‘A region based convolutional network for tumor detection

and classification in breast mammography,’’ in Proc. Int. Workshop Deep

Learn. Med. Image Anal. Int. Workshop Large-Scale Annotation Biomed.

Data Expert Label Synth., 2016, pp. 197–205.

[15] B. Q. Huynh, H. Li, and M. L. Giger, ‘‘Digital mammographic tumor

classification using transfer learning from deep convolutional neural

networks,’’ J. Med. Imag., vol. 3, no. 3, Aug. 2016, Art. no. 034501.

[16] Y. Qiu, Y. Wang, S. Yan, M. Tan, S. Cheng, H. Liu, and B. Zheng,

‘‘An initial investigation on developing a new method to predict short-

term breast cancer risk based on deep learning technology,’’ Proc. SPIE,

vol. 9785, Mar. 2016, Art. no. 978521.

[17] A. S. Becker, M. Marcon, S. Ghafoor, M. C. Wurnig, T. Frauenfelder,

and A. Boss, ‘‘Deep learning in mammography: Diagnostic accuracy of a

multipurpose image analysis software in the detection of breast cancer,’’

Investigative Radiol., vol. 52, no. 7, pp. 434–440, Jul. 2017.

[18] A. Rakhlin, A. Shvets, V. Iglovikov, and A. A. Kalinin, ‘‘Deep convo-

lutional neural networks for breast cancer histology image analysis,’’

in Proc. Int. Conf. Image Anal. Recognit. Cham, Switzerland: Springer,

2018, pp. 737–744.

[19] D. Bardou, K. Zhang, and S. M. Ahmad, ‘‘Classification of breast cancer

based on histology images using convolutional neural networks,’’ IEEE

Access, vol. 6, pp. 24680–24693, 2018.

[20] A. Cruz-Roa, A. Basavanhally, F. González, H. Gilmore, M. Feldman,

S. Ganesan, N. Shih, J. Tomaszewski, and A. Madabhushi, ‘‘Auto-

matic detection of invasive ductal carcinoma in whole slide images

with convolutional neural networks,’’ Proc. SPIE, vol. 9041, Mar. 2014,

Art. no. 904103.

[21] Q. Zhang, Y. Xiao, W. Dai, J. Suo, C. Wang, J. Shi, and H. Zheng,

‘‘Deep learning based classification of breast tumors with shear-wave

elastography,’’ Ultrasonics, vol. 72, pp. 150–157, Dec. 2016.

[22] S. V. Fotin, Y. Yin, H. Haldankar, J. W. Hoffmeister, and S. Periaswamy,

‘‘Detection of soft tissue densities from digital breast tomosynthesis:

Comparison of conventional and deep learning approaches,’’ Proc. SPIE,

vol. 9785, Mar. 2016, Art. no. 97850X.

[23] R. K. Samala, H.-P. Chan, L. Hadjiiski, M. A. Helvie, J. Wei, and K. Cha,

‘‘Mass detection in digital breast tomosynthesis: Deep convolutional

neural network with transfer learning from mammography,’’Med. Phys.,

vol. 43, no. 12, pp. 6654–6666, Nov. 2016.

[24] R. K. Samala, H.-P. Chan, L. Hadjiiski, K. Cha, and M. A. Helvie,

‘‘Deep-learning convolution neural network for computer-aided detec-

tion of microcalcifications in digital breast tomosynthesis,’’ Proc. SPIE,

vol. 9785, Mar. 2016, Art. no. 97850Y.

[25] X. Zhou, T. Kano, H. Koyasu, S. Li, T. Hara, X. Zhou, M. Matsuo, and

H. Fujita, ‘‘Automated assessment of breast tissue density in non-contrast

3D CT images without image segmentation based on a deep CNN,’’ Proc.

SPIE, vol. 10134, Mar. 2017, Art. no. 101342Q.

[26] H. Li, J. Weng, Y. Shi, W. Gu, Y. Mao, Y. Wang, W. Liu, and J. Zhang,

‘‘An improved deep learning approach for detection of thyroid papil-

lary cancer in ultrasound images,’’ Sci. Rep., vol. 8, no. 1, pp. 1–12,

Dec. 2018.

[27] American College of Obstetricians and Gynecologists, ‘‘Breast cancer

risk assessment and screening in average-risk women,’’ Pract. Bull.,

no. 179, 2017.

[28] Mammography. Accessed: Oct. 5, 2019. [Online]. Available: https://

www.nibib.nih.gov/science-education/science-topics/mammography

[29] L. Glassman, ‘‘Evaluation of breast calcifications,’’ J. Radiol., vol. 90,

no. 10, pp. 1306–1307, Oct. 2009.

[30] D. L. Preston, A. Mattsson, E. Holmberg, R. Shore, N. G. Hildreth,

and J. D. Boice, ‘‘Radiation effects on breast cancer risk: A pooled

analysis of eight cohorts,’’ Radiat. Res., vol. 158, no. 2, pp. 220–235,

Aug. 2002.

[31] P. M. Arabi, S. Muttan, and R. J. Suji, ‘‘Image enhancement for detection

of early breast carcinoma by external irradiation,’’ in Proc. 2nd Int. Conf.

Comput., Commun. Netw. Technol., Jul. 2010, pp. 1–9.

[32] S. G. Orel, M. D. Schnall, C. M. Powell, M. G. Hochman, L. J. Solin,

B. L. Fowble, M. H. Torosian, and E. F. Rosato, ‘‘Staging of suspected

breast cancer: Effect of MR imaging andMR-guided biopsy,’’ Radiology,

vol. 196, no. 1, pp. 115–122, Jul. 1995.

[33] V. Kalles, G. C. Zografos, X. Provatopoulou, D. Koulocheri, and

A. Gounaris, ‘‘The current status of positron emission mammography

in breast cancer diagnosis,’’ Breast Cancer, vol. 20, no. 2, pp. 123–130,

2013.

[34] Q. Huang, F. Zhang, and X. Li, ‘‘Few-shot decision tree for diagnosis

of ultrasound breast tumor using BI-RADS features,’’ Multimedia Tools

Appl., vol. 77, no. 22, pp. 29905–29918, Nov. 2018.

[35] T. B. Borchartt, A. Conci, R. C. F. Lima, R. Resmini, and A. Sanchez,

‘‘Breast thermography from an image processing viewpoint: A survey,’’

Signal Process., vol. 93, no. 10, pp. 2785–2803, Oct. 2013.

[36] M. Gautherie and C. M. Gros, ‘‘Breast thermography and cancer risk

prediction,’’ Cancer, vol. 45, no. 1, pp. 51–56, Jan. 1980.

[37] J. M. Dixon, ABC of Breast Diseases. Hoboken, NJ, USA: Wiley, 2012.

[38] E. Y.-K. Ng, S. C. Fok, Y. C. Peh, F. C. Ng, and L. S. J. Sim, ‘‘Comput-

erized detection of breast cancer with artificial intelligence and thermo-

grams,’’ J. Med. Eng. Technol., vol. 26, no. 4, pp. 152–157, Jan. 2002.

[39] R. Gade and T. B. Moeslund, ‘‘Thermal cameras and applications: A sur-

vey,’’ Mach. Vis. Appl., vol. 25, no. 1, pp. 245–262, Jan. 2014.

[40] B. F. Jones, ‘‘A reappraisal of the use of infrared thermal image analysis

in medicine,’’ IEEE Trans. Med. Imag., vol. 17, no. 6, pp. 1019–1027,

Dec. 1998.

[41] E. Y.-K. Ng, ‘‘A review of thermography as promising non-invasive

detection modality for breast tumor,’’ Int. J. Thermal Sci., vol. 48, no. 5,

pp. 849–859, May 2009.

[42] R. G. Miller, ‘‘Breast cancer screening: Can we talk?’’ J. Gen. Internal

Med., vol. 16, no. 3, pp. 206–207, Mar. 2001.

[43] H. Qi and N. A. Diakides, ‘‘Thermal infrared imaging in early breast

cancer detection,’’ in Augmented Vision Perception in Infrared. London,

U.K.: Springer, 2009, pp. 139–152.

[44] M. Garduño-Ramón, S. Vega-Mancilla, L. Morales-Henández, and

R. Osornio-Rios, ‘‘Supportive noninvasive tool for the diagnosis of breast

cancer using a thermographic camera as sensor,’’ Sensors, vol. 17, no. 3,

p. 497, Mar. 2017.

[45] L. F. Silva, D. C. M. Saade, G. O. Sequeiros, A. C. Silva, A. C. Paiva,

R. S. Bravo, and A. Conci, ‘‘A new database for breast research with

infrared image,’’ J.Med. Imag. Health Informat., vol. 4, no. 1, pp. 92–100,

Mar. 2014.

[46] R. R. Devi and G. S. Anandhamala, ‘‘Recent trends in medical imaging

modalities and challenges for diagnosing breast cancer,’’ Biomed. Phar-

macol. J., vol. 11, no. 3, pp. 1649–1658, Sep. 2018.

[47] M. Gautherie, ‘‘Atlas of breast thermography with specific guidelines

for examination and interpretation,’’ PAPUSA, Milan, Italy, Tech. Rep.,

1989, vol. 256.

[48] S. T. Kakileti, G. Manjunath, H. Madhu, and H. V. Ramprakash,

‘‘Advances in breast thermography,’’ in New Perspectives in Breast Imag-

ing. London, U.K.: IntechOpen, 2017, p. 91.

[49] J. R. Keyserlingk, P. D. Ahlgren, E. Yu, and N. Belliveau, ‘‘Infrared

imaging of the breast: Initial reappraisal using high-resolution digital

technology in 100 successive cases of stage I and II breast cancer,’’ Breast

J., vol. 4, no. 4, pp. 245–251, Jul. 1998.

[50] M. Kontos, R.Wilson, and I. Fentiman, ‘‘Digital infrared thermal imaging

(DITI) of breast lesions: Sensitivity and specificity of detection of primary

breast cancers,’’ Clin. Radiol., vol. 66, no. 6, pp. 536–539, Jun. 2011.

[51] R. Omranipour, A. Kazemian, S. Alipour, M. Najafi, M. Alidoosti,

M. Navid, A. Alikhassi, N. Ahmadinejad, K. Bagheri, and S. Izadi,

‘‘Comparison of the accuracy of thermography and mammography in

the detection of breast cancer,’’ Breast Care, vol. 11, no. 4, pp. 260–264,

2016.

[52] Thermology. Accessed: Oct. 5, 2019. [Online]. Available:

https://www.thermology.com/history.htm

[53] A. Ramírez-Torres, R. Rodríguez-Ramos, F. J. Sabina,

C. García-Reimbert, R. Penta, J. Merodio, R. Guinovart-Díaz,

J. Bravo-Castillero, A. Conci, and L. Preziosi, ‘‘The role of malignant

tissue on the thermal distribution of cancerous breast,’’ J. Theor. Biol.,

vol. 426, pp. 152–161, Aug. 2017.

[54] R. N. Lawson, ‘‘A new tool in the investigation of breast cancer,’’ Can.

Serv. Med. J., vol. 13, pp. 517–518, 1957.

[55] H. H. Liu and Z. Q. Liu, ‘‘Thermal texture mapping—A new way of

evaluating thermal signatures of the body and holistic interpretation of

infrared images,’’ in Medical Infrared Imaging. Boca Raton, FL, USA:

CRC Press, 2013.

[56] C. Yuan, C. Wang, and S. T. Song, ‘‘Thermal texture mapping in

breast cancer,’’ Chin. J. Med. Imag. Technol., vol. 16, no. 1, pp. 7–10,

2006.

VOLUME 8, 2020 116191



R. Roslidar et al.: Review on Recent Progress in Thermal Imaging and DL Approaches

[57] Z. Shang and G. Jiang, ‘‘Fundamental theoretic research of thermal tex-

ture maps I—Simulation and analysis of the relation between the depth of

inner heat source and surface temperature distribution in isotropy tissue,’’

in Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Sep. 2004,

pp. 5271–5273.

[58] M. K. Bhowmik, U. R. Gogoi, G. Majumdar, D. Bhattacharjee, D. Datta,

and A. K. Ghosh, ‘‘Designing of ground-truth-annotated DBT-TU-JU

breast thermogram database toward early abnormality prediction,’’ IEEE

J. Biomed. Health Informat., vol. 22, no. 4, pp. 1238–1249, Jul. 2018.

[59] J. Koay, C. Herry, and M. Frize, ‘‘Analysis of breast thermography with

an artificial neural network,’’ in Proc. 26th Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc., vol. 1, Sep. 2004, pp. 1159–1162.

[60] E. Y. K. Ng and E. C. Kee, ‘‘Integrative computer-aided diagnostic

with breast thermogram,’’ J. Mech. Med. Biol., vol. 7, no. 1, pp. 1–10,

Mar. 2007.

[61] N. Arora, D. Martins, D. Ruggerio, E. Tousimis, A. J. Swistel,

M. P. Osborne, and R. M. Simmons, ‘‘Effectiveness of a noninvasive

digital infrared thermal imaging system in the detection of breast cancer,’’

Amer. J. Surg., vol. 196, no. 4, pp. 523–526, Oct. 2008.

[62] X. Tang, H. Ding, Y.-E. Yuan, and Q. Wang, ‘‘Morphological measure-

ment of localized temperature increase amplitudes in breast infrared ther-

mograms and its clinical application,’’ Biomed. Signal Process. Control,

vol. 3, no. 4, pp. 312–318, Oct. 2008.

[63] G. C. Wishart, M. Campisi, M. Boswell, D. Chapman, V. Shackleton,

S. Iddles, A. Hallett, and P. D. Britton, ‘‘The accuracy of digital infrared

imaging for breast cancer detection in women undergoing breast biopsy,’’

Eur. J. Surgical Oncol., vol. 36, no. 6, pp. 535–540, Jun. 2010.

[64] O. D. Nurhayati, A. Susanto, T. S. Widodo, and M. Tjokronagoro, ‘‘Prin-

cipal component analysis combined with first order statistical method for

breast thermal images classification,’’ Int. J. Comput. Sci. Technol., vol. 2,

no. 2, pp. 12–18, 2011.

[65] PROENG. (2012). Image Processing and Image Analyses Applied to

Mastology. [Online]. Available: http://visual.ic.uff.br/en/proeng/

[66] N. Golestani, M. EtehadTavakol, and E. Y. K. Ng, ‘‘Level set method

for segmentation of infrared breast thermograms,’’ EXCLI J., vol. 13,

pp. 241–251, Mar. 2014.

[67] Ann Arbor Thermography. Accessed: Feb. 6, 2020. [Online]. Available:

http://aathermography.com

[68] Breast Thermography. Accessed: Feb. 6, 2020. [Online]. Available:

http://www.breastthermography.com/case_studies.htm

[69] What is Breast Thermography? Accessed: Feb. 6, 2020. [Online]. Avail-

able: http://www.thermologyonline.org/Breast/breast_thermography_

what.htm

[70] Case Study. Accessed: Feb. 6, 2020. [Online]. Available:

https://thermographyofiowa.com/case-studies/

[71] Sunstate Thermal Imaging. Accessed: Feb. 6, 2020. [Online]. Available:

http://www.stimaging.com.au/page5.html

[72] E. Y. K. Ng, L. N. Ung, F. C. Ng, and L. S. J. Sim, ‘‘Statistical analysis

of healthy and malignant breast thermography,’’ J. Med. Eng. Technol.,

vol. 25, no. 6, pp. 253–263, Jan. 2001.

[73] T. Jakubowska, B. Wiecek, M. Wysocki, and C. Drews-Peszynski,

‘‘Thermal signatures for breast cancer screening comparative study,’’

in Proc. 25th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Sep. 2003,

pp. 1117–1120.

[74] A. Materka and M. Strzelecki, ‘‘Texture analysis methods—A review,’’

Technol. Univ. Lodz, Inst. Electron., Łódź, Poland, Tech. Rep. COST

B11, 1998, p. 4968, vol. 10, no. 1.

[75] R. M. Haralick, ‘‘Statistical and structural approaches to texture,’’ Proc.

IEEE, vol. 67, no. 5, pp. 786–804, May 1979.

[76] M. B. Al Rasyid, Yunidar, F. Arnia, and K. Munadi, ‘‘Histogram statistics

and GLCM features of breast thermograms for early cancer detection,’’ in

Proc. Int. ECTI Northern Sect. Conf. Electr., Electron., Comput. Telecom-

mun. Eng. (ECTI-NCON), Feb. 2018, pp. 120–124.

[77] S. S. Haykin, Neural Networks and Learning Machines. Upper Saddle

River, NJ, USA: Prentice-Hall, 2009.

[78] D. Groupe, Principle of Artificial Neural Networks. Singapore: World

Scientific, 2007.

[79] S. Khan, H. Rahmani, S. A. A. Shah, and M. Bennamoun, ‘‘A guide to

convolutional neural networks for computer vision,’’ Synth. Lect. Comput.

Vis., vol. 8, no. 1, pp. 1–207, Feb. 2018.

[80] D. Sathish, S. Kamath, K. Prasad, andR.Kadavigere, ‘‘Role of normaliza-

tion of breast thermogram images and automatic classification of breast

cancer,’’ Vis. Comput., vol. 35, no. 1, pp. 57–70, Oct. 2017.

[81] J. Singh and A. S. Arora, ‘‘Automated approaches for ROIs extraction

in medical thermography: A review and future directions,’’ Multimedia

Tools Appl., vol. 79, pp. 15273–15296, Jan. 2019.

[82] C. A. Lipari and J. F. Head, ‘‘Advanced infrared image processing for

breast cancer risk assessment,’’ in Proc. 19th Annu. Int. Conf. IEEE Eng.

Med. Biol. Soc. Magnificent Milestones Emerg. Opportunities Med. Eng.,

vol. 2, Oct./Nov. 1997, pp. 673–676.

[83] N. Scales, C. Kerry, and M. Prize, ‘‘Automated image segmentation for

breast analysis using infrared images,’’ in Proc. 26th Annu. Int. Conf.

IEEE Eng. Med. Biol. Soc., Sep. 2004, pp. 1737–1740.

[84] P. T. Kuruganti and T. Phani, ‘‘Detecting breast cancer from thermal

infrared images by asymmetry analysis,’’Med. Med. Res., Feb. 2003.

[85] M. EtehadTavakol, S. Sadri, and E. Y. K. Ng, ‘‘Application

of K- and fuzzy C-means for color segmentation of thermal

infrared breast images,’’ J. Med. Syst., vol. 34, no. 1, pp. 35–42,

Feb. 2010.

[86] Z. Jin-Yu, C. Yan, and H. Xian-Xiang, ‘‘IR thermal image segmenta-

tion based on enhanced genetic algorithms and two-dimensional classes

square error,’’ in Proc. 2nd Int. Conf. Inf. Comput. Sci., vol. 2, 2009,

pp. 309–312.

[87] P. Kapoor and S. V. A. V. Prasad, ‘‘Image processing for early diagnosis

of breast cancer using infrared images,’’ in Proc. 2nd Int. Conf. Comput.

Automat. Eng. (ICCAE), Feb. 2010, pp. 564–566.

[88] S. S. Suganthi and S. Ramakrishnan, ‘‘Anisotropic diffusion filter

based edge enhancement for segmentation of breast thermogram using

level sets,’’ Biomed. Signal Process. Control, vol. 10, pp. 128–136,

Mar. 2014. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S1746809414000093

[89] D. Sathish, S. Kamath, K. Prasad, R. Kadavigere, and R. J. Martis,

‘‘Asymmetry analysis of breast thermograms using automated segmen-

tation and texture features,’’ Signal, Image Video Process., vol. 11, no. 4,

pp. 745–752, May 2017.

[90] R. R. Devi and G. S. Anandhamala, ‘‘Analysis of breast thermograms

using asymmetry in infra-mammary curves,’’ J. Med. Syst., vol. 43, no. 6,

p. 146, Apr. 2019.

[91] S. Pramanik, D. Bhattacharjee, and M. Nasipuri, ‘‘MSPSF: A multi-

scale local intensity measurement function for segmentation of breast

thermogram,’’ IEEE Trans. Instrum.Meas., vol. 69, no. 6, pp. 2722–2733,

Jun. 2020.

[92] S. Pramanik, S. Ghosh, D. Bhattacharjee, and M. Nasipuir, ‘‘Segmenta-

tion of breast-region in breast thermogram using arc-approximation and

triangular-space search,’’ IEEE Trans. Instrum. Meas., vol. 69, no. 7,

pp. 4785–4795, Jul. 2020.

[93] A. S. Koshki, M. Zekri, M. R. Ahmadzadeh, S. Sadri, and

E. Mahmoudzadeh, ‘‘Extending contour level set model for multi-

class image segmentation with application to breast thermography

images,’’ Infr. Phys. Technol., vol. 105, Mar. 2020, Art. no. 103174.

[94] J. Zuluaga-Gomez, Z. Al Masry, K. Benaggoune, S. Meraghni, and

N. Zerhouni, ‘‘A CNN-based methodology for breast cancer diagnosis

using thermal images,’’ 2019, arXiv:1910.13757. [Online]. Available:

http://arxiv.org/abs/1910.13757

[95] S. Dodge and L. Karam, ‘‘Understanding how image quality affects

deep neural networks,’’ in Proc. 8th Int. Conf. Qual. Multimedia Exper.

(QoMEX), Jun. 2016, pp. 1–6.

[96] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, ‘‘Caffe: Convolutional architecture for fast

feature embedding,’’ in Proc. 22nd ACM Int. Conf. Multimedia, 2014,

pp. 675–678.

[97] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, ‘‘Return of the

devil in the details: Delving deep into convolutional nets,’’ in Proc. Brit.

Mach. Vis. Conf., 2014, pp. 1–11.

[98] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for

large-scale image recognition,’’ in Proc. Int. Conf. Learn. Represent.,

2015, pp. 1–14.

[99] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,

pp. 1–9.

[100] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,

‘‘ImageNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,

vol. 115, no. 3, pp. 211–252, Dec. 2015.

[101] R. C. Gonzalez, ‘‘Deep convolutional neural networks [lecture notes],’’

IEEE Signal Process. Mag., vol. 35, no. 6, pp. 79–87, Nov. 2018.

116192 VOLUME 8, 2020



R. Roslidar et al.: Review on Recent Progress in Thermal Imaging and DL Approaches

[102] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,

‘‘MobileNetV2: Inverted residuals and linear bottlenecks,’’ in

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 4510–4520.

[103] M. H. Beale, M. T. Hagan, and H. B. Denmuth. Deep

Learning Toolbox User’s Guide. The MathWorks, Inc., Natick,

MA, USA. Accessed: Jan. 19, 2020. [Online]. Available:

https://www.mathworks.com/help/pdf_doc/deeplearning/nnet_ug.pdf

[104] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, ‘‘Convolutional

neural networks: An overview and application in radiology,’’ Insights

Imag., vol. 9, no. 4, pp. 611–629, Aug. 2018.

[105] O. Simeone, ‘‘A brief introduction to machine learning for engi-

neers,’’ Found. Trends Signal Process., vol. 12, nos. 3–4, pp. 200–431,

2018.

[106] S. Ruder, ‘‘An overview of gradient descent optimization algo-

rithms,’’ 2016, arXiv:1609.04747. [Online]. Available: http://arxiv.

org/abs/1609.04747

[107] Q. V. Le, J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, and A. Y. Ng,

‘‘On optimization methods for deep learning,’’ in Proc. 28th Int. Conf.

Mach. Learn., 2011, pp. 265–272.

[108] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, ‘‘Parallelized stochas-

tic gradient descent,’’ in Proc. Adv. Neural Inf. Process. Syst., 2010,

pp. 2595–2603.

[109] R. Johnson and T. Zhang, ‘‘Accelerating stochastic gradient descent using

predictive variance reduction,’’ in Proc. Adv. Neural Inf. Process. Syst.,

2013, pp. 315–323.

[110] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic opti-

mization,’’ 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.

org/abs/1412.6980

[111] J. Duchi, E. Hazan, and Y. Singer, ‘‘Adaptive subgradient methods

for online learning and stochastic optimization,’’ J. Mach. Learn. Res.,

vol. 12, pp. 2121–2159, Feb. 2011.

[112] T. Tieleman and G. Hinton, ‘‘Lecture 6.5-rmsprop: Divide the gradient

by a running average of its recent magnitude,’’ COURSERA, Neural

Networks Mach. Learn., vol. 4, no. 2, pp. 26–31, 2012.

[113] T. Jakubowska, B. Wiecek, M. Wysocki, C. Drews-Peszynski, and

M. Strzelecki, ‘‘Classification of breast thermal images using artificial

neural networks,’’ in Proc. 26th Annu. Int. Conf. IEEE Eng. Med. Biol.

Soc., Sep. 2004, pp. 1155–1158.

[114] E. Y. K. Ng and E. C. Kee, ‘‘Advanced integrated technique in breast

cancer thermography,’’ J. Med. Eng. Technol., vol. 32, no. 2, pp. 103–114,

Jan. 2008.

[115] U. R. Acharya, E. Y. K. Ng, J.-H. Tan, and S. V. Sree, ‘‘Thermog-

raphy based breast cancer detection using texture features and sup-

port vector machine,’’ J. Med. Syst., vol. 36, no. 3, pp. 1503–1510,

Jun. 2012.

[116] M. Milosevic, D. Jankovic, and A. Peulic, ‘‘Thermography based breast

cancer detection using texture features and minimum variance quantiza-

tion,’’ EXCLI J., vol. 13, p. 1204, Nov. 2014.

[117] C.-R. Nicandro, M.-M. Efrén, A.-A. M. Yaneli, M.-D.-C.-M. Enrique,

A.-M. H. Gabriel, P.-C. Nancy, G.-H. Alejandro, H.-R. G. de Jesús, and

B.-M. R. Erandi, ‘‘Evaluation of the diagnostic power of thermography

in breast cancer using Bayesian network classifiers,’’ Comput. Math.

Methods Med., vol. 2013, pp. 1–10, May 2013.

[118] M. EtehadTavakol, V. Chandran, E. Y. K. Ng, and R. Kafieh, ‘‘Breast

cancer detection from thermal images using bispectral invariant features,’’

Int. J. Thermal Sci., vol. 69, pp. 21–36, Jul. 2013.

[119] S. Mambou, P. Maresova, O. Krejcar, A. Selamat, and K. Kuca, ‘‘Breast

cancer detection using infrared thermal imaging and a deep learning

model,’’ Sensors, vol. 18, no. 9, p. 2799, Aug. 2018.

[120] M. Abdel-Nasser, A. Moreno, and D. Puig, ‘‘Breast cancer detection in

thermal infrared images using representation learning and texture analysis

methods,’’ Electronics, vol. 8, no. 1, p. 100, Jan. 2019.

[121] M. de Freitas Oliveira Baffa and L. G. Lattari, ‘‘Convolutional neural

networks for static and dynamic breast infrared imaging classification,’’

in Proc. 31st SIBGRAPI Conf. Graph., Patterns Images, Oct. 2018,

pp. 174–181.

[122] R. Roslidar, K. Saddami, F. Arnia, M. Syukri, and K. Munadi, ‘‘A study

of fine-tuning CNN models based on thermal imaging for breast cancer

classification,’’ in Proc. IEEE Int. Conf. Cybern. Comput. Intell. (Cyber-

neticsCom), Aug. 2019, pp. 77–81.

[123] J. C. Torres-Galvan, E. Guevara, and F. J. Gonzalez, ‘‘Comparison of deep

learning architectures for pre-screening of breast cancer thermograms,’’

in Proc. Photon. North (PN), May 2019, pp. 1–2.

[124] F. J. Fernández-Ovies, E. S. Alférez-Baquero, E. J. de Andrés-Galiana,

A. Cernea, Z. Fernández-Muñiz, and J. L. Fernández-Martínez, ‘‘Detec-

tion of breast cancer using infrared thermography and deep neu-

ral networks,’’ in Proc. Int. Work-Conf. Bioinf. Biomed. Eng. Cham,

Switzerland: Springer, 2019, pp. 514–523.

[125] S. Tello-Mijares, F. Woo, and F. Flores, ‘‘Breast cancer identification

via thermography image segmentation with a gradient vector flow and a

convolutional neural network,’’ J. Healthcare Eng., vol. 2019, pp. 1–13,

Nov. 2019.

[126] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818–2826.

[127] M. Pontil and A. Verri, ‘‘Properties of support vector machines,’’ Neural

Comput., vol. 10, no. 4, pp. 955–974, 1998.

[128] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in

Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,

pp. 7132–7141.

[129] X. Yu, Z. Yu, and S. Ramalingam, ‘‘Learning strict identity mappings in

deep residual networks,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern

Recognit., Jun. 2018, pp. 4432–4440.

[130] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, ‘‘Inception-v4,

inception-resnet and the impact of residual connections on learning,’’ in

Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 1–7.

[131] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-

lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),

Jul. 2017, pp. 1251–1258.

[132] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-

ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,

pp. 2278–2324, Nov. 1998.

[133] Breast Cancer: Stages. Accessed: Jun. 30, 2019. [Online]. Available:

https://www.cancer.net/cancer-types/breast-cancer/stages

[134] J. Ma, P. Shang, C. Lu, S. Meraghni, K. Benaggoune, J. Zuluaga,

N. Zerhouni, C. Devalland, and Z. Al Masry, ‘‘A portable breast cancer

detection system based on smartphone with infrared camera,’’ Vibroeng.

PROCEDIA, vol. 26, pp. 57–63, Sep. 2019.

ROSLIDAR ROSLIDAR (Member, IEEE) was

born in Banda Aceh, in 1978. She received

the bachelor’s degree in electrical engineering

from Universitas Syiah Kuala, in 2001, and the

master’s programme in telecommunication engi-

neering from the University of Arkansas, USA,

in 2009. She is currently pursuing the Ph.D. degree

with the Doctoral School of Engineering Science,

Universitas Syiah Kuala. Since 2001, she has been

with the Department of Electrical and Computer

Engineering, Universitas Syiah Kuala. Her research interest includes devel-

oping the e-health monitoring system-based on non-invasive technique. She

is active as the Copy Editor of the National Accredited Journal of Jurnal

Rekayasa Elektrika. She received the Fulbright Award for hermaster’s degree

programme, in 2006, and the scholarship from Kementrian Ristek Dikti for

one semester Ph.D. Programme in Universitas Syiah Kuala, in 2019.

AULIA RAHMAN (Member, IEEE) received the

bachelor’s degree from the Institut Teknologi

Bandung, Indonesia, in 2005, and the master’s

degree in automation and robotics from Tech-

nische Universitaet Dortmund (TU Dortmund),

Germany, in 2011. Since 2012, he has been with

the Department of Electrical Engineering, Uni-

versitas Syiah Kuala. He affiliated with the Con-

trol System Laboratory and the Embedded System

Laboratory. His research interests include mobile

robotics, SLAM, control systems, computer vision, and machine learning.

VOLUME 8, 2020 116193



R. Roslidar et al.: Review on Recent Progress in Thermal Imaging and DL Approaches

RUSDHA MUHARAR (Member, IEEE) received

the Sarjana Teknik (Bachelor of Engineering)

degree in electrical engineering fromGadjahMada

University, Indonesia, in 1999, the M.Sc. degree in

electrical engineering from the Delft University of

Technology (TU Delft), The Netherlands, in 2004,

and the Ph.D. degree in electrical engineering from

the University of Melbourne, Australia, in 2012.

From November 2012 to November 2013, he was

a Postdoctoral Research Fellow with the Depart-

ment of Electrical and Computer Systems Engineering, Monash University,

Australia. He joined the Department of Electrical Engineering, Syiah Kuala

University, Indonesia, in April 2006, where he is currently a Senior Lecturer.

His research interests include communications theory, signal processing for

wireless communications, and machine learning.

MUHAMMAD RIZKY SYAHPUTRA (Member,

IEEE) was born in Banda Aceh, in 1998. He is

currently pursuing the bachelor’s degree in elec-

trical and computer engineering with Universitas

Syiah Kuala, Indonesia. Since 2017, he has been

a Laboratory Assistant with the Computer Net-

work Laboratory. He joined theManufacturing and

Design Laboratory, Lamuri Robotic Team, Univer-

sitas Syiah Kuala, in 2018, where he works for the

firefighting hexapod robot. His current research

interests include image processing, robotic, the Internet of Things, and

computer networking. He certified as Mikrotik Certified Network Associate

andMikrotik Certified Router Engineer, in 2017. He was selected as ASEAN

SAP Data Science Explorer National Finalist, in 2017.

FITRI ARNIA (Member, IEEE) received the

B.Eng. degree from the Universitas Sumatera

Utara (USU), Medan, in 1997, the master’s

degree from the University of New South Wales

(UNSW), Sydney, Australia, in 2004, and the

Ph.D. degree from Tokyo Metropolitan University

(TMU), Tokyo, Japan, in 2008. She has been with

the Department of Electrical and Computer Engi-

neering, Faculty of Engineering, Universitas Syiah

Kuala (Unsyiah), since 1999, where she is cur-

rently a Professor. She was a Visiting Scholar with TMU, in 2013, and with

Suleyman Demirel University (SDU), Isparta, Turkey, in 2017. Her research

interests include signal, image, and multimedia information processing. She

is a member of the ACM and APSIPA.

MAIMUN SYUKRI received the medical degree

from the University of Airlangga, Surabaya,

Indonesia, in 1988, and the Ph.D. degree

in medicine from Gadjah Mada University,

Yogyakarta, Indonesia, in 2014. He was trained

as an Intern with the University of Airlangga.

He was also trained in nephrology with Gadjah

Mada University. From 2009 to 2016, he was

the Head of the Internal Medicine Department,

University of Syiah Kuala. He is currently a Lec-

turer with the Medical Faculty, University of Syiah Kuala, Banda Aceh,

Indonesia. He is also a member of the Indonesian Medical Association,

the Indonesian Society of Nephrology, the Indonesian Society of Internal

Medicine, the Indonesian Society of Hypertension, the Asian Pacific Society

of Nephrology, and the International Society of Nephrology.

BISWAJEET PRADHAN (Senior Member, IEEE)

received the Habilitation degree in remote sens-

ing from the Dresden University of Technology,

Germany, in 2011. Since 2015, he has been as

the Ambassador Scientist for the Alexander Hum-

boldt Foundation, Germany. He is currently the

Director of the Centre for Advanced Modelling

and Geospatial Information Systems (CAMGIS),

Faculty of Engineering and IT. He is also a Dis-

tinguished Professor with the University of Tech-

nology Sydney. He is an internationally established Scientist in the fields

of geospatial information systems (GIS), remote sensing, image processing,

complex modeling/geo-computing, machine learning and soft-computing

applications, natural hazards, and environmental modeling. Out of his more

than 550 articles, more than 475 have been published in science citation index

(SCI/SCIE) technical journals. He has authored eight books and 13 book

chapters. He was a recipient of the Alexander von Humboldt Fellowship

from Germany and the Alexander von Humboldt Research Fellowship from

Germany. He received 55 awards in recognition of his excellence in teaching,

service, and research, since 2006, and the World Class Professor by the Min-

istry of Research, Technology and Higher Education, Indonesia, in 2018 and

2019. He is also an associate editor and an editorial member of more than

eight ISI journals. From 2016 to 2019, he was listed as the World’s Most

Highly Cited Researcher by Clarivate Analytics Report as one of the world’s

most influential minds.

KHAIRUL MUNADI (Member, IEEE) received

the B.Eng. degree in electrical engineering from

the Sepuluh Nopember Institute of Technology,

Surabaya, Indonesia, in 1996, and the M.Eng.

and Ph.D. degrees in electrical engineering from

Tokyo Metropolitan University (TMU), Japan,

in 2004 and 2007, respectively. From 1996 to

1999, he was a System Engineer with Alcatel

Indonesia. Since 1999, he has been a Lecturer with

the Electrical and Computer Engineering Depart-

ment, Universitas Syiah Kuala (Unsyiah), Banda Aceh, Indonesia, where he

has been a Professor, since August 2019. From March 2007 to March 2008,

he was a Visiting Researcher in information and communication systems

engineering with the Faculty of SystemDesign, TMU. He was also a Visiting

Scholar with the Department of Computer Engineering, Suleyman Demirel

University (SDU), Isparta, Turkey, in 2016. His research interests include

multimedia signal processing, knowledge-based management, and disaster

management. He is a member of APSIPA.

116194 VOLUME 8, 2020


