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Abstract

This review paper aims to look at silicon-based ceramic matrix composites and infiltration-based approaches for them. There
are many different types of infiltration-based manufacturing processes, each with its own set of features. The best technique
is chosen depending on the needs and desired attributes. With these considerations in mind, any type of infiltration might be
selected to meet the requirements. Silicon-based ceramics has been highly used in the fields of aerospace, medical, automo-
bile, electronics, and other various industries so it is important to study about their applications as well. This review outlines
the evolution of composites from early 7000 BCE to composites today and discussed about various infiltration techniques
for manufacturing silicon based ceramic matrix composites. This article also gives the comprehensive review of general
characteristics and mechanical properties of silicon-based composites used in a variety of engineering sectors. The applica-
tion section entails the wide range of engineering fields with consideration of infiltration techniques, which would be helpful
for researchers to study and correlate the different infiltration techniques for end applications.

Keywords Ceramic composites - Silicon carbide - Silicon nitride - Silicon dioxide - Infiltration techniques - Engineering

applications

1 Introduction

Silicon-based ceramics are specifically attractive compo-
nents due to their diverse optic and electro-optic, magnetic,
thermal, mechanical, and electrical properties. The most
commonly preferred Si-based ceramics such as silicon
carbide (SiC), silicon nitride (Si;N,), and silicon dioxide
(Si0,), have a broad range of applications in various fields
like chemical industries, aluminium processing, fossil fuel
extraction, and manufacturing of solar panel, due to its
combined special properties and applications. This Silicon-
based ceramics and composites are excellent candidates for
structural components in heat engines and heat exchangers.
Possibilities of common applications from a wide variety
of industries are considered for each material type, while
the property characteristic is taken into consideration [1, 2].
The SiC fiber-reinforced SiC matrix (SiC¢/SiC) composite
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has been widely employed in high-velocity and high-tem-
perature applications such as nozzles, rocket engines, aero-
space applications, braking discs, nuclear reactors, and the
semiconductor industry. Thermodynamic stability, creep
resistance, low density, notable wear resistance, oxidation,
corrosion resistance and exceptional damage tolerance under
difficult conditions are all advantages of SiC¢/SiC compos-
ites over typical metallic alloys and monolithic ceramics [3,
4]. A multitude of processes is utilized to make SiC ceram-
ics, depending on the production cost, size, and shape. Hot
pressing, Chemical Vapor Infiltration (CVI), Chemical
Liquid—Vapor Deposition (CLVD), Liquid Silicon Infiltra-
tion (LSI), and Polymer Infiltration and Pyrolysis (PIP) are
examples of these techniques [5-7].

Ceramic Matrix Composites (CMCs) have become a
more essential and cost-effective material in recent years.
The name "ceramics" refers to a diverse group of mate-
rials, each with its own set of characteristics. Clay ware,
pottery, and refractories are examples of traditional ceram-
ics. Most materials based on Magnesia (MgO), Alumina
(AL,03) and SiO, belong to the oxide group of ceramics
[8]. Low electrical conductivity, low thermal conductiv-
ity, and chemical inertness are only a few of the benefits of
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ceramics. Ceramic’s mechanical qualities are determined by
their macroscopic and atomic physical structures. Ceramics
have a wide range of qualities, ranging from isotropic and
dense glasses to bricks with a mixture of crystalline glassy
phases, pores, and fissures [9]. CMCs find their application
in important industries such as aerospace, energy, and auto-
mobiles. CMCs are a promising future solution in industrial
sectors; for example, in the aerospace sector, they have been
used as a substitute for nickel alloys due to their superior
heat resistance and reduced weight. Electric vehicles have
grown in popularity as part of sustainable development, so
in order to make electric vehicles more successful, research-
ers and scientists say that reducing weight can increase run
time, for which CMCs are an excellent substitute. CMCs
made of Al,O; and zirconia is used in biomedical applica-
tions such as orthopaedic device ball heads, finger joints,
hip prostheses, and dental restorative materials. They also
have a lot of potential in the medical field. CMCs can be
used to make printed circuit boards in the electronics sector
that require high heat resistance. CMCs for power turbines
are used in industrial applications to assist reduce pollution
and electricity consumption. Figure 1 outlines the evolu-
tion of composites from early 7000 BCE to the present-day
composites have become inevitable in our day-to-day life.
Non-oxide ceramics including SiC and oxide ceramics
including SiO, and Al,O; are preferably used [10-12].
Due to their mechanical endurance at severe temperatures,
non-oxide ceramic composites, particularly SiC-based
CMC s like Carbon reinforced SiC (C/SiC) is very popu-
lar [13]. Several researchers have used Raman Spectros-
copy or micro-hardness tests to investigate thermal expan-
sion and processing temperature differences [14-17]. In
ceramic structures, there are substantial levels of tensile or

Fig. 1 Graphical representa-
tion of evolution of composite
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compressive residual stresses in a wide range of ceramic
composites. Furthermore, due to features such as hardness,
brittleness, orthotropy, mechanical and thermal behaviour,
and the heterogeneous nature of CMCs, the machinabil-
ity of ceramic composites is difficult. They are known for
their high-temperature applications and excellent hard-
ness. Hardness refers to a material’s mechanical qualities.
High mechanical and thermal cutting loads are produced
by hard materials. Harder materials like SiC are frequently
employed as a matrix and reinforcement in CMCs. Thus,
CMCs tend to have high hardness with lower values of
fracture toughness, which indicates the brittle nature of
CMCs. However, the hardness and fracture toughness
should be utilized simultaneously to compare the impor-
tance of these parameters in different materials. Figure 2
entails the conceptual representation of CMCs and its
properties.

A most important property of ceramics is brittleness,
this hampers the application of ceramics under conditions
of shock or load [18]. The nature of bonding of the continu-
ous fibers along with the matrix determines the brittleness
in ceramics leading to its failure [19]. Creep generation is
too high in unexpected loading in oxide ceramics. In glass
ceramics, the orientation of the fibers dictates the fracture
and the rate of crack growth within the composite. Defect
of the composite easily occurs at the interphase of the mate-
rial. When the stress is applied in the direction of the fiber,
these micro-cracks spread in the direction perpendicular to
the fiber, introducing brittleness to the fibers and rendering
the CMCs prone to failure [20]. Each phase of the composite
has its failure properties influencing the failure of the mate-
rial [21]. The structure of the review paper is organized as
follows:

« 7000 BCE - Air Bricks were used

» 3500 BCE - Creation of plywood's

* 1768 BCE - Mongolis combined wood, bone, silk and animal glue
compressed to form their bows

e 1500 BCE - Development of bricks by ancient egyptians

* 1800 - First resin made from wood pulp known as “shellac”

e 1870-1890 - Man made synthetic resins are invented

e Early 1900 - Curing properties of unsaturated synthetic resins lead to
early plastics

* At 1900 - Plastics were invented by synthetic resins such as
polystyrene, polyester and vinyl

» 1935-1950 - GFRP was invented

* 1946 - First boat hull reinforced with fiberglass composites

» 1948 - Fiber glass were used in pipes for corrosion resistance oil industry
* 1960-1970 - CCS, PMC, MMC, CMC and Kevlar was invented

)
J

» Today composite materials are used in department of defence to medical
supplies and prosthetics, automotive, aerospace fields, firearms, vehicles
and aircraft.

e Light weight technology will use composite materials for medical field
and sport safety
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Fig.2 Conceptual representa-
tion of CMCs and its properties
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e The silicon-based ceramic composites are described in
the first part. The behaviour of silicon-based composites
such as SiC, Si;N, and SiO, is reviewed, as well as the
mechanical properties and their numerous domains of
applications are also explored.

¢ The next section discusses the different infiltration tech-
niques that are used to fabricate Silicon-based CMC:s.
This section briefly discusses the general aims, schematic
illustrations, and scopes of this infiltration method for
researchers. The significant effect of PIP process and
the role of fillers in pyrolysis, as well as the CVI pro-
cess, which is derived directly from the Chemical Vapor
Deposition (CVD) process and the importance of CVI
in manufacturing high purity composites, Reactive Melt
Infiltration (RMI) used to manufacture gas turbine parts,
Sol—gel infiltration, and Slurry Infiltration (SI) are briefly
discussed. The overview of several infiltration techniques
is discussed, including the specific purpose, preferable
ceramics, preferable reinforcements and matrices, ben-
efits and drawbacks with its inferences.

e The possibilities of Silicon-based composites in automo-
biles, aircraft, medical, industrial, military, and electron-
ics are briefly reviewed in the next part, which includes
schematic illustrations coupled with several sectors of
applications for infiltration and combined infiltration
processes.

e Furthermore, the future need for SiC-based composites
in many industries is examined, as well as their use in the
biomedical field, where they are employed in the devel-
opment of biomedical devices that may be implanted into
any part of the body. CMCs revenue share % and future
research potentials are also mentioned.

2 Silicon-Based Ceramic Composites

Silicon-based materials are known for their high-temperature
applications usually noticed in aerospace and automotive
applications [5]. SiC, SiO, and Si;N, form the most popular

SiC, AL,O;, C, ZrB,

temperatures

Matrices:

matrix choice for silicon-based ceramic composites because
of their high strength and high-temperature properties often
used in the form of the preform, although these materials are
used as matrices and they are also used as reinforcements
in the form of whiskers, long fibers, particles, etc., some of
these materials are further reviewed below [22].

2.1 Silicon Carbide

This popular non-oxide ceramic has long been acting as both
matrix and reinforcement, usually finding its applications
in silicon-based CMCs such as turbine disks, turbopump
rotors, nozzle exit ramps for rockets engines, pistons, bear-
ings, etc., [23, 24]. The behavior of SiC as a reinforcement
in the form of fiber is observed when bonded with Lithium
Alumino-silicate (LAS). The LAS-SiC ceramic compos-
ite demonstrated properties of high strength and excellent
toughness at 1000°C with good elevated creep resistance but
the properties of reinforcement highly depend upon the ply
orientation of the SiC fiber in correspondence to the matrix
[25]. The development of CMCs automotive power-train
components was attained with superior mechanical proper-
ties including good thermal shock resistance and particle
impact resistance. Different testing methods are performed
to know about the characteristic evolution of the CMCs. For
the ceramic gas turbine engine components, the backplate
made of Carbon fiber-reinforced SiC (C;/SiC) and Sialon
(SiAlON), the orifice liner and inner scroll support are
manufactured using C¢/SiC and SiC reinforced with SiN-C
composites which withstood high-temperature tests capable
of withstanding above 1200 °C [26]. Figure 3 shows the
various fields of applications for SiC ceramic composites.
SiC ceramics materials are hard to machine, the machinabil-
ity properties of SiC can be improved when reinforced with
C;, the properties were analyzed by comparing both SiC and
C/SiC when subjected to grinding forces hence demonstrat-
ing that C/SiC required much lesser forces than SiC. The C;
reinforcements when combined with SiC have also improved
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Light Weight Material

o Silicon carbide has an average density on the order of
3g/cm®which makes it relatively light in weight. Used in
mostly bullet-proofs, clutches etc....

(. Capable of sublimation

17 the liquid form and goes directly to a gaseous form. This

means that it turns into a vapor instead of melting.

.

y’?"‘“j « When temperatures are sufficiently high enough, SiC skips

<> Vital to Electronics

o Fibers of SiC can be added to a polymer matrix to form a
composite material, and large, individual crystals of silicone
can be grown for use in semiconductor applications such as
LED’s, junction gates, transistors etc....

Fig. 3 Fields of applications of SiC-based ceramic composites

& enhanced the surface finish, resistance to brittleness and
have made SiC easier to machine [24, 27-29].

2.2 Silicon Nitride

This Si;N, is intriguing CMCs with a small market. Com-
ponent costs and process unpredictability are the main road-
blocks to commercialization [30]. To assist densify SizN,
ceramics and enhance phase change, gas pressure sintering
or hot pressing is necessary [31]. While manufactured by
pressure less sintering, ceramics like Si;N,-Barium Alu-
mino-silicate (Si;N,-BAS) display good mechanical charac-
teristics. During cooling, the BAS matrix within crystallizes
into a hexagonal phase, which offers excellent high-tempera-
ture characteristics. However, to reach practical application,
more toughness development is required [32, 33]. Several
attempts have been undertaken in recent decades to improve
the microstructure of Si;N, to increase its toughness. Si;N,
ceramics are composed of elongated f- Si;N, grains in a
fine-grained matrix with amorphous or partially crystalline
grain boundary phases. The elongated grains, like whiskers,
work to strengthen the matrix and increase the ceramic’s
fracture resistance by activating crack wake toughening
mechanisms. The fracture toughness of Si;N, grains at room
temperature is determined by their size and shape, as long as
an intergranular fracture mode is provided by a weak inter-
face between Si;N, and the grain boundary phase. Fracture
resistance increases with crack extension in coarse-grained
microstructures. Along with sintering processes, additional
common toughening mechanisms were fracture bridging,
crack deflection, and pull-out. Varied sintering techniques
were utilized with different sintering profiles, resulting in
different mechanical characteristics of Si;N, [34—44]. Fig-
ure 4 shows the fields of applications for Si;N, ceramic
composites. As Si;N, lacks toughness, many efforts have
been made to improve it like self-reinforcement and incor-
poration of particles and whiskers [45-47]. SiC whiskers
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Making of Engine Parts

 Used to make important parts of reciprocating engines such
as turbochargers, glow plugs, pre-combustion chambers,
rocker arm etc....

Making of Bearings

» Used to make various types of bearings such as ceramic
bearings, high temperature unlubricated roller and ball
bearings etc....

y Making of Industrial Applications

Used to manufacture non automotive wear components, arc
welding nozzles, spouts, nozzles, thermocouple sheaths and
melting crucibles etc....

Fig.4 Fields of applications of Si;N, based ceramic composites

were added to Si;N, matrix layers to strengthen them, and
Si;N, was inserted into the hexagonal Boron Nitride (BN)
layers to change the bonding strength of the bonding layers
to improve laminated Si;N,/BN [48].

SiO, fiber-reinforced Si;N, composite, which forms the
part of the Continuous Fiber CMCs (CFCMCs) are made
from a three-dimensional angle-interlocked fabric woven
preform (SiO, fiber) which is further vacuum infiltrated
with ammonia at 800 °C. The crystallization behavior of
this composite conveys that Si;N,-based composites become
weak due to the stretching of bonds which in turn weakens
the bond when subjected to an elevated temperature above
1600 °C [49, 50]. SiC and Si;N, are used for high-temper-
ature purposes due to their excellent mechanical properties
[51] The mechanical properties of Si;N, and SiC brittleness
of the ceramic components limit their application; they can
be fabricated through CVI and hot isostatic pressing under
higher temperature and pressure conditions. The flexural
strength, fracture toughness, and restrained strength ratios
differ along with the change in the temperature. The pres-
ence of high-strength filaments in the matrix without adhe-
sion was demonstrated in SiC matrix composites reinforced
with unidirectional SiC monofilaments, which improved
the fracture toughness of the composite. Monofilaments
with carbon-rich surface layers effectively prevented fila-
ment adhesion in SiC reinforced Si;N, matrix composites,
increasing the fracture toughness of the composites [52]

2.3 Silicon dioxide

The silicon oxides are represented in the molecular com-
position SiO, that is most often found naturally as quartz
and in a variety of living species. Silica is a key compo-
nent of sand in many locations throughout and one of the
most complicated and plentiful material families, occurring
as both a mineral constituent and a manufactured product.
Fused quartz, fumed silica, silica gel, and aerogels are all
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good examples of this compound. It’s utilised as construc-
tion materials, semiconductors, and foods and pharmaceu-
ticals as an ingredient. This nano SiO, is used as filler mate-
rial in natural fibres and reinforcing with other reinforcing
substances to improve dynamic characteristics respectively.
Because of its minimal price, low density, easy accessibility,
and exceptional qualities, nano SiO, has been chosen as a
filler substance [53].

Advanced materials based on CMCs, such as SiO,, Al,O5
SiC have been highlighted as a crucial material system for
enhancing the thrust-to-weight ratios of higher performance
aviation engines. The current research reviews related exist-
ing publications and our expertise in this sector to discuss
the possible use of CMC to aviation structures. It includes
material needs for aviation as well as developments in aero-
engine materials efficiency connected to ceramic compos-
ites. [54]. Also, the research was conducted with the influ-
ence of nano-silica on the mechanical characteristics of
micro-steel fibres reinforced with fly ash ceramic compos-
ites. The micro-steel fibres are remained constant while the
fly ash and nano-silica concentrations are varied. The inclu-
sion of nano-silica greatly improved the mechanical char-
acteristics and morphology of micro-steel fibre reinforced
composites by forming a stronger matrix and improving the
intermediate regions, according to the results of testing. The
optimum quantity of nano-silica to use in composite is 2%,
according to the study findings [55]. Figure 5 shows the
fields of applications of SiO, based ceramic composites.

Because of its strong strength, flexibility, outstand-
ing hardness, lower density, exceptional wear rate, and
reduced thermal expansion coefficient, continuous car-
bon—fibre—reinforcement Li,0O-Al,05;-Si0, (C/LAS
composites) offer extreme temperature properties. C/LAS
composite has attractive properties in increased temperature
applications due to their superior thermo—mechanical qual-
ities, such as thermal exchangers, elevated temperature win-
dows, and laser devices. [56]. In another study, the CVI was

_Making of Structural Applications

« Silicon Dioxide is used in the construction industry to
produce concrete. In its crystalline form it is used in
hydraulic fracturing, used in the production of glass and
used as a sedative etc....

m,,— Making of high Tech Equipment

ﬂ « It is also highly utilized in lot of high-tech equlpment s such
3 = as computer chips, transistors, solar panels etc...

&
~

 Making of Automobile Applications

« A glass (Si0,)-coating forms a durable and hard shield over

the surface of a vehicle. The coating of silica can be applied

pover paint, wheels, and glass to give the vehicle extra
protection etc....

Fig.5 Fields of applications of SiO, based ceramic composites

used to create Hi-Nicalon/SiC mini-composite samples with
three oxide interphase layers (amorphous SiO,, monoclinic
Z1r0O,, and amorphous SiO,). In the perspective of building
ecologically resisting surfaces for ceramic composites, the
possible benefits and risks connected with this multi-layer
oxides interfacial method were examined. [57]. Relatively,
the study conducted on plasma sprayed SiO, coating was
found to result in a substantial rise in maximal pull-out
effort, revealing improved bonding strength and improving
interconnections between upgraded carbon fibre yarns and
the concrete matrices. Also, research conducted on the com-
bination of SiO,-TiO,/carbon fibre with TiO,/C composite
coating layer exhibit improved electrochemical behaviour
and greater charging capacities [58]. In another investiga-
tion, by combining the two ceramic oxide materials like
ZnO/ Si0O, composite coatings has enhanced wear resisting
property, improved hydrophobic durability, adhesion bond-
ing and lower porosity is achieved in the paper mulch film
respectively [59]. Table 1 shows the general and mechanical
properties of silicon based ceramics with its applications.

3 Infiltration Methods of Ceramic Matrix
Composites

Infiltration is a liquefied type manufacturing process in
which a preform reinforcing materials such as ceramic
powders, fibres, weaves, and other porous materials are
impregnated eventually and fills the gaps in the molten metal
matrices. One of the most important processes in the manu-
facturing of composites by infiltration techniques is the
creation of a pore preforms with appropriate mechanical
performance, consistent pores dispersion, pores dimension,
and porous concentration. These infiltration procedures are
often used to make CMC:s reinforced with long fibers. The
ceramic matrix is created by infiltrating a fluid (gaseous or
liquid) into the fiber structure in this category of manufactur-
ing processes (either woven or non-woven). The surfaces of
the reinforcing fibers are coated with debonding interphase,
which bonds weakly at the interface between matrix materi-
als and the fibre before infiltration with a ceramic derived
fluid. Weak bonding permits fibers to slide about in the
matrix thus avoiding brittle fractures. Figure 6 illustrates the
classification of infiltration methods of CMCs fabrication.

3.1 Polymer Infiltration and Pyrolysis

PIP is a technique of fabricating ceramic matrix that involves
infiltrating a low viscous polymer into the reinforcement
of ceramic structure such as fabrics, and then pyrolysis,
which involves heating the polymer precursor in the lack of
oxygen until it breaks down and changes into a ceramic com-
ponent. This is an infiltrating process of a ceramic precursor

@ Springer
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Fig.6 Classifications of infiltra-
tion methods for fabricating
CMC
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Ceramic Matrix Composites
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into porous fiber preform followed by decomposition to
form CMC:s. It is repeated cycling of infiltration followed
by pyrolysis. PIP is used for fabricating composites with
SiC or other silicon-based matrices (Silicon Carbon Nitride
(SiCN), Silicoboron Carbonitride (SiBCN) and Si;N,) [70].
SiC and carbon fibers have been used most frequently in
the manufacturing processes of fiber-reinforced CMCs [71].
The pyrolysis process consumes a greater amount of time
to produce a proper component with suitable mechanical
properties. PIP processing takes less time and costs less than
CVI processing for densification. For the desired ceramic,
with exact stoichiometric quantities of elements, a poly-
meric resin can be produced which are suitable choices for
a ceramic precursor.

Pyrolysis can result in significant gas evolution. As a
result, the gases in the matrix must be allowed to progres-
sively diffuse out. The temperature of the pyrolysis cycle
can exceed 1,400 °C. Pyrolysis must take place at a tem-
perature lower than the crystallization temperature of the
matrix and the degradation temperature of the reinforcing
fiber. Although argon and nitrogen are the most commonly
used pyrolysis environment gases, ammonia produces a pure
amorphous Si;N, with very little free carbon [72]. Polymer-
derived CMCs, like C/C composites, usually have a broken
matrix as well as many tiny pores due to processing. The
precursor shrinks around the fibers during pyrolysis, causing
cracks. As the ceramic yield rises, fewer gases escape during
the pyrolysis process, resulting in fewer pores. Certain modi-
fications are made to the precursors such as Polycarbosilane
(PCS)—Allyl-substituted to form AHPCS with 72% yield,
polysiloxane—starfire systems resin with 78% yield, boron
modified AHPCS with 75% yield, polymer-thysilane added
before curing at 320 °C with 91% yield [73-75].

The PIP has been used to prepare a multi-walled carbon
nanotube which is a reinforced C/SiC. The antimony substi-
tuted polymer-thysilane was used as a precursor. The ceramic
yield of the component was increased with curing after each
infiltration procedure [76]. Components produced with the

I

Direct
Oxidation

Liquid Silicon

help of this process can be widely used for high-temperature
structural materials such as SiC/SiC composites. They are
widely used in gas turbines, aerospace propulsion systems.
As the pyrolysis temperature rises, so do the mechanical
properties of the composites [77]. Moreover, by pyrolyz-
ing and processing at lower temperatures, fiber degradation
and the production of undesirable reaction products at the
fiber/matrix contact can be avoided. The tensile strength of
amorphous SiC fibers derived from precursors was reduced
by crystallization. The ablation property of components is
also important and if the composite’s mass loss and linear
recession rates were less, the ablation resistance was found
to be superior [78]. Figure 7 shows the schematic representa-
tion of working process of polymer infiltration and pyrolysis
method for CMCs.

The use of particle fillers in the matrix, when mixed with
a polymer, reduces shrinkage and hardens the matrix mate-
rial in the composite, which can control a significant amount
of shrinkage. The filler must be um-sized and have the same
coefficient of thermal expansion as the polymeric matrix to
permeate the bundle. The filler should not be used in exces-
sive quantities, and the slurry should not be injected into
the reinforcing fiber. Fiber architecture may have an impact
on PIP. The wetting of the fiber bundles is one of the most
important aspects. As the precursor contracts around the
fiber during pyrolysis, cracks appear [79]. By imposing PIP
fabrication procedures in the industrial sectors, may solve
many present problems; it provides a method for fabricating
CMC:s at low temperatures without degrading the fibre while
maintaining tight control over the microstructure and com-
position. Fabrication of desired shapes is possible, allowing
CMC:s to be utilised more often in the industrial sector. Here
in PIP, the different types of reinforcing phases like particu-
late, fibrous may be used and even net shaped parts can be
fabricated. Since there is no free silicon in PIP, therefore no
brittle structures can be formed, and a variety of matrices
may be constructed using alternative sources of reinforce-
ment other than silicon.

@ Springer
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Fig.7 Schematic of polymer
infiltration and pyrolysis process

Ceramic particles

Low Temperature
Hot Pressing

Ceramic Matrix
Composite

Pyrolysis at 800 - 1300 °C

3.2 Chemical Vapor Infiltration

CVl s a technique of fabricating ceramic matrix in which
reactive gases permeate into an isothermal porous preform
comprised of long continual fibres and deposited. The
deposited substance is the consequence of a chemical reac-
tion on the outer surface of the fibres. It is similar to CVD,
in which deposition forms when the reactive gases react on
the outer substrate surface. It is widely used for fabrication
of SiC matrix composites reinforced by SiC long continu-
ous fibers. The commonly preferred vapor reagents supplied
to the preform in a stream of a carrier gases are hydrogen,
argon, helium etc. A method directly derived from CVD
in which chemicals directly deposit on the surface of the
substrate. The CVI process is a specific kind of CVD pro-
cess [80]. Until now SiC ceramics were manufactured by
processes such as castings, rolling where these processes
have resulted in shrinkage and serious whisker damages
hence calling the need for the CVI process [81-83]. Manu-
facturing silicon carbide whiskers reinforced Silicon Carbide
matrix (SiC,, /SiC) ceramics by CVI has been investigated
by researchers particularly focusing on the advantages of
the process, SiC,, is ball milled into slurry using Polyvinyl
Butyral (PVB) as the binder followed by casting the slurry
into the mold and subjecting the specimen to isobaric/iso-
thermal (I-CVI) process. Figure 8 illustrates the flow process
of CVI steps used in manufacturing of SiC,, /SiC, the results
of the process show increased volume fraction of SiC,, and
therefore inferring its ability in control of the volume frac-
tion and the porosity of the ceramic, only being limited by
the fluidity of the slurry [84].

The SiC/SiC used in high-temperature applications
such as nuclear reactors require high purity, are typically

@ Springer
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manufactured by the Forced Chemical Vapor Infiltration
process (FCVI). The feasibility of the process is studied by
comparing the results obtained from conventional CVI to
FCVI [85]. The results obtained display that FCVI is a much
faster process in terms of process time, higher deposition
rates, lower porosity, and higher uniform densification [86].
Hence larger application of FCVI can provide a path for
its application in nuclear reactors. This C/SiC has become
promising material of choice possessing excellent thermal,
mechanical, and ablative properties [§7-90]. The deposition
channels/pores in C/SiC get easily blocked during the infil-
tration process further giving rise to bottleneck effects and
limited densification [91, 92]. Figure 9 depicts the schematic
view of working process of CVI method for CMCs.

These issues were tackled using Laser Assisted Chemical
Vapor Infiltration (LA-CVI). LA-CVI technique fabricated
C/SiC by processing the infiltration of the preform by SiC
at 1800 °C for 2 h in a vacuum. To generate mass trans-
fer channels, a sapphire laser system was employed to cut
holes with a diameter of 0.5 mm. The results showed that C/
SiC produced by LA-CVI displays properties such as lower
porosity, flexural strength, and enhanced density when com-
pared to the conventional CVI process [93]. Gaseous precur-
sors can be manufactured by the pulsed Pressure Chemical
Vapor Infiltration (PCVI) process. C/SiC manufactured by
PCVI under the range of 2-5 kPa displays the ability of the
process to manufacture multi-layered interphases with the
highest pore filling ability, making it a promising method
to manufacture highly tailored ceramics [94]. Because of
the low infiltration temperatures, this sort of vapor-based
chemical infiltration approach may be utilised to create
matrices with excellent purity and little fibre damage. The
CVI can provide minimal residual mechanical stresses due



Silicon (2022) 14:10141-10171

10151

Fig.8 Fabrication flow process
for SiC,, /SiC ceramic com-
posites
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of the low infiltration temperature. This infiltration process
has improved mechanical qualities including strength, elon-
gation, toughness, and resisting capacity in thermal shock,
creep, and oxidation properties. The CVI has the capacity to
construct a variety of ceramic compositions, including SiC,
C, Si3N,, BN, B,C, ZrC, and others, and can give more inno-
vation in manufacturing a variety of high-quality materials.

3.3 Reactive Melt Infiltration

Melt infiltration allows for the creation of microstructures
that would otherwise be impossible to accomplish by
sintering. Before melt penetration, reactive components,

Reinforcement
Green Body

Natural Deposition of

SiC Composite Matrix by CVI

Exhaust Pipe to
[ ) ®| Treatment Chambe

Induction
Heating Coils

&

Fibrous

Preform

Perforated
Plate

Inlet for Carrier Gas

for example, can be injected into porous bodies and new
phases are produced during infiltration as a result of inter-
actions with the melt. This can be used to manufacture
a dense component from a porous moulding body as a
replacement to sintering process. The substrate material
must have a porosity body with a greater melting point
than the invading substance as a requirement. In addi-
tion, the melt needs to moisten the substrate material.
The porosity body and infiltration substance can then be
reheated until the infiltrating material’s melting point is
reached. Capillary forces pull the melt through the body’s
pores, entirely filling the pore volume and get a thick com-
ponent once it cools down.

@ Springer
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3.3.1 Liquid Silicon Infiltration

This Liquid Silicon Infiltration (LSI) technique is a type of
RMI technique in which the ceramic matrix develops as a
result of chemical relationship between the molten material
infiltrated into a porous reinforcement phase preform and the
substance surrounding the melt, which can be solid or gase-
ous. Generally SiC matrix composites are made with this
method. The procedure includes infiltrating molten silicon
into a carbon microporous preform at a temperature higher
than its melting point. The molten silicon wets the carbon
preforms surface and the capillary pressure help the melt
seep into the porous material. Figure 10 shows the schematic
of working process for liquid silicon infiltration process for
ceramic composites.

The MI process also known as LSI is an alternative route,
where the CMCs are fully densified [95]. This process is
widely used to make composite material from the ceramic
preform with porosities. The wetting conditions between the
solid ceramic and liquid metals are important for performing
the MI process. During the phase of infiltration, the weight
of the final composite can be monitored. It can be measured
before consolidation as well as through the process of this
infiltration [96]. For the fabrication of the melt infiltrated
CMCs, there developed a variety of processing schemes.
Where the one process is the prepreg process and the other
one is known as the slurry cast process. The gas turbine
engine components are made up of SiC/SiC CMC:s that is
manufactured through the slurry cast MI process as they
have high thermal conductivity, also with higher thermal
shock, creep, and oxidation resistance [96]. The melt is inert
to the fiber preform in a nonreactive process, so it is not

Fig. 10 Schematic view of lig-
uid silicon infiltration process

Polymer Impregnated
with Fibres

distorted during the infiltration where the furnace uses Radio
Frequency (RF) coils to melt the infiltrant and its melt drains
upon the preform to make it a dense composite [97].

Along with the addition of BN interphase to SiC com-
posite (SiC/BN/SiC), the applications can be enhanced and
used in higher temperatures [98]. But it is hard to prevent
BN interphase and SiC fiber from getting oxidized at inter-
mediate temperatures [99]. The laminated Silicon Carbide
reinforced Titanium Silicon Carbide (SiC/Ti;SiC,) can be
fabricated by LSI [100]. For Ti;SiC, the energy absorb-
ing mechanism which includes delamination, crack deflec-
tion, and grain pull-out has also been explored [101, 102].
The laminated ceramics has considerable properties and
enhances the impact and damage resistance on the mate-
rial as they contain multi-scale hierarchical structures [103,
104].

The Carbon reinforced Carbon-Silicon Carbide C/C-SiC
is a novel class of high-performance ceramic material with
a multiphase matrix composition and internal SiC layers,
which gives it several advantages in the various applica-
tions where it can be employed. The LSI technique is used
to fabricate this lightweight, thin-walled C/C-SiC. Because
of their excellent thermal conductivity and less coefficient
of thermal expansion, C/C-SiC possess excellent thermal
shock stability and some abrasion resistance [105-107].
The parameters of the carbon preform play a big role in the
success of an LSI of SiC creation. To reduce the amount of
residual carbon and silicon phases in the LSI reaction result,
carbon performs are developed and microstructures are bet-
ter tailored. MI enables the development of surface mor-
phologies that would be impossible to achieve with sintering
alone. As a result of interactions with the melt, new phases
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are formed during infiltration. This LSI technique has the
capacity to fabricate complex and near net-shape compo-
nents. During this process, more carbon can be added to
porous material and this carbon interacts with the silicon
melt, forming additional SiC and significantly enhancing
the hardness and stiffness of the Si/SiC material. Stresses
can be decreased by adjusting the thermal expansion coef-
ficients of the involved phases to one another. This method
may be used to make even material composition and quality
gradients and has the potential to satisfy a specific need for
the manufacturing of certain ceramics.

3.3.2 Direct Melt Oxidation

The interaction of a molten metal with an oxidising gas is
the basis of the directed metal oxidation process (e.g. alu-
minium alloy reacts with air to form Al,O5. This process
is also known as the interaction of metals with dry gases
that results in the development of oxides or any other sub-
stances on the surfaces; and it is only noticeable at high
temperatures. This interaction result extends outwardly from
the initial metal pool surface either into available space or
into filler at a particular critical temperature range over the
metal’s melting point. The growth continues until the metal
supply is depleted or the reaction front comes into contact
with a barrier substance that prevents any further reactions.
Figure 11 illustrates the schematic view of direct melt oxida-
tion working process for CMC.

A study performed on ZrC—W composites was made
by reacting Zr,Cu into a Tungsten Carbide (WC) preform
at 1200 °C respectively. The WC substance in the alloy
totally interacted with the Zr, and the inclusion of tung-
sten increased the flexural and fracture toughness proper-
ties of the ZrC—W composites [108]. Tin oxide (SnO,), as a
viable contender, has considerable promise for lithium and
sodium batteries due to its comparatively large capacities
and outstanding stability. A study was conducted on the

Fig. 11 Schematic of working
procedure of direct melt oxida-
tion process

Oxygen

Molten Aluminium
Alloy (900-1150°C)

SiC (or) Alumina in
particulate or Fibrous
Form

Y

incorporation of tin oxide nano-particle into CNTs through
a melt infiltrating procedure for improving the performance
of lithium and sodium ion storing devices. The finding indi-
cates that this composite is capable of producing reversible
discharging in these batteries [109]. Similarly, in another
study, thick alumina-TiAl; composites drew a lot of interest
due to their superior fracture tolerances and for wear resist-
ing properties [110].

3.4 Sol - Gel Infiltration

This Sol-Gel infiltration technique is preferred for making
ceramic matrix comprises the matrix from a liquid colloidal
suspension of small ceramic particles (sol), which soaks a
preform and then solidifies (gel) in formations. When very
nanoparticles with radii up to 100 nm get precipitated in
a water or organic solvent, then a colloidal suspension is
generated as a result of a chemical process. Because the liq-
uid sols have a low viscosity, they may easily penetrate the
preform. Here sols containing organometallic compounds
such as metal alkoxide precursor undergo cross-linking pro-
cess like polymerization at increased temperatures by either
the poly-condensation or hydrolysis mechanisms. Then the
polymerization turns a sol into a gel, which is a polymer
structure that contains liquid and gels may be converted to
ceramics at a low temperature, reducing the risk of reinforc-
ing fibre breakage.

The sol-gel method is preferred for attaching Zirconium
(Zr) to silica-covered Al,O; particles and using phosphate-
based monomer as an adhesion booster [111-113]. Wet-
ground pre-sintered Zirconia (ZrO,) blocks were sectioned
into 0.5 mm thick discs after being wet-ground into 18 mm
diameter cylinders. Before being immersed in SiO, solution
for five days, the pre-sintered ZrO, discs are divided into
groups. After the immersion period, the ZrO, discs which
are pre-sintered are baked at 100 °C for a couple of days.
The sintered specimens are examined using x-ray diffraction.

Reaction of metals with dry gases,
leading to the formation of oxides

Barrier Layer

Reinforced
Preform Finished CMC

Product

Oxidation
Movement
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The material’s homogeneity was shown to be superior to that
of other treatments when employing weibull analysis [114].
Si0, deposition results in glass/ ZrO,/glass sandwich layers
with graded ZrO, properties. Furthermore, unlike air abra-
sion, the sol-gel process does not affect ceramic surfaces
[115-117]. Figure 12 shows the schematic view of working
process of sol—gel infiltration process for CMC.

Composites of SiC in a pure SiO, gel matrix were pre-
pared. Before gelation, SiC fibers or whiskers were mixed
with a SiO, sol. Tetraethyl Orthosilicate (TEOS) was hydro-
lyzed with HCI in ethanol to produce a SiO, sol with a mole
ratio of 1:4:0.5:0.0G of TEOS: water: alcohol: HCI. Sol-gel
processing was used to create high purity ZrO, powder
and thin-film applications such as porous membranes for
gas filtration, thick-coated layers for corrosion protection.
Additionally, the sol—gel technique can be used to create
partially stabilized ZrO, fibers for making Zr matrix com-
posites with increased mechanical properties [118—121]. A
sol-gel technique with metal alkoxides was used to make
monoclinic ZrO,ceramics with a biomorphic structure from
jelutong wood, as well as biomorphic Al,O;, TiO,, and ZrO,
ceramics from cellulose fiber preforms [122-124].

Fabrication of Si;N,-SiO, composites by sol-gel together
with gel casting has been studied by researchers, the fabri-
cation process includes gel casting of porous Si;N, using
acrylamide, followed by SiO, infiltration in a vacuum, the
results from this research showed that with the addition of
SiO,, the porosity decreased significantly from 49.3% to
22%, with a recognizable increase in density from 1.62 g/
cm3 to 2.18 g/lcm3, with an increase in flexural strength and
dielectric properties and better thermal shock resistance with
a decrease in porosity [125, 126].

Using sol-gel processing, parts such as heat shields for
space shuttles are made using a combination of glass fibers
of Al,05-B,05-Si0, (Nextel 312 fibers) with high-purity

Fig. 12 Schematic of working

process of sol—gel infiltration Hydrolysis
method )
Polymerisation
&
. o~
Metal Alkoxide §
Precursor %5

Xerogel Film

Thin Film Coating
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Si0, fibers. Unlike the powder or slurry precursors, sol—gel
has many advantages such as less fiber damage, good chemi-
cal composition flexibility, low densification at tempera-
tures, and improvement in oxidation behavior of infiltrated
components [121, 127]. The sol-gel method is simple, eco-
nomical and efficient method to produce high quality cover-
age and has the capacity of sintering at low temperatures,
between 200—600 °C. Sol-gel spin coating technique was
used to create colloid-based highly reflective coatings on
glass substrates, consisting of alternating layers of quarter
wave thick high and low refractive index components. The
bonding regions were enhanced with the increasing con-
centration of SiO,, the sharp angles surrounding the pores
were also softened, and some interconnected pores might
be separated into distinct pores after the sol—gel infiltration
and sintering process. This kind of microstructure made it
difficult for the cracks to propagate, so the flexural strength
and fracture toughness were distinctly improved.

3.5 Slurry Infiltration

In Slurry Infiltration (SI) process, the reinforcing fibres are
allowed to flow through slurry that penetrates the pores
structure of the reinforcing phase in the infiltration process.
The capillary effect is the primary force behind infiltration,
however vacuum or pressure can help speed up the process.
These infiltrating fibres are coiled onto a mandrel during
the lay-up process. After that, it’s dried, sliced, and placed
out and they are chopped and placed up on a tooling after
drying (mold). Then, at a high temperature and increased
pressure, hot pressing process (sintering, densification) is
done, which improves the dispersion of the ceramic material
between the particles absorbed into the fibres structure. The
particles clump together, resulting in a dense composite with
reduced porosity level. Figure 13 represents the schematic

,
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O
&
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Dense Ceramic
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Fig. 13 Schematic of working Winder Winding Spool
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Ceramic Composite

view of working process of slurry infiltration process of
ceramic composites.

Continuous fiber-reinforced CMCs have long been rec-
ognized as promising materials usually finding their appli-
cations in brake disks, heat exchangers, aero-engines, and
fusion reactors because of their high toughness, low density,
thermal & chemical stability [128—131]. C/SiC has been the
chosen composite because of its low cost and better ther-
mal stability, usually being processed by complex processes
such as liquid—vapor infiltration and hot pressing [132—135].
The effects of the addition of SiC particles to 2D-C,/SiC
as filler which is then fabricated by SI process have been
studied [136]. The former composite was then manufactured
by using 2D woven C fiber which was used to prepare fiber
preform, followed by an infiltration of SiC filler, enhance-
ment of infiltration efficiency was assured by using a vacuum
pump. The properties of the composite obtained were com-
pared and analysed for two different pyrolysis temperatures
(800 & 1100 °C). The results showed that the amount of SiC
had a significant effect on physical and mechanical proper-
ties of the composite, lower (800 °C) pyrolysis temperature
exhibit lowest failure stress whereas, with an increase in
the temperature (1100 °C), the composite exhibits failure
stress two times higher with an increase in interfacial bond-
ing [137].

Surface tension, viscosity, and volatility were considered
as factors in the choice of solvent [139]. For a better disper-
sion of the slurry, the solvent must have low surface tension
and low viscosity, as well as a higher viscosity to convey the
slurry particles and a lower vapor pressure to avoid solvent
vaporization. When the slurry no longer absorbs into the
pores, the surplus slurry can be brushed off the material’s
surface. The microstructure and ablation behavior of Ti;SiC,
modified C/SiC composites manufactured using a combined

Hot Pressing of Slurry
Impregnated Fiber

SI and LSI process was investigated. The manufacturing pro-
cess of C/SiC-TiC-C composites is performed by infiltrat-
ing porous C/SiC composites with TiC/C slurry and later
using a vacuum freeze drier, they are dried [138]. Then the
slurry is made using by dissolving TiC particles (1-2 m, 60
wt%) with graphite powders (5 m, 6 wt%) in deionized water
and later ball milling it for 24 h. Then, the infiltration of
molten silicon of C/SiC-TiC-C composites at a temperature
of 15,000 °C for 30 min under vacuum was processed. The
internal bundle pores of the C/SiC composite are filled with
TiC-C particles after SI.

Various SI alterations result in various implications
and changes in material properties for the processes such
as precursor and pyrolysis for SiC¢/SiC composites. Cor-
responding to a relative density of 68%, the density of the
SiC;/ SiC filler green body was 2.20 g/cm’[140]. The infil-
tration of bulk graphite blocks is performed using the SI
slurry process to make graphite composites such as SiC and
Si;N, reinforcements; it’s effective by increasing the wear
resistance by morphological changes by increasing porosity
of bulk graphite. These characteristics are advantageous to
parts such as piston rings, sealing rings, bearings, electrodes,
crucibles, extrusion guides, and moulds [141]. The SI manu-
facturing method is comparable to the sol-gel infiltration
process; however, because of the increased solid content,
SI generates a denser structure with less shrinkage. This SI
infiltration process is basically driven by the capillary forces.
One of the main advantages of this SI infiltration technique
is its low porosity rate and good mechanical properties.
However, the high pressure applied to the reinforcing fibres
may cause damage, and the hot pressing step necessitates
highly expensive equipment; in addition, as compared to
other infiltration techniques, simple and compact pieces
are manufactured. Figure 14 depicts the various combined
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Fig. 14 Combined infiltration
process of ceramic composites

h h.

Slurry Infiltration + Polymer Infiltration

Pyrolysis of the preform after infiltration with a preceramic \
polymer combined with fine ceramic particles (slurry).

A slurry containing SiC particles is infiltrated into the fibre
reinforcing preform, which is subsequently infiltrated with
molten silicon,
surrounding area to generate silicon carbide.

Slurry Infiltration + Liquid Silicon

which reacts with the carbon in the

Chemical Vapor + Polymer Infiltration

N b N b b

The CVI process is used to create a porous carbon preform,
which is then infiltrated with molten silicon, which combines
with the surrounding carbon to produce the SIC matrix. /

A Y Y T
Chemical Vapor + Liquid Silicon

N o N b .

Combined Infiltration Methods

CVI partly fabricates the SiC matrix, which is subsequently
infiltrated with a preceramic polymer and pyrolysed.

r

infiltration process of CMCs. Table 2 shows the summary
of various infiltration techniques of CMCs.

4 Applications of Si-Based Ceramic
Composites

They can personalize and reduce their negative features
while allowing beneficial properties to coexist in the same
component. The following are the engineering applications
of Si-based ceramics: Fig. 15 resembles the CMCs in vari-
ous fields of applications.

4.1 Automotive

In sectors such as aircrafts, missiles, automotive and oth-
ers, the demand for lower density and high-strength mate-
rials is growing in replacing conventional higher density
metal alloys. Emerging materials such as C,/SiC are replac-
ing metal alloys due to their lower density, higher melting
point, higher hardness, chemically inert,superior oxidative
and erosive resistance [142, 143]. Both C/C-SiC and C¢/
SiC composites have been identified as potential material
for the utilisation of braking discs owing to its outstanding

@ Springer

friction qualities, which include a higher frictional coeffi-
cient, strong abrasive resistance, and a slight reduction in
friction coefficient during moist situations [144, 145]. The
usage of carbon-fiber-reinforced with ceramic composites
in common automobile parts such as brake discs, valves,
spark plugs, etc. is increased in large numbers in recent
years because of its higher load stability [146]. Moreover,
Ceramic Matrix Nano Composites (CMNCs) are used to
make materials stoves, nozzle assembly, energy conversion
systems, thermal engines, and gas turbines [147, 148]. C/SiC
composite brake discs are approved and commercially used
in premium automobiles due to their enhanced properties
compared to other similar materials. They are manufactured
using the LSI technique [149].

4.2 Aerospace

The C/C-ZrB,-SiC composite have prompted the concern
for aeronautical engineers owing to its improved properties
such as lower density, higher-temperature strength, lower
coefficient of thermal expansions, good thermal conduction,
and great thermal shock protection. However, the oxidizing
and ablation resisting property of C/C composites can be
enhanced, as carbon may be rapidly oxidised at temperature
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Fig. 15 Applications of CMC in
various fields of applications
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above 450 °C under oxygenated circumstances, limiting its
employment in aeronautical industries [150]. A composite
material made up of SiC reinforcing fibres and SiC matri-
ces are termed as SiC,/SiC. These fibres absorb fracturing
energy, due to its higher fracture toughness than monolith
ceramics. These composites are now being explored for
structural purposes in the aircraft industry and aviation sec-
tors [151-155]. This SiBCN ceramic offers greater ther-
mostability, oxidative resistance, chemical resistant, and
creeping resistance than other materials. As a result, it is
projected to be exploited as a temperature resisting structural
material in the aerospace sectors [156]. Due to low density
and good wear corrosion, Silicon Carbide-Aluminium Metal
Matrix Composites (Al-SiC MMC) is used to make a variety
of aerospace industrial parts. Moreover, the fibers of these
materials are used as reinforcing material to make fuselage
skins which have properties such as ultimate tensile strength
and high yield stress [157].

4.3 Medical

The laminated SiC/TiSi, and SiC/Ti;SiC, ceramics are great
instances of biologically produced substances and materials
because they have the adaptability to give particular anisot-
ropy qualities such as strength properties, durability, and
stiffness, as well as impact and damaging resistance [158].
Owing to its optical characteristics, dental ceramics such as
zirconia and silica resemble real teeth in appearances. Other
properties of these ceramics, such as strength and chemical
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resistance, allowed these materials to be manufactured
promptly for dental usage, in order to fulfil the growing need
for aesthetics and longevity. A zirconia infiltrated with silica
gel improves in two directions such as structural uniformity
and resin cemented adhesion. This type of infiltration pro-
cedure is straightforward to carry out and control in a pros-
thetic laboratories [101, 159]. Siloxane is a silicon-based
organic—inorganic layer is used in various medical applica-
tions. They have essential properties such as chemical stabil-
ity and inertness, low toxicity, biocompatibility which are
important to medicinal and its industrial applications [115].

4.4 Industrial

SiC with porous structure is a type of tailored ceramic sub-
stance that has attracted to a wide range of high-temperature
engineering application fields. Due to its minimal density,
strong heat resistivity, reduced thermal conductivity, and
excellent mechanical qualities at extreme temperatures
this porous ceramic also preferred in metallurgical field
and chemical industries [160—-164]. Due to its considerable
importance in high temperature applications, this silicon-
based ceramics such as SiC and Si;N, are being explored
significantly. Among the non-oxide ceramics, these SiC and
Si;N, ceramics have the best oxidation resistance proper-
ties [165]. Si-SiC composites are chosen for ceramic brake
pads and furnace components due to their excellent thermo-
mechanical characteristics. Among these composites, ZrB,
has received a lot of attention due to its higher melting

@ Springer
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ranges, toughness, thermal and chemical stability [166]. Car-
bon linked carbon—fiber composites are a type of C/C com-
posites with a minimal density and higher porosity structure.
They were used as thermal protection in vacuuming and
inert-gas furnaces which can withstand temperature up to
2800 °C [167]. Industrial applications include the chemical
sector, aluminum manufacture, oil and gas production, and
solar cell manufacturing. The SiC-based flow reactors and
heat exchangers, industrial pump seals and bearings [168].

4.5 Military

Carbon fibre coupled with ZrC-SiC composites is recom-
mended for high temperature applications including super-
sonic vehicles and sharper surfaces in aircrafts. These
composites have outstanding features such as fracture tough-
ness, thermal shock absorption, and possess good mechani-
cal characteristics under higher temperatures [169, 170].
These C/C-SiC and SiC/SiC composites are extensively
used as functional materials in the aeronautical and avia-
tion industrial sectors due to their higher thermal prevention,
enhanced propulsive systems, and other properties such as
higher fracture toughness, strength at higher temperatures,
reduced density, superior thermal conduction, and oxidative
resistance [171, 172].Various ceramics are used to fabricate
or manufacture different parts especially ceramics such as
Si3Ny, Al, O3, and SiC parts such as ballistic-resistant exte-
rior tiling for planes, helicopters, and drones, supplanted
metal-based armor plates for body armor are fabricated.
Among the ceramics mentioned Al,O5 is used in most parts
because of its hardness, modulus of elasticity, refractoriness,
and low cost [173].

4.6 Electronics

Electronic ceramics account for a significant portion of the
advanced ceramics market. For the creation of electrical and
electronic circuits, multilayer ceramics such as multi-lay-
ered capacitors, multi-layered packages and substrates, and
other ceramic electrical components such as PTC resistors,
IBL capacitors, PZT ceramics, and dielectric resonators are
employed [174]. Due to its outstanding mechanical quali-
ties, strong thermal shock protection, and erosive resistance,
Si;N, ceramic is a prospective for tail rotors and photovol-
taic systems. These ceramics are also potential material
for electromagnetic windows which are nearly transpar-
ent to electromagnetic radiation in the frequency ranges
and employed in modern systems [175, 176]. Likewise, the
composite boron nitride combines with SiC/SiC-Si are a
suitable substance for both electronics field and photonic
products, along with higher temperature activities [177].
SiCN has significant concern due to its ability to combine
the characteristics of both SiC and Si;N, substances. This

@ Springer

SiCN is a higher temperature resisting material that may be
used for a variety of purposes, including Radio Frequency
Identification (RFID) shielding which act as a conducting
barrier that entirely encloses the device to prevent from envi-
ronmental disturbances [178-180]. Table 3 resembles the
summary of fields of applications of different infiltration
process with its flexural strength of ceramic composites.
Table 4 resembles the summary of fields of applications of
combined infiltration techniques with its flexural strength of
ceramic composites.

5 Future Scope of Si-based Ceramics

Ceramic matrix composites are likely to see increased
demand from the aerospace, defense, automotive, energy,
and power end-use industries, as well as their ability to with-
stand high temperatures and have remarkable mechanical
qualities. Product type, end-user industry, and geography
are the various segments observed in CMC’s market, and
its by-product type market is segmented by C/SiC CMCs,
C/C CMCs, Oxide/Oxide CMCs, SiC/SiC ceramic matrix.
Automotive, aerospace, defence, energy and power, electri-
cal and electronics and other user industries are segmented
by industry. SiC is well known for its numerous benefits
in a variety of sectors, including the biological field. The
full potential of this material has yet to be realized, owing
to the presence of a high degree of flaws. Despite its wide
bandgap, high thermal conductivity, and strong breakdown
electric field, when employed in traditional power devices,
its performance fails to meet the acceptable limitations at
high temperatures due to flaws.

As a result, understanding these faults is critical for fur-
thering their application in the biomedical industry, as they
are employed in the development of biomedical devices
that go into every region of the body, such as membranes,
bio micro electro mechanical systems, stents, drug deliv-
ery, biosensors, and so on. The best alternatives for metallic
alloys are SiC/SiC CMCs, which are typically employed in
gas turbines. The revenue shares of silicon-based ceramic
composites in the year 2020 is shown in Fig. 16 because
of its remarkable oxidation and radiation resistance quali-
ties, SiC/SiC CMCs have seen increased use in the energy
and power industries in recent years. For high-temperature
structural applications, Cf/SiC is considered the most prom-
ising material. Large-scale Cf/SiC composite components
with complicated geometries are often difficult to manufac-
ture, necessitating the use of appropriate joining procedures
to link them to themselves or other materials. Despite the
transitory impact of COVID-19, the demand for SiC/SiC
matrix composites is expected to dominate the CMCs market
throughout the forecast period due to rising investments in
the energy and power sector.



10161

Silicon (2022) 14:10141-10171

[8G 1] @oue)sisax

Surdewrep pue joedwl Se [[om SB ‘SSOUYNS

pue ‘Anpiqenp ‘soniadord yiSuamns se yons

sonrenb Adonostue renonred 9A13 03 A1

-[1qeadepe oy} oAeY A9} 9sNLOAq S[ELIEW

pue saouejsqns peonpoid AreoiSojoiq jo
sooue)sur Jeard Juraey sojrsodwod pajeuruue

[101] serioreIoqe]

onayysold ur parires ssedo1d uonenyur

SIY) PUB UOISIYPE PIIUSWRD UISAI pue A1

-ULIOJTUN [EINJONIS SB Yons SUOIIOIIP 0M)
ur saroxdwr [93 BOIIS YIIM PAJEN[YUT BIUODIIZ

[#S1] S10193s uon

-eIA® pue Ansnput jjeroire oy) ur sesodind

[eInjonys 10§ pato[dxo Juroq pue SOTWLID

y)Ijouow uey) ssauy3noy aanjoely 1oysiy )
0] anp ‘A313us Jurmioerj qIosqe sAIqY ASAYL

[9¢T1]
S[eLId)EW JOYJ0 uey) doue)sisar Jurdeard pue

YUE)SISAIT [EITWIAYD ‘OOUL)SISAT QANEPIXO ‘A1
-[1qeISOULIaY) JoJealS SISO OTeIdd NDIIS

[151] suonreoridde soedsoiae 10§

DIS M SUIOIOJUIAI PUE SAIFIOU FULINJORI)
qIOosqe 0) ASUIPUD) AIB SIAQY PIVIOJUIAL DIS

[0S1] sseo01d
uone[qe Surmnp ‘aroydsoune d1qoIse Jo aIn)
-e1odwa) swenxa ue ur JUIZIPIXO SUIMOT[O]

‘S9[OY pUB ‘SIN)ORIJ SB YONS smey Jo Jurfeas
Uy Ul spre ZQI7 M Paulquiod QIS Ualojy
[St1] sosip Suryeiq pue ‘S9[o1yaA youne|
‘Surprarys 1eay 1oy suorjesrjdde Surpuewrop
-A1y3ry 105 suondo 9[qera way) Suryew
‘sdwo) awanx? Je sonIfiqeded [eorueydow
-ouLIay) Jurpue)sino aaey sAIsodwod DIS/D

[ev1]
suoneordde armerodwd) y3ry 10§ feLIjRW

renuajod 9[qeIA © st popaedal st sojisodwod

DISAD YIM SUIDIOJUISX PUE “ISQI9IUL JO JO]

B POAIOAI AARY STND ‘SONSLIDIORIRYD [BD
-11309[9 pue [edrueyodw Jorradns sit 0) SurmQ

[zy1] seprqowoine

‘Qrisstur ‘0oedsoIor 9YI[ SOLNSNPUI SNOLIBA

ur KJ1suap 1Y31y s3I 0) Inp SAO[[B S[eIoW
Sunsixs Apuarmod saoepdai seysodwod JISADH

S[eLIdJeW OndIIWOlg $91 uootpig prmbry OIS LL/OIS OIS*LL IS
S[eLIRJEW Shaworg gee uoorr§ pmbry RNV SIL OIS
SPISY [eiusq Y YOTT—L'6S8 [95-10S BOIIS/dZI-A  BOlIS pue BIUODIIZ
saurduo 39 ‘syusuodwos uorsindoig - A1mg DISFOIS IS OIS
$10309s doedsoroy - [98-10S quayde1d/[a8o1oe NOGIS ND4GIS
so[noaloig
‘SoUISU UONBIAY ‘SWSAS uorsndoid - sISA[o1kq pue 1owA[od DISFDIS IS
$10309s doedsoroy 0€°60¢ SISA[01Kg pue 1owA[og JIS =gz —D/D JIS —tqiz
saqn) 103UBYOXS JESH
‘oSIp oNerq ‘SA[OIYAA doedg ‘SP[aTys 1eoH - [93-108 OIS0 1N
SOLISNPUT UOTIRIAY
‘aoedsoroy ‘eanowoiny €Tt SISA[0Ikg pue 1owA[og DISAD -LND OIS
SOLISNPUT S[IOWOINY ‘SATISSTA ‘ooedsoroy 8ET—L9 SISA[0IKJ pue 1owA[og JISFD IS

SOOURIJU]

suoneorddy  (edqIN) WSuang reinxs[ sonbruyosy, uonenyuy soysodwio)) XLIRA JlWRI)  [BLIOIBJA OIUEID)

s9)1s0dwod J1weIdd Jo YI3uamns [eInxay si yPim ssaooid uonenyur jo suonedrdde jo sproy jo Arewwng € ajqel

pringer

a's



Silicon (2022) 14:10141-10171

10162

[SL1]
soguer sarouanbaiy oy} ur UoTIRIPRI O1)AU

-Sewono2 0} Juaredsuen A[Teau aIe Yorym
SMOPUIM O1}OUSBWOIO9D JO] [BLIdYeW
[enuajod os[e are sorwe1ad PNEIg snoiog

[osT1]

s103pe3 oruono[e pue ‘seouerjdde [eorwoyd

“4JeIoare ‘Arouryoew Jo uononpoid ay) ut
pakordwo Ajopim are soysodwod DIS/IS

[1.1] uonuaaaid Tewray) 1oysTy

I19Y} 0} anp SI0JIS [BLIISNPUI UOTIBIAR pUR

[eo1NBUOISR JY) UI S[RLISJEW [BUOIIOUN] SB
pasn A[QAISUL)X? ar1e saysodwod HIS-D/D)

[691] s1yexoITe
ur sooeyIns Jodreys pue so[o1yeA oruosiadns

Surpnpour suonesrdde amjerodwo) Y3y
IO PAPUSWIWIOAI ST $3)Is0dwod DIS-DIZ

(€911 sprey uoneordde

Surreaurus arjeredwal-y3ry jo a3uer opim

© 0] PA)ORI)E SEY Jey) 90UL)ISqNS JTWIRID
paio[re) Jo 2d4£) & ST 9pIqIED UODIJIS SNOI0J

[191] sernsnput

[eSTWAYO PUR P[oY [eOISIN[[LIOW UI PALISJ

-ao1d osye orwe1dd snotod sy sarnjeradwo)

QWX Je senIenb [eoTURYOW JUS[[9Xd

pue ‘K)IATIONPUOD [BWLIAY) PIoNpar ‘AJIAT
-S1891 Jeay uons ‘AJISUSp [eWIUIW S)I 0 AN

SI0JOI [IB], PUB SMOPUIM O1}oUSeWONIAH

$QOIASP d1u0nO9[y ‘Yuawdmba [eorwey)
‘aoedsoroy ‘urmioejnuett AISUTYORIA

soLnsnput 9oedg pue sonneuoIdy

sqoeyIns-o1ae dIeyg ‘so[oryeA otuosiadAH

soqn) J9FUBYOXI JBIY ‘SQUIQIN)
sen) ‘speas [eotueyo9Iq ‘1roddns onAreie)

s1ouIng
uonsnquo)) ‘s1a)Iy ‘syroddns 1s[e1e)

8Y1 —9C6
00¢
VLI—VEL
ol

LL
0Lc—CCl

[5-10S fO1S-"NfIS snoxod
uoor[rs prnbry DIS/IS
uooI(IS pmbry DI1S-0/0

SISA[0IAJ pue IowA[og DIS-D17/0
J[OIN 2ATIOBYY DIS/OIS
1odep [eotwoy) ors/™o1s

2018 “'NfIS

oIS

ors

DS D17

DIS snoiod

DIS snoiod

SOOURIJUY

suonjeor[ddy  (edIA) PISUanS TeInNXaL

sonbruyooy, uonenyu]  sAIsodwo) XN ORI

[ELIQJRIA OTWERIS))

(ponunuoo) ¢ 3jqey

pringer

Qs



10163

Silicon (2022) 14:10141-10171

[L81] suoneoridde

Joedsoloe pue jjeIoire 10y o[qeoridde st yorgm

Ky1adoxd uorjeqe oy soaoxdwir sedouBISqNS WN[EIUE)

pue ‘BIULIT) “BIUODIIZ SUOISN[OUl £q 0s ‘sernjerodwo)
19yS31y 18 UONR[QR PUBISYIIM Jouued saysodwod HIS/D)

[981] suoneorjdde soedsoioe

JIOJ 90UB)SISAI UOTIB[QR JUIPURISINO PAILISUOWIP

Sysodwiod Jyy pue ‘sadeyIns Y uo paonpoid sem
Wy I9LIeq {OI7Z JO UONRULIO] Y $s9001d oy Surm ]

[¢sT1]
suonejuawadwir aurqin) ses Joj AOI0YD JANORIE

jsowr Yy are sIsodwod DISADIS “ANfIqrxey pue

y13uams oyr1oads 1oyS1y ‘A)Isuop Iamoy ‘eoueurrojrad

[eorueyoow pue doard ur sarnjeradwe) Jorradns
90UR)SISAI QATIEPIXO JUIPUL)SINO JIAY) JO 9SNBIdy

[#81] senifiqedes uorssrusuer

A313u3 poo3 Furaey a1onxs snorod YHIm OTWRIND

JIe[nJ[ad JO SpewW Je UoneIouas A3I0ud Jejos ul
Pasn SI9ATODAI OLIdWN[0A Jo sadA) Juanbaiy jsow ay ],

[€81] se1m
-erodwa) swenxa repun syusuoduwos ooedsorse pue

jjeroare J0j A1xodoid Sursisar uone[qe ay) sedUBYUD
Asodwos qrz—HIS/D Y} UT DB, JO UOISN[OUT oY ],
[161] sermerodwa) SWANXI JB ddUBUIUIRW YISUILS
QAT)OQYQ puE “QouI[ISA dLIvydsowe 10jeaid ‘saguer
Sunowr JSoYSIY YIIM SOTWERIID JUIPUR)SYIIM 1N}
-e1odwia) I1oyS1y I8 SOPLIIU PUR ‘SapIqIeRd ‘SapLiog
[z81] uonoajoad 9ABPIXO 3Y) SE [[9M SB SN
-1[enb [estueyOOW Y} SAOUBYUD DIS JO UOISN[OUT YT,
$109JJ9 UOIIBPIXO PUE ‘QOUR)ISISAI UOISLIE pUuB
S$)O0YS [BULIDY] ‘SsoupIey ‘@3uel Sun[ow Iay3iy sit
0] 9Np 1SAIAUI JO JO] B PIATIOAT 9ARY SOTWEIAD CqIz
[181] sior1edoxd
39001 pue ‘s1ayoune| ‘sjuauodwod AUISUD ‘S[eLr
-ojewr 3uroB] ‘souIqIn] sed ‘SO0IAp FuIyeIq Se yons
seare aoedsoroe pue ‘OTwONE ‘AIRIITUI ‘9ATIOWUOINE
ur s juowdmbs 10§ suondo unsarejur are sajsod
-WI0d OTWEID PadIojurar-y) ‘sornjeroduwo) JoysSTy
Je Q0URID[0) JOOUS [BWLIdY) pue ‘ssauysno) Jorradns
‘onjel Jy31om 0) YISuams PIseaIoul JIay) 03 an(g

$10J99$ JJeIOITY puk doedsoroy

uorsindoid 19500y pue s9[o1YaA druosIadAH

SP[Y UOTJBIAY PUE SQUIGIN) SBr)

$201n0s A3I10Ud dATIRUIY pue uononpoid ASoug

SQ[OIYA d0rds ‘s9[z
-zou ‘sa3pa 3urpe9] ‘sded asou ‘sourdus—jiJerony

SO[OTYRA
uorsindoid poads-y3ty pue Y31y oruosiodAH

spiey 2oedsoroy

SpIey ASIoug pue S9[OTYaA AU
-a1 oroydsouny ‘sa[oryea aoedsorae oruosiodAH

§'6¢C

944

0€°60¢

005061

OIsT1-018/0

DIZ=0/0

DISAOIS

HADIS*HO—OIS

ORL-°g1Z7-D1S/D

DIZ-DIS/D pue DIZ-D/D

OIS—g1Z-D/0

o1s-tq1z-D

uooI[Ig pinbr+Armig

JIOIN 2A1OBY + Jodep [edrwoy)

SISK[0IA] 29 TowA[0od +JodeA [eorway)

JodeA Teorway) + A1nys

SISK[01A] 29 JowA[od + A11n[S

SQOURIJU]

suonjeoriddy

(edIN)
y3uang

[eInxa[ soysodwo)) XLIRA JTWeId)

SPOYIRN UOnEN[YJU] PAUIqUIO))

sa)sodwod o1we1ad Jo YSuamns [eInxay s yim ssaooxd uonen[yur paurquiod jo suonedsrdde jo spjoy jo Arewwns § ajqel

pringer

a's



10164 Silicon (2022) 14:10141-10171

M Oxide/Oxide CMCs
£ C/CCMCs

@ SiC/SiC CMCs
mC/SiC CMCs

MoSi, is a potential material with a higher melting
range, minimal density, and strong oxidative protec-
tion in air at extreme temperatures, even in harsh

Due to their impressive superior temperature quali-
ties, such as minimal thermal expansion, strong
mechanical stability, and great oxidizing protection,
Cf/SiC composites are considered as functional
materials for employed in thermal protective tech-

=
o &
— =
§ = Eﬁ Fig. 16 CMCs market, revenue share (%) by product type, global,
2 8 g 2020
6 Conclusion
Even though ceramic composites are known for their hard
b= machinability properties, the demand for these composites
2 & has reached an ever-increasing high; the recent growth
g % of demand for CMCs in the aerospace and automotive
8 4 industries has become a key factor in enhancing the under-
g'ﬁ :& standing of its manufacturing process. In some ways, the
3 2 demands paved the door for the use of new industrial
< . . .
° % processes. There are many different types of infiltration-
@ < — . . .
5 Q 2 based manufacturing processes, each with its own set of
'§ § f features. The best technique for the job is chosen based on
= g é the demand, the application’s surroundings and conditions,
< < 7]

the surface polish, and the material’s cost charges. With
these considerations in mind, any type of infiltration might
be selected to meet the requirements. Ceramics must be
manufactured at low temperatures to avoid fiber breakage,
which can be accomplished using PIP. The microstruc-
ture and content are well controlled in PIP. Many different
methods of reinforcement can be used, allowing a vast
range of matrices to be created. Unlike M1, silicon matri-

Strength
(MPa)

Ceramic Matrix Composites Flexural

o :5 ces generated using PIP do not contain any free silicon

8 O [79]. Because there are more pyrolysis cycles required, the

? LN) fabrication time is longer. CVI is versatile enough to pro-

2 2 duce any shape nevertheless; the process is constrained by

= © its complexity, associated costs, equipment requirements,

and careful management of the specimen before the pro-

cess [80]. In comparison to ceramic materials acquired

@ through CVI and LPI, CMCs materials such as C/C-SiC,

£ SiC/SiC, and C/SiC ceramics produced through the MI

é = g process have much lower open porosities, giving Fhf:m

cHE- 2 o stronger shear strength and better thermal conductivity.

g § ‘{6’ § C/C-SiC and C/SiC, on the other hand, confront few obsta-

§ 5 >§~ g cles due to their low tensile strength and the short lifetime

: 2 + %‘ of SiC/SiC ceramics. In the MI process, there are chances

o [ g z i f rrence of matrix cracking which happens because
5 |12 1 of oceurrence of ma 1g which happens beca

2O 7 @ of the change in volume during solidification. While
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performing SI, the composite will have uniform fiber/
matrix microstructures along with good mechanical prop-
erties like high strength and toughness are achieved. As a
result of this technique, low porosity of the ceramic mate-
rial is achieved [190]. The sol—gel process is a remarkable
process for manufacturing CMCs at low temperatures that
reduces fiber damage, but it lacks certain characteristics
such as manufacturing composites with large shrinkages,
which causes matrix cracking, and the composites manu-
factured by this process have lower mechanical properties
than their counterparts [191, 192]. Silicon-based CMC’s
has applications in fields such as automobile, aerospace,
aeronautical, marine, and many other industries, It pro-
duces promising results in their respective fields. Silicon-
based CMC'’s has a high temperature, resistance to corro-
sion, strength retention, stress rupture, and high corrosion
resistance. Ceramic components display high brittleness
with high hardness values. Such a critical component
must be fabricated using proper methods such as infiltra-
tion techniques. Much research has been conducted using
these techniques to study ceramic components. Popular
and efficient infiltration techniques like SI, sol-gel and MI
were discussed and their various features were outlined,
thus providing insights in understanding the established
work. Compared to powder or slurry precursor’s sol—gel
route is advantageous due to lower densification tempera-
tures. Despite all these fabrication processes, the selection
and application of the manufacturing process ultimately
depend on the process application and the constraints in
the working environment. In sectors such as aircrafts, mis-
siles, automotive, and others, the demand for lower density
and high-strength materials is growing to replacing con-
ventional higher density metal alloys. Emerging materi-
als such as C/SiC are replacing metal alloys due to their
lower density, higher melting point, and higher hardness,
chemically inert, superior oxidative and erosive resistance.
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