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ABSTRACT

Energy systems are regularly subject to major disruptions affecting economic activities, operation of
infrastructure and the society as a whole. Resilience assessment comprises the pre-event oriented
classical risk assessment as a central element, but it goes beyond that because it also includes and
evaluates post-event strategies to improve the functioning of the system during its future operation.
First, an overview of resilience definitions used across various scientific disciplines is presented,
followed by an in-depth analysis of resilience assessment and quantification for energy systems.
The relevant literature is classified by approach and according to four key functions of resilience:
resist, restabilize, rebuild, and reconfigure. Findings show that irrespective of the research field, a
resilient system always operates with an aim tominimize the potential consequences resulting from a
disruptive event and to efficiently recover from a potential system performance loss.
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1. Introduction

Traditionally, the performance of critical infrastructure
(e.g., power grid, telecommunication or water supply
systems) has been analysed by classical risk assessment
methods for their safe and reliable design and operation
(Linkov et al., 2014). This approach allows responding
adequately to known and credible hazards and threats.
However, more recently it has become apparent that
additional efforts and considerations are needed beyond
the well-established state-of-the-art to ensure efficient
recovery from low-probability high-impact disruptive
events (Panteli & Mancarella, 2015). As a consequence,
increased attention is given worldwide to the resilience
of infrastructure systems, which is considered a key
property to adequately deal with disruptions, i.e., nat-
ural and man-made disasters (i.e., technical, human and
organizational factors and intentional attacks) (Jackson,
2015). This view is strongly supported by the notion that
not all hazards and threats can be averted (Cimellaro,
2016), as major disasters repeatedly demonstrated in the
past decades (Garrick, 2008; Zio & Aven, 2013). Well-
known examples include the September 11 terrorist
attacks in 2001, hurricane Katrina in 2005, the blackouts
in North America (2003) (Andersson et al., 2005), India
(2012) (Tang et al., 2012), and Turkey (2015) (European

Network of Transmission System Operators for
Electricity, 2015), the 2007 cyber-attack on the
Estonian government (Herzog, 2011), the global finan-
cial crisis in 2008 (Taylor, 2009), or the Fukushima
Daiichi nuclear disaster in 2011 (International Atomic
Energy Agency, 2015). These events stress the neces-
sity to be prepared for a disaster and its consequences
and to be able to recover in a reasonable and timely
manner from sudden, unexpected changes that pose
a risk to the proper functioning of critical infrastruc-
tures and associated services upon which modern
society relies. Furthermore, the types of risks are
constantly evolving, and the numbers and value of
assets at stake have dramatically increased over time,
which is why current approaches may no longer be
fully sufficient. Finally, critical infrastructures (i.e.,
infrastructure essential for the functioning of
a society and economy) are becoming more and
more interdependent, increasing their complexity
and criticality (Ouyang, 2014). As a consequence,
a paradigm shift is needed ‘to complement the exist-
ing knowledge-base of risk analysis and management
by further developing frameworks and models
enabling system- and network-wide resilience analysis,
engineering and management’ (Linkov et al., 2014).
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To distinguish between risk and resilience assessment
and management, the former is considered a pre-event
analysis, i.e., risk assessment links hazard identification
with exposure and consequence assessment to provide
a characterization of the potential risk of disruptive events
(Hans Rudolf Heinimann, 2016). This usually results in
preventive measures to minimize the frequency and con-
sequences of disruptions. In contrast, resilience assessment
includes not only the analysis of potential disruptive events
but also post-event analysis (e.g., recovery) covering the
whole life-cycle of a system. Starting from the seminal
work by Holling (1973) that introduced resilience in the
field of ecology, it has been continuously popularized and
applied to socio-technical systems (Folke, 2006; The
Rockefeller Foundation, 2013; Walker et al., 2002).
Despite the application of the concept of resilience in
a large number of fields and at different temporal and
spatial scales, a clear approach to manage resilience is still
lacking (Couzin-Frankel, 2018; Redman, 2014).
Nevertheless, we identified a number of common features,
including critical functions (e.g., services), thresholds,
recovery through interactions across scales (e.g., space
and time), and memory and adaptive management (e.g.,
adjusting response strategies in advance to disruptive
events) (Connelly et al., 2017). In this sense, the common
features are in line with various definitions of resilience
(Hosseini et al., 2016b), resilience functions (e.g., system
functions (Heinimann & Hatfield, 2017)) and their assess-
ment. Consequently, resilience comprises several func-
tions, such as the absorption of a shock, the adaptation to
new conditions and the speed of recovery (Park et al.,
2011). Furthermore, it takes into account the growing
complexity of the systems resulting from increasing con-
nectivity as well as the increase of ambiguous and unex-
pected events (Murray et al., 2013).

Critical infrastructures are often interconnected and
interdependent (Buldyrev et al., 2010; Rinaldi et al., 2001).
The energy system (e.g., infrastructure systems through-
out the energy supply chains) is considered one of the
most complex and important critical infrastructure sys-
tems. It forms the backbone of modern societies by pro-
viding essential services of reliable energy supply, which
facilitates productivity, trade and economic growth.
Disruptions and breakdowns of the energy supply may
cause serious economic damage and affect large segments
of the population (Willis & Loa, 2015). This indicates the
importance of building a more resilient energy system to
better cope with impacts from natural disasters, technical
failures andman-made accidents. To proactively improve
the resilience of energy infrastructure (i.e., infrastructure
used to maintain energy flows), it is key to define it in
such a way that it can be operationalized and subse-
quently analysed using quantitative measures (Chuang

et al., 2018). In the past years, numerous frameworks to
quantify resilience have been proposed (Hosseini et al.,
2016b). Although these studies looked at different types
of infrastructure (e.g., energy systems, transportation,
information and communications technology, commu-
nities, etc.), they can also be considered relevant for
resilience analysis of energy infrastructure with regard
to theoretical and conceptual developments as well as to
specific methodological aspects.

Nevertheless, a systematic overview on resilience assess-
ment specifically for energy systems and related infrastruc-
ture is still missing. For example, there are extensive
reviews addressing the resilience of complex systems
(Fraccascia et al., 2018; Hosseini et al., 2016b; Wang
et al., 2017) in general or urban resilience (Cerѐ et al.,
2017; Rus et al., 2018; Sanchez et al., 2018; Sharifi &
Yamagata, 2016) in particular. In those reviews, the energy
infrastructure is only addressed as one of many sectors.
Consequently, there is a clear need to compare how differ-
ent studies address energy system resilience in
a comprehensive manner. In particular, a review with
focus on selected aspects, and how the various resilience
components are measured and possibly aggregated to
evaluate the resilience of energy infrastructures against
the impacts from different types of hazards and threats is
missing. To this end, we focus on single and rather instan-
taneous disruptive events (i.e., natural disaster, technical
failures or malicious attacks). The inclusion of multiple
successive disruptions (i.e., earthquake aftershocks) as well
as persistent changes of stress on a system (i.e., climate
change) go beyond the scope of this review.

Based on this premise, the purpose andmajor contribu-
tions of this review are threefold. Section 2 presents
a general conceptualization of resilience, including the
description of its components and temporal dimension,
followed by an overview of specific resilience definitions
and applications across various fields. Section 3 compares
selected resilience assessmentmethodologies used to assess
resilience within the wider field of infrastructure manage-
ment, which are also applicable to the energy sector.
Section 4 details the methodology adopted to select and
analyse relevant energy-related resilience studies. Section 5
discusses the studies and employed methods, considering
four resilience functions adopted from (H. R. Heinimann
&Hatfield, 2017): (1) resist, (2) restabilize, (3) rebuild, and
(4) reconfigure. These functions form the core of physical
resilience engineering that focuses on a system’s behaviour
throughout a disruption (H. R. Heinimann & Hatfield,
2017). By applying this resilience framework, the current
state-of-the-art is characterized, and major gaps and
potential research areas for future advancements are iden-
tified. Section 6.produces and analyses a keyword co-
occurrence network.
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2. Resilience definitions and fields of

application

First uses of resilience could be traced to materials
science as early as the nineteenth century (Tredgold,
1818). However, the word itself comes from Latin resi-

lire and means ‘bounce back’ (Alexander, 2013).
A conceptualization of resilience is shown in Figure 1.
It can be seen as a representation of both the amount
and type of ‘draw-down’ and ‘draw-up’ behaviour of
a system, reflecting the temporal effect of an adverse
event it is exposed to. In the case of a system analysis,
the measure (y-axis in Figure 1) is often a representation
of the system performance. The definition of the system
performance itself depends on the service provided by
the system (unit representation of system-specific func-
tion or normalized) as well as, for example, the scope
and type of the analysis.

Modern understanding of resilience is that of
a process that the observed system undergoes in
response to a disruption quantified in terms of
a measure of system performance and its evolution
during the system response time after an event. As we
illustrate in Figure 1, the occurrence of a disruptive
event results in a ‘draw-down’ or loss of the system’s
performance, which is then followed by a bounce back
or ‘draw-up’ phase, reflecting the recovery behaviour of
the system. Both ‘draw-down’ and ‘draw-up’ can have
various shapes, with the former ranging from an
immediate to a rather gradual measure drop (Ayyub,
2013). The use of this kind of ‘swoosh’ shaped resili-
ence curve (involving a possible ‘draw-down’ and
‘draw-up’ shape) provides a conceptually sound repre-
sentation of the various resilience functions of the
system under study that can then be analysed by

means of quantitative performance indicators.
According to the extent of ‘draw-down’ and the sub-
sequent ‘draw-up’, four typical recovery behaviours can
be distinguished (Gasser et al., 2017; Singapore-ETH
Centre, 2015):

● Robust behaviour: the system returns to its
initial state before the disruptive event
(Bruneau et al., 2003)

● Adaptive behaviour: the system compensates the
loss in its performance, and even reaches an
improved state compared to the initial state,
reflecting not just a simple recovery, but
a (partial) reconfiguration (Ayyub, 2013)

● Ductile behaviour: the system comes back to
a certain level, but its functionality is not comple-
tely restored (Decò et al., 2013)

● Collapsing behaviour: the system is not able to
recover and completely loses its functionality
(Nan & Sansavini, 2017)

The resilience curve itself, however, is dependent,
for example, on robust, adaptive or recovery beha-
viours. In addition, these four generic resilience
curve patterns do not represent all the possible
shapes of the resilience curve, but aim to capture
some key outcomes and bounding cases. Hence,
there still may be substantial variation in a specific
case study application for both the steepness and
extent of the ‘draw-down’, and the duration and
level of recovery of the ‘draw-up’. It is also often
argued that the smaller the performance loss (‘draw-
down’) and the faster the bounce back (‘draw-up’)
of a system after a disruption, the higher is its
resilience (Bruneau et al., 2003; Ganin et al.,

Figure 1. Typical understanding of the ‘swoosh’ resilience curve over time, with a reduction (‘draw-down’) and bounce back (‘draw-
up’). The possible outcomes illustrate the different resilience behaviours that the resilience curve can take (modified from
(Singapore-ETH Centre, 2015)).
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2016). For example, robust and adaptive behaviours
are more resilient than ductile or collapsing beha-
viours. It follows that a more resilient system could
be achieved with investments either to avoid per-
formance loss (‘draw-down’) or to boost the bounce
back (‘draw-up’) as, for instance, demonstrated in
Kyriakidis et al. (2018b).

Furthermore, depending on the scope and objec-
tives of a system resilience assessment, it may not
always be appropriate to measure the overall resili-
ence of a system with a single, aggregated system
performance indicator. Instead, a portfolio of indica-
tors is used to shed light onto different phases of the
resilience process and different system behaviours
and assess the resilience of a system by aggregating
different indicators (Gasser et al., 2017; Jovanović
et al., 2016). Another approach is to separate the
supply and demand aspects of the system perfor-
mance and to observe the resilience of a system
(or, more precisely, the lack of resilience) as the
difference between the supply and demand ‘swoosh’
curves (Didier et al., 2017).

As we discussed above in the context of Figure 1,
resilience is a promising concept to achieve a more com-
prehensive understanding of how a system is affected by
a disruptive event and how its recovery takes place over
time. Furthermore, the resilience-focused assessment and
management complements the traditional risk assess-
ment and management by explicitly focusing on the
‘draw-down’ and ‘draw-up’ post-disruption process
(Hans Rudolf Heinimann, 2016).

Due to the recently increased popularity of resilience
in various research disciplines (H. R. Heinimann &
Hatfield, 2017; Hosseini et al., 2016a; McAslan, 2010;
Molyneaux et al., 2016; Norris et al., 2008; Xu &
Kajikawa, 2017), numerous definitions, conceptualiza-
tions, and approaches for quantification have been pro-
posed. Table 1 provides an overview of resilience
definitions in different research fields, their key charac-
teristics, and examples of applications. Following Ayyub
(2013)’s definition of explicit and implicit quality of resi-
lience, we characterize each resilience definition in Table
1 with respect to its explicit quality of resilience, and
provide example(s) of its implicit quality of resilience.
The explicit quality of resilience (i.e., ‘resilience of
what?’) addresses the system under investigation (e.g.,
infrastructure, organism, community, etc.), but does not
explain against which types of events the system should
be resilient (e.g., earthquake, wind storm, etc.). For exam-
ple, the statement that ‘a transportation system should be
resilient’ refers to the infrastructure system as such, but it
does not include information about the disruptive events
to which the system should be resilient. In contrast, the

implicit quality of resilience (i.e., ‘resilience to what?’)
focuses on the event, but it does not explicitly mention
the system that should be resilient to a particular event.
For example, the statement that ‘flood resilience should
be achieved’ just describes the type of event, but not the
systems as such (e.g., natural gas pipeline network). To
give a comprehensive picture, we list in Table 1 examples
of the explicit and implicit qualities of resilience for each
research field, and we also mention possible performance
indicators and published case study examples. Moreover,
some studies give information about both explicit and
implicit characteristics of resilience, such as, for instance,
storm (implicit) resilience of power grids (explicit) (Ji
et al., 2016).

Table 1 clearly demonstrates that the definition of
resilience strongly depends on the research field,
whereas the application area and considered disruption
event type(s) affect the choice of a suitable performance
indicator. On the one hand, a systematic comparison of
the different resilience concepts and applications can
also help to facilitate exchange across research fields
and to avoid potential misunderstandings. On the
other hand, the comparative overview given in Table
1 also suggests that irrespective of the research field
and application, resilience describes a response to
a disruption and the evolution during the response
time with the ultimate goal to minimizing the potential
consequences resulting from a disruptive event.

Finally, the strongly increased general interest in resi-
lience, both within basic and applied research as well as
actual infrastructure management, clearly indicates that
resilience is considered a promising concept to better
understand and improve the performance of complex
and highly inter-connected infrastructures that are indis-
pensable for the functioning of our modern society and
the products and services it depends on. Furthermore,
there is a continuous increase of (1) infrastructure density
per unit of area, (2) the flows of goods, services, informa-
tion and people, (3) the system’s complexity, and (4) the
values at risk. This continues to increase calls for
a methodological approach that in a consistent and com-
prehensive manner can contribute to successfully master
future challenges (H. R. Heinimann & Hatfield, 2017).
We present a review of different resilience assessment
methodologies with a focus on energy systems below.

3. Resilience functions applicable to energy

systems

Energy systems play a central role in modern societies.
Various concepts to describe and assess the resilience of
energy systems emerged among scholars within the wider
field of infrastructure and engineered systems. Resilience
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concepts often consider certain dynamics over time, but
lack general methodologies to operationalize and mea-
sure resilience as such (Häring et al., 2017). For example,
all resilience concepts applicable to energy systems
describe the ‘draw-down’ and ‘draw-up’ phases (resili-
ence curve), but they differ with respect to the extent of
consideration of the pre-event and post-event phases.
The resilience curve is commonly divided into sets of
enabling functions (H. R. Heinimann & Hatfield, 2017;
Jackson & Ferris, 2013), properties (Bruneau et al., 2003),
capacities (Francis & Bekera, 2014; Vugrin et al., 2010) or
abilities (Cutter et al., 2013; Haimes et al., 2008; National
Academy of Sciences, 2012; National Infrastructure
Advisory Council, 2009) along the time axis, generally
referred to as resilience functions in this review to avoid
excessive use of terms. Furthermore, most definitions also
recognize that resilience is not the sum (or average) of the
resilience of its components, which further complicates
its actual measurement and operationalization (Hosseini
et al., 2016b). To capture its full complexity and trans-
form resilience into a measurable concept, many frame-
works suggest to describe and measure the classical
resilience curve using different functions of time as the
basic variable (H. R. Heinimann & Hatfield, 2017).

The diversity of concepts and definitions of resilience
is high. For instance, many national and international
institutions proposed their own definitions as a result of
the calls for public policy improvements considering
critical infrastructure protection (CIPedia, 2018). In this
study, we analysed the peer-reviewed literature on resi-
lience of critical infrastructure considering the systems
behaviour over time and identified the ‘functions’ (i.e.,

describing essential functionalities or behaviour of resili-
ent systems (Heinimann & Hatfield, 2017)) of each resi-
lience assessment method (Figure 2). We select the
resilience functions considered in a recent comprehensive
review by Hosseini et al. (2016b) and we complement it
by those advanced in a timely global workshop on resi-
lience and risk (Linkov & Palma-Oliveira, 2017).

The resilience functions listed in Figure 2 can be
classified according to the phase and the gradient of the
resilience process. While the phases (‘draw-down’; ‘draw-
up’) provide a relatively coarse description of the resili-
ence curve, the gradients (e.g., stable, increasing, and
decreasing) describe more precisely the temporal evolu-
tion of the observed system after a disruptive event. Some
concepts consider the pre-event (ex-ante) phase functions
such as ‘prepare/plan’ (i.e., ‘for hazards and risks’
(National Academy of Sciences, 2012)), ‘avoid’ (i.e., ‘to
eliminate contact between the system and the threat and
to suffer no damage or disruption of functionality from
the threat’ (Jackson & Ferris, 2013)) or ‘anticipate’ (i.e., ‘to
better anticipate risks’ (National Infrastructure Advisory
Council, 2009)). The pre-event phase is widely investi-
gated and well-understood for many systems and resili-
ence research fields using mainly the established risk
assessment and management methods. The same meth-
ods cover, to some extent, the ‘draw-down’ phase of the
resilience process. In contrast, the research is less struc-
tured for the ‘draw-up’ phase, where the existing func-
tions are quite diverse and scattered along the time axis
(see Figure 2). This indicates that there is a need for better
and more comprehensive resilience assessment
approaches.
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Figure 2. Selected resilience functions located along the time (roughly) and system performance axes to indicate where they come
to play in the resilience process. The reddish area represents the ‘draw-down’ phase and the greenish area the ‘draw-up’ phase.
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The extent and severity of a disruptive event represent
the ‘draw-down’ of the resilience curve. It can be assessed
using several resilience functions such as:

● ‘robustness’ (i.e., to withstand a given level of
stress or demand without suffering degradation
or loss of function (Bruneau et al., 2003)),

● ‘withstand’ (i.e., ‘within acceptable degradation
parameters’ (Haimes et al., 2008)),

● ‘absorptive’ and ‘absorb’ (i.e., ‘degree to which
a system can absorb the impacts of system perturba-
tions and minimize consequences with little effort’
(Francis & Bekera, 2014; National Academy of
Sciences, 2012; National Infrastructure Advisory
Council, 2009; Vugrin et al., 2010)),

● ‘survival’ (i.e., ‘survival after the encounter with
a threat’ (Jackson & Ferris, 2013)),

● or ‘resist’ (i.e., ‘critical systems stay within an
acceptable range of functionality’ (Heinimann &
Hatfield, 2017)) behaviour.

These functions represent the ‘draw-down’ of the con-
sidered system with its ability to handle the corre-
sponding event. The lower parts of the resilience
curve, including the lowest point of the ‘draw-down’
are often described using resilience functions such as:

● ‘redundancy’ (i.e., the extent to which elements,
systems, or other units of analysis exist that are
substitutable, meaning that they are capable of
satisfying functional requirements in the event of
disruption, degradation, or loss of functionality
(Bruneau et al., 2003)),

● ‘resourcefulness’ (i.e., the capacity to identify pro-
blems, establish priorities, and mobilize resources
when conditions exist that threaten to disrupt
some element, system, or other unit of analysis
(Bruneau et al., 2003)),

● ‘adaptive/adapt’ (i.e., ‘the ability of a system to
adjust to undesirable situations by undergoing
some change’s (Francis & Bekera, 2014; National
Infrastructure Advisory Council, 2009; Vugrin
et al., 2010)),

● or ‘restabilize’ (i.e., ‘ensures critical system function-
ality survives’ (H. R. Heinimann & Hatfield, 2017)).

Recovery behaviours, in the ‘draw-up’ phase of the resi-
lience curve, are assessed using resilience functions such as:

● ‘recover’ i.e., ‘system to recover quickly- and at
low cost- from potentially disruptive events’
(Haimes et al., 2008; Jackson & Ferris, 2013;

National Academy of Sciences, 2012; National
Infrastructure Advisory Council, 2009),

● ‘rapidity’ (i.e., ‘the capacity to meet priorities and
achieve goals in a timely manner in order to con-
tain losses and avoid future disruption’ (Bruneau
et al., 2003)),

● ‘rebuild’ (i.e., ‘rebuild all the functions and to re-
establish normalcy’ (Heinimann & Hatfield, 2017)),

● ‘reconfigure’ (i.e., ‘adapt and change systemic
properties by introducing or deleting interdepen-
dencies, or introducing or deleting components’
(Heinimann & Hatfield, 2017)),

● and ‘adapt’ (i.e., ‘to new conditions’ (National
Academy of Sciences, 2012)).

Whereas in some cases ‘recover’ is applied to describe
the entire ‘draw-up’ phase, in most cases a more
detailed distinction of resilience functions is used.
Some resilience assessment methods consider ‘adapta-
tion’ before the ‘recovery’ function (i.e., ‘ability of
a system to adjust to undesirable situations by under-
going some changes’ (Francis & Bekera, 2014)) and
others after (i.e., ‘adapt to new conditions’ (The
National Academies of Sciences, 2012) (National
Academy of Sciences, 2012)). This is a result of giving
the same word different meanings. The difference is
that some scholars consider ‘adaptation’ as a push of
the system’s performance to a higher level of perfor-
mance after ‘recovery’ (National Academy of Sciences,
2012), which could also be regarded as the ‘reconfigure’
resilience function. In contrast, other resilience assess-
ment methods consider the ‘adapt’ resilience function
as ‘the ability of a system to adapt to a shock to normal
operating conditions’ (i.e., ‘ability of the grid to adapt
quickly to regional power losses’) (National
Infrastructure Advisory Council, 2009), which could
also be regarded as a ‘restabilization’ function.

We give in Figure 2 various resilience concepts,
including functions, and illustrate that all the given con-
cepts are meaningful and describe in a similar way aspects
of a system experiencing a disruptive event throughout
time. A comprehensive definition of resilience functions,
inspired by biophysical systems and aimed at integrating
the multitude of the above-mentioned resilience func-
tions, was proposed recently (H. R. Heinimann &
Hatfield, 2017). The terms resist, restabilize, rebuild and
reconfigure are used to answer the following questions:

● Resist: ‘What is a system’s ability to withstand
disruptions or resist within acceptable degrada-
tion limits?’ Resist makes sure that the critical
system stays within an acceptable range of
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functionality. It corresponds, for example, to
the elasticity threshold limit in materials
science and is very similar to the concept of
reliability.

● Restabilize: ‘How can we best re-establish key
functionalities or restabilize a system’s behaviour?’
This is about better absorbing disruptions once
a system’s performance is decreasing. Robustness
and absorptivity are related to this function.

● Rebuild: ‘How can we best rebuild a system’s per-
formance up to normalcy?’ After restabilization, the
rebuild function describes the recovery or ability to
come back to a normal state. It comprises the shape
of the recovery curve and recovery speed.

● Reconfigure: ‘How can we best change the bio-
physical architecture/topology of the system to
make it more fault-tolerant?’ This corresponds
to the ability to adapt to new environments/
conditions. A system can be reconfigured to
achieve better performances than before the
disruption.

Those questions, and the corresponding resilience
functions are broadly covering all the important fea-
tures of resilience from a critical energy infrastructure
perspective. Consequently, this review uses these bio-
physical resilience functions to consistently classify and
analyse the compiled set of energy infrastructure resi-
lience studies with respect to how they consider the
resilience curve.

4. Literature screening and assessment

methodology

The literature on resilience assessment of energy systems
is multidisciplinary and covers a broad range of concepts,
approaches, methods and case study applications. As
presented in Section 3, the variety of resilience concepts
results in many resilience functions that are partially
overlapping or used to designate different aspects of the
resilience process. This further complicates a direct com-
parison between studies analysing the resilience of energy
systems. To overcome this obstacle, we adopted the struc-
tured paper selection, assessment and classificationmeth-
odology illustrated in Figure 3.

First, we analysed five recently published review stu-
dies including their references, namely Hosseini et al.
(2016b), Cimellaro (2016), Willis and Loa (2015),
Jackson (2015) and Francis and Bekera (2014). We
assumed that the publications collected from these stu-
dies provide a good starting point for our analysis. In
a second step, we searched Web of Science (Clarivate
Analytics, 2018) and Google Scholar (Google, 2018) for

publications up to December 2018, using specific combi-
nations of keywords. A non-exhaustive list of the key-
words used is: resilience, energy, power network, power
system, electricity, gas, infrastructure, interdependencies,
quantification, risk, complex networks, resist, reliability,
robustness, restabilize, rebuild, recovery, and reconfigur-
ability. Afterwards, we conducted a relevance judgement
and refinement process to remove studies that were not
related to the energy sector. For this purpose, we used
a two-tier approach: (1) solely on the abstract and (2) on
the full paper content. Hence, if after reading the abstract
it was still unclear whether the paper was relevant for the
present study, we based our final decision on the full
paper content. This selection process resulted in a final
set of 100 energy-related resilience studies.

Subsequently, we further assessed and classified each
item. First, it was assigned to one of two assessment
approaches, i.e., qualitative or quantitative. Qualitative
approaches assess resilience without using numerical
values, formulas or models. Quantitative studies were
then further differentiated into semi-quantitative,
deterministic and probabilistic (stochastic) approaches.
Quantitative studies rely on numerical data, employ
mathematical models to describe relationships, or use
indicators measured with interval or ratio
scales. Second, we identified the modelling approach
used (complex networks, agent-based modelling, fuzzy
logic, etc.). Third, for each study, we identified the
resilience functions according to Section 3. (resist,
restabilize, rebuild and reconfigure). These four func-
tions cover resilience comprehensively, i.e., pre- and
post-event phases as well as the ‘draw-down’ and
‘draw-up’ (see Figure 2). Hence, they are useful to
establish a harmonized resilience function classification
of all studies because not all of them employ the same
set of resilience functions. Fourth, we assigned the
disruptive events considered in each study to the fol-
lowing broad categories: natural disasters, technical
failures, malicious attacks, geopolitical or generic dis-
ruptions, etc. Fifth, we identified the system analysed,
such as electric power system (fictive or real case
study), components of the electric power system,
types of power plants, natural gas networks, etc.
Sixth, as most of the energy-related resilience studies
handle either the electric power system or the oil and
gas sector, we categorized each paper into either (1) the
electric power sector, (2) the oil and gas sector, or (3)
other energy-related sectors. Seventh, if the topic of
sustainability was addressed in the paper, we estab-
lished the relations with resilience and analysed how
both concepts were framed.

The complete list of energy-related resilience stu-
dies that was compiled and subsequently categorized
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is shown in Table S1. This list was used to produce
Figure 4 and 5. The results of Figure 4 have been
built using the R’s SuperExactTest package developed
by M. Wang et al. (2015), which is suitable for
statistical testing and visualization of multi-set inter-
sections. This package calculates the frequencies of
each possible intersection and their statistical signifi-
cances in terms of p-values. Compared to the origi-
nal package, which uses a Markov-Chains Monte
Carlo framework for computing the exact statistical
distributions of multi-set intersections, the p-values
are not displayed. In fact, the present dataset con-
sisting of 100 references is too small for the algo-
rithm to converge. To deal with all the possible
intersections in the dataset under interest, we applied
the SuperExactTest function, which is able to deal
with 2m-1 intersections for m sets automatically.
We removed the intersections considering

simultaneously both qualitative and quantitative
assessment approaches from Figure 4. In fact, as
soon as a research article included a quantitative
analysis, it was classified as ‘quantitative’, regardless
if it also included qualitative statements. Hence,
these intersections are empty.

Figure 5 shows the keyword co-occurrence network
made with VOSviewer, an open-source software tool for
constructing and visualizing bibliometric networks (van
Eck & Waltman, 2014). To create such a figure, it is
necessary to download the full record and cited references
of the literature of interest. This can be obtained viaWeb of
Science, where most of the literature cited was found. For
the literature not available onWeb of Science, we extracted
the keywords manually from the Portable Document
Format (PDF) files. Out of the 100 references that consti-
tute this figure, 10 did not have keywords. For each of these
references, we selected 3–5 keywords based on the
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Figure 3. Flowchart of the literature screening methodology used in this review.
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disruptive event, system and sector analysed, the assess-
ment approach considered and the resilience functions
studied (see Table S2). The clusters were calculated
through the modularity function which is based on the
association strength between nodes (for details see
Waltman et al. (2010)). Hence, clustering is an optimiza-
tion problem where the connection strengths between
nodes are maximized. Regarding mapping, it also is an
optimization problem, but it consists in minimizing the
compromise between the connection strength between
nodes and their distance.

5. Energy systems resilience assessment

approaches

Figure 4 summarizes the numbers of each possible inter-
section for the four biophysical functions and two types of
assessment approaches in the final set of studies as
described in Table S1. Among the total number of studies
collected (100), 52 assess the ‘resist’, 77 the ‘restabilize’, 54
the ‘rebuild’ and only 16 the ‘reconfigure’ function. The
cumulated number of intersections is about 1.5 times
higher for the studies addressing the ‘resist’ or ‘restabilize’
functions, compared to those looking at the ‘rebuild’ or
‘reconfigure’ functions. The more frequent consideration
of the ‘resist’ and ‘restabilize’ functions indicates that the
‘draw-down’ (including pre-event) phase is more often
analysed and possibly better understood. In contrast, the
‘rebuild’ and particularly the ‘reconfigure’ functions have
been much less investigated, although they are crucial to
extend risk assessment towards a more comprehensive
resilience assessment. The most frequent combinations of
functions and approaches include ‘restabilize/quantitative’
(71), ‘rebuild/quantitative’ (47), ‘restabilize/rebuild’ (41)
and ‘resist/quantitative’ (40). This confirms that resilience
assessment has to build upon quantifiable measures and
indicators, similar to risk assessment. Furthermore, as the
combination ‘reconfigure/quantitative’ only appears 10
times, the challenge to quantitatively assess the ‘reconfi-
gure’ function of the resilience curve is highlighted.

On the one hand, almost all of the quantitative studies
that analyse the ‘resist’ function (40) simultaneously ana-
lyse the ‘restabilize’ function (32), which shows a close link
between these two functions. In fact, if the system in
question fails to ‘resist’ properly, it tries to ‘restabilize’ the
performance drop. On the other hand, only about half of
the research articles quantifying ‘restabilize’ (71) simulta-
neously quantify ‘resist’ (32). The reason is that many
resilience studies only consider the situation where
a disruptive event leads to a performance drop, without
considering the likelihood of occurrences of such events or
the probability of failure if such an event occurs. Overall, it

can be concluded that ‘resist’ and ‘restabilize’ are com-
monly assessed jointly, but only few studies also include
the ‘rebuild’ and even fewer the ‘reconfigure’ functions.

Finally, 17 studies assess the first three biophysical
functions of the resilience curve together, and only 6
studies analyse all four resilience functions (Forssén
et al., 2017; Gong & Liang, 2017; Kim et al., 2017;
Nan & Sansavini, 2017; Ouyang et al., 2012; Urciuoli
et al., 2014), of which only three used a quantitative
approach. This emphasizes the difficulty to comprehen-
sively quantify resilience, and the need to specifically
focus on the ‘reconfigure’ function.

In the remainder of this section, the two assessment
approaches used with respect to each biophysical function
are discussed in more detail. The motivation is to use the
four functions, whichmakes a comparison between studies
feasible and represents a novel contribution.

Qualitative approaches assess resilience without
using numerical values, formulas or models. They are
especially useful to determine the underlying drivers of
a problem, its causes, critical areas and motivations for
further development. A qualitative assessment can be
the starting point to understand a situation before mov-
ing towards a quantitative analysis. For example, expert
elicitation offers a convenient way to foster discussions
and to identify areas for resilience improvement
(Berkeley III and Wallace, 2010; Forssén et al., 2017;
Gong & Liang, 2017; Labaka et al., 2015; Urciuoli et al.,
2014). Expert elicitation processes are conducted using
well-defined procedures (e.g., SSHAC Guidelines for
seismic hazard assessment of nuclear power plants
(Budnitz et al., 1997)). They can include surveys, inter-
views or workshops. The focus can either be on the
operation of a single critical infrastructure including
responsible operators, managers and regulators only
(Gong & Liang, 2017; Urciuoli et al., 2014), or in
a broader context that requires the participation of
many different stakeholder groups, for example, when
the whole electric power sector is considered (Erker
et al., 2017; Keogh & Cody, 2013). Exercises involving
humans in a real-world setting can reveal the reactions
of people and systems in response to diverse emergency
scenarios, which in turn help developing simple and
efficient emergency procedures that operators should
follow (Furniss et al., 2011; Labaka et al., 2015).
Finally, reviews andmeta-analyses of existing qualitative
studies can also generate new insights and identify
research gaps (Erker et al., 2017; Furniss et al., 2011;
Givens et al., 2018; Keogh & Cody, 2013; McLellan et al.,
2012; McNally et al., 2009; Mu et al., 2011; Park et al.,
2011). Overall, the methodologies used in the energy
sector to conduct qualitative studies are threefold:
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● In-depth interviews: Interviews to elicit knowledge
from experts

● Focus groups: Workshops in which experts dis-
cuss the topic of interest

● Review: Analysis of the available literature, docu-
ments and reports in order to understand the
essence of the studied topic or develop
frameworks

The classification of the energy-related studies into
these methodologies is provided in Table S1.

Quantitative approaches generate numerical data, and
they can be further categorized as semi-quantitative, deter-
ministic and probabilistic approaches. A semi-quantitative
approach is one that relies not only on quantitative indi-
cators (i.e., measured with interval or ratio scales), but
partially also on qualitative indicators (i.e., measured with
ordinal or nominal scales). These qualitative scales can be
comparative scores between alternatives or indicators
quantified through stakeholders’ surveys (Fisher et al.,
2010; McCarthy et al., 2007; Shirali et al., 2012; Thorisson
et al., 2017). Thus, an indicator’s performance is measured
through expert judgement. In this context, fuzzy logic
methods are increasingly applied because they are appro-
priate when data are unavailable or uncertain and they are
powerful in integrating experts’ knowledge in view of
sometimes uncertain subjective judgements (Azadeh
et al., 2014a; Guo et al., 2016). Fuzzy logic allows quantify-
ing indicators and their weights are determined by expert
judgement, resulting in the construction of composite
resilience scores.

Deterministic approaches differ from semi-quantitative
ones in the sense that they do not include nominal or
ordinal scales. They have a single solution for given sets
of inputs and the outcomes are precisely determined. In
contrast, introduction of uncertainties as probabilities
requires probabilistic approaches. Overall, among the 87
quantitative studies, 48 are probabilistic. Many determinis-
tic and probabilisticmethods have been applied to quantify
the resilience curve, including complex networks theory
(Afgan & Cvetinovic, 2013; Akhavein & Fotuhi Firuzabad,
2011; Anghel et al., 2007; Bagchi et al., 2013; Bilal et al.,
2016; Bompard et al., 2010; Carvalho et al., 2014; Cavalieri
et al., 2014; Cimellaro et al., 2012; Cong et al., 2018; Ellison
et al., 2013; Esposito et al., 2013; Fang & Sansavini, 2018;
Hernandez-Fajardo & Dueñas-Osorio, 2013; Hines et al.,
2010; Holmgren, 2007; Kim et al., 2017; Kyriakidis et al.,
2018a; Layton, 2004; Li et al., 2017; 2016; Lustenberger
et al., 2017; Martinez-Anido et al., 2012; Montoya, 2010;
Moslehi & Reddy, 2018; Nadeau, 2007; Nan et al., 2013;
Nezamoddini et al., 2017; Ouyang &Dueñas-Osorio, 2014;
Ouyang et al., 2012, 2009; Panteli et al., 2017; Poljansek
et al., 2010; Rocchetta et al., 2018; Schiel et al., 2017;

Shinozuka et al., 2004; Su et al., 2017, 2018; Veeramany
et al., 2017; Xu et al., 2007), agent-based modelling (Nan
et al., 2013; Nan & Sansavini, 2017; Sun et al., 2015; Vugrin
et al., 2011), input-output models (Anderson et al., 2007;
Baghersad & Zobel, 2015; He et al., 2017; Leung & Hsu,
1984; MacKenzie & Barker, 2012; Cameron A. MacKenzie
et al., 2014; Pant et al., 2014; Reed et al., 2009; Rose et al.,
1997; Sato et al., 2017; Tan, 2011), composite indices not
relying on nominal or ordinal scales (Binder et al., 2017;
Bompard et al., 2017; Gnansounou, 2008;Molyneaux et al.,
2012), computational general equilibriums (A. Rose et al.,
2007), hazard and operability study (Karimi et al., 2016),
high-level architecture (Nan et al., 2013), Bayesian net-
works (Bilal et al., 2016) and statistical models that do
not include any of the previously mentioned methods (N
Afgan & Cvetinovic, 2010; Amirat et al., 2006; Barker &
Baroud, 2014; Beheshtian et al., 2018a; Blume & Sansavini,
2017; Feofilovs & Romagnoli, 2017; Liévanos & Horne,
2017; Cameron A MacKenzie & Barker, 2012;
Morshedlou, 2018; Rose et al., 2012).

The ‘resist’ function of resilience describes the ability of
a system to withstand disturbances with no or only small
fluctuations in its performance. In the case of electric
power systems, suitable performance measures include
the number of people without power (Sun et al., 2015),
the loss of load (Ouyang & Dueñas-Osorio, 2014; Ouyang
et al., 2012), the generation capacity available (Sun et al.,
2015), and reliability indices such as the System Average
Interruption Duration Index (SAIDI) (Layton, 2004). In
the oil and gas sector, the deterministic or probabilistic
flow through the distribution network is a well-established
indicator (Carvalho et al., 2014; Lustenberger et al., 2017;
Nadeau, 2007). More than half of the studies use complex
networks theory to model the studied infrastructure in
order to quantify the ‘resist’ function of resilience
(Akhavein & Fotuhi Firuzabad, 2011; Bilal et al., 2016;
Bompard et al., 2010; Carvalho et al., 2014; Cimellaro
et al., 2012; Cong et al., 2018; Holmgren, 2007; Kim et al.,
2017; Kyriakidis et al., 2018a; Layton, 2004; Li et al., 2017,
2016; Lustenberger et al., 2017; Martinez-Anido et al.,
2012; Nadeau, 2007; Nezamoddini et al., 2017; Ouyang &
Dueñas-Osorio, 2014; Ouyang et al., 2012; Rocchetta et al.,
2018; Shinozuka et al., 2004; Su et al., 2017, 2018;
Veeramany et al., 2017). Generally, energy system net-
works are considered ‘complex’ because of their non-
trivial topological features, and because their elements
(i.e., nodes and links) are neither purely random nor
regular. For these reasons, the complex network approach
is particularly suitable. Other approaches considered are
fuzzy logic (A. Azadeh, et al., 2014a; Bilal et al., 2016; Guo
et al., 2016; Makarov & Moharari, 1999), composite
indexes (Fisher et al., 2010; Gnansounou, 2008;
Molyneaux et al., 2012), agent-based modelling (Nan &
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Sansavini, 2017), hazard and operability studies (Karimi
et al., 2016), multi-attribute utility theory (McCarthy et al.,
2007), economic interdependence models (Bing Li et al.,
2017) and statistical models (Amirat et al., 2006;
Beheshtian et al., 2018a; Feofilovs & Romagnoli, 2017;
S. Rose et al., 2012). It is important to note that the concept
of reliability is widespread in studies assessing the ‘resist’
function of resilience.

Concerning the ‘restabilize’ function of resilience, it
characterizes the ability of a system to re-establish key
functionalities in order to better absorb disruptions once
a system’s performance is decreasing. For energy sys-
tems, central elements include aspects of diversity, fuel
reserves, and control of cascading effects. Diversity
indices are often used because a more diverse energy
supply allows for more flexibility during unforeseen
supply shortages, including short, medium- and long-
term time horizons (Molyneaux et al., 2012), leading to
a better overall resilience performance. In contrast, fuel
reserves are a preferred option to cope with short-term
supply shortages, and thus many countries have mini-
mal local storage requirements (Fisher et al., 2010;
Gnansounou, 2008; Molyneaux et al., 2012; Mu et al.,
2011). While diversity and fuel reserves can usually be
addressed by deterministic approaches, cascading effects
are typically analysed using probabilistic approaches in
combination with complex networks theory for infra-
structure modelling (Anghel et al., 2007; Bagchi et al.,
2013; Cavalieri et al., 2014; Cimellaro et al., 2012;
Esposito et al., 2013; Hernandez-Fajardo & Dueñas-
Osorio, 2013; Hines et al., 2010; Holmgren, 2007; Li
et al., 2017, 2016; Lustenberger et al., 2017;
Nezamoddini et al., 2017; Ouyang & Dueñas-Osorio,
2014; Ouyang et al., 2012, 2009; Panteli et al., 2017;
Poljansek et al., 2010; Schiel et al., 2017; Su et al., 2017;
Veeramany et al., 2017). This combination allows esti-
mating probabilistically if an initial failure will propa-
gate through the entire network, and result in
a collapsing behaviour, which is one of the possible
shapes of the resilience curve (see Figure 1). Therefore,
it is not surprising that all the quantitative studies ana-
lysing cascading failures (14 out of 87) include the
‘restabilize’ function of resilience (Anghel et al., 2007;
Bagchi et al., 2013; Baghersad & Zobel, 2015; Cavalieri
et al., 2014; Hernandez-Fajardo & Dueñas-Osorio, 2013;
Kim et al., 2017; Li et al., 2017; Makarov & Moharari,
1999; Montoya, 2010; Nan et al., 2013; Nan & Sansavini,
2017; Ouyang et al., 2012; Panteli et al., 2017;
Veeramany et al., 2017).

After restabilization, the ability of a system to come
back to its normal state, i.e., the shape of the recovery
curve and recovery speed, represents the ‘rebuilt’ func-
tion of resilience. Studies on this function only emerged

in the context of energy systems’ infrastructure in the
2000s, and their numbers have significantly increased in
the first half of the 2010s (Hosseini et al., 2016b). There
are a number of studies identifying qualitative measures
to improve recovery processes, such as emergency pre-
paredness and protocols (Gong & Liang, 2017; Park
et al., 2011; Urciuoli et al., 2014), availability of skilled
repair personnel and spare parts (Urciuoli et al., 2014),
and system governance (Berkeley & Wallace, 2010). All
these studies involve interviews with experts and opera-
tors of critical infrastructures. Similarly, to the ‘resist’
and ‘restabilize’ functions, the ‘rebuild’ function is also
mainly quantified through complex networks theory
(Naim Afgan & Cvetinovic, 2013; Anghel et al., 2007;
Cimellaro et al., 2012; Esposito et al., 2013; Fang &
Sansavini, 2018; Kim et al., 2017; Kyriakidis et al.,
2018a; Li et al., 2017, 2016; Martinez-Anido et al.,
2012; Montoya, 2010; Moslehi & Reddy, 2018; Ouyang
& Dueñas-Osorio, 2014; Ouyang et al., 2012; Panteli
et al., 2017; Poljansek et al., 2010; Rocchetta et al.,
2018; Shinozuka et al., 2004; Veeramany et al., 2017;
Xu et al., 2007). There, the probability for a system’s
component recovery can be determined stochastically
(Afgan & Cvetinovic, 2013; Anghel et al., 2007;
Cimellaro et al., 2012), based on historical data
(Esposito et al., 2013; Kim et al., 2017; Martinez-Anido
et al., 2012; Montoya, 2010; Panteli et al., 2017; Shen &
Tang, 2015) or resulting from analytical frameworks
(Hughes et al., 2016; Poljansek et al., 2010) (Montoya,
2010). Some studies also use complex networks to com-
pare different recovery strategies (Anghel et al., 2007;
Cimellaro et al., 2012; Fang & Sansavini, 2018;
Kyriakidis et al., 2018a; Moslehi & Reddy, 2018;
Ouyang & Dueñas-Osorio, 2014; Panteli et al., 2017;
Veeramany et al., 2017; Xu et al., 2007). For example,
in a network, it could represent different sequences in
which nodes and links are being repaired (Kyriakidis
et al., 2018a). Another particularly suitable and powerful
method is agent-based modelling because it simulates
the (inter-)actions of autonomous agents (Nan &
Sansavini, 2017; Sun et al., 2015; Vugrin et al., 2011).
For example, parameters, such as the speed of travel and
the repair success rate, can be assigned to the agents.
Finally, some studies directly try to approximate the
recovery process of the resilience curve through case
studies (Afgan & Veziroglu, 2012; Francis & Bekera,
2014; Rochas et al., 2015; Shen & Tang, 2015). The
recovery times and costs are either based on assump-
tions (Francis & Bekera, 2014; Rochas et al., 2015) or
historical data (Afgan & Veziroglu, 2012; Shen & Tang,
2015). These quantitative recovery studies indicate also
the scarcity of historical recovery data describing recov-
ery time and/or recovery costs.
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Finally, the ‘reconfigure’ function of resilience is
about the topology of a system in order to make it
more fault-tolerant. The aim is that after reconfigura-
tion, resilience towards future disruptions is increased.
The ‘reconfigure’ function is the most difficult one to
assess, which is also reflected by the fact that about half
of the studies considering reconfigurability are qualita-
tive or semi-quantitative (Forssén et al., 2017; Furniss
et al., 2011; Gong & Liang, 2017; Labaka et al., 2015;
Park et al., 2011; Shirali et al., 2012; Urciuoli et al.,
2014). On the one hand, these studies discuss the risks
along energy supply chains, and possibilities to redirect
the related supply routes (Urciuoli et al., 2014). On the
other hand, they evaluate aspects of organizational
resilience within a plant or facility (Furniss et al.,
2011; Gong & Liang, 2017; Labaka et al., 2015; Shirali
et al., 2012). Available quantitative studies use again
complex network theory to compare different network
topologies (Anghel et al., 2007; Ellison et al., 2013;
Hines et al., 2010; Kim et al., 2017; Nan et al., 2013;
Ouyang et al., 2012), and to analyse the effects of
randomly removed links or nodes on the flows
(Anghel et al., 2007; Hines et al., 2010; Kim et al.,
2017). The idea is to reconfigure the network’s topol-
ogy to increase its performance. As for the rebuild
function, agent-based modelling is a useful and prac-
tical method to model human performances for the
‘reconfigure’ function (Nan et al., 2013; Nan &
Sansavini, 2017).

Based on these 100 studies, similarities between the
concepts of sustainability and resilience emerge. There
exist four general perspectives about how the two can be
related. First, sustainability defined as ‘the ability to . . .
maintain[] [an objective or system] at a certain rate or
level’ (Oxford Dictionaries, 2018b) is indeed closely
related to resilience. In fact, according to this definition,
sustainability could actually also be visualized through
the same ‘swoosh’ resilience curve (cf. Figure 1). For
example, the larger the disruption, the less sustainable
the system becomes, exactly as for resilience (Marchese
et al., 2017). In this sense, sustainability and resilience can
be used interchangeably. Second, as stated previously,
many resilience studies particularly emphasize the post-
event strategies, which correspond to the ‘rebuild’ and
‘reconfigure’ biophysical functions. On the contrary, sus-
tainability could rather be seen as representing the two
first functions of resilience (‘resist’ and ‘restabilize’). In
fact, if an event leads to a performance drop, then the
system was not able to maintain a certain performance
level indicating that it is unsustainable. This view inte-
grates sustainability into the broader concept of resili-
ence. Third, some studies provide an opposite
perspective, where resilience is a component of the

concept of sustainability (Marchese et al., 2017). Fiksel
(2003) argues that including a resilience perspective
aimed at coping with external impacts, i.e., beyond the
boundaries that one controls, enables to become more
sustainable (Fiksel, 2006). Furthermore, Moslehi and
Reddy (2018) state that ‘improving infrastructure systems
resilience . . . [is] a crucial attribute of sustainable sys-
tems’. In the same line of thoughts, Givens et al. (2018)
and (Summers et al., 2017) see resilience towards change
as being part of broader sustainability aims. Following
such frameworks, resilience can be one among several
dimensions of sustainability. Fourth, there are
approaches, which account for sustainability on the one
hand and resilience on the other. For example, sustain-
ability is assessing the impact on the infrastructure and its
service states under normal operational conditions,
whereas resilience assesses the impact after exceptional
events (Paolo Bocchini et al., 2013). Therefore, they
should be combined into a global impact assessment by
weighting with the probabilities of occurrence of the
events. Similarly, McLellan et al. (2012) argues that sus-
tainability considers normal operations and resilience
unusual conditions. Furthermore, in the Enhanced
Energy Trilemma framework, sustainability represents
one dimension and resilience is a component of another
dimension on energy security (Pliousis et al., 2019). This
shows that resilience and sustainability can be viewed as
complementary.

As these four views are divergent, it is of utmost
importance to define what is meant by sustainability
or resilience when they are used in a study.
Furthermore, sustainability usually considers long-
term effects and persistent pressures on a system
under normal operating conditions, whereas resili-
ence tends to describe short-term and immediate
disruptions, although long-term aspects have been
recently proposed, e.g., for transport infrastructure
(Beheshtian et al., 2018b). Extending on this, the
concept ‘sustainable resilience’ came to prominence
(Gillespie-Marthaler et al., 2018). It represents the
ability to maintain desired levels of system perfor-
mance by adapting in response to expected and
unexpected events over time. Therefore, sustainable
resilience considers all kinds of disturbances in
a long-term view (Sanchez et al., 2017, 2016).

Regarding indicator-based approaches, Afgan and
Veziroglu (2012) defined the sustainability index as
the weighted linear aggregation of indicators represent-
ing the concept to be measured. The resilience index is
the integral over time of the sustainability index, which
represents the ‘swoosh’ curve. Hence, sustainability is
measured for single time steps, whereas resilience is the
aggregated measure over time.
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While sustainability is usually divided into three
pillars (environmental, social and economic)
(Drexhage & Murphy, 2010), resilience does not
have such a distinct and broadly accepted categoriza-
tion yet. Nonetheless, most of the resilience studies
touch at least one of the three sustainability pillars.
In the present set of 100 studies, 20 investigate
aspects related to the environmental pillar of sustain-
ability (Berkeley & Wallace, 2010; Binder et al., 2017;
Erker et al., 2017; Forssén et al., 2017; Francis &
Bekera, 2014; Givens et al., 2018; Gnansounou,
2008; Harto et al., 2012; Hughes et al., 2016;
Karimi et al., 2016; Liévanos & Horne, 2017;
McCarthy et al., 2007; McLellan et al., 2012;
McNally et al., 2009; Molyneaux et al., 2012; Mu
et al., 2011; Poljansek et al., 2010; Thorisson et al.,
2017; Urciuoli et al., 2014) and 18 to the social pillar
(Azadeh et al., 2014b; Berkeley & Wallace, 2010;
Binder et al., 2017; Erker et al., 2017; Forssén et al.,
2017; Francis & Bekera, 2014; Givens et al., 2018;
Gong & Liang, 2017; Labaka et al., 2015; Li et al.,
2016; Liévanos & Horne, 2017; McCarthy et al., 2007;
McLellan et al., 2012; McNally et al., 2009; Mu et al.,
2011; Ouyang & Dueñas-Osorio, 2014; Poljansek
et al., 2010; Thorisson et al., 2017). The economic
pillar is the most commonly examined one with 42
related studies (N Afgan & Cvetinovic, 2010;
Anderson et al., 2007; Anghel et al., 2007;
Baghersad & Zobel, 2015; Berkeley & Wallace, 2010;
Bompard et al., 2017; Carvalho et al., 2014; Cimellaro
et al., 2012; Erker et al., 2017; Esposito et al., 2013;
Feofilovs & Romagnoli, 2017; Forssén et al., 2017;
Francis & Bekera, 2014; Givens et al., 2018; Hauser
et al., 2017; He et al., 2017; Hughes et al., 2016;
Keogh & Cody, 2013; Leung & Hsu, 1984; Li et al.,
2017, 2016; Liévanos & Horne, 2017; MacKenzie &
Barker, 2012; MacKenzie et al., 2014; McCarthy
et al., 2007; McLellan et al., 2012; McNally et al.,
2009; Montoya, 2010; Moslehi & Reddy, 2018; Mu
et al., 2011; Nadeau, 2007; Nezamoddini et al., 2017;
Ouyang & Dueñas-Osorio, 2014; Ouyang et al., 2012,
2009; Rochas et al., 2015; Rose et al., 1997, 2007;
Thorisson et al., 2017; Tsang et al., 2002; Urciuoli
et al., 2014; Vugrin et al., 2011). This is due to the
fact that monetary losses are easier to quantify com-
pared to social or environmental consequences, espe-
cially in the short term. Therefore, the general
approach consists in quantifying the costs of imple-
menting resilience-enhancing strategies versus the
resilience gains due to less likely and less costly
disruptions. This assumes that there exists a single
optimal point between the investment costs and the
resilience gains obtained (Li et al., 2016).

6. Clusters in energy systems resilience

research

In Section 5, we categorized and analysed the compiled
set of energy system studies according to the consid-
ered resilience functions and assessment approaches. In
this section, we analyse the same selection of studies
with respect to potential relationships, based on the
keywords provided in each study.

Figure 5 shows the keyword co-occurrence network
for the 100 energy system resilience studies analysed. In
parenthesis, the keywords’ number of occurrences and
categorization are given. There are five categories: (i)
‘modelling approach’ used (e.g., complex networks,
input-output model), (ii) ‘function’ as it relates to resi-
lience functions (e.g., recovery, reliability, adaptive
capacity), (iii) ‘disruptive event’ (e.g., hurricanes, earth-
quake), (iv) ‘system analysed’ (e.g., power grids), and
(v) ‘concepts’ that define general terms (e.g., sustain-
ability, security). The colours of the nodes correspond
to the cluster membership of the respective keywords
and keyword combinations. It should be noted that
resilience, as the most common keyword, was not
considered because all the studies are related to this
keyword. Only the keywords cited at least 3 times are
shown. In fact, showing keywords with fewer occur-
rences does not allow identifying trends. Furthermore,
setting the threshold higher than 3 occurrences would
have resulted in too few keywords appearing in the
figure. Hence, the trade-off of at least 3 occurrences
has been considered the most appropriate.

In total, the 100 studies have a cumulative number
of 520 keywords. The most common keywords are
‘systems’ (14 occurrences), ‘vulnerability’ and ‘critical
infrastructure’ (12 occurrences each), ‘model’ (11
occurrences), ‘framework’ and ‘security’ (10 occur-
rences each), ‘reliability’ (9 occurrences), ‘complex net-
works’ and ‘networks’ (8 occurrences each), and ‘risk’
and ‘infrastructure systems’ (7 occurrences each). This
confirms that the two resilience functions of ‘resist’
characterized through ‘reliability’, and ‘restabilize’
characterized through ‘vulnerability’, are the most stu-
died ones, supporting the findings of Section 5. It is
interesting to note that vulnerability (i.e., the risk and
the degree that the system can be affected (Aven et al.,
2015)) is not expressed as function of resilience (see
Figure 2), since it could cover many aspects of the
resilience curve (Zio, 2016). According to the given
definition, however, it emerges that vulnerability
would be rather assigned to the ‘draw-down’ phase of
the resilience curve. Furthermore, the keywords ‘sys-
tems’, ‘complex networks’ and ‘networks’ illustrate the
topological aspects of energy systems. Finally, the

288 P. GASSER ET AL.



frequent occurrences of ‘framework’ and ‘model’ reaf-
firms the attempts to define, conceptualize and quanti-
tatively measure resilience. Regarding methodological
approaches, ‘complex networks’ theory (8 occurrences)
is most often mentioned, followed by ‘input-output
model’ (5 occurrences), which shows the popularity of
these approaches. The sectors mostly studied are the
electric power grid (4 occurrences each for ‘power
grids’ and ‘electric power system’), followed by the
natural gas system (4 occurrences for ‘natural gas’).
The most frequent natural hazard analysed is earth-
quakes (3 occurrences), with ‘seismic resilience’ (5
occurrences), due to its potentially high destructive
impact on civil infrastructure.

Based on a maximization of the association strengths
between keywords calculated through the modularity
function (Waltman et al., 2010), keyword clusters can
be identified (see the electronic supplementary informa-
tion for further details about the methodology). Figure 5
and Table 2 present the 6 clusters calculated by
VOSviewer (van Eck &Waltman, 2014). The first cluster
is a broad one that focuses on the resilience of the
interdependent infrastructure systems and networks of
communities towards natural hazards. The second clus-
ter is about energy security risk management of coun-
tries’ critical infrastructures. A popular modelling
approach to do so is input-output models.
Furthermore, climate-change, sustainability and ecolo-
gical resilience are assigned to the third cluster. Complex
networks theory is used in the fourth cluster to perform
risk assessment, quantify restoration and analyse the
adaptive capacity of highly topological systems such as
the electric power system and the natural gas system.
The fifth cluster covers modelling disruptions and creat-
ing frameworks for assessing infrastructure systems resi-
lience. Finally, the sixth cluster measures the reliability
and demand response with respect to cascading failures
of power grids.

7. Conclusions and outlook

The increasing number of publications related to resi-
lience reflects the broad consensus aimed at designing
resilient infrastructures, which are essential for the
functioning of our society (Hosseini et al., 2016b). As
a consequence, a plethora of resilience definitions and
frameworks have been proposed in different disciplines
and applied in a variety of case studies worldwide.
Based on the well-known and widely adopted ‘swoosh’
resilience curve concept, the two main facets of resi-
lience can be combined, i.e., the amount and type of
‘draw-down’ and ‘draw-up’ behaviour. Therefore, irre-
spective of the research field, resilience assessment

always aims to minimize the potential consequences
resulting from a disruptive event and to efficiently
recover from a potential system performance loss.
Additionally, the resilience curve can be further
divided into different segments, representing specific
resilience functions. It is important to consider func-
tions along the time axis involving both disruptive and
recovery components to describe the resilience curve to
its full extent. Furthermore, most of the studies con-
sider that the performance level after recovery from
a disruptive event is the same as before the event,
assuming a robust behaviour. However, resilience is
also about improving a system’s performance (adaptive
behaviour) due to, for example, learning processes or
synergies during reconstruction. Additionally, systems
might not always fully recover and enter partially func-
tioning states (ductile behaviour) or, in the worst case,
even collapse (collapsing behaviour). Finally, the scope
and objectives of a resilience study should be defined
by describing specific characteristics relating to the
event and the system under study, i.e., implicit (the
event) and explicit (the system) factors, respectively.
For example, resilience of a community (system)
against seismic hazard (event), resilience of the electric
power grid (system) against hurricanes (event) or resi-
lience of the natural gas network (system) against
intentional attacks (event), etc.

The findings about resilience in general presented in
the previous paragraph are also valid for the energy
sector, which is a critical infrastructure in the majority
of countries since it is of crucial importance for the well
functioning of society. This review indicates that the
considerable amount of resilience research and case
studies carried out in the energy sector have produced
many important insights and achievements, in particular
for the electric power or natural gas grids, which are
both complex networks with a distinct topology.
Network dynamics are often studied using complex net-
works theory because it allows highlighting important
topological aspects. Two other promising approaches are
agent-based modelling to model the (inter-)actions of
autonomous agents (managers, operators, regulators,
etc.), and indicator-based approaches to model multi-
dimensional problems. Almost all of the selected studies
consider components related to reliability, vulnerability
or robustness, indicating that the two resilience func-
tions of ‘resist’ and ‘restabilize’ are much more devel-
oped than ‘rebuild’ and ‘reconfigure’. This is likely due
to a more pronounced lack of awareness for the func-
tions attributable to the ‘draw-up’ phase of resilience.
Additionally, quantitative data for recovery processes
and the ability to reconfigure a system are often not
publicly available or simply missing.
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7.1. Outlook and future research directions

Although the quantification of disaster recovery pro-
cesses in certain fields (e.g., construction management,
roads and railroads) has been investigated for decades,
only few studies have attempted to comprehensively
quantify them for natural disasters (e.g., earthquakes).
Three promising approaches are competing, namely (1)
model fitting using empirical data, (2) development of
theoretical models that do not rely on empirical data,
and (3) evaluation of suitable recovery strategies. For
example, recovery strategies can represent different
recovery sequences of network elements, as well as
their recovery probabilities. Considering the limited
availability of quantitative information describing the
reconfigure function of energy system resilience, it is
not surprising that this function is the least studied.
Therefore, future research should clearly focus on the
quantification of recovery processes (including the col-
lection and sharing of data and information) that mini-
mize performance losses and/or reinforce the ‘draw-up’
phase. For example, the ability to reroute supply chains
and energy flows affects (1) the ability to incorporate
technical change and innovation, (2) the diversity of the
energy system under consideration, and (3) the ability to
adapt to new operating conditions. Furthermore, robust
resilience assessment of large-scale systems, e.g., on
national levels, should include not only technical ele-
ments but also organizational, geopolitical and manage-
rial measures (Gasser et al., 2017). Ultimately, our
infrastructures are complex, socio-technical systems,
which is why a comprehensive resilience assessment
should not just evaluate the biophysical functions, but
also consider enabling and cognitive functions. These
functions deal with staying aware, remembering and
learning from past disruptions, and being able to cope
with them (H. R. Heinimann & Hatfield, 2017). Last but
not least, there are attempts to standardize resilience
engineering and implement it into practice on different
levels (such as international standards for the industry
(International Organization for Standardization, 2017)
and governmental institutions (Fraunhofer Institute,
2018; Jovanović et al., 2016; UN General Assembly,
2015)), but there is a clear need for intensified coopera-
tion between operators, authorities, and researchers to
ensure that resilience assessment is operationalized
according to current state-of-the-art methodological
developments. This will also allow for more realistic
scenarios in emergency preparedness exercises, and
enable better simulations of disruptive events and their
potential large-scale consequences and cascading effects
on other critical infrastructure and the communities
they underpin (Sircar et al., 2013).

Article highlights

● All resilience approaches have the ultimate goal of mini-
mizing adverse consequences

● Resilience assessment includes functions covering the
draw-down and draw-up phases

● Abilities to resist/restabilize are better understood than
recovery/reconfigurability

● Modelling the topology of energy systems with complex
network approaches is promising

● Indicator-based approaches are suitable to reflect the
behaviour of complex systems
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