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A growing number of a�ective computing researches recently developed a computer system that can recognize an emotional state
of the human user to establish a�ective human-computer interactions. Various measures have been used to estimate emotional
states, including self-report, startle response, behavioral response, autonomic measurement, and neurophysiologic measurement.
Among them, inferring emotional states from electroencephalography (EEG) has received considerable attention as EEG could
directly re�ect emotional states with relatively low costs and simplicity. Yet, EEG-based emotional state estimation requires well-
designed computational methods to extract information from complex and noisy multichannel EEG data. In this paper, we review
the computational methods that have been developed to deduct EEG indices of emotion, to extract emotion-related features, or
to classify EEG signals into one of many emotional states. We also propose using sequential Bayesian inference to estimate the
continuous emotional state in real time.We present current challenges for building an EEG-based emotion recognition system and
suggest some future directions.

1. Introduction

An emotional state refers to a psychological and physiolog-
ical state in which emotions and behaviors are interrelated
and appraised within a context [1]. From the psychological
aspects, the space of the emotional state can be built from
the discrete model or the dimensional model. In the discrete
model, an emotional state is de
ned as a set of a 
nite
number of discrete states corresponding to one of core
emotions, including anger, fear, disgust, surprise, happiness,
and sadness, or a combination of them [2]. 
e dimensional
model de
nes an emotional state spatially with the basic
dimensions of emotion such as valence and arousal and
interprets an emotion through the levels of each dimension
[3]. 
ese emotion models have been used for systematical
and multilateral analyses of emotion [3]. Based on the
emotion models, neurophysiologic mechanisms under the
emotional state have been vigorously investigated. Broadly,
it has been documented that the emotional processes per-
formed at the ventral and dorsal systems in the human brain

are functionally di�erent [4]. 
e ventral system, including
ventral anterior cingulate gyrus and some ventral areas of
prefrontal cortex (ventromedial prefrontal cortex and medial
orbitofrontal cortex), is involved in the production of emo-
tional states and the regulation of a�ective responses, whereas
the dorsal system, including dorsal anterior cingulate gyrus,
some dorsal areas of prefrontal cortex (dorsolateral, posterior
dorsolateral, and mid-dorsolateral prefrontal cortex), and
hippocampus, is involved in e�ortful emotion regulation and
subsequent behavior [4, 5].

Recently, a�ective computing (AC) has emerged as a
converging technology blending emotion into human com-
puter interaction (HCI) [6]. AC, o�en called emotion aware
computing, builds emotional interactions between a human
and a computer by measuring the emotional state through
behavioral and physiological signals and developing compu-
tational models for the emotional state [6, 7]. One of the
key elements in AC is emotion recognition that estimates the
emotional state of users from their behavioral and physio-
logical responses [7]. Emotion recognition aims to advance
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the intelligence of computer for creating a�ective user inter-
faces and to enhance the quality of psychiatric health care.

A variety of measures have been used for emotion
recognition including self-report, startle response, behavioral
response, autonomic measurement, and neurophysiologic
measurement [3]. Self-report readily acquires emotional
responses according to the emotion modeling framework
but makes it di�cult to track rapid a�ective changes and
needs to rely on the outcome from self-estimation of the
emotional state [3, 8]. 
e startle response magnitude using
electromyography (EMG) measures unconscious myoneu-
ral responses but assesses only partial aspects of emotion
(e.g., arousal level) [3, 9]. Behavioral measurement detects
changes in facial and/or whole-body behavior using EMG
or video image, but needs an assumption that EMG signals
directly correspond to a speci
c emotional state [3, 10].
Autonomic measurement can objectively detect emotion-
related physiological responses of autonomic nervous system
(ANS), such as skin conductance responses (SCRs) and heart
rate variability (HRV), but only access the subspaces of the
emotional state [3, 11]. Neurophysiologic measurement based
on electrophysiological and neuroimaging techniques can
detect a wide range of dynamics of the emotional state by
directly accessing the fundamental structure in the brain
from which an emotional state emerges [3, 12]. Hence,
neurophysiologic measurements clearly provide the most
direct and comprehensive means for emotion recognition.

A large body of research has investigated neural correlates
of emotion in humans usingmanynoninvasive sensormodal-
ities, each presenting unique characteristics with respect to
spatiotemporal resolution andmobility. Functional magnetic
resonance imaging (fMRI) has been used to 
nd cortical
and subcortical structures implicated in emotional states [13].
MEG has also been used to 
nd emotion-related neural
signals from speci
c sources in a timely manner with 
ne
spatial and temporal resolutions [14]. But the cost and
immobility of fMRI andMEGprevents thesemodalities from
being used for practical emotion recognition systems [15,
16]. EEG, although su�ering from its poor spatial resolution
and high susceptibility to noise, has been widely used to
investigate the brain dynamics relative to emotion as it
enables the detection of immediate responses to emotional
stimuli with an excellent temporal resolution [17–21]. Being
developed to become more cost-e�ective and mobile with
increased practicability and less physical restriction [22],
EEG, not without its downsides, still carries critical advan-
tages in practical usage and therefore has been a primary
option for the development of online emotion recognition
systems. In fact, there have been a growing number of e�orts
to recognize a person’s emotion in real time using EEG.
For example, EmoRate developed as a commercial product
(Emotiv Corp., CA, USA) detects the �ow of the emotional
state while user is watching a 
lm [23]. Brown et al. proposed
an EEG-based a�ective computer system that measures
the state of valence and transmits it via a wireless link
[24].


e development of an EEG-based emotion recognition
system requires computational models that describe how the
emotional state is represented in EEG signals and how one

can estimate an emotional state from EEG signals. Despite
a long history of searching for EEG indices of emotion, less
attention has been paid to the computational models for
emotional state estimation. Hence, we feel needs for a review
of the state-of-the-art computational models for emotional
state estimation to subserve the development of advanced
emotion recognition methods. 
is paper will review the
current computationalmethods of emotional state estimation
from the humanEEGwith discussion on challenges and some
future directions.


is paper will particularly focus on the following aspects
of EEG-based emotional state estimation models. First, it
will start with a quick review on EEG correlates of emotion,
including de
nition of the emotional state space, the design
of emotional stimuli, and the EEG indices of emotion. 
en,
it will revisit the computational methods to extract EEG
features relative to emotional states and to estimate emotional
states from EEG. We will also propose a mathematical
approach to the estimation of continuous emotional state
based on Bayesian inference.

2. EEG Correlates of Emotion

Finding EEG correlates of emotional states should begin with
how to de
ne the emotional state space. 
e emotional state
space can be largely categorized into a discrete space and
a continuous space. 
e discrete state space draws upon
the discrete emotion model and contains a set of discrete
experiential emotional states. 
e discrete emotional state
comprises seven to ten core emotions such as happiness,
surprise, sadness, anger, disgust, contempt, and fear [2,
25] and sometimes expands to contain a large number of
emotions with the synonyms of these core emotions [25].

e continuous state space is built from the dimensional
emotion model and represents an emotional state as a
vector in a multidimensional space. 
is vector space of
the continuous emotional state depends on the de
nition
a basis. For instance, the circumplex model, developed by
Russell, describes an emotional state in a two-dimensional
circular space with the arousal and valence dimensions [26].
Various psychological models de
ne emotional dimensions
that subsequently constitute the basis for the emotional state
space [25, 27–30].

Based on the construction of the emotional state space,
the investigation of EEG correlates of emotion should also
address how to determine experimental stimuli to induce
emotions. Typically, emotional stimuli are selected to cover
desired arousal levels and valence states, and presented in
di�erent modalities including the visual, auditory, tactile, or
odor stimulation. 
e ground truth of the emotional state
induced by a stimulus is secured by exploiting the self-
ratings of subjects or using the standard stimulus sets such
as the international a�ective picture system (IAPS) or the
international a�ective digitized sound system (IADS). 
e
IAPS provides a set of normative pictures for emotional
stimuli to induce emotional changes and attention levels [31].

e IADS embodies acoustic stimuli to induce emotions,
sometimes together with the IAPS [32]. 
ese international
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a�ective systems are known to be independent of culture, sex,
and age [33].

A number of neuropsychological studies have reported
EEGcorrelates of emotion.
ese EEG features can be broadly
placed in one of two domains: time domain and frequency
domain. In the time domain, several components of event-
related potentials (ERPs) re�ected underlying emotional
states [34]. 
ese ERP components can be encapsulated in
a chronological order: P1 and N1 components generated
in a short latency from stimulus onset, N2 and P2 in a
middle latency, and P3 and slow cortical potential (SCP)
in a long latency. 
e ERP components of short to middle
latencies have been shown to correlate with valence [34–37],
whereas with the ERP components ofmiddle to long latencies
have been shown to correlate with arousal [38–41]. Basically,
the computation of ERPs requires averaging EEG signals
over multiple trials, rendering ERP features inappropriate
for online computing. However, recent developments of the
single-trial ERP computation methods increase a possibility
to use ERP features for online emotional state estimation [42–
46].

In the frequency domain, the spectral power in various
frequency bands has been implicated in the emotional state.

e alpha power varied with the valence state [47] or with
discrete emotions such as happiness, sadness, and fear [18].
Speci
cally, the frontal asymmetry of the alpha power has
been repeatedly reported as a steady correlate of valence [48].

e subsequent studies have suggested that the frontal alpha
asymmetry may re�ect the approach/avoidance aspects of
emotion, rather than valence per se [49]. 
e event-related
synchronization (ERS) and desynchronization (ERD) of the
gamma power has been related to some emotions such as
happiness and sadness [50–52]. 
e ERS of the theta power
has also been modulated during transitions in the emotional
state [18, 53–55].

Besides the waveforms and the spectral power, the
interactive properties between a pair of EEG oscillations
such as phase synchronization and coherence have also
been implicated in emotional processes. For instance, the
phase synchronization level between the frontal and right
temporoparietal areas varied with the emotional states of
energetic, tension, and hedonic arousal [56].
e EEG coher-
ence across the prefrontal and posterior beta oscillations was
increased by viewing high arousal images [57]. Also, increases
in the gamma phase synchronization index were induced
by unpleasant visual stimuli [58]. As the emotional process
engages a large-scale network of the neural structures in the
brain, these multichannel analyses of EEG across the brain
will reveal more signatures of emotion as they do for other
cognitive functions [59–64]. In short, a brief summary of the
EEG correlates of emotion is presented in Table 1.

3. Computational Methods to Estimate
Emotional States


e computational methods to estimate the emotional state
have been designed based on various EEG features related
to emotional processes. As most EEG analysis methods are

EEG signals

Preprocessing

Feature
extraction

Classi�cation

Emotional states

∙ Noise reduction

∙ Spatial �ltering

∙ Temporal �ltering

∙ Spectral power

∙ ERPs

∙ Phase synchronization

∙ Dimensional emotions

∙ Discrete emotions

Figure 1: Overall emotional state estimation process. 
e overall
emotional state estimation procedure. EEG signals are recorded
during emotional situations and passed through the preprocessing
step including noise reduction and spatial and temporal 
ltering.

e features related with the emotional states such as spectral power,
ERP, and phase synchronization are extracted from the preprocessed
EEG signals. 
ese features are used to estimate emotional states by
classi
cation methods.

accompanied by preprocesses for reducing the artifacts, so
is the emotional state estimation method. Figure 1 illustrates
overall processing steps to estimate the emotional state
from EEG signals. 
e recorded EEG signals in response
to a�ective stimuli pass through the preprocessing step
in which noise reduction algorithms and spatiotemporal

ltering methods are employed to enhance the signal-to-
noise power ratio (SNR). 
en, the feature extraction step
determines speci
c band powers, ERPs, and phase coupling
indices correlated with the target emotional states. Usually,
this feature selection process is optimized by mathematical
methods to achieve maximum emotional estimation accu-
racy. 
e classi
cation step estimates the most probable
emotional state from the selected EEG features. 
e number
of class depends on the de
nition of the emotional state space,
such as the continuous state of arousal and valence, or the
discrete states.

As the preprocessing methods are relatively general to
a variety of EEG signal processing applications, here we
focus on the feature extraction and emotion classi
cation
methods. We 
rst review the computational methods to
extract emotion-related features from EEG, followed by the
classi
cation algorithms used to estimate the emotional state
from the EEG features. 
e feature extraction methods
usually build a computational model to 
nd emotion-related
features based on neurophysiologic and neuropsychological
knowledge. Unlike the feature extractionmethods, the classi-

cation methods draw more upon signal processing theories
such as machine learning and statistical signal processing.
It has been of interest how each of these two steps impact
on estimation accuracy. On one hand, the feature extraction
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seems to bemore closely tied to estimation performance since
without pointing to the very features correlatedwith emotion,
it is implausible to build a correct model. On the other
hand, the classi
cation algorithms should also be carefully
designed to 
t to the characteristics of the feature space;
for instance, using a linear classi
er for highly nonlinear
feature structures would not make much sense. In general,
one should weigh coherence between a feature space and a
classi
er for increasing estimation accuracy.

3.1. Feature Extraction Methods. As for valence-related fea-
tures, it has been shown that positive and negative emotions
induce asymmetric modulations in the frontal alpha power
of EEG, leading to a relative decrease in the le� frontal
alpha power for positive emotions and a decrease in the right
for negative emotions [65]. 
is frontal alpha asymmetry
provides an e�ective index for valence by computing a
di�erence between the le� and right alpha powers, here
denoted as � and � respectively, divided by the sum of both:

Index = � − �� + �. (1)


e computation of the spectral power in the alpha band has
been executed by a number ofmethods, including the squares
of the EEGamplitude 
ltered through an alpha bandpass 
lter
[53], Fourier transform [66], power spectral density [18, 21],
and wavelet transform [7, 67, 68]. Most of these methods are
well established and can readily be implemented in real time.

As for arousal-related features, one can extract the spec-
tral power features such as the frontal midline theta power
similar to the alpha power. Recently, more advanced compu-
tational methods have been proposed to evaluate emotional
arousal. For instance, Asymmetry index (AsI) assesses emo-
tion elicitation by computing a multidimensional directed
information (MDI) between EEG channels [69]:

�� = ���� + ���� ,
�� = ���� + ���� ,

AsI = (�� − ��) × √22 .
(2)

���� indicates the total amount of information �owing from

le� hemisphere signals, 
, to right hemisphere signals, �,
when the subject has emotional feelings. �� refers to the

total bidirectional information with emotion. ���� indicates
the same directional information from 
 to � but when the
subject does not have emotional feelings, and �� refers to
the total bidirectional information without emotion. AsI can
e�ectively indicate whether an emotional state is elicited or
not [69]. BesidesAsI, the variance of potentials froma speci
c
channel over di�erent EEG channels has been used as an
emotion-related feature [68]. Also, the entropy of EEG signals
has been used to extract information related to emotion from
intrusive noise [68].

As for individual discrete emotions, a typical approach
is to search through all the possible EEG channels, spec-
tral bands, and time segments for a set of features that

maximizes the accuracy of emotional state estimation. 
is
approach adopts a greedy search method with supervised
learning, o�en resulting in di�erent optimal feature sets
for each individual. To overcome this issue of subject-by-
subject variability, a higher order crossing (HOC) analysis
was developed to implement a user-independent emotion
recognition system [70]. 
e HOC analysis aims to 
nd EEG
features with respect to six a�ective traits, including surprise,
disgust, anger, fear, happiness, and sadness [70]. 
e HOC
model is given as:

�� = �∑
�=2
(
� [�] − 
�−1 [�])2,

� = 1, . . . , �; � = 1, 2, 3, . . . ,
��HOC = [�1, �2, . . . , ��] , 1 < � ≤ Maximum order.

(3)

�� is the simpli
ed version of the HOC feature that counts
the number of zero-crossing from a high-pass 
ltered,
standardized EEG time series. Zero-crossing indicates an
event at which the signal amplitude passed through a zero-
line with the change of polarity. 
e zero-crossing counts
o�en represent oscillation properties more robustly than the
spectral power. A vector of the simple HOCs is constructed
to contain the features related to emotion. A higher value
of � means decreases in the discrimination power of the
simple HOC because di�erent processes can yield almost the
same ��. 
�[�] indicates a binary time series with zeros and
ones: at time instant � where 
�[�] = 0 if the amplitude of
the 
ltered signal is negative and 
�[�] = 1 otherwise. �
indicates the length of the time series 
�. 
e EEG feature
vector is de
ned as ��HOC that consists of multiple simple
HOCs [70].
e computational methods to extract emotional
features from EEG are summarized in Table 2.

3.2. Emotion Classi	cation Methods. 
e EEG feature vector
provides observations from which an emotional state can be
inferred. Commonly, a classi
er has been used for decoding
the feature vector into one of possible emotional states.
A number of classi
cation methods have been used for
emotional state estimation, including discriminant analysis
(DA), support vectormachine (SVM), k-nearest neighbor (k-
NN), and theMahalanobis distance (MD) basedmethod. DA
performs dimensionality reduction in a high-dimensional
feature space onto a low-dimensional space with an aim to
maximize the Fisher discriminant ratio, �, of between-class
scatter, �	, to within-class scatter, �
, [42, 71–76].

� = tr (�	�−1
) . (4)

A larger � value indicates greater separation between classes.

e dimensionality of the low-dimensional space varies from
one up to the number of classes minus one.

SVM is derived from DA but determines a decision
boundary in a kernel space instead of the original feature
space. SVM 
nds an optimal hyperplane, �(�), and the
hypermargin of the decision boundary in the feature space
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using a supervised learning method. 
e classi
er �(��)
classi
es a new input feature vector �� using a classi
cation
rule given by

� (��) = sgn(∑
��∈v
����� (��, ��) + �) , �� ∈ target space.

(5)

Here, v indicates a set of the support vectors that are used
to determine themaximummargin hyperplane, and�(��, ��)
denotes the kernel function of the SVM classi
er. � denotes
an o�set parameter, �� does training input vectors, and ��
does nonzero weights on each support vector [7, 77–80].
Various kernel functions have been proposed such as the
Gaussian function or polynomials. SVM o�ers advantages of
good generalizability for nonlinear feature spaces.


e k-NN algorithm determines the class of a new feature
vector according to the number of nearest vectors in the
training set surrounding a new feature vector [73, 81]. k
is a parameter determining the encircled boundary. 
e k-
NN algorithm depends on how to de
ne a distance between
feature vectors, which is subject to be a�ected by the curse of
dimensionality [81, 82].


e MD-based method, has been widely used in the
clustering analysis, not only for distance, but also with
correlation coe�cient and the standard deviation [83, 84]:

MD = (x − ��)�C−1� (x − ��) . (6)

C−1 and �� indicate the inverse of the covariance matrix and
the mean vector of a class ", respectively. MD converges to
Euclidean distance when the covariance matrix of feature
vectors becomes the identify matrix [84]. Basically, when a
new feature vector arrives, the MD-based classi
er compares
the distance of the vector to each class using MD and
chooses the class with the smallest distance.
e classi
cation
methods that have been used for emotional state estimation
are summarized in Table 2.

4. A Generative Model for Online Tracking of
Emotional States

As described earlier, most computational models estimating
emotional states have focused on the discrete state space
and classi
ed EEG features into one of a 
nite number of
emotional states. 
is approach generally suits well to the
case of a static determination of which emotion is induced
by a given stimulus. Yet, for the development of an online
emotion recognition system, where continuous tracking of
the emotional state may play an important role, the current
approach might be suboptimal because they do not take
temporal dynamics of the emotional state into account.
Another downside of the current approach originates from
their direct modeling framework. Amodel in this framework
builds a direct input-output mapping from the observed EEG
signal to the emotional state. Although this framework may
be able to provide a reasonable solution just for the purpose
of improving classi
cation accuracy, it does not exploit prior

information of the emotional state as well as dynamics of the
emotional state. 
ese shortcomings make it di�cult to gain
useful insights on the neural mechanism of emotion. Also,
it is o�en desirable to incorporate prior information of the
dynamics of the emotional state within a model, especially
for tracking emotional state continuously over time.

To address these issues, we propose a computational
modeling approach based on the generative modeling frame-
work [85–87]. Our approach focuses on tracking the change
of the emotional state over time from EEG signal. In this
approach, a generative model depicts how EEG signal is
generated from a hidden emotional state. Also, a prior model
explains how the emotional state changes over time. Inte-
grating these two models, we infer a most likely emotional
state from an observed EEG signal. Di�erences between
the generative and direct models can be illustrated in a
probabilistic view where a goal is to estimate a conditional
probability of emotional state variables given EEG observa-
tions as accurately as possible. Suppose that a random vector
x denotes hidden emotional states and a random vector y
denotes observed EEG data (e.g., an EEG feature vector). An
estimation model aims to optimize a parameter set, #, for the
following conditional probability:

$ (x | y, #) . (7)

A direct model forms a functional relationship from y to x
with #, the parameter set of a function %(⋅),

x = % (y; #) + e, (8)

where e is a residual vector. In many cases, the residual vector
is assumed to follow the Gaussian distribution. Parameter
estimation of # can be accomplished by many standard solu-
tions such as maximum likelihood [88]. On the other hand,
a generative model uses maximum a posteriori (MAP) or the
Bayesian inference to estimate the conditional probability,

$ (x | y, #) = 1�$ (y | x, #) $ (x) , (9)

where � represents a constant representing the integral of$(y). 
e posterior $(x | y, #) is estimated by the product of$(y | x, #), the likelihood of observation y given a state x, and$(x), the prior of the state x. 
e parameter set # is used
to model a generative relation from x to y. In terms of the
EEG correlate of the emotional state, the likelihood describes
how the observed EEG signal is generated from an emotional
state, the prior describes a probability of each emotional state,
and the posterior describes which emotional state most likely
elicits the observed EEG signal.

Here, we extend this generative approach to take into
account the temporal dynamics of the emotional state. We
use sequential Bayesian inference to track a time-varying
emotional state from EEG signal [89]. To this end, we 
rst
assume that the emotional state is de
ned in a continuous
space. An example of a continuous state space consists of
two emotional dimensions, such as valence and arousal. 
e
valence dimension ranges from negative values to positive
values. 
e arousal dimension ranges from low to high
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arousal levels. A key point is that an emotional state varies
over a continuous space, instead of altering between discrete
values. 
is does not mean that we need to assign an explicit
emotion to every possible point in the emotional state space.
A speci
c area or volume in the state space can represent a
single emotion.


e generative model is then formulated as follows. Let
x� be an emotional state vector and y� an EEG signal vector
at time instant �. x� contains a set of emotional state variables
(e.g., x� = [�1,�, �2,�, �3,�], where �1,� is the valence dimension,�2,� is the arousal dimension, and �3,� is the dominance
dimension). y� contains a set of EEG features selected to be
related to emotion (e.g., the power of certain frequency band
at a selected channel). 
e goal of the model is to 
nd the
most probable emotional state given a series of observation
from the beginning, y1, . . . , y� (assuming observation begins
at � = 1). 
e posterior is formed as

$ (x� | y1, . . . y�) . (10)


e posterior can be rewritten as a recursive equation,

$ (x� | y1, . . . , y�)
= $ (y� | x�) ∫$ (x� | x�−1) $ (x�−1 | y�, . . . , y�−1) *x�−1.

(11)

Note that the likelihood, $(y� | x�), depends only on the cur-
rent time �. 
e prior, $(x� | y�−1), represents state transition
from � − 1 to �, assuming the 
rst-order Markov process.

e dynamics of emotional state is embedded in the prior,
whereas the generative process of the EEG features from an
emotional state is modeled by the likelihood.
e integral can
be approximately computed by a number of methods with
di�erent model assumptions [89].

As this approximation relies on the recursion of the
posterior, inference of an emotional state from EEG signal
operates sequentially over time. 
is property enables our
model 
t well to the purpose of tracking emotional states
continuously. In fact, the sequential Bayesian inferencemodel
(or called a Bayesian 
lter) has been widely adopted for many
neuroengineering studies (e.g., see [90–94]). Our model may
provide an e�ectiveway for online emotion aware computing,
especially when we need to keep track of changes in the
emotional state from EEG measurements continuously over
time, for instance, tracking emotional changes while a subject
is watching movies [95].

5. Discussion

In this paper, we overviewed the computational methods
used for emotional state estimation. We 
rst brie�y gave
an overview of the EEG correlates of emotion. 
en, we
revisited the computational methods to extract EEG features
correlated with the continuous and discrete emotional states.
We also described the classi
cation methods to discriminate
a particular emotional state from EEG features. Finally, we
proposed a computational approach based on the generative
modeling framework that may suit well to tracking the

emotional state over time. 
ese computational methods for
emotional state estimation will serve as a key element for
practical online emotion recognition systems for a�ective
computing.

While a�ective computing has attracted attentions in the
HCI 
eld with a promise to develop a novel user interface,
the development of the computational methods to estimate
the emotional state still requires further understanding of
emotion processes and their neurophysiologic substrates
[96]. Especially, the estimation of emotional states from
the human EEG has been posed only as a relatively simple
classi
cation problem with a few discrete emotions. 
e
development of a real-time emotional state tracking system
would require a more rigorous de
nition of the emotional
state space suitable for estimation models.

Exploration of the EEG signatures of emotion that can
span a broad area of the emotional state space or represent a
number of di�erent discrete emotions should continue. Such
investigations may need to overcome many existing chal-
lenges. In particular, 
nding such EEG signatures of emotion
that are invariant across individuals will be important for
general emotion recognition systems [69]. As the emotion-
related features have been mostly found in the frontal EEG
signal, online algorithms to overcome the eye movement
artifact should be continuously developed [97–99]. Also,
bringing the EEG-based emotion recognition system out to
the normal users would require a simple yet e�cient EEG
sensor. A new EEG sensor should meet some criteria such
as stabilization of a signal to noise ratio (SNR), reduction of
noise elicited from hair, optimization of active dry electrodes,
development of multi-channel wireless communication, and
sustainment of the quality of EEG signals over a long
period [100–103]. Many previous studies have estimated
the emotional state by analyzing the EEG responding to
speci
c emotional stimuli. However, this emotion-induction
paradigm has a limitation that the EEG signals can be
modulated by the stimulus properties irrelevant to emotion
[21]. Hence, a computational model that can predict the
emotional state with various stimuli may be required for real-
world applications.


e computational methods to estimate the emotional
state may improve further with several advances in com-
putational models. First, a model that can associate the
dynamics of EEG signal with the dynamics of cognitive
emotional process will provide a basis for constructing
a novel emotional state estimation method. 
e current
methods only capture the static properties in the EEG
pattern in response to emotional stimuli. If a new model can
embrace the temporal dynamics of emotional information
processing in the human cognitive system and 
nd EEG
correlates of those dynamical properties, it will estimate the
emotional state more precisely. Second, the quest for novel
EEG signatures of the emotional state should be pursued. In
particular, interactive properties between EEG signals such as
cross-frequency coupling and e�ective connectivity pattern
may be worth exploring to 
nd novel EEG correlates of
emotion. 
ird, inference of emotion-related information
from high-dimensional and nonlinear EEG data poses an
interesting problem to develop and apply the state-of-the-art
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machine learning algorithms. So far, only a few basic learning
algorithms have been applied for emotional state estimation,
but it is likely that emotion recognition would bene
t from
more advanced statistical learning and pattern recognition
algorithms. With these advances, we foresee that the com-
putational models of emotional estimation would play a key
role in future consumer devices. Before long, they can bring
serendipity to device users by estimating emotional states in
a natural and nonintrusive way.
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