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Abstract

Titania nanotubes grown by anodic oxidation have intrigued the material science community by its many unique

and potential properties, and the synthesis of technology is merging to its mature stage. The present review will
focus on TiO2 nanotubes grown by self-organized electrochemical anodization from Ti metal substrate, which

critically highlights the synthesis of this type of self-organized titania nanotube layers and the means to influence

the size, shape, the degree of order, and crystallized phases via adjusting the anodization parameters and the
subsequent thermal annealing. The relationship between dimensions and properties of the anodic TiO2 nanotube

arrays will be presented. The latest progress and significance of the research on formation mechanism of anodic

TiO2 nanotubes are briefly discussed. Besides, we will show the most promising applications reported recently in
biomedical directions and modifications carried out by doping, surface modification, and thermal annealing toward

improving the properties of anodically formed TiO2 nanotubes. At last, some unsolved issues and possible future
directions of this field are indicated.
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Introduction
Since the beginning of the twentieth century, titanium di-

oxide (TiO2) has been used as commercial production in

sun-blockers, paints, sensors, photocatalysis, solar cells,

electrochromic devices, drug delivery, etc. [1–7]. The

phenomenon that TiO2 can produce the photogenerated

electron-hole pairs under lighting irradiation can help split

water into oxygen and hydrogen, benefiting to solve the

energy crisis in the future as the most potential fuel.

Fujishima and his co-workers first reported the photocata-

lytic water splitting on a TiO2 electrode under ultraviolet

(UV) light [8–10], and since then, titanium dioxide has

become one of the most studied compounds in material

science. Among all transition metal oxides, it presents a

broad range of functional properties like chemical inert-

ness, corrosion-resistance, and stability, especially the

improvement of biocompatibility [11], and electrical and

optical properties [1]. Ever since Iijima discovered carbon

nanotubes in 1991 [12], showing a unique combination

between the shape and functionality, where properties can

be influenced directly by the geometry, enormous efforts

have been made in the field of nanotechnology basically in

chemical, physical, and biomedical material science.

Although the most explored nanomaterial so far is still

the carbon, another class of nanotubular materials, which

are usually based on transition metal oxides, has attracted

considerable interests over the past 20 years. The first effort

to form anodized titania nanotubes was made by

Assefpour-Dezfuly [13] who used alkaline peroxide treat-

ment followed by electrochemical anodization in an

electrolyte containing chromic acid. And since Zwilling

et al. reported that they produced the first self-organized

nanotube layers on Ti substrate by electrochemical anodi-

zation in chromic acid electrolytes containing fluorine ions

in 1999, the field has expanded enormously quickly [14].

Over the past decade, more than 33,800 papers with a

keyword of “titania nanotubes” have been published.

* Correspondence: moanchun@163.com

State Key Laboratory of Oral Diseases, Department of Implantology, West

China Hospital of Stomatology, Sichuan University, Chengdu 610041, China

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Fu and Mo Nanoscale Research Letters  (2018) 13:187 

https://doi.org/10.1186/s11671-018-2597-z

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-018-2597-z&domain=pdf
mailto:moanchun@163.com
http://creativecommons.org/licenses/by/4.0/


Figure 1 gives the total publication broken down per year

in the field of TiO2 nanotubes and makes a comparison

among different synthetic methods in the period 2002–

2017 which not just shows an exponential growth trend

but apparently indicates that the self-organized anodic

TiO2 nanotube arrays get much attention with great poten-

tial and advantages. Lately, Lee et al. has given a compre-

hensive and up to date view in the field of anodic titania

nanotubes which almost covered all aspects including

growth, modifications, properties, and applications with a

brief of different synthesis approaches [15]. Compared with

other preparation methods like hydro/solvothermal [16–

18] and template-assisted methods [19, 20], direct oxidation

turns out to be a simple technique with strong operability

in which way the desired controllable nanostructure via

adjusting size, shape, and the degree of order can be grown

by means of optimizing the oxidation parameters such as

the applied potential, time, temperature, pH, and the com-

position of the electrolyte [15]. Owing to the particular

geometry, the self-aligned oxide nanotube layers which

have highly organized structure and surface-volume ratio

are representing unique properties, such as a very high

mechanical strength, and the large specific surface area,

even providing electronic properties like high electron

mobility rate or quantum confinement effects [15, 21]. Fur-

thermore, electrochemical anodization is a low-cost process

and not limited to titanium but also can be suitable for

other transition metals Hf [22], Zr [23], Nb [24], Ta [25], V

[26] or alloys TiAl [27], and TiZr [28]. The present review

will still focus on TiO2 nanotubes grown by self-organized

electrochemical anodization from Ti metal substrate.

Besides, we will emphasize the synthesis of this type of

self-organized titania nanotube layers and the means to in-

fluence the size, shape, the degree of order, and crystallized

phases via adjusting the anodization parameters and the

subsequent thermal annealing, including four different gen-

erations differing from electrolytes species and the defined

two-step anodization, etc. The relationship between dimen-

sions and properties of the anodic TiO2 nanotube arrays

will be presented. The latest progress and significance of

the research on formation mechanism of anodic TiO2

nanotubes are briefly discussed. We will show the most

promising applications reported recently in biomedical di-

rections and modifications carried out by doping, surface

modification, and thermal annealing toward improving the

properties of anodically formed TiO2 nanotubes. We also

consider unsolved issues and possible future directions of

this field. The main paragraph text follows directly on here.

Synthesis of TiO2 Nanotube Arrays by
Electrochemical Anodization
In recent years, while many various forms of nanostruc-

tured titanium dioxide including nanorods, nanoparti-

cles, nanowires, and nanotubes have been successfully

developed [29–31], nanotubes have attracted increasing

interests for technological applications due to the unique

self-assembled structure with a large interfacial area and

convenient controlling of the size and shape, which can

be applied to surface area-dependent applications as a

better candidate. A number of excellent reviews [1, 2,

15, 32–34] are available for dealing with the features of

TiO2 nanomaterials categorized with different synthetic

methods. The electrochemical anodization is proved to

be one of the most effective methods to obtain the

Fig. 1 Research trend. The number of papers broken down per year related to TiO2 nanotubes differentiated by different synthesis methods from

2002 to 2017. (Data were collected from Science Citation Index Expanded using titania nanotubes, and anodization or hydrothermal methods or

template-based methods as keywords)
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titania nanotubes as a relatively simple technology that

can be automated easily. We will specify the main tech-

niques to fabricate anodic TiO2 nanotubes below.

Self-organized Anodic TiO2 Nanotube Arrays

As extensively studied, the titania nanotube layers can be

formed under a specific set environmental conditions.

The oxidation device consists of three parts: (I) a

three-electrode system with the prepared Ti foil as the

working electrode which is degreased by sequentially son-

icating in acetone, ethanol, and deionized water, platinum

as the counter electrode and usually Ag/AgCl as a refer-

ence electrode (Fig. 2a), while the pH electrode sometimes

is added to obtain the ultimate concentration of F− and

HF [35] or another simple two-electrode system com-

posed of Ti foil as anode and inert metal electrode as cath-

ode (Fig. 2b) [36]; (II) generally, fluoride ion, chloride ion,

chromium ion, bromide ion, or perchlorate containing

electrolytes; and (III) a DC power supply. There are two

main features influenced by the anodization conditions of

formation affecting the promising applications of titania

nanotubes: (I) geometry: size, shape, the degree of order,

crystallized phases, etc. and (II) properties in chemical,

physical, and biomedical. In other words, via controlling

the electrochemical anodization parameters (applied

potential, the duration of anodization, electrolyte system

including the concentration of the fluorine ions, and water

in the electrolyte, electrolyte temperature, electrolyte pH,

etc. which will be discussed in more details in the “Synthe-

sis of TiO2 Nanotube Arrays by Electrochemical Anodiza-

tion” section), one can fabricate different titania

nanostructures such as a flat compact oxide [1], a porous

layer [1, 36], disordered TiO2 nanotube layers growing in

bundles [37], or finally a highly organized regular TiO2

Fig. 2 Schematic set up. a Illustrative drawing of a three-electrode system with the prepared Ti foil as the working electrodes, platinum as the

counter electrode, and usually Ag/AgCl as a reference electrode, while the pH electrode as a pH meter. Reproduced from ref. [35]. b Illustrative

drawing of a simple two-electrode system composed of Ti foil as anode and inert metal electrode as cathode. Anodization leads to different

anodized oxide layer under different conditions. In most neutral and acidic electrolytes, a compact titania can be formed. But if dilute fluoride

electrolytes are used, nanotubular/nanoporous oxide layers will be directly attached to the metal surface. Reproduced from ref. [36]
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nanotubes or advanced nanotubular layer: branched tube

[38], bamboo-like [38, 39], double-walled [40], nanolace

[38], or double-layer [39] structures in which way proper-

ties could be found differently. Figures 3 and 4 display

field-emission scanning electron microscopy (FE-SEM) im-

ages of the typical examples of such TiO2 nanotube

morphologies.

(At present, TiO2 nanotube arrays with tube diameters

ranging from 10 to 500 nm, thickness of layers ranging from

a few hundred nanometers to 1000 μm, and wall thickness

ranging from 2 to 80 nm can be obtained [15, 41].)

It was two decades ago when Masuda and Fukuda for the

first time reported the highly ordered porous alumina

through adjusting the anodization conditions to an

optimum [42]. Later on, researchers spent their efforts to

make similarly organized structures also for TiO2 nanotube

layers. And there are three crucial factors affecting the de-

gree of order in anodic TiO2 nanotube arrays (in accord-

ance with polygons in the layers and the standard deviation

in tube diameter): the Ti substrate, the applied voltage, and

the repetitive anodization [33, 43]. It is obvious that fewer

flaws in the arrangement can be obtained for high purity

material at the highest possible voltage below dielectric

breakdown [33] and the ideally hexagonal self-ordered

TiO2 nanotubes as shown in Fig. 5 can be improved signifi-

cantly by secondary tubes growth [43]. Sopha et al. showed

impurities strongly influence the resulting different dimen-

sions and ordering of nanotubes after the second anodiza-

tion [44]. Moreover, the crystallographic orientations of the

Ti substrate grains have been revealed to be crucial effects

in growth characteristics of TiO2 nanotube arrays by elec-

tron backscatter diffraction (EBSD). Leonardi et al. found

that nanotubes can only be observed with an orientation

that enables a valve metal oxide to form on grains allowing

penetration of fluoride ions through the oxidation film

where 1 M (NH4)H2PO3+0.5 wt% NH4F were used as elec-

trolyte [45]. Similarly, Macak and co-workers reported that

no nanotube growth on grains is retarded in the widely

used ethylene glycol-based electrolyte compared to the case

of using aqueous electrolyte, as known from the last litera-

ture [46]. On the polished Ti sheet, grains with [0 0 0 1]

orientation or close to this turned out to be the ideal grains

and utilizing single-crystalline Ti with ideal orientation

would be a great advance to obtain the most uniform nano-

tube arrays [46].

Nevertheless, there are still some defects influencing

the degree of order. Lately, it has been further extended

by uniform nanoimprinting Ti. Kondo et al. figured out

a throughput fabrication of an ideally ordered anodic

TiO2 by nanoimprinting Ti surface or a two-layered spe-

cimen with an Al layer on the top and the Ti layer at the

bottom using a Ni mold with ordered convexes. And the

Fig. 3 SEM images of anodized TiO2 nanotube layers by different anodization processes of Ti. a The highly ordered TiO2 nanotubes (in top and side

view) are obtained in organic electrolyte systems, with self-ordered surface dimples (right) which in fact are metallic surfaces when the tube layers are

removed. Reproduced from ref. [1]. b The disordered TiO2 nanotubes are grown in patches on the surface area and fused together to bundles in

chloride containing electrolyte by an ultrafast anodization technique known as rapid-breakdown anodization (RBA). Reproduced from ref. [1] and [37]
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TiO2 layers could be generated in a more orderly way

where the shallow concaves of the pre-textured pattern

acted as initiation sites by the subsequent anodization in

NH4F ethylene glycol solution [47, 48]. Following closely,

Sopha et al. firstly covered a TiN-protecting layer on Ti

substrate prepared by atomic layer deposition (ALD) before

the pre-texturing carried out by focused ion beam (FIB)

and the subsequent anodization using ethylene glycol elec-

trolyte to produce perfectly hexagonally arranged nanotube

layers with a thickness of 2 μm, which can restrict the

nanotubes only to grow on the given initiation sites and

extend anodization time without any defects [49].

Formation Mechanism of Anodic TiO2 Nanotubes

Anodic oxidation technology and researches on formation

mechanism of anodic TiO2 nanotubes has captured wide

attention for a long time from a broad diversity of disci-

plines. The mechanism research Diggle reported in 1969

about the films of compact anodic oxide and porous anodic

oxide [50] now still plays an extremely important guiding

role. A significant amount of recent works show that transi-

tion from pores to tubes is of a gradual nature [1, 27, 36];

however, the fully theoretical model and reasoning were

not given.

Conventional field-assisted dissolution (FAD) is the

most acceptable theory [1, 33, 51]. That is in the process

of electrochemical anodization, TiO2 nanotube arrays are

formed by self-organization of titania because of three

relatively independent procedures: electrochemical oxida-

tion of Ti into TiO2, the electrical field-induced dissol-

ution of TiO2, and the fluorine ion-induced chemical

dissolution of TiO2, reaching a delicate balance. As a char-

acteristic current time curve shown in Fig. 6 for electro-

lytes containing fluoride that lead to nanotube formation

[51] and a typical image that can help to illustrate the for-

mation process schematically [33] shown in Fig. 7, the

transient can be divided into three distinct stages: (I) In

the first part, there is a current decay, caused by a newly

formed barrier oxide, when the two major processes, the

inward migration of O2− ions toward the metal/oxide

interface and the outward migration of Ti4+ ions toward

the oxide/electrolyte interface, achieve a balance. (II) In

the second part, the current begins to rise again with a

time lag caused by the increasing surface area of the

anode. The shorter the lag is, the higher the fluoride con-

centration will be due to the fluoride-induced dissolution

of the formed TiO2, and pores start to fabricate randomly

which subsequently turn out to be the initial formation of

TiO2 nanotubes. (III) Then, the current reaches a steady

state, when the pore growth rate at the metal oxide inter-

face and induced dissolution rate of the formed TiO2 at

the outer interface reach an equilibrium situation. Thus,

the final tubes become increasingly v-shaped, that is, the

tops of the tubes possess significantly thinner walls than

their bottoms where the tubes are closed-packed. The gra-

dient in the tube wall thickness in Fig. 5 can be ascribed

Fig. 4 SEM images of advanced TiO2 nanotube morphologies. a Bamboo-type reinforced TiO2 nanotubes are fabricated under specific alternating-voltage

(AV) conditions in ethylene glycol consisting of 0.2 mol/L HF, with a sequence of 1 min at 120 V and 5 min at 40 V. Reproduced from ref. [38]. b Transition

from smooth to bamboo-like TiO2 nanotubes can be induced by anodization with controlled water addition (water contents:1 to 8%) to a 0.135 M NH4F/

ethylene glycol electrolytereproduced from ref. [39]. c The 2D nanolace structures are obtained under voltage cycling carried out for an extended period of

time in the fluoride containing electrolyte, with a sequence of 50 s at 120 V and 600 s at 0 V. Reproduced from ref. [38]. d The double-walled TiO2

nanotubes are grown by anodization of Ti in a fluoride containing ethylene glycol electrolyte at 120 V after annealing at 500 °C with a heating rate of 1 °

C s−1. Reproduced from ref. [40]. e The branched nanotubes can be observed by voltage stepping, first at 120 V (6 h) and then at 40 V (2 h). Reproduced

from ref. [38]. f The double-layer nanotubes with equal or two different tube diameters can be seen. Reproduced from ref. [38]
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to different exposure time and concentration to the elec-

trolytes along the tubes [43].

However, this theory cannot explain the phenomenon

of separation into tubes, as opposed to a nanoporous

structure clearly yet, and Fahim et al. observed that

under appropriate voltages it is possible to obtain titania

nanotubes in sulfuric acid solution without fluoride ions,

in which case, the I-t curve resembled the one we just

discussed above [52]. As Houser and Hebert pointed

out, growth mechanism have not yet been developed to

explain the quantitative relationships between the

process of titania porous membrane and I-t curve [53].

Because the interpretation is not convincing enough,

new points about the mechanism appear recently such

as viscous flow model and growth model of two cur-

rents. With regard to these mechanisms, a review [51]

shows lots of limitations for the traditional field-assisted

dissolution theory and makes some explanations on lat-

est progress and significance of the research on viscous

flow model and growth model of two currents.

The Effect of Anodization Conditions Affecting Geometry

and Properties

The composition and concentration of the electrolytes have

significant influence in the nanotube arrays formation.

According to the difference of electrolytes we use, the

development is basically divided into three stages: Table 1

summarizes the anodization conditions and dimensions of

the resulting TiO2 nanotube arrays in the three generations

investigated by different research groups to date.

The first generation: hydrofluoric acid (HF)-based

aqueous electrolytes

The milestone is that Gong et al. for the first time pre-

sented the uniform titania nanotube arrays by anodic oxi-

dation of Ti in HF-based aqueous electrolytes [54]. In HF

aqueous solution electrolytes, where pH is relatively low

meaning high concentration of hydrogen ions, the chem-

ical dissolution of TiO2 induced by fluorine ions plays the

dominant status in the anodization process [55]. A

dynamic equilibrium was achieved in a short period of

time in the process of forming titania nanotubes, and

Fig. 5 SEM images of TiO2 nanotubes. The nanotubes are formed in

ethylene glycol electrolytes containing 0.27 M NH4F by repeated

anodization of Ti. The cross sections are taken at the top of the layer, in

the middle, and at the bottom of the layer. Reproduced from ref. [43]

Fig. 6 Typical current time curve under a constant voltage in

electrolytes containing fluoride. The transient can be divided into

three distinct regions (I–III). (I) In the first part, there is a sharp

current decay. (II) In the second part, the current begins to rise

again with a time lag. (III) In the third part, the current reaches a

steady state reproduced from ref. [51]
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therefore, the maximum achievable nanotubes length was

restricted to approximately 0.5 μm [54–56].

The second generation: buffered electrolytes

In the subsequent work, in order to reduce chemical dis-

solution lengthening the tubes, Cai et al. demonstrated that

by adding weaker acids such as KF or NaF into a buffered

solution and adjusting the pH to weakly acidic (pH = 4.5)

with sulfuric acid or sodium hydroxide, nanotubes approxi-

mately 4.4 μm in length were achieved [57]. PH value

affects the hydrolyzation of the titanium ions which turn

out to interfere the electrochemical etching and chemical

dissolution. Cai et al. also pointed out that lower pH values

produce shorter but clean nanotubes and higher pH values

result in longer nanotubes but unwanted debris [57]. As

the pH value goes up, the rate of hydrolysis will increase, in

turn slowing down the chemical dissolution, leading to lon-

ger nanotubes while alkaline solution is not suitable for

nanotubes growth [57, 58]. It is demonstrated that in neu-

tral NaF electrolyte at proper voltage much longer nano-

tubes could be obtained than in acidic solutions by Macak

et al. [58]. Given a particular voltage in fluoride containing

electrolyte, by adjusting the pH gradient, the required as-

pect ratios and thickness of layers could be achieved [59].

The third generation: polar organic electrolytes

Electrolytes such as glycerol [59], dimethyl sulfoxide

[60], formamide or diethylene glycol [61, 62], ethylene

glycol [41, 63], containing fluoride species such as NH4F,

NaF, and KF gradually appear. Macak and co-workers

took the lead in using viscous glycerol electrolyte to

fabricate titania nanotube arrays with the thickness of

approximately 7 μm and an average tube diameter of

40 nm [59]. It is demonstrated that higher aspect ratio

TiO2 nanotubes can be grown in such polar organic

electrolyte due to proper control of electrolyte pH redu-

cing chemical dissolution of the titania [64]. Paulose

et al. formed nanotubes approximately 134 μm in length,

prepared using ethylene glycol containing 0.25 wt%

NH4F at an anodization potential of 60 V for 17 h [60].

Soon afterwards, more than 250-μm-thick TiO2 nano-

tube arrays were reported by Albu [65]. Besides, the

water content plays a dual role in the process: it is indis-

pensable for the formation of titania, but it also speeds

up the chemical dissolution [63]. Hence, how to shrink

the effect of water content to a minimal significance is

required for increasing the thickness and degree of order

of the TiO2 nanotube arrays. In general, limiting water

content to less than 5% is the key to achieve very long

nanotubes successfully [60], and a minimum amount of

water content (0.18 wt%) is required to form

well-organized titania nanotubes [66]. It was reported

that with the addition of water, the current density re-

corded decreased which was the highest in anhydrous

ethylene glycol solution [66]. Paulose et al. first reported

formation of self-organized hexagonally titania nanotube

arrays with approximately 1000 μm in length at 60 V for

216 h in ethylene glycol containing 0.6 wt% NH4F and

3.5% water [41]. Another noticeable phenomenon is that

smooth tube walls are grown at low water content, while

ripples on side walls are formed at higher content as

shown in Fig. 4b [59, 67]. As by far the most employed

type of electrolytes, ethylene glycol containing water and

fluoride ions always leads to a double-walled nanotube

structures (Fig. 4d) [40, 68–70], while the inner layer can

be removed by a suitable annealing treatment followed

Fig. 7 The forming process of TiO2 nanotube arrays. The formation

of TiO2 nanotube arrays can be divided into three different

morphological stages (I–III). (I) A barrier oxide is formed. (II) The

surface is locally activated and pores start to grow randomly. (III)

Self-organized nanotube layer is formed reproduced from ref. [33]
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by a simple chemical etching process. After removal of the

inner shell, the widened tubes allow a layer-by-layer decor-

ation with nanoparticles using a repetitive approach based

on TiCl4-hydrolysis [71]. Whereas single-walled tubes

showed significantly enhanced conductivity and electron

transport times in dye-sensitized solar cells (DSSCs) [71,

72] where the thickness of the entire tube is basically the

same and the inner shell no longer appears, Mirabolgha-

semi et al. made a comparison between the double- and

single-walled tubes and presented desired single-walled

tubes with an addition of dimethyl sulfoxide (DMSO) into

electrolytes with 1.5 M H2O and 0.1 M NH4F [72].

Recently, non-fluoride-based electrolytes have been re-

ported to grow TiO2 nanotube arrays which may be con-

sidered as the fourth synthesis generation including

hydrochloric acid, hydrogen peroxide, perchloric acid so-

lutions, and their mixtures [73, 74]. Allama and Grimes

described well-developed nanotube arrays with 300 nm

in length, 15 nm in inner diameter, and 25 nm in outer

diameter were obtained in a 3 M hydrochloric acid

(HCl) aqueous electrolyte at oxidation voltages between

10 and 13 V. But adding a low concentration of H3PO4

resulted to a change from nanotubes to rods. They fur-

ther suggested that they were unable to achieve

self-organized nanotube arrays in HCl-containing elec-

trolytes at the concentration of lower or higher than

3 M [73]. Allama found out that adding hydrogen perox-

ide to the hydrochloric acid containing aqueous solution

could be a possible method to lengthen the titania nano-

tubes which possesses a strong oxidizing property fol-

lowing a thicker oxide layer, demonstrating that fluoride

ions can successfully be replaced by chloride ions in the

growth of nanotube arrays [74]. Besides, ionic liquids

without addition of free fluoride species have been

treated as another type of solvent system for titania

nanotubes in recent years [75, 76].

In addition to the standard parameters, the geometry

of the resulting nanotubes is dependent on the repetitive

use of electrolyte (the “used solution effect”). In com-

parison with the tubes obtained with fresh solutions,

using once-used solutions, exhibited an increase in

nanotube length and a better quality where the nanotube

growth rate achieved is consistently higher for

once-used solutions at 60 V and above [77] and a slightly

different but distinguishable current transient behavior

could be noted [66]. Moreover, no nanotubular structure

but an oxide film was obtained in the twice-used solu-

tion because of the depletion of F− species [78]. How-

ever, Sopha et al. investigated different ages of ethylene

glycol based electrolytes on the morphology of TiO2

nanotubes showing that in older electrolytes the arrays

exhibit lower aspect ratios [79].

Applied Potential

Anodization voltage is the critical factor controlling tube

diameters [80, 81]. The dimension of the nanotube ar-

rays can be predicted just simply by applying the suitable

range of voltage called potential window across the elec-

trode [67]. At a low voltage, less electric field dissolution

occurs, forming TiO2 nanotubes with smaller diameters.

If the voltage is too low, the TiO2 layer becomes com-

pact but no nanotubular structure can be observed. On

the contrary, a spongy-like porous structure will be seen

when the voltage is too high. With controllable voltage,

the diameter of the nanotubes is proportional to the

voltage [81]. Furthermore, studies show that the range of

voltage forming nanotubes is also related to the electro-

lyte system. In aqueous electrolytes, the potential win-

dow should be controlled from 10 to 25 V, which in

organic electrolytes is much wider between several volts

and some hundred volts. Wang and Lin found out the

fact that in aqueous electrolytes, the anodization poten-

tial exhibits significant influence on the growth of TiO2

nanotube arrays, which exhibited slight influence in

non-aqueous electrolytes in this regard [82]. The voltage

dependence has a significant reduction in non-aqueous

Table 1 TiO2 nanotubes arrays fabricated through anodic oxidation in the three generations: electrolyte compositions, anodization

conditions, and size of the resulting nanotubes

Generation Electrolyte Condition Diameter Thickness of layers Ref

First generation 0.5 wt% HF in aqueous solution 20 V 20 min 60 nm 250 nm [54]

second generation 0.1MKF+1MH2SO4+0.2Mcitric acid 25 V
20 h

115 nm
(inner)

4.4 μm [57]

1MNa2SO4+0.5wt%NaF 20 V
6 h

100 nm 2.4 μm [58]

Third generation 0.5 wt% NH4F 20 V 40 nm 7 μm [59]

In glycerol 13 h

0.3 wt% NH4F 60 V 100 nm 45 μm [63]

In ethylene glycol 18 h

0.25 wt% NH4F 60 V 160 nm 134 μm [60]

In ethylene glycol 17 h
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electrolytes which is attributed to a large extent to the

low conductivity of organic electrolytes [83, 84].

The Duration on Anodization

The duration of anodization affects the nanotubes mainly

in two aspects: (I) the formation of the tubes or not and

(II) the length of the tubes. That is, in the early stage of

the anodization, a compact TiO2 film is formed. If the

duration is too short to reach an equilibrium in reaction,

the regular nanotube array cannot be achieved instead of

a disordered porous layer [67]. With increasing the anodi-

zation time, porous structure gradually grows deeper and

converts into the TiO2 nanotubular array [1, 33, 51]. If

other electrochemical parameters are kept unchanged, in-

crease in the nanotube length is observed over time while

no significant effect on diameter and tube wall thickness

until a steady-state situation occurs [67, 85, 86]. However,

due to the decrease of the F− concentration in the electro-

lyte, where the ion transport rate decreased, the growth

rate of nanotubes is reduced. After reaching a stable con-

dition between tube growth at the bottom and chemical/

electrochemical dissolution at the top, we will find no fur-

ther increase in length of the nanotubes [87]. As time con-

tinues to go, pipe orifice becomes an irregular polygon

resulting in TiO2 spikes and coverings which can be seen

on the surface of the TiO2 nanotube arrays [36]. It is

worth mentioning that enlightened by the success of

aluminum-repeated anodization for self-organized porous

alumina [88], the two-step anodization of titanium for

such a highly ordered hexagonally packed nanostructure

of titania has appeared [43, 77, 89–91]. After the first-step

anodization, the first nanotube layer from the Ti foil

should be removed ultrasonically or by using an adhesion

tape which leads to a surface where the remaining Ti is

covered by comparably ordered dimples. Researches have

shown that the former treatment helps to avoid potential

mechanical damage to the Ti surface and also improve the

structural uniformity of the TiO2 nanotubes to a great ex-

tent [77, 90, 91]. In the second anodization step, the pre-

treated Ti foil would be used as anode again with or

without changes in parameters of oxidation conditions. It

is subsequently found that the highly ordered and verti-

cally oriented titania nanotubes, have greater potential in

such fields as photocatalysis [77], photoelectriochemical

activity [92, 93], and biological interaction with cells [94]

than the disordered nanotubular titania.

Electrolyte Temperature

Temperature restricts the growth and quality of titania

nanotube arrays, directly affecting the rate of oxide

growth, length, and wall thickness of the structure [64,

95]. Wang and Lin first reported the effect of electrolyte

temperature in both aqueous and non-aqueous electrolyte

on anodic oxidation of titanium [82]. In aqueous

electrolyte, with the temperature increasing, a slight di-

minish in the internal diameters was observed while the

external diameters remained the same [68]. The reason

may be the dissolution induced by electrical field and

fluoride ions are similar while the oxide formation rate is

higher than that at lower temperature. In non-aqueous

electrolyte containing fluoride ions, the outer nanotube

diameter was found to be largely increased by the increas-

ing electrolyte temperature [82]. This may be because at

lower temperature, the ion mobility of fluorine in some

viscous electrolyte is further inhibited, leading to much

slower dissolution of newly formed titania, which subse-

quently lead to a smaller nanotube diameter. As chemical

dissolution rate increases, surface of TiO2 nanotubes ar-

rays can easily produce excessive corrosion, resulting in

lodging nanotubes and agglomeration. Therefore, the ap-

propriate bath temperature for stable TiO2 nanotube ar-

rays is at room temperature [82, 95, 96].

Modification of Nanotubes Properties
Increasing applications of TiO2 nanotubes as a novel

semiconductor are closely related to its photoelectrio-

chemical (PEC) performance; however, they are some-

times prevented by two fundamental drawbacks: (I) the

wide band gap (3.0 eV for the rutile phase and 3.2 eV for

the anatase phase) can only absorb ultraviolet light,

which accounts for less than 10% of the sunlight [97],

resulting in low average utilization ratio of solar energy

and (II) the low electrical conductivity cannot efficiently

transfer photogenerated carries. At the same time, the

photoelectrons and vacancies can be easily recombined,

thus making low electron mobility rate or quantum con-

finement effects [98]. Hence, post-treatment of TiO2

nanotubes is the key to improve the performance of its

materials and related devices successfully. Considerable

researches have been reported on modified methods to

reduce the recombination of photogenerated

electron-hole pair rate, speed up the electron transfer

rate, and enhance the photoelectriochemical activity of

TiO2 nanotubes. The research of the methods for the

improvement of the photoelectriochemical properties of

TiO2 nanotubes will be reviewed, including thermal an-

nealing, doping, and surface modification. As for prom-

ising modification in biomedical fields, we will present

in the application section.

Thermal Annealing

The crystallinity of the nanotube arrays and their con-

ductivity, lifetime of charge carrier, and photoresponse

depend mainly on the thermal annealing temperature

and atmosphere [99, 100]. The as-prepared TiO2 nano-

tubes above are amorphous in nature but can be

annealed to anatase or rutile phase, or mixtures of both

phases relying on the specific temperature [1, 3, 40, 92,
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100]. It is demonstrated that amorphous nanotube layers

grown in a glycerol-based electrolyte containing fluoride

ions have low photocurrents and an incident

photon-to-electron conversion efficiency (IPCE) below 5%

due to lots of structural defects while anatase phase nano-

tubes exhibit an IPCE value up to 60% thus attracting

more interest to applications such as dye-sensitized or

perovskite solar cells [93]. As well in mixed water-glycerol

electrolyte with F−, Das et al. stated their points that if the

self-organized TiO2 nanotube arrays with thickness about

1 μm were annealed around 300–500 °C, the anatase

phase of TiO2 as the most preferred crystalline structure

could be observed. The single anatase structure of nano-

tubes with the best photoelectriochemical properties and

the lowest resistivity could be fabricated when annealed at

400 °C. At temperature higher than 600 °C, a track of typ-

ical rutile appeared and with a further increase in anneal-

ing temperature the percentage and quality of the rutile

phase increased [92]. It should be noted that in Jaroen-

woraluc’s work, rutile phase was detected in anodic nano-

tube layers grown in aqueous NaF/Na2SO4 with thickness

of approximately 1.5 μm at 500 °C heat treatment and be-

came the dominant phase at 600 °C. Whereas at 550 °C,

partial nanotubes began to break down [101]. It begins to

cause the collapse of the entire nanostructure formed in

aqueous NaF/Na2SO4 with the continuous increase of

temperature (800–900 °C) or the extended annealing time

[3]. While for extended temperature, the crystalline struc-

ture of the nanotubes completely converts to rutile phase

at above 900 °C [3]. Some researchers demonstrated a loss

of the typical single-walled nanotube layers morphology

when the annealed temperature rose above 580 °C [102].

Besides the whole annealing process especially the heating

rate controls, the morphological structures of the entire

nanotube arrays [40]. The double-walled nanotube layers

prepared from ethylene glycol (containing less than

0.2 wt% H2O), with the addition of HF and H2O2, have

such a high stability that can keep their structure intact

until temperature is higher than 900 °C with a heating rate

of 1 °C s−1. However, the double-walled nanotubes begin

to collapse as soon as the temperature reaches 500 °C

when the heating rate is 25 °C s−1. Most extraordinarily,

with the high speed of 50 °C s−1 the entire separated nano-

tubes fuse into a highly ordered porous membrane [40].

Xiao et al. obtained crystallized titania nanotubes arrays

with calcination in different gases like dry nitrogen, air,

and argon indicating nanotubes in dry nitrogen appeared

to have enhanced electrochemical and photoelectrical

properties who also found out that with the increasing

temperature internal diameter decreased while wall thick-

ness increased at the expense of nanotubes length [103].

As shown in Fig. 8, the conductivity along the TiO2

nanotubes with three different thickness is strongly af-

fected by annealing temperature. Smallest resistance is

observed at about 350–450 °C when the amorphous

nanotube arrays are totally converted into anatase layers

[99]. And it is evident to see that specific resistivity in-

creases with thicker nanotube arrays which can be

shown more clearly in the inset in Fig. 8. Furthermore,

calcination temperature is responsible for the decrease

in the length of the anatase TiO2 nanotubes. As shown

in Fig. 9a, increment of temperature between 300 and

500 °C causes the as-prepared nanotube arrays slightly

changing in thickness from 13.6 to 12.6 μm. When an-

nealing temperature continuously increases to 600 °C,

the average length of the nanotubes decrease dramatic-

ally to 6.6 μm. Figure 9b shows conversion from anatase

TiO2 to rutile phase TiO2 occuring at 500 °C when the

rutile barrier layer is formed on the bottom of the TiO2

nanotube arrays along the anatase nanotubes by con-

suming the bottom layer if the annealed temperature is

further increased. This leads to a length decrease and

corresponding photocatalytic activity decline [104].

Doping

Doping ions or atoms into titania lattice, a substitution

within the lattice either at Ti4+ or O2− sites, on the one

hand, changes the lattice constants and bond energy. On

the other hand, it is beneficial to the separation between

photogenerated electron and hole pair, which in turn ad-

justs the band gap and improves the photoelectrochem-

ical performance of nanotubes [15]. The impurity

doping has been commonly applied to extend the light

absorption onset of TiO2 nanotubes by either introdu-

cing subbandgap states or adjusting its bandgap width

[105]. Lately, co-doping approach has been proposed as

a more efficient way to reduce the band gap and adjust

energy band level in favor of photoelectriochemical reac-

tions [106, 107]. There are various kinds of

doped-elements and preparation methods, and Table 2

summarizes some methods and the doping effects of

doped titania nanotubes.

The most typical doped TiO2 nanotubes are as follows:

i. Metal-doped TiO2 nanotubes such as Nb [107], Fe

[108], Cu [109], Cr [110], Zr [111], Zn [112], and V

[113]

ii. Non-metal-doped TiO2 nanotubes such as N [105],

F [114], B [115], C [116], S [117], and I [118]

iii. Co-doped TiO2 nanotubes such as N–Ta [105], N–

Nb [107], and C–N–Ni [119]

Choiet systematically studied the photoreactivities of 21

metal ion-doped quantum-sized TiO2 doping with Fe, Mo,

Ru, Os, Re, V, and Rh significantly increases quantum effi-

ciency, while Co and Al doping decreases the photoreactiv-

ity [120]. Momeni et al. recently obtained Fe-TiO2

nanotube (Fe-TNT) composites using different amounts of
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irons to decorate anodically formed TiO2 nanotubes

with potassium ferricyanide as the iron source, indi-

cating that Fe doping efficiently accelerates the photo-

catalytic performance for water splitting [108]. Not

limited to transition metals, other elements including

N [105], F [114], B [115], C [116], S [117], and I

[118] are successfully explored. Nitrogen-doped TiO2

nanotubes turns out to be a promising path to nar-

row the band gap energy with enhanced photocurrent

response in the visible light and the tube length influ-

ences the magnitude of conversion efficiency [121,

122]. Kim and co-workers proved that TaOxNy

layer-decorated N-TNT (N-doped TiO2 nanotubes) as

dual modified TNTs have significantly improved both

visible (3.6 times) and UV (1.8 times) activities for

water splitting [105]. At present, more researches are

aimed at co-doping which exhibits remarkable synergistic

effect causing a significant improvement on photoelectrio-

chemical properties. Chai et al. grew Gd–La co-doped

TiO2 nanotubes by an ultrasonic hydrothermal method, en-

hancing visible light photocatalysts [123]. Cottineau et al.

modified titania nanotubes with nitrogen and niobium to

achieve co-doped nanotubes with noticeably enhanced

photoelectriochemical conversion efficiency in the visible

light range [107]. Nevertheless, the mechanism for increas-

ing photoconductivity and synergistic effect of various ele-

ments on co-doping remains a further study.

Surface Modification

Surface modification means decoration on surface of

TiO2 nanotube arrays with nanoparticles (metal, semi-

conductors, and organic dyes). Nanowire arrays can

also be fabricated by electrodeposition into titanium

oxide nanotubes [124]. TiO2 nanotube is a semicon-

ductor with a wide band gap, which can only absorb

ultraviolet light [97, 125]. Any other nanomaterials

which possess a narrow band gap or can absorb the

visible light can be used as a sensitizer for titania

nanotubes. Silver nanoparticles can be decorated on

the tube wall by soaking the titania nanotube arrays

in AgNO3 solutions and photocatalytically reducing

Ag+ on a TiO2 surface by UV illumination [126]. Ag/

TiO2 nanotubes show a significantly higher photo-

catalytic activity and good biological performance

compared with neat TiO2 nanotubes [126, 127]. Some

compositions such as graphene oxide GO [128], CdS

[129], CdSe [130], and ZnFe2O4 [131]. can be modi-

fied on TiO2 nanotube arrays. Lately, GO have

Fig. 8 Electrical resistance as a function of the annealing temperature for the different nanotube layer thicknesses. The curve shows electrical

resistance measurement for different titania nanotube arrays grown in ethylene glycol based electrolyte containing HF and water at different

temperature and the influence of thickness on resistance. The inset shows more details about the relationship between the thickness of the

nanotube arrays annealed at 250 °C and their specific resistivity. Reproduced from ref. [99]
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attracted much scientific interest in nanoscale devices

and sensors which is easy to combine with nanostruc-

ture materials to compose some compounds. Titania

nanotubes fabricated by anodization in water-ethylene

glycol electrolyte consisting of 0.5 wt% ammonium

fluoride (NH4F) can be incorporated with GO by cyc-

lic voltammetric method, which achieve higher photo-

catalytic activity and more effective conversion

efficiency (GO-modified vs pure nanotubes =

26.55%:7.3%) of solar cell than unmodified TiO2

nanotubes [128]. Semiconductor composite is a

method improving the performance of titania nano-

tubes via, in some specific way, combining two kinds

of semiconductors with different band gap [132]. Yang

et al. decorated CdSe nanoparticles on the surface of

TiO2 nanotubes by applying an external electric field

to accelerate CdSe nanoparticles in nanochannels

resulting in a material with more stable and higher

photoresponse to visible light. Furthermore, the

degeneration rate of anthracene-9-carbonxylic acid

when exposed to the green light irradiation indicating

that CdSe dominates the photocatalytic process under

visible light [130].

Besides, other oxide nanoparticle deposition such as

WO3 [133] or TiO2 [134] onto TiO2 nanotubes by

the hydrolysis of a chloride precursor also turns out

to augment the surface area and improve the solar

cell efficiency. Another very effective approach is to

consider organic dyes as sensitizers for TiO2 nano-

tubes to improve its optical properties [135]. Lately,

atomic layer deposition (ALD) becomes an established

procedure to modify TiO2 nanotube layers. ALD ap-

pears to be a very uniform and precisely controllable

deposition process to functionalize nanotubes in con-

formably coating the surface of the nanotube layers

with one atomic layer after another of a secondary

material, such as Pd [136], ZnO [137], Al2O3 [138],

CdS [139], or TiO2 [140].

Biomedical Applications
Historically, the mentioned milestones were reported

on the fabrication of titania nanotube arrays contrib-

uting to widen the promising applications over the

past 20 years in the areas ranging from anticorrosion,

self-cleaning coatings, and paints to sensors [141–

143], dye-sensitized and solid-state bulk heterojunc-

tion solar cells [144–146], photocatalysis [147, 148],

eletrocatalysis, and water photoelectrolysis [149, 150].

They also outperform in biomedical directions as bio-

compatible materials, toward biomedical coatings with

enhanced osseointegration, drug delivery systems, and

advanced tissue engineering [15, 135, 141, 142, 151].

In the following section, we will give an overview of

current efforts toward TiO2 nanotubes biomedical ap-

plications. Titania nanotubes possess good biocom-

patibility as they show some antibacterial property,

low cytotoxicity, good stability, and cytocompatibility

including promoting adhesion, proliferation, and dif-

ferentiation of osteoblast and mesenchymal stem cells

(MSCs) with a high surface area-to-volume ratio and

controllable dimensions [152–155].

However, Ti products have inadequate antibacterial

ability and efforts have been made to improve their anti-

bacterial properties such as modifications on titania

nanotubes for biomedical applications like bioimplant

[126, 156].

Biological Coatings And Interactions with Cells

A number of in vitro and in vivo studies have dem-

onstrated that MSCs, osteoblasts and osteoclasts show

size-selective response which means the effect of size

holds an important position in cell interaction where

the optimized size for cell adhesion, proliferation,

Fig. 9 Evolution of titania nanotube arrays at different calcination

temperatures. The electrolyte was ethylene glycol containing 0.3 wt%

ammonium fluoride and 5 vol% distilled water. a The decrease in the

thickness of titania nanotube arrays at different annealing temperature

from 300 to 600 °C. The insets are corresponding SEM images and the

scale bar is 5 μm. b The schematic of crystallization process of anodic

titania nanotubes annealed at (1) 450 °C, (2) 500 °C, and (3) 600 °C in

air. Reproduced from ref. [104]
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Table 2 Some doped-elements, preparation methods, and the doping effects of doped titania nanotubes as based on the

classification of metal-doping, non-metal doping, and co-doping

Classification Raw material Synthesis Element Doping effect Ref

Metal doping K3Fe(CN)6 One-step anodizing
60 V 6 h at 25 °C

Fe Band gap: 2.85/2.65/2.10/2.03 eV (undoped: 3.18 eV)
photocurrent density: 930/1320/675/590 μA cm−2

(undoped: < 240 μA cm− 2) at 1.5 V under visible
light more stable and high photoresponse to
visible light

[108]

Cu(NO3)2·3H2O One-step anodizing
20 V 1 h at room
temperature

Cu Band gap: 2.65 eV (undoped: 3.20 eV) total amount
of H2 evolved: 29 μL cm−2 2 h (undoped: 7.6 μL
cm− 2 2 h) higher decomposition rate of methylene
blue higher stability after multiple reuses

[109]

K2CrO4 One-step anodizing
60 V 6 h
at 25 °C

Cr Band gap: 2.82/2.71/2.30 eV (undoped: 3.20 eV)
photocurrent density: 360/280/190 μA cm−2

(undoped: < 39 μA cm− 2) at 1.0 V under visible
light total amount of H2 evolved: 37/28/12 μL
cm− 2 4 h (undoped: ≈ 0 μL cm−2) higher
stability after multiple reuses

[110]

Zr(NO3)4 Two-step anodizing
3/7/10/15 V 1 h

Zr Higher photocatalytic activities than that of pure
TiO2 nanotube arrays good photocatalytic stability
and could be reused

[111]

ZnF2 One-step anodizing
30 V 15 h
at 25 °C

Zn Band gap: 2.86/2.84 eV (undoped: 3.00 eV) degeneration
rate of methylene blue under visible light for 10 h:88/66%
(undoped: ≈ 62%)

[112]

V2O5 One-pot hydrothermal
method at 130 °C 3 h

V Band gap: 2.91 eV (undoped: 3.18 eV) increased
photocurrent density reaction rate (Kapp)of
rhodamine B: 3 ~ 9 fold as compared to undoped
one under UV and visible light

[113]

Non-metal
doping

NH3 Annealing a flow rate of
400 mL min−1 at 500 °C
3 h

N Band gap: 2.8 eV (undoped: 3.1 eV) Table2: Some
doped-elements, preparation methods, and the
doping effects of doped titania nanotubes as a
based on the classification of metal-doping,
non-metal doping, and co-doping. Table 2: Some
doped-elements, preparation methods, and the
doping effects of doped titania nanotubes as a
based on the classification of metal-doping,
non-metal doping, and co-doping. Photocurrent
density: 1.4 mA cm−2 (undoped: 1.6 mA cm− 2)
at 0.9 V under UV-enhanced PEC activities under
visible light and decreased UV light absorption

[105]

H2TiF6 Spray pyrolysis F Enhancement of surface acidity and creation of oxygen
vacancies, increase of active sites

[114]

H3BO3 Anodizing 1.8 V
15-60 min

B Band gap: 2.91 eV (undoped: 3.20 eV), photocurrent
density: 311 μA cm−2 (undoped: 41.7 μA cm−2)
at − 0.6 ~ 0.9 V under UV

[115]

CH4 Calcination at 820 °C
18 min in natural
gas flame

C Band gap: 2.84 eV (undoped: 2.92 eV) an additional
intragap band: 1.30 eV increased lifetime of
photogenerated carriers in the UV

[116]

K2S2O5 One-step anodizing
20 V 1 h at 25 °C

S Band gap: 2.61 eV (undoped: 3.20 eV) high stability after
multiple reuses photocurrent density: > 1.22 mA cm−2

(undoped:< 0.19 mA cm−2) at 1.50 V under visible light
total amount of H2 evolved: 41 μL cm−2 4 h
(undoped: ≈ 0 μL cm−2)

[117]

KI、HIO4 Two-step anodizing
1.5 V 15 min
at 23 ± 1 °C

I Band gap: 2.95/3.0 eV (undoped: 3.07 eV) enhanced
photocurrent density under both visible and UV
illumination degeneration rate of methylene
blue under visible light for 2 h: 71/65% (undoped: ≈ 31%)

[118]

Co-doping NH3

TaCl5

Drop-casting method
at 450 °C 30 min

N-Ta Band gap: 2.5 eV (undoped: 3.1 eV) photocurrent density:
2.5 mA cm−2 (undoped: 1.6 mA cm−2) at 0.9 V under
UV-enhanced PEC activities under both visible and UV illumination

[105]

NH3

(NH4)5[(NbOF4)(NbF7)2]
Anodizing 45 V at 25 ±
1 °C annealing a flow

N-Nb Strongly enhanced PEC activities for water splitting under both
visible light and UV light

[107]
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growth, and differentiation is ranging from 15 to

100 nm [153, 157, 158]. Particularly, it was demon-

strated that the TiO2 nanotubes with a diameter of

70 nm was the optimal nanoscale geometry for the

osteogenic differentiation of human adipose-derived

stem cells (hASCs) [159]. Smith et al. reported in-

creased dermal fibroblasts and decreased epidermal

keratinocyte adhesion, proliferation, and differenti-

ation on TiO2 nanotube arrays (diameter 70–90 nm,

length 1–1.5 μm) [160]. As shown in Fig. 10, Peng

et al. found that nanotubular surface preferentially

promoted proliferation and function in endothelial

cells (EC) while decreased in vascular smooth muscle

cell (VSMC) by measuring EdU, a thymidine analog

which is incorporated by proliferating cells [161]. Fur-

thermore, it is pointed out that surface wettability of

the TiO2 nanotube layers is recognized as a critical

factor for cell behavior which can be adjusted by

changing the diameter of the nanotubes. That is to

say, water contact angles can be altered without chan-

ging the surface chemistry [158]. To get further un-

derstanding of the effect of TiO2 nanotube layers to

bone-forming cells as well as stem cells response,

Park et al. seeded green fluorescent protein-labeled

rat MSCs on TiO2 nanotube layers with six different

diameters (15, 20, 30, 50, 70, and 100 nm), resulting

in cell activity that is sensitive to nanoscale surface

topography with a maximum in cell activity obtained

for tube diameters of approximately 15–30 nm. Such

lateral spacing exactly corresponds to the predicted

lateral spacing of integrin receptors in focal contacts

on the extracellular matrix, forcing clustering of

integrins into the closest packing, resulting in optimal

integrin activation. While tube diameters larger than

50 nm, severely impaired cell spreading, adhesion,

and spacing of 100 nm may lead to the cell apoptosis

[94]. Besides adjusting the size of the nanotubes, sur-

face modification loaded with bioactive factors should

be highlighted, in which case biomedical properties

can be further optimized. In the case of bone im-

plants, hydroxyapatite (HA) formation is important

for osseointegration. Recent works have shown hy-

droxyapatite nanocrystalline coating onto the nano-

tubular TiO2 results in further enhanced

osseointegration with strong adhesion and bond

strength, and a drastic enhancement of deposition

rate is observed [162, 163]. Nanotubular TiO2 surface

can greatly enhance the natural apatite growth rate in

simulated body fluid (SBF) compared with flat sur-

faces [10, 164]. The alkaline-treated TiO2 nanotubes

with NaOH solutions are more bioactive in SBF,

where sodium titanate can significantly accelerate nu-

cleation and the growth of HA formation presenting

a well-adhered bioactive surface layer on Ti due to its

larger surface area and promoted mechanical inter-

locking between HA and TiO2 nanotubes [165, 166].

Electrodeposited with hydroxyapatite, higher adhesion

of TiO2 nanotubes has been described in the

Table 2 Some doped-elements, preparation methods, and the doping effects of doped titania nanotubes as based on the

classification of metal-doping, non-metal doping, and co-doping (Continued)

Classification Raw material Synthesis Element Doping effect Ref

rate of 100cm3 min−1

at 550 °C 2 h

K2[Ni(CN)4] Anodizing 40 V 2 h
at room temperature

Ni-N-C Band gap: 2.588 ~ 2.972 eV (undoped: 3.062 eV)
photocurrent density: 10 times greater than that
of undoped one under visible light

[119]

Fig. 10 Ratio of EdU positive a ECs and b VSMCs on flat or nanotube substrate. It is normalized by the average proportion of positive cells on flat

surfaces on day 1 and 3. Data is presented as average ± standard deviation. *p < 0.05, **p < 0.01 versus same day flat control, n = 6 reproduced

from ref. [161]
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literature by means of adhesive tape test and the live/

dead cell staining study which is essential for early

bone formation [166]. The results also showed that at

the length of 560 nm the highest adhesion of HA

surface on the nanotubes is observed. Also the nano-

tube surface can indeed strengthen Collagen type I

expression in vivo experiment which is considered to

be a basic initial bone matrix protein in bone forma-

tion [167]. Moreover, annealing of the amorphous

nanotubes to anatase or a mixture of anatase and ru-

tile was found to be an important factor in the

apatite formation process [164].

Drug Delivery and Antibacterial Ability

Furthermore, the tubular nature of TiO2 in biomed-

ical devices may be exploited as gene and drug deliv-

ery carriers with living matter due to its high surface

area, controllable pore, and self-ordered structure [1,

15]. When the orthopedic bioimplant is placed into

the bone defect, persistent and chronic infection is

one of the most common and serious complications

associated with biomedical implantation [16, 168].

Certain dimension and crystallinity may be useful to

prevent bacteria adhesion and promote bone forma-

tion. The thermal annealing has decreased the num-

ber of bacteria adhering to the Ti surface. It could be

in part because heat treatment removes the fluorine

content which has a tendency to attract bacteria. The

research also indicates that nanotubes with 60 or

80 nm in diameter decrease the number of live bac-

teria as compared to lower diameter (20 or 40 nm)

nanotubes [169, 170].

Bauer et al. loaded epidermal growth factor (EGF)

and bone morphogenetic protein-2(BMP-2) onto the

TiO2 nanotubes surface by covalent attachment. They

observed positive influence on the behavior of MSCs

on 100-nm nanotube arrays where cell count was at

much higher levels compared to the untreated one

[171]. Lately, titania nanotubes loaded with antibiotics

contribute to suppressing bacterial infections. As gen-

tamicin sulphate (GS) is mostly widely used with

highly water solubility, Feng et al. loaded titania

nanotubes with GS through physical adsorption and

cyclic loading which can treat many types of bacterial

infections [172]. Zhang et al. fabricated titania nano-

tubes loaded with vancomycin to investigate the in-

creasing biocompatibility and obvious antibacterial

effect on Staphylococcus aureus [173]. However,

systemic antibiotics in clinical will bring many side

effects. The release of antibiotics from the nanotubes

is too fast to maintain the long-term antibacterial

ability, and the use of antibiotics may develop resist-

ant strains [126, 168, 174]. Ensuring a constant

release rate becomes a crucial but difficult part in the

field of drug delivery. In strategies like surface modifi-

cation, controlling the dimension of nanotube arrays,

biodegradable polymer coating have been employed to

solve the issue [21]. Drug release of several drugs

such as antibiotics or growth factors from titania

nanotube arrays can be adjusted by varying their

diameters and lengths [152, 175, 176]. Feng et al.

covered a thin film comprising a mixture of GS and

chitosan on GS-loaded titania nanotubes and showed

a controlled release of the drug providing sustained

release effects to a certain extent [172]. Titania nano-

tube arrays as drug nanoreservoirs on Ti surface for

loading of BMP-2 were fabricated by Hu et al. and

then further covered with gelatin/chitosan multilayers

to control the release of the functional molecule

meanwhile maintain the bioactivity for over 120 h via

a spin-assisted layer-by-layer assembly technique

which is mainly based on electrostatic interactions be-

tween polyanions and polycations as well as promote

osteoblastic differentiation of MSCs [177]. Lai et al.

successfully fabricated Chi/Gel multilayer on

melatonin-loaded TiO2 nanotube arrays to control the

sustained release of melatonin and promote the osteo-

genic differentiation of mesenchymal stem cells [178].

Karan et al. synthesized titania nanotubes loaded with

the water-insoluble anti-inflammatory drug indometh-

acin and modified lactic-co-glycolic acid on surface as

a polymer film in order to extend the drug release

time of titania nanotubes and produce favorable bone

cell adhesion properties, with reduced burst release

(from 77 to > 20%) and extended overall release from

4 days to more than 30 days [152]. As previous study

reported that surface treatment of implants with

N-acetyl cysteine (NAC) may reduce implant-induced

inflammation and promote faster bone regeneration

[179], Lee et al. examined the feasibility of N-acetyl

cysteine-loaded titania nanotubes as a potential drug

delivery system onto an implant surface, and the data

indicates the enhanced osseointegration and the value

of the small animal model in assessing diverse

biological responses to dental implants. Besides, TiO2

nanotube arrays are suitable for loading inorganic

agents like Ag, Sr, and Zn to obtain long-term

antibacterial ability and osseointegration [126, 180–

182]. Ag nanoparticles have been incorporated into

TiO2 nanotube arrays previously with satisfactory

small possibility to develop resistant strains, a

broad-spectrum antibacterial property, low cytotox-

icity, and good stability by immersion in a silver

nitrate solution followed by ultraviolet light radiation

[126]. Zhang et al. demonstrated that a series of

porous TiO2 coatings with different concentrations of

silver had significant inhibition effect on Escherichia

coli and Staphylococcus aureus. Besides, only with the
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optimum amount of silver can the coatings retain the

antibacterial effect but without any measurable cyto-

toxicity to cells [183]. Due to cytotoxicity observed by

the excessive release of Ag+ subsequently, titania

nanotube arrays with Ag2O nanoparticles embedded

in the wall are prepared on Ti by TiAg magnetron

sputtering and anodization in order to get slower and

more controllable silver ion release [184]. That is be-

cause the TiO2 barrier is surrounded thereby minim-

izing the cytotoxicity induced by burst or large Ag+

release.

Similar to Ag, Zn possesses antibacterial and

anti-inflammation properties, and osteogenesis induc-

tion [185–187]. Huo et al. produced anodic TiO2 nano-

tube arrays at 10 V and 40 V (NT10 and NT40)

incorporated with Zn by hydrothermal treatment at

200 °C for 1 and 3 h (NT10-Zn1, NT10-Zn3,

NT40-Zn1, and NT40-Zn3) in Zn containing solutions,

followed by annealing at 450 °C for 3 h in air.

NT40-Zn3 has the largest Zn loading capacity and re-

leases more Zn compared with other samples. The

amounts of Zn released diminish gradually with time

and nearly no Zn can be detected 1 month later except

sample NT40-Zn3 (Fig. 11). The NT-Zn samples

present different antibacterial ability. It is evident that

NT40-Zn3 and NT10-Zn3 effectively kill more adher-

ent bacteria as well as surrounding planktonic bacteria

in the early stage. Figure 12a describes a synergistic ef-

fect of both released and surface incorporated Zn while

Fig. 12b explains the effect of the released Zn [181].

Fig. 11 a Total amounts of Zn incorporated into the NT-Zn samples for the 1 cm2 coatings and b non-cumulative Zn release profiles from NT-Zn

into PBS. Reproduced from ref. [181]

Fig. 12 a Antibacterial rates versus adherent bacteria on the specimen (Ra) and b antibacterial rates against planktonic bacteria in the medium

(Rp) *, **p < 0.05 and 0.01 vs NT10; #, ##p < 0.05 and 0.01 vs NT40; ★, ★★p < 0.05 and 0.01 vs NT10-Zn1; %, %%p < 0.05 and 0.01 vs NT10-Zn3; $, $$p

< 0.05 and 0.01 vs NT40-Zn1. Reproduced from ref. [181]
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Conclusions
This review presents the historical developments and

traditional formation mechanism of titania nanotube ar-

rays grown by electrochemical anodization as well as the

approaches to influence and modify morphology in

order to improve their performances. We also focus

on current efforts toward TiO2 nanotubes applications

in biomedical directions. Those steady progresses have

demonstrated that TiO2 nanotubes are playing and

will continue to play an important role in material

science, but there are still some aspects needed to be

further improved.

1. The synthesis of TiO2 nanotube arrays is already

comparatively mature so far in fact, but how to

simplify the technology for the purpose of large-scale

production in industry with extending practical

operability and how to precisely control nanotube

geometry efficiently by varying the anodic parameters

so as to obtain optimized properties have yet to be

further investigated.

2. The formation mechanisms of anodic TiO2

nanotubes have gradually become a hotspot of

research due to their unique structure and excellent

performances but the exact mechanism remains

controversial. Conventional FAD explains the

growth process and the porous structure of TiO2

nanotubes, but the combination of viscous flow

model and growth model of two currents can give a

comprehensive explanation to the growth process.

Notably, the validity of oxygen evolution resulting

from electronic current has much room for

investigation.

3. Modification is key for improving performances of

titania nanotube arrays. Thus, we need to explore

more methods for modification and take full

advantage of the self-organized nanostructure.

Through self-assembling inorganic, organic, metal-

lic, and magnetic nanoparticles into or onto the

tubes as nanocomposites with broad spectral re-

sponse to visible light, high quantum efficiency, and

stabilizing properties, applications could be wid-

ened. Currently, ALD appears to be an option to

coat the titania nanotube layers homogenously and

precisely from the bottom to the tube mouth,

resulting in many advanced functionalities of the

newly prepared nanotube layers. Nevertheless,

further optimization of the ALD process toward

coatings and inner fillings is demanded.

4. TiO2 nanotube researches in biomedical directions

are still in their infancy and have a long distance to

go in clinical use. The biological reaction between

cells and titania nanotubes has to develop from

cellular level to molecular level and from

morphological changes to molecular alterations. It

has been shown that adhesion, spreading, and

growth of osteoblast and mesenchymal stem cells

strongly depends on nanotube diameter, so the

regularity and principle of this phenomenon as well

as other factors affecting cells’ behaviors need to be

further explored.
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