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Te joint time-frequency analysis method represents a signal in both time and frequency. Tus, it provides more information
compared to other one-dimensional methods. Several researchers recently used time-frequency methods such as the wavelet
transform, short-time Fourier transform, empirical mode decomposition and reported impressive results in various electro-
physiological studies. Te current review provides comprehensive knowledge about diferent time-frequency methods and their
applications in various ECG-based analyses. Typical applications include ECG signal denoising, arrhythmia detection, sleep apnea
detection, biometric identifcation, emotion detection, and driver drowsiness detection.Te paper also discusses the limitations of
these methods. Te review will form a reference for future researchers willing to conduct research in the same feld.

1. Introduction

Te electrocardiogram (ECG) signal has been an indicator of
human health. It is the graphical representation of the
electrical activity of the heart muscles occurring due to their
contraction and relaxation [1]. A single cardiac cycle is
labeled using diferent waves: P, Q, R, S, and T. Te location
and amplitudes of these waves are used primarily in ECG
analysis during medical practices. It helps to predict the
onset of cardiovascular diseases, irregularities in heart
rhythm, stress levels, human emotions, and so on. A stan-
dardized ECG signal is represented via twelve leads, each
calculated using a set of limb and chest leads. Conven-
tionally, the ECG waves were visually observed and analyzed
by an expert. Te evaluation includes detecting any subtle
change in the time series information that takes in mor-
phological details such as the RR interval, QT segment, ST
segment, QRS complex, and so on [2], and their statistical

variations. Unfortunately, it is not always possible to track
the minute changes in the morphological parameters (in-
tervals, peaks, and waves) of the ECG signal.

Te ECG signal is nonstationary; i.e., the statistical
properties of the signal, such as mean, variance, and higher-
order moments, change with time. A nonstationary time
series of data contains systematic noise (trends, jumps, and
datum shifts) that may change its statistical values. Hence,
the time series data analysis is not enough for a meaningful
interpretation. Also, the employment of traditional signal
processing methods based on stationary assumptions is
insufcient. Terefore, the decomposition of the time-series
data into another domain, frequency or time-frequency, is
used for easy analysis [3]. Fourier transform (FT) is the most
widely employed method for frequency analysis. Te tech-
nique uses the sinusoidal basis function to represent a time
series signal in the frequency domain. Te amplitudes of the
measured sinusoids at diferent frequencies form

Hindawi
Journal of Healthcare Engineering
Volume 2023, Article ID 3145483, 34 pages
https://doi.org/10.1155/2023/3145483

https://orcid.org/0000-0003-4778-8563
https://orcid.org/0000-0002-4004-6658
https://orcid.org/0000-0002-8185-2672
https://orcid.org/0000-0003-0389-3441
https://orcid.org/0000-0002-4618-8809
mailto:kpal.nitrkl@gmail.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3145483


a spectrum. It is one of the transformation methods that has
changed the world of signal processing and have diverse
application in feature extraction, denoising, and so on.
However, FT does not have any information in the time
domain.

Joint time-frequency analysis is a valuable method that
expresses a signal in the time-frequency distribution [4]. It
helps disclose the constituent frequency component of the
signals and their time-varying nature. Several time-
frequency analysis methods have been proposed to ana-
lyze ECG signals in various application domains. Tese
methods include but are not limited to the short-time
Fourier transform (STFT), continuous wavelet transforms
(CWT), discrete wavelet transforms (DWT), empirical mode
decomposition (EMD), and Wigner–Ville distribution
(WVD) [5, 6], and so on. Tese methods help extract the
vital signal components such as distortions, noises, and
hidden patterns of the ECG waves and have been extensively
used in various applications. Also, these methods form the
base of several advanced joint time-frequency techniques.
Typical examples are arrhythmia detection, heart disease
diagnosis, peak detection, signal denoising, and emotion
detection [7–9].

Despite the more inclusive application of the joint time-
frequency analysis, it is unfortunate that no dedicated review
is found in the literature that discusses diferent time-
frequency methods for the ECG application. Te reason
may be that the time-frequency methods are a massive feld
with various possible applications. Hence, placing a vast
amount of information in a single review is not easy.
However, based on our limited knowledge, we have
attempted to extensively review some selected time-
frequency methods and their use in various ECG signal
processing applications in this article (Figure 1). Te current
paper is organized into four diferent sections. Section 2
gives background information on the time-frequency
methods. Te usefulness of these time-frequency methods
in various ECG applications has been discussed in Section 3.
Section 4 deliberates the limitations, challenges, and future
scope, followed by Section 5, concluding the study. Table 1
contains the list of abbreviations used in this article.

2. Background Information of the Time-
Frequency Analysis Methods

Te time-domain analysis gives the best time resolution but
no frequency information. Consequently, the frequency
domain analysis provides the best frequency resolution
without time-related details. A proper time-frequency
technique can overcome the disadvantage of one-
dimensional analysis and provide signal information in
the time and frequency domain. Some of the most widely
used time-frequency analysis methods have been discussed
in this section.

2.1. Short-Time Fourier Transform. In 1946, D. Gabor [10],
a Hungarian scientist, proposed the short-time Fourier
transform (STFT). In STFT, the Fourier transform (FT) is

applied for a limited duration. Te process follows a seg-
mented analysis where the original signal is frst divided into
smaller segments of length “L” using a window. Te Fourier
transform (FT) of each segment is then calculated. In other
words, the STFT provides the spectral information of each
segment of the signals. For a continuous-time signal x (t),
STFT coefcients can be represented mathematically using
the following:

X(τ,ω) � 􏽚
∞

−∞
x(t)w(t − τ)e

− jωtdt, (1)

where X(τ,ω) is the FT, w is the window function, τ  and ω
represent the time and frequency axis.

Te original signal “x (t)” can be retrieved using the
inverse STFT. It is represented using the following equation:

x(t) �
1
2π

􏽚
∞

−∞
􏽚
∞

−∞
X(τ,ω)e

−jωtdτdω. (2)

For calculating the STFT of a discrete-time signal,
a discrete Fourier transform (DFT) can be used in place of
FT. Mathematically, it is represented using the following
equation:

X[m; k] � 􏽘
L−1

n�0
x[m + n]e

− jωnk
. (3)

Here,m is the starting point of the localized DFT, k is the
DFT index, and L is the length of the window or segment. X
[m; k] are the Fourier coefcients that depend on the time
(n) and frequency (ω).

STFT is a complex-valued function of two variables and
requires a 4D plot of time, frequency, magnitude, and phase
for the proper interpretation, which is practically not pos-
sible. Tus, the phase information is not considered while
plotting the STFT spectrogram. In other words, time, fre-
quency, and magnitude values represent an STFT spectro-
gram. Furthermore, a color-coding method is applied for the
magnitude range, where a darker color represents a smaller
magnitude value and vice versa. It is important to note that
the size of the window shows a profound efect on the
frequency resolution. A wider window provides a few time
segments, resulting in lower precision in time but a high-
frequency resolution. On the other hand, a narrow time
window gives a high time resolution but a low-frequency
resolution. Since the window length is fxed in the STFT
method, the time and frequency resolution are fxed for the
entire signal length. Figure 2 is a sample representation of an
ECG segment of duration 1 sec. (sampling frequency
360Hz) and its STFT at varying window lengths (L= 2, 9,
and 18). It is evident from Figure 2 that with an increase in
the window length, the changes in the time-domain values
are less visible. On the contrary, the frequency domain
changes are becoming more profound.

2.2. Continuous Wavelet Transform. Te wavelet transform
(WT) is a processing tool that has been widely used in signal
and image processing and speech analysis. In 1984, two
French scientists, Grossmann and Morlet, frst coined the
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term “wavelet” and described it as a wave-like structure
[11]. A wavelet has an amplitude that starts and ends at
zero. Te amplitude integral of the wavelets is zero. A
detailed historical background of the wavelets is presented
in [12, 13]. Several wavelet functions are available with
diverse shapes and characteristics. Some common
wavelets include Haar, Daubechies, Coifet, and Symlet.
Te WTmethod solves the resolution problem associated
with FT by providing a suitable resolution both in time
and frequency. It is made possible by adopting a variable
window function, wherein the window function shrinks
and widens multiple times. Te continuous wavelet
transform (CWT) decomposes a given signal into dif-
ferent coefcients. Herein, a basis function called the
mother wavelet is dilated and translated. Mathematically,
the CWT is represented using

CWTτ,s,Ψ(x) �
1
�
s

√ 􏽚
∞

−∞
x(t)Ψ∗τ,s(t)dt, (4)

where Ψτ,s(t) � 1/
�
s

√
Ψ(t − τ/s) and ∗ represents the con-

jugate function.
In equation (4), the term “1/

�
s

√
” is used to normalize the

mother wavelet (Ψ). Te transformed signal generated after
employing the CWT depends on the scaling factor (s) and
the translation factor (τ).Te scaling factor shows an inverse
association with frequency. A lower value of s leads to a rapid
change in the wavelet and is used to detect the higher
frequencies of the signal and capture the fast-varying details.
On the contrary, a higher value of s helps perceive the lower
frequency components and captures the slow varying details
of the signal.

Te reconstruction of the original signal can be obtained
using

x(t) �
1

2πΨ
􏽚
∞

−∞
􏽚
∞

−∞

1
s
2 CWTτ,s,Ψ(x)e

−j(t−τ/s)dτds. (5)

Scalogram is the absolute value of the continuous
wavelet transform (CWT) as a function of time and fre-
quency. Compared to the spectrogram, a scalogram provides
more information as it gives the signal features at diferent
scales. Figure 3 represents a sample ECG signal and its
scalogram. As mentioned earlier, it is evident from the fgure
that the perceived frequency band is getting narrower with
an increase in scale. ECG scalogram images are preferably
used with deep learning models and have shown potential in
various biomedical applications, including arrhythmia de-
tection, apnea detection, and fall detection.Te disadvantage
of CWT is that it is highly redundant and shows a signifcant
overlap between the wavelets at each scale and between the
scale [14]. Furthermore, it is associated with higher com-
putational complexity.

2.3. Discrete Wavelet Transform. Stromberg [15], a Swedish
mathematician, proposed the mathematical foundation for
the discrete wavelet transform (DWT) in 1980 [16]. A
signifcant drawback of CWTis that the scaling factor (s) and
translation factor (τ) value changes rapidly and, hence,
calculates the coefcients of the wavelet for all possible
scales. Tus, the method yields much new information [17],
which is difcult to process. On the contrary, DWT ad-
dresses the aforementioned issues of CWT by representing
the signal at a discrete time and as a set of wavelet co-
efcients. In DWT, the signal passes through a low-pass flter
(LPF) and a high-pass flter (HPF) that splits the signal into
half of the original frequency range [18, 19]. Te low-pass
flter output is the approximation component (A), and the
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high-pass flter output is the detailed component (D). Te
approximation component is further decomposed to form
another set of approximation and detailed components in
each subsequent level. Figure 4 represents the wavelet flter
belts for DWT, where the x (n) is the original signal, and A
and D bear their usual meaning.

DWT can be of two types based on whether each flter’s
output is down-sampled by two or not. If the flter output is
down-sampled during the decomposition process, it is called
a decimated DWT. Undecimated DWT, also known as
stationary wavelet transform (SWT), is the method that
doesn’t incorporates the down-sampling operation at the
flter output. Tus, in the case of SWT, the length of the
approximation and the detailed coefcient are the same as
the original signal. Usually, the term DWT represents the
decimated method by default and is most commonly used
due to its lower computational complexity than the unde-
cimated method.

For a time-series signal, x (n) has the number of samples
m, i.e., n ranges from 0 to m− 1. Te scaling function
Wφ(j0, k) and the wavelet function WΨ(j, k) for the forward
wavelet transform can be represented using the following
equations:

Wφ j0, k( 􏼁 �
1
��
m

√ 􏽘
n

x(n)φj0,k
(n), (6)

WΨ(j, k) �
1
��
m

√ 􏽘
n

x(n)Ψj,k
(n). (7)

Ten, the signal x (n) can be represented (equation (8))
using the scaling and wavelet functions.

x(n) �
1
��
m

√ 􏽘

∞

k

Wφ j0, k( 􏼁φj0,k
(n)

+ 􏽘
∞

j�j0

􏽘

∞

k

WΨ j0, k( 􏼁Ψj,k
(n), j≥ j0.

(8)

Equation (8) is also known as an inverse discrete wavelet
transform. Figure 5 represents a sample representation of an
ECG signal and its DWT coefcients after the 3rd level of
decomposition using the db2 mother wavelet.

2.4. Wavelet Packet Decomposition (WPD). Wavelet packet
decomposition (WPD) extends the DWT, where the ap-
proximation and detailed coefcients are decomposed in the

Table 1: Lists of acronyms.

ECG Electrocardiogram
STFT Short-time fourier transform
WT Wavelet transforms
DWT Discrete wavelet transforms
WPD Wavelet packet decomposition
EMD Empirical mode decomposition
WVD Wigner-Ville distribution
PWVD Pseudo Wigner-Ville distribution
SWT Stationary wavelet transforms
IMF Intrinsic mode function
HT Hilbert transform
HHT Hilbert–Huang transform
EEMD Ensemble empirical mode decomposition
CEEMD Complete ensemble empirical mode decomposition
LMD Local mean decomposition
FDM Fourier decomposition method
SWT Stationary wavelet transforms
DTCWT Dual tree complex wavelet transforms
TQWT Tunable Q-wavelet transform
LSWA Least square wavelet analysis
EWT Empirical wavelet transforms
VMD Variational mode decomposition
MEMD Multivariate empirical mode decomposition
CEEMDAN Complete ensemble EMD with adaptive noise
SVM Support vector machine
DAE Deep autoencoder
PPR Peak positive rate
ANN Artifcial neural network
LDA Linear discriminate analysis
PCA Principal component analysis
LDA Linear discriminant analysis
SNR Signal to noise ratio
MSR Mean square error
PSR Phase space reconstruction
FT Fourier transforms
DFT Discrete Fourier transforms
CWT Continuous wavelet transforms
LPF Low pass flter
HPF High pass flter
A Approximation coefcients
D Detailed coefcients
ACF Autocorrelation function
IACF Instantaneous autocorrelation function
BW Baseline wander
CVD Cardiovascular diseases
AF Atrial fbrillation
VF Ventricular fbrillation
VT Ventricular tachycardia
CNN Convolutional neural network
RCNN Recurrent convolutional neural network
KNN K-nearest neighbor
PCA Principal component analysis
QDA Quadratic discriminate analysis
OSA Obstructive sleep apnea
CSA Central sleep apnea
CVMD Complex variational mode decomposition
EDR ECG-derived respiration
HBI Heartbeat interval
Res Net Residual neural network
ELM Extreme learning machine
RF Random forest

Table 1: Continued.

NB Naive Bayes
DT Decision tree
DTW Dynamic time wrapping
GOA Grasshopper optimization algorithm
NLM Nonlocal mean
FIBFs Fourier intrinsic band function
SURE Stein’s unbiased risk estimate

4 Journal of Healthcare Engineering



subsequent level. Hence, WPD provides a better frequency
and time resolution compared to DWT. Figure 6 represents
the wavelet flter belts for WPD, where x (n), A, and D bear
their usual meaning, as described in Section 2.3. Similar to
the DWT, the WPD can be of two types: decimated and
undecimated. Generally, WPD follows the decimated
method. A sample ECG signal and its wavelet coefcients
after the 2nd level of decompositions using the db2 mother
wavelet are represented in Figure 7.

2.5. Wigner-Ville Distribution (WVD). Wigner [20],
a Hungarian physicist in the year 1932, proposed the basis of
the Wigner-Ville distribution (WVD) function. WVD is the
quantitative representation of signal energy in the time-

frequency domain. Tis method uses the autocorrelation
function for the calculation of the power spectrum. Te
autocorrelation function (ACF) compares a signal (x (t)) to
itself for all possible time shifts (τ) and is represented using
the following equation:

ACFx � 􏽚 x(t)x(t + τ)dt. (9)

In the ACF, the signal is integrated over a period of time,
which makes it a function dependent only on τ. However,
the WVD uses a variation of the ACF called the in-
stantaneous autocorrelation function (IACF) to maintain
the time parameter, and it is represented using the following
equation:
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IACF � x t +
τ
2

􏼒 􏼓x
∗

t −
τ
2

􏼒 􏼓. (10)

Te WVD function compares the signal information
with its own at diferent times and frequencies. It can be
viewed as the FT of the IACF.

Mathematically, it is defned using the following equa-
tion (11):

WVDx(t,ω) �
1
2π

􏽚
∞

−∞
x t +

τ
2

􏼒 􏼓x
∗

t −
τ
2

􏼒 􏼓e− jωτdτ. (11)

Compared to STFT, WVD gives better spectral resolu-
tion as it does not sufer from leakage. However, when
a signal has several frequency components, it may be afected
by the cross-term [21]. A cross-term occurs when multiple
parts exist in the input signal, analogous in time and fre-
quency beats. Te cross-term can be minimized by modu-
lating the WVD function by applying a sliding averaging
window in the time-frequency plane. It is regarded as
pseudo-WVD (PWVD) [22] and is more widely used than
WVD. However, it reduces the efect of cross-terms to some
extent but does not eliminate it.

Mathematically, the PWVD is represented using the
following equation (12):

PWVDx(t,ω) �
1
2π

􏽚
∞

−∞
h(t)x t +

τ
2

􏼒 􏼓x
∗

t −
τ
2

􏼒 􏼓e
− jωτdτ. (12)

Figure 8 represents the PWVD of an ECG signal (360Hz,
duration 1 sec). Each data point in the WVD plot is rep-
resented with three signal variables: amplitude, time, and
frequency.

2.6. Empirical Mode Decomposition. Empirical mode de-
composition (EMD) is a local and data-driven adaptivemethod
that is mainly applied to nonlinear and non-stationary signals.
EMD splits a signal into many nanocomponent functions
called Intrinsic Mode Functions (IMFs) [23]. Te IMF holds
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a relationship between phase and frequency. An IMF must
satisfy two conditions: (1) For a given signal, the number of
zero crossings and the number of extrema must be equal to
zero; if not, it must difer by one. (2)Te mean of the envelope
created due to the local maxima (peak of a wave) and the local

minima (valley) is zero. In other words, the IMF represents
only the simple oscillatory modes present in a signal. However,
it does not ensure a perfect instantaneous frequency in all
conditions. In [24], Peng et al. (2005) proposed an algorithm to
extract the IMFs of a signal.
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After the decomposition process, the original signal is
characterized as the combination of the extracted IMFs and
the residues ri+1. Mathematically, it can be represented using
the following equation (13):

x(t) � 􏽘
n

i�1
IMFi + ri+1. (13)

Figure 9 represents a sample ECG signal and the set of
extracted IMFs and residues (Figure 8(b)). Te fgure also
illustrates the instantaneous frequencies (Figure 9(c)). It can
be observed from the fgure that the lower IMFs capture fast
oscillatory modes. On the contrary, the higher-order IMFs
capture the slow oscillation modes. Te limitation of the
traditional EMD method is mode mixing in the case of
signals with closely spaced frequencies [25].

2.7. Hilbert Huang Transform. Te Hilbert Huang Trans-
form (HHT) is an extension of EMD. It is the application of
the Hilbert transform (HT) to the extracted IMFs. After
fnding all the IMFs from the original signal, the HT is
applied to get the di(t) from each IMFi. Mathematically, it is
represented using the following equation (14):

zi(t) � IMFi + jdi(t) � Aie
jθi , (14)

where zi(t) is the analytic signal obtained using the Hilbert
transform of the IMFs.

Ai �

������������

IMF2i + di(t)
2
,

􏽱

θi(t) � tan− 1di(t)

IMFi

,

ωi �
dθi

dt
.

(15)

Replacing IMFi with zi(t) in equation (14) and
neglecting the value of ri+1, it yields

x(t) � Real 􏽘
n

i�1
Aie

jθ(t)i⎛⎝ ⎞⎠, (16)

where θ(t)i � 􏽒
t

0 ωi(t)dt � arctan (di/IMFi).
At the output, the HHTproduces an orthogonal pair for

each IMF that is phase-shifted by 90°. In addition to the
orthogonal pair, the IMF calculates the instantaneous var-
iation in its magnitude and frequency over time. Hence,
HHTcan be a helpful method when analyzing nonlinear and
nonstationary time series data.

2.8. Some Modifed Joint Time-Frequency Methods. Te
aforementioned joint time-frequency methods form the
basis of many advanced methods, which have been proposed
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Figure 7: (a) A sample ECG signal and (b-e) its WPD coefcients after the 2nd level of decomposition using the db2 mother wavelet.
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in recent years. Tese advanced methods try to eliminate the
limitations associated with the original techniques. Hence,
these advanced methods have gained much attention in
many signal-processing applications. Initially, it has been
a general consideration that the Fourier transformmethod is
applicable only for the spectral analysis of stationary signals.
However, a modifed Fourier transformmethod was recently
developed for nonlinear and nonstationary signals appli-
cation. Tis method is called the Fourier decomposition
method (FDM) and has been employed as a time-frequency
analysis tool [26]. Several-modifed wavelet analysis
methods, including least-square wavelet analysis (LSWA)
and least-square cross wavelet analysis (LSCWA), have also
been proposed [27]. Numerous variations in wavelet
transformation methods have been reported recently. Tis
includes tunable Q-wavelet transform (TQWT) [28], sta-
tionary wavelet transform (SWT) [29], empirical wavelet
transform (EWT) [30], and dual-tree complex wavelet
transform (DTCWT) [31]. Te advantage of the TQWT is
that it does not require the adjustment of the wavelet base
function and can easily be adjusted according to the signal
[32]. SWT shows the local time-frequency characteristics of
a signal and has multiresolution analysis capability [33]. Te
EWT method is an adaptive wavelet method that uses
a wavelet subdivision scheme. Te method segments a sig-
nal’s spectrum and perfectly reconstructs the input signal
[34]. DTCWT shows several advantages compared with
DWT. Tese include approximate shift-invariance, di-
rectional selectivity, and perfect reconstruction of the
original signal [34]. Also, compared to other numerical
methods, DTCWT is faster and more efective.

Te empirical mode decomposition (EMD) method
has also received several improvements in the last decade
and has formed the base for a number of decomposition
methods [35], that include variable mode decomposition
(VMD) [36], complex variable mode decomposition
(CVMD) [37], Local mean decomposition (LMD) [38],
ensemble empirical mode decomposition (EEMD) [39],
multidimensional EEMD [40], complex EMD (CEMD)
[41], Complete EEMD with adaptive noise (CEEMDAN)
[42], and multivariate empirical mode decomposition
(MEMD) [43]. VMD is an adaptive EMD method where
the signal decomposes into many band-limited IMFs. Te
main advantage of VMD over EMD is that it eliminates
the efect of mode-mixing during the decomposition
process [44]. Te LMD method produces a set of product
functions after the decomposition process. Here, the
time-frequency distribution of the original signal could
be acquired from the instantaneous amplitude and fre-
quency of the product functions [45]. Te EEMD and
CEEMDAN methods also eliminate the mode mixing
issues of the EMD method by performing the de-
composition over an ensemble of the signal with Gaussian
white noise [46].

Modifcations in the Wigner—Ville distribution func-
tions resulted in pseudo-Wigner—Ville distribution
(PWVD) [47] and smoothed pseudo-Wigner—Ville distri-
bution (SPWVD) [48]. Te HHT, as mentioned above, is
also an advancedmethod of EMD, where the Hilbert spectral
analysis is employed for each IMFs. Te following section
reports applying the aforementioned time-frequency
methods in various ECG signal processing studies.
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3. Applications in ECG Signal Analysis

Te advancement in ECG signal processing methods has
diversifed its applications, both biological and non-
biological. Including various joint time-frequency methods
in ECG processing has made the process efcient to a sig-
nifcant extent. Te biological applications may include, but
are not limited to, detecting abnormalities in heart rhythm,
the onset of a seizure, sleep apnea, and so on. On the other
hand, the nonbiological applications may consist of emotion
detection, biometric identifcation, drug and alcohol de-
tection, the removal of noise from the ECG signal, and so on.
Tis section contains some of the most notable applications
of joint time-frequency methods in ECG analysis.

3.1. Noise Removal. Te acquisition of the clinical ECG
signal is a noninvasive procedure that involves amplifying
the biopotential signals using high-gain amplifers obtained
with surface electrodes placed over the skin. A conducting
gel is also applied between the skin and electrode surfaces
to reduce the skin-contact impedance and maintain proper
conductivity. During the acquisition of the ECG signals, the

signal may get contaminated with diferent noises. Te
primary noise sources in an ECG signal are power line
interference, electrode instability due to improper adher-
ence of the surface electrodes to the skin surface, and
muscle activity. Tese noises are correlated with the
original signal with a similar temporal distribution.
However, they difer by intensity level. Te noise signal
possesses a variety of frequency bands, where the low,
medium, and high-frequency bands signify the baseline
wander (BW), power line interference, and electromyo-
graphic noise, respectively.

3.1.1. Baseline Wanders. Te BW noise is prominent in the
ECG signal at less than 1Hz. Several factors may lead to this
noise, including changes in electrode-skin polarization
voltage, respiration, motion artifacts, and electrode, and
cable movement.Te peak amplitude and duration may vary
according to electrode properties, skin contact impedance,
electrolytes used, and electrode movement.Tis noise causes
a shift in the isoelectric line during recording, hence, the
name BW. Te baseline drift is usually seen at a shallow
frequency of 0.014Hz in the ECG recordings.
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Figure 9: (a) A sample ECG signal, (b) IMFs and residue of the ECG signal after EMD, and (c) the instantaneous frequency of each IMF.
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3.1.2. Powerline Noise. Te power line noise is mainly as-
sociated with the signal-carrying cables of the device. Tese
cables are prone to electromagnetic interference at 50Hz or
60Hz. Te two allied mechanisms that aid in powerline
interference are capacitive and inductive coupling. However,
in the case of the ECG, inductive coupling is more
signifcant.

3.1.3. EMG Noise. Te ECG data are acquired using surface
electrodes placed over the human skin. It is important to
note that various muscles are present underlying the human
skin tissue. Te contraction and relaxation of these muscles
lead to the corruption of the ECG signals with the EMG
signals from the underlying muscle tissues. Te EMG noise
is more defned in the case of diferentlyabled persons, kids,
and persons with tremor issues.

3.1.4. Electrode Contact Noise. As mentioned above, a con-
ductive gel is usually used on the skin surface before the
electrode placement, which acts as a dielectric medium and
ensures good conductivity between the two electrodes (the
skin surface and the measuring electrode). Electrode contact
noise occurs when there is a change in the contact position of
the electrodes to the skin. Te loosening of the electrode
contact may also contribute to the noise. Additionally, poor
conductivity between the electrode and the skin surface
decreases the amplitude and increases the probability of
disturbance by reducing the signal-to-noise ratio (SNR).
Maintaining the skin contact impedance as low as possible is
advisable to ensure better conductivity between the skin
surface and the measuring electrode.

Te noise components in the signal contribute to its
wrong interpretation, faulty observation, and inefcient
feature extraction. Hence, removing the contaminants from
the signal is crucial before further processing. Initially,
moving average flters were used for this purpose, but they
lost a lot of information due to averaging [49]. Various
digital and adaptive flters were reported for baseline wander
removal and motion artifacts [50]. However, determining
the correct flter parameter is a difcult task. Again, these
methods primarily focus on a single noise source. Time-
frequency methods became popular as they can help remove
multiple noises simultaneously. Various time-frequency
methods, including wavelet transforms [51], EMD [52],
WPD [53], and their variants, have been used in the liter-
ature for noise reduction. Te conventional denoising steps
include signal decomposition, identifying the decomposed
signals where most of the noise is content, fltering these
noises, and reconstructing the original signal. Figure 10
represents the basic steps involved in ECG denoising. Table 2
contains a comprehensive list of published papers that
employed time-frequency-based methods to denoise the
ECG signals in recent years.

3.2. Arrhythmia Detection. Cardiovascular disease (CVD) is
one of the prime reasons for human death. As per reports, it
contributed to 31% of the worldwide death in 2016. Out of

these, 85% are due to a heart attack. Timely and early de-
tection of the onset of the disease can help in reducing these
statistics. Arrhythmia is a common manifestation of CVD
known as heart rhythm disorder. It happens when there is an
anomaly in the electrical conduction pattern of the heart.
Tough there are several forms of arrhythmia, namely, sinus
node arrhythmia, atrial arrhythmia, junctional arrhythmia,
and atrioventricular block [77], atrial fbrillation/arrhythmia
is the most common. Usually, the irregular heartbeat does
not show any harmful symptoms until it reaches a higher
state, leading to a stroke, congestive heart failure, long-term
or short-term paralysis, and sometimes even death. Tus,
early detection of the progression of AF is crucial. Te
conventional way of diagnosing CVD is through a patient’s
medical history and clinical tests. However, this method
requires highly heterogeneous data and a medical expert for
accurate prediction and interpretation, making the process
inefcient. Also, the problem is more signifcant in places
with a shortage of proper medical facilities. Terefore, for
decades, researchers have been opting for a machine-based
automatic system that uses physiological signals (ECG) for
monitoring and diagnosis. Most of these diagnostic pro-
cedures follow a standard method, including ECG signal
acquisition, decomposition, feature extraction, and classi-
fcation for arrhythmia. Te current section addresses dif-
ferent time-frequency-based methods in arrhythmia
detection and their present status. Although several time-
frequency methods have been employed for arrhythmia
detection, wavelet-basedmethods have been widely explored
in recent years. Te discrete wavelet transform (DWT) is
most prevalent due to its easy implementation. Figure 11
represents the block diagram of a DWT-based beat classi-
fcation method, followed by Rizwan et al. (2022) [78].
Besides DWT, other methods, such as WPD and CWT, have
also been employed. Te CWTmethod is not widely used as
the inverse CWTis not available in many standard toolboxes
(MATLAB, Python, etc.) due to its high computational cost
[79]. However, in many studies, the DWT and CWT were
combined to improve classifcation accuracy. WPD, on the
other hand, resulted in a larger feature set compared to the
DWT method and showed potential in classifying ar-
rhythmia. However, it is associated with high computational
complexity. Some other time-frequency methods and their
variants that have also been recently explored include EMD,
HHT, WVD, and STFT. Te STFT has been combined with
deep neural networks such as recurrent neural networks
(RNN) and convolutional neural networks (CNN) to obtain
efcient results. Table 3 lists some of the recently published
articles and discusses the time-frequency methods used, the

Noisy ECG signal Pre-processing

Denoised Signal Signal Smooth
Filter

Signal
Reconstruction

Denoising based on
Time-frequency

Methods

Figure 10:Te basic signal processing steps involved in ECG signal
denoising.
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features computed, and the classifcation method followed
for automatic cardiac arrhythmia detection.

3.3. Sleep Apnea Detection. A good quality of sleep is crucial
for leading a healthy life. Sleep apnea is the most common
pathological condition that afects sleep quality [118]. It
arises due to repetitive airfow obstruction and causes dis-
turbed breathing during sleep time [119]. As per a recent
report, around 1 billion people across the globe are afected
by sleep apnea [120]. Nine hundred thirty-six million people
aged between 30 and 69 have mild to severe obstructive sleep
apnea (OSA), whereas 425 million have moderate-to-severe
OSA. It has been reported that sleep apnea raises the cardiac
disease risk by three times, the accident rate by seven times,
and stroke by four times. OSA in the later stage can cause
severe cardiovascular and neurocognitive problems if left
untreated. Hence, early and timely detection of the disease is
crucial. Te conventional way of measuring sleep apnea is by
performing polysomnography, in which the patient is asked
to sleep after attaching several electrodes and sensors for the
measurement. Te test was performed in a controlled en-
vironment. However, the procedure is highly uncomfortable
for the patient and may degrade sleep quality. Also, a ded-
icated person is required who can continuously monitor
various physiological signals associated with brain activity,
eye movement, muscle activity, etc. Te process is time-
consuming and expensive [121]. Accordingly, there is a need
for a simple, low-cost, and automated method for its
detection.

In recent years, researchers have implemented various
physiological signals to detect OSA. However, the ECG
signal is the most widely used physiological signal for the
said purpose. Tis is because the acquisition of the ECG
signal requires only a single-lead recording, which makes the
measurement process simpler than other methods. Figure 12
describes the basic steps involved in sleep apnea detection.
Te current section discusses the application of diferent
time-frequency analysis methods to the ECG signals to

detect OSA. Hassan et al. (2015) used a single-lead ECG
signal to classify the OSA in their research. Tey employed
EMD, higher-order statistical features, and an extreme
learning machine (ELM) for classifcation purposes. Te
authors reported a maximum accuracy of 83.77%. In [123],
the authors used an eight-level wavelet packet analysis
method on a short-duration (5 s) ECG signal to diferentiate
between central sleep apnea (CSA) and obstructive sleep
apnea (OSA). CSA occurs when the brain is unable to send
proper signals to the muscles associated with breathing. It is
diferent fromOSA, where normal breathing is hindered due
to upper airway obstruction. In a similar study [124], the
authors used wavelet-based ECG features to diferentiate the
CSA and OSA using an auto-regressive ANN classifer. Tey
achieved a classifcation accuracy of 78.3%. Several other
time-frequency methods, including DWT, and HHT, have
also been used to classify sleep apnea. Table 4 summarizes
some recently published articles in the feld that use time-
frequency methods during ECG processing.

3.4. Biometric Identifcation. Identifcation technologies are
crucial in safety, security, and information protection [138].
Te earlier approaches, including security keys, passwords,
and certifcates, are no longer secure as there is a high chance
that they may be stolen or forgotten. Hence, biometric
identifcation technology has emerged with great efciency,
considering the anatomical and physiological diferences
[138, 139]. Typical biometric examples include fngerprints,
iris, and face IDs [140]. Even though these methods have
been used with great popularity, they are not perfect enough
as they can be forged. Recently, it has been found that the
ECG signal can be used as a biometric as it is universal,
stable, and easily measurable [141]. Again, the ECG of an
individual solely depends upon the body shape, gender, age,
emotional and the heart’s physiological status. It makes the
ECG a unique signal. In general, visually diferentiating the
ECG signal of two individuals is very challenging due to the
subtle changes in amplitude and duration. Hence, this

ECG Signal Wavelet
Decomposition

Treshold selectionDetection of R peak

On and Of peak
detection Feature extraction Classifcation

High freq. noise elimination
by discarding D1 and D2

Low freq. noise elimination
by discarding A10

Selection D3, D4, and D5
for QRS complex

Figure 11: Block diagram of a DWT-based Beat classifcation method (reproduced from [78]).
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method of pattern recognition has been employed for easy,
quick, and reliable identifcation. Te ECG signals used for
biometric authentication are either one-channel, two-
channel, three-channel, or 12-channel. Among these, the
single-lead ECG is the most common due to its simplicity.
However, it is unclear whether simplicity leads to better
performance; hence, in some of the studies, 12 lead ECG data
has also been used.

Te ECG biometric identifcation process follows three
crucial steps: preprocessing, feature extraction, and classi-
fcation. In [142, 143], the authors showed that ECG exhibits
a unique and discriminatory pattern and can be categorized
according to the classifer employed. However, it is essential
to note that the performance of a classifer relies on feature
extraction methods [144, 145], where the raw ECG signal is
used to extract informative features. In general, the features
extracted for the biometric methods can be divided into two
broad categories: fducial and nonfducial [144]. Te fducial
method uses the characteristics of the ECG waves, such as
diferent peaks, waves, and intervals, whereas the nonfducial
method does not use these characteristics.

Several feature extractionmethods have been explored in
the past.Tough there is no generalized rule for determining
the signifcant boundaries of the waves that helps in efcient
biometric identifcation [146], the nonfducial-basedmethod
is preferable. It is the reason that no reference detection is
needed in this method [147]. Some examples of the most
widely used nonfducial methods include autocorrelation
coefcients [148], wavelet coefcients [149], principal
components [150], and time-frequency decomposition
methods [151]. In this section, the application of time-
frequency decomposition methods in biometric analysis
has been discussed. Table 5 represents a recent publication
that used diferent time-frequency decomposition methods
for biometric identifcation. It is evident from the table that
empirical mode decomposition (EMD), and discrete wavelet
transform (DWT) are the two most widely used methods
recently. Some researchers have also followed hybrid
methods that combine two diferent time-frequency features
or multiple features, including nonfducial and fducial
features. Te time-frequency method has used several
classifcation methods, such as CNN, SVM, LDA, DT, and
CNN. However, in most cases, the CNNmodel showed good
performance compared to the other classifers. Te reason

can be most of the deep learning models generate their own
representative features during training.

3.5. Other Applications

3.5.1. Emotion Detection. Emotion is the consistent and
separated response to external or internal events.Te human
emotional state can be defned using eight basic emotions:
pleasure, sadness, anger, joy, curiosity, fear, and surprise. All
other emotions can be a mixture of these primary emotional
states. It has been reported in the literature that physiological
signals are afected mainly by emotion. Hence, it can be used
to detect and classify emotional states. Several studies have
used the ECG signal to detect emotional changes [162–165].
In the research of Dissanayake et al. (2019) [166], the authors
used three ECG signal-based techniques and the EMD
method to recognize the primary human emotions: anger,
joy, sadness, and pleasure.Tey achieved an accuracy gain of
6.8% as compared to the other methods. Another study
employed a wavelet-based approach to obtain features at
diferent time scales [167]. Te proposed method showed an
accuracy of 88.8% in detecting the valence state and 90.2% in
detecting the arousal state, respectively. Chettupuzhakkaran
and Sindhu (2018) have performed a comparative analysis in
diferent time-frequency methods to detect happy and sad
emotions. Te authors reported a higher accuracy in DWT’s
case than in other methods (EMD, HHT, etc.) [168].Wavelet
transform and second-order diference plots were used in
[169] to diferentiate two emotional states: rest and fear, with
a maximum accuracy of 80.24% using an SVM classifer.

3.5.2. Epileptic Seizures Detection. A seizure can be repre-
sented as an abrupt electrical disturbance in the brain ac-
tivity that leads to a change in behavior, movement, and level
of consciousness. Also, the onset of seizures afects auto-
nomic nervous system activities. Te literature suggests
a signifcant diference in the physiological signals such as
ECG and EEG has been observed during a seizure episode.
Te EEG signals have been used as a potential biomarker for
seizure detection. However, signifcant ECG morphological
changes have also been observed during a seizure episode. A
shortened QT interval, ST-segment elevation, and T-wave
inversion are typical changes in the ECG morphology

Pre-processing

Feature
ExtractionClassifcation

Normal

OSA data

ECG Signal AcquisitionPatient

Figure 12: Steps in sleep apnea detection using an ECG signal (modifed from [122]).
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[170, 171]. Nevertheless, a few research studies found in the
literature only uses ECG signals for seizure detection. Most
papers have extracted the time-frequency features from the
EEG signal or ECG and EEG signals [172–175]. But, in
a recent study [176], Yang et al. found that the ECG signal
was more efcient than the EEG signal in seizure detection.
Te authors used the spectrographic images of a short-
duration ECG signal using the short-time Fourier trans-
form (STFT). Te images were used as the input to the CNN
model for automatic seizure detection. Yet, more research
based on the ECG-based features of epilepsy detection is
needed in the future.

3.5.3. Driver Distraction Detection. Distracted driving is
a severe concern for the safety of passengers and drivers.Te
three primary causes of distraction are taking the eye of the
road, taking the hands of the steering, and a disturbed mind
while driving. Te secondary reasons may include conver-
sations on the phone and active conversations with a pas-
senger. Tough social awareness and enhanced government
rules have reduced the accident rate, the steps are in-
sufcient. Hence, there is a need for real-time driver dis-
traction detection. Te ECG signal has shown potential
application in real-time monitoring due to its properties:
higher SNR, minimal implementation, easy to wear, and
simple recording technology. Moreover, it does not show
any latency issues compared to the camera-based detection
system. Te most crucial step in real-time ECG monitoring
is the selection of features. Several time-frequency analysis
methods have been reported in this regard. In [177], the
authors have used the ECG subbands after decomposition
using WPD. A set of WPD coefcients were selected, and
three essential features, namely, power, mean, and standard
deviation, were extracted from each coefcient. In the study,
PCA was used as a dimensionality reduction method. Te
fnal feature set was used to classify the driver distraction
using LDA and a quadratic discriminate analysis (QDA)
classifer. In a similar study [178], the wavelet packet
transform detected distraction during a phone call or
conversation with a passenger. Dehzangi et al. (2018) have
employed fused features extracted from the ECG signal
[179]. It includes HRV parameters, spectro-temporal pa-
rameters, and power spectral density parameters. STFT was
used for the spatiotemporal analysis. Te optimal set of
features was chosen using a feature selection method and
various classifers. Te maximum detection accuracy of the
driver distraction was 99.8%. Many studies have combined
the ECG signal with other physiological signals such as EEG
[180], EMG [181], and EOG.

3.5.4. Drug and Alcohol Detection. Early and timely drug
overdose detection is crucial to maintaining health and
avoiding major health problems. As per reports, nearly half
of the emergency ward cases in the United States are due to
drug-related overdose. It has been reported that most drugs
infuence cardiac functioning. Te drug overdose may later
lead to adverse cardiovascular events in many cases. Hence,
the changes in the ECG signal can be a good indicator of this

drug overdosage and can be used for its detection. Early
research suggests changes in the ECG signal’s morphological
parameters after consuming various drugs (e.g., benzodi-
azepines, acetaminophen, and opioids). In their study,
Manini et al. (2017) evaluated the efects of an acute drug
overdose on the electrophysiological parameters. A prom-
inent R peak and QTdispersion were detected after the drug
overdose [182]. In a recent study [183], QT interval pro-
longation was observed due to the overdose of hydroxy-
chloroquine in COVID patients [183]. Similar fndings were
reported in the case of other drugs also. Some of the drugs
include antidysrhythmic (sotalol), antidepressants (escita-
lopram, bupropion, citalopram, trazodone, and so on),
antipsychotics (haloperidol, quetiapine), sodium channel
blockers (amitriptyline, doxepin, imipramine, di-
phenhydramine, and nortriptyline, and so on), and the
antiemetic serotonin antagonist ondansetron [184]. Apart
from drugs, alcohol also showed a similar efect on the heart
[185]. Recently, a few researchers have attempted to use ECG
signals for automatic drug detection. Pradhan and Pal (2020)
have reported that it is possible to use time-domain sta-
tistical and entropy-based features extracted from the ECG
signal to automatically detect the presence of a psychoactive
drug, “cafeine,” in the body [186]. In a recent study [187],
the authors employed three diferent time-frequency
methods, EMD, DWT, and WPD, to automatically detect
the cafeinated cofee-inducedshort-term efect in the ECG
signal.Te application of ECG signals in seeing the impact of
drugs and alcohol is new, and hence, a limited study is
available in the literature. Te exploration of joint-time
frequency methods is insufcient and may be explored
extensively in future research.

4. Limitations, Challenges, and Suggestions for
Future Research

Temain limitation of using the STFTmethod is that it does
not show optimal time-frequency precision. Another dis-
advantage of the STFTmethod is that it is used primarily for
short-duration ECG signal processing. However, short re-
cordings are preferred during critical heart surgery to initiate
the treatment process instead of investigating the longer-
duration ECG signals [188]. In such cases, STFT-based
signal processing has been proposed with defnite success.
Also, the STFT method is associated with varying spectral
leakage due to applying diferent window functions. Another
critical parameter while using the STFTmethod is choosing
the correct window size. A limited time window shows
a good time resolution but degrades the frequency resolu-
tion. Likewise, broader windows ofer poor time resolution
but a good frequency resolution. Hence, many employ more
suitable techniques, such as the wavelet transform method
(CWT, DWT, WPD, and so on). Te wavelet transform can
eliminate the problem of the fxed window size by using
a varying window length and improving the time-frequency
resolution [189]. However, it is unable to capture the edges
of the signal adequately. Also, a trade-of exists amid WT’s
accuracy and computational complexity. Choosing a suitable
mother wavelet in the WT is crucial as the accuracy of
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a classifcation task is also afected by the choice of the
mother wavelet.

Te empirical mode decomposition (EMD) can over-
come these limitations. EMD decomposes the signals into
several IMF independent of the instantaneous frequency.
Te method delivers valuable data when little information
about the underlying dynamic is available. However, careful
application of the technique to any scientifc research is
required, as it lacks a proper theoretical background and is
also associated with mode mixing [189]. Some extensions to
the EMD method (including EEMD and VMD) were made
to eliminate the disadvantages associated with EMD. VMD
is more suitable for the analysis of nonstationary and
nonlinear signals. Te method shows a high operational
efciency and avoids information loss.

Several studies have implemented advanced time-
frequency methods for analyzing and processing bio-
potential signals, such as EMG and EEG. For example, the
tunable Q-wavelet transform (TQWT), combined with time-
frequency features, was used to detect epileptic seizures
using the EEG signal [190]. A recent study used the TQWT
method to diferentiate seven hand movements using the
surface-EMG signal [191]. Ahmed et al. (2022) employed the
LSWA method and computed the diferential entropy fea-
tures from each EEG segment. Te calculated features were
then used as input in the CNN model to detect diferent
emotional states [192]. In a recent study, the authors used
the EWT and deep learning methods to detect coronavirus
disease (COVID) [193]. Despite their diverse applications,
these advanced time-frequency methods in ECG signal
processing are limited. Hence, in the future, these methods
may be employed more efciently.

Real-time implementation of the time-frequency
method in diferent ECG applications is another big chal-
lenge. Most of the available research is based on ofine
analysis that excludes noisy data. Many recent articles have
employed physiological data to monitor epileptic seizures
[194], dynamic changes in the brain [195], vigilance [196],
sleep quality [197], fatigue [198], and abnormal driving
[199]. Tese methods have primarily used either the brain or
muscle signals. Terefore, the real-time implementations of
the afore-discussedtime-frequency methods in the ECG
analysis may be explored in the future.

Te current study has reviewed the application of various
time-frequency decomposition methods for extracting ECG
features. Tese features were then employed for various
ECG-based applications, including arrhythmia detection,
sleep apnea detection, biometric identifcation, noise elim-
ination, and so on. A limitation of applying the feature
extraction method is that the new features generated in the
process are not always interpretable. Again, when there is
a vast dataset, the conventional machine learning models do
not perform satisfactorily due to the curse of dimensionality,
which later needs feature selection methods. Te deep
learning models eliminate these issues as they can efciently
handle large datasets. Also, these models create their fea-
tures, identify the correlated features, and then combine
them to promote fast learning without providing explicit
instruction. Tough many studies have employed deep

learning models with the 2D-ECG data (spectrogram, sca-
logram, and so on) or the decomposed signals, the feld
demands extensive analysis. It may be explored in the future.

5. Conclusion

Te current study provides a background idea about dif-
ferent time-frequency methods and their biomedical ap-
plications in ECG analysis. Te study also discusses the
recently published articles that have used these methods in
various ECG applications. Tough it is hard to include such
a vast area in a single article, the present paper stresses the
current status and recently published articles in the last fve
years. Te following observations can be made based on the
current review: DWT is recently the most widely used
method, irrespective of its applications. Te EMD and its
variants are more suitable methods for noise elimination.
Te 2D-image-based methods such as spectrogram, scalo-
gram, and frequency plots are most widely used with the
deep learning models and report higher classifcation ac-
curacy in arrhythmia detection. However, its use in other
ECG-based applications is still limited and needs more at-
tention. Also, the applications of some of the advanced time-
frequency methods mentioned in this review demand more
consideration in future research. Te current review will
form a reference and provide a comprehensive idea about
applying the time-frequency methods in the ECG signal
analysis. Some of the typical applications include detecting
arrhythmia and sleep apnea. Also, some nonbiological ap-
plications include biometric identifcation, drug and alcohol
detection, driver distraction, emotion detection, and so on.
Te facts discussed in this review will provide information
about the current status of the time-frequency methods. Te
study will help future researchers to fll in the gaps and
overcome the challenges in the said feld. Te knowledge
shared in this review will beneft society by bringing more
advanced technologies for disease detection, diagnostic
applications, and other nonbiological applications in the
future.
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