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Abstract

Single-layer graphene is so flexible that its flexural mode (also called the ZA mode, bending
mode, or out-of-plane transverse acoustic mode) is important for its thermal and mechanical
properties. Accordingly, this review focuses on exploring the relationship between the flexural
mode and thermal and mechanical properties of graphene. We first survey the lattice dynamic
properties of the flexural mode, where the rigid translational and rotational invariances play a
crucial role. After that, we outline contributions from the flexural mode in four different
physical properties or phenomena of graphene—its thermal conductivity, thermal expansion,
Young’s modulus and nanomechanical resonance. We explain how graphene’s superior
thermal conductivity is mainly due to its three acoustic phonon modes at room temperature,
including the flexural mode. Its coefficient of thermal expansion is negative in a wide
temperature range resulting from the particular vibration morphology of the flexural mode. We
then describe how the Young’s modulus of graphene can be extracted from its thermal
fluctuations, which are dominated by the flexural mode. Finally, we discuss the effects of the
flexural mode on graphene nanomechanical resonators, while also discussing how the essential
properties of the resonators, including mass sensitivity and quality factor, can be enhanced.

Keywords: graphene, flexural mode, thermal conduction, thermal expansion, elasticity,
nanomechanical resonance

(Some figures may appear in colour only in the online journal)

1. Introduction

This review focuses on the connection between the
fundamental lattice dynamics and the thermal and mechanical
properties of the unique 2D material graphene. The lattice

dynamical properties, which comprise the phonon spectrum
or phonon modes, give fundamental information regarding
the atomic interaction within the material. The framework
for lattice dynamics was established by Born in the 1920s
and further developed by Debye, Einstein, Mott and others
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in the following decades. An interesting point is that while
lattice dynamics is an atomic scale theory, direct connections
can be made to macroscopic phenomena and properties.
Readers are referred to the book by Born and Huang for a
comprehensive description and discussion regarding lattice
dynamic theory [1].

We focus on the flexural mode, which is a characteristic
vibration mode in solid plates or rods [2]. Elastic waves
in solid plates are guided by the two outer surfaces, at
which the component of stress is zero in the perpendicular
direction. Kichhoff formulated the exact equation and
boundary conditions for the flexural vibration of a plate in
1850 [3]. A practical theoretical model of the flexural motion
was first developed by Rayleigh in 1885 [4]. In 1917, Lamb
completely solved the surface vibration problem [5]. It was
found that the free surface boundary condition restricts the
elastic waves in the plate into two infinite sets of Lamb waves.
The motion of one set of the Lamb wave is symmetrical about
the midplane of the plate, while the other is anti-symmetric
about the midplane. The zero-order (lowest-frequency) wave
from the antisymmetric Lamb set is the flexural mode, whose
defining characteristic is its parabolic dispersion curve. In
this sense, flexural mode is one particular form of the Lamb
wave in solid plates. Because the flexural mode has the lowest
frequency among all Lamb waves, it is the easiest to be excited
and carries most of the vibrational energy.

In microscopic lattice dynamics theory, the surface
phonon mode is well known and the long wave limits of the
flexure phonon mode is the acoustic flexural wave in elastic
mechanics. For 3D bulk solid with volume L3, the ratio of
surface phonon mode number to total phonon mode number is
proportional to 1/L. Hence, in large piece of bulk materials,
surface phonon modes (including the flexural mode) are not
so important, except for some specific surface-related topics
such as surface reconstruction, surface adsorption and surface
chemistry, etc. However, nanomaterials have large surface to
volume ratio, so surface modes play an important role. As an
extreme case, all atoms in graphene are exposed on the surface,
so all phonon modes are essentially ‘surface modes’ and the
flexural mode occupies one sixth of all phonon modes. That is
the origin for the importance of the flexural mode in graphene.

The understanding and study of flexural modes in other
novel materials have intensified significantly in recent years
due to the recent isolation of the thinnest possible 2D, one-
atom-thick ‘plate’, graphene. Graphene is the best-known one-
atom-thick 2D material, which earned a Nobel prize in physics
for Novoselov and Geim in 2010 [6]. Accordingly, substantial
effort has been expended in achieving a basic understanding
of the lattice dynamical properties of single-layer graphene
due to its status as the thinnest possible 2D material. A key
outcome of its low-dimensional structure is the existence of a
flexural mode (also named ZA mode, bending mode, or out-
of-plane transverse acoustic mode) in graphene. As the long
wave flexural mode has the lowest frequency among all phonon
modes, it is the easiest to be excited in graphene.

A complete understanding of the effect that the flexural
mode has on the thermal and mechanical properties of graphene
will be essential for many of the key applications graphene has

been envisioned for. For example, graphene has been touted
as the next-generation replacement for silicon in integrated
circuits, though its bandgap is zero unless mechanical strain,
doping, or finite width nanoribbons are created [7]. For
these electronic applications, it is important to efficiently
remove heat from the transistor during its high speed operation.
Graphene possesses a superior thermal conductivity, which is
crucial to prevent graphene based transistors from suffering
thermally-induced malfunctioning during operation [8–12]. It
is now clear that the high thermal conductivity of graphene is
contributed by its three acoustic modes at room temperature,
including flexural mode.

The flexural mode also controls the behavior and
properties of graphene nanoelectromechanical systems
(NEMS) and nanoresonators, which have been proposed
for various sensing applications, in particular ultrasensitive
mass sensing and detection. However, the performance of
these NEMS and in particular its quality factor and energy
dissipation, is strongly controlled by the flexural mode.
Therefore, understanding how the limits imposed by the
flexural mode as well as methods to circumvent these flexural
mode-related loss mechanisms will be essential to enabling
graphene NEMS devices.

From the above, it is clear that the flexural mode plays a
critical role in governing the thermal and mechanical properties
of graphene that will be critical for the success of graphene as
a commercially-viable material. Due to the ongoing interest
in graphene, it is an appropriate time to review the topic of
the flexural mode in graphene and its impact on graphene’s
physical properties.

2. Lattice dynamics

2.1. Introduction

The phonon dispersion of graphene is calculated through the
diagonalization of its dynamical matrix, which is a 6 × 6
complex matrix, due to two inequivalent carbon atoms in its
primitive unit cell. The dynamical matrix is constructed based
on the interatomic interaction and the space group symmetry
of the system [1]. The eigenvalue solution of the dynamical
matrix gives the frequency and the eigen vector (vibration
morphology) for all phonon modes in the system. The
vibration morphology of the phonon mode actually represents
a particular symmetric mechanical vibration of the graphene.
Phonon modes can be used to decompose a general movement
of the graphene. In this sense, phonon modes are usually called
normal modes.

The lattice dynamics provides fundamental information
for mechanical and thermal properties in graphene. For
instance, the flexural mode is characteristic by its
parabolic spectrum, which is related to its superior thermal
conductivity [8]. The special vibration morphology of the
flexural mode is the origin for the strong thermal contraction
effect in graphene in a wide temperature range [13]. The
flexural mode’s long life time results in a high quality (Q) factor
of the graphene nanomechanical resonator (GNMR) [14].
These few examples demonstrate the importance of the flexural
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mode in graphene. Hence, our first task in present review is to
recall the computation of the phonon dispersion for graphene.

2.2. Lattice dynamics for flexural mode

2.2.1. Bloch’s theorem. In this subsection, we take the
honeycomb lattice structure of graphene as an example to
explain the application of the Bloch’s theorem. Graphene
has a honeycomb lattice structure as shown in figure 1. Its
symmetry is described by the D6h point symmetry group [15].
According to its space group, the whole honeycomb lattice can
be obtained by repeating a rhombus primitive unit cell, with
two bases �a1 and �a2. The lattice constant [16] |�ai | = 2.46 Å.
Each cell is denoted by a pair of integers (l1, l2). Carbon
atoms are indexed by (l1, l2, s), where s = A or B are the two
inequivalent carbon atoms in each unit cell. The locations of
atoms A and B in the unit cell (0, 0) are �τA = (�a1 + �a2)/3 and
�τB = 2(�a1 + �a2)/3. The position of an arbitrary carbon atom
is determined by �r(l1, l2, s) = �Rl1l2 + �τs . The lattice vector is
�Rl1l2 = l1�a1 + l2�a2.

The structure of an infinite graphene sheet is unchanged
after it is shifted for a lattice vector �Rl1l2 . That is, graphene
has lots of translation symmetries. All of these translation
operations construct an Abelian translation group [17] T.
The group elements are the translation operations T̂l1l2 . For
convenience, in practical calculations, the infinite system is
usually replaced by a finite system with periodic boundary
conditions in the in-plane directions. The dimension of the
finite graphene is N1�a1 × N2�a2, so integers (l1, l2) have
finite possible values, i.e. l1 = 0, 1, ..., N1 − 1 and l2 =
0, 1, ..., N2 − 1.

There are N1N2 elements in the translation group T, with
T̂1,0 and T̂0,1 as the two generators for this cyclic group.
Using the character table of the group, it can be found that
there are N1N2 1D irreducible representations for the group
T. The irreducible representation can be labeled by the wave
vector �k. The representation form of the translation operation
is T̂l1l2 = ei�k· �Rl1 l2 in the irreducible representation �k. For
convenience, the reciprocal space is usually introduced via the
definition of the reciprocal basis vectors (�b1, �b2) as,

�ai · �bj = 2πδij , (1)

where i and j are 1 or 2. δij is the Kronecker delta. The
wave vector �k can be written in terms of the reciprocal bases
as �k = k1 �b1 +k2 �b2. Using the cyclic property of the translation
group, we have T̂

N1
l10 = 1 and T̂

N2
0l2

= 1, so we get k1 = j1/N1

and k2 = j2/N2 with j1 = 0, 1, 2, ..., N1 − 1 and j2 = 0, 1, 2,
..., N2 − 1.

The Bloch’s theorem says that, in the irreducible
representation �k, the displacements of atoms in the unit cell
(l1, l2) are related to atoms the (0, 0) unit cell by a phase factor
ei�k· �Rl1 l2 ; i.e. u(l1l2s) = u(00s)ei�k· �Rl1 l2 . A general displacement
can be expanded in follow terms,

�u(l1l2s) = 1√
ms

1√
N1N2

∑

�k

6
∑

τ=1

Q̂
(τ )

�k ei�k· �Rl1 l2 �ξ (τ )(�k|00s).

(2)

This formula works for the lattice using the translational part
of the space group. For nanotubes with screw symmetries
(line group), the Bloch’s theorem should be generalized to
include screw operations [18–22]. An explicit introduction on
the lattice dynamics of nanotubes can be found in the book
chapter by Tang, Wang and Su [15]. In the above expansion,
�ξ (τ )(�k|00s) is actually the vibrational displacement for atom
(00s) in the �k mode (irreducible representation). These eigen
vectors are orthogonal to each other. The wave vector �k is
used to denote the phonon modes; τ runs over the six branches.
There are two relations for the eigen vector �ξ (τ )(�k|00s) and the
quantum operator Q̂

(τ )

−�k :

�ξ (τ )(−�k|00s) = �ξ (τ )(�k|00s)∗

Q̂
(τ )

−�k = Q̂
(τ )†
�k .

2.2.2. Dynamical matrix. The general potential energy of
graphene is determined by positions of all atoms (l1, l2, s),
i.e. V0 = V (�r00s, ...�rl1l2s, ...�rN1−1N2−1s). There will be some
variance in the total potential energy, if there is a small
displacement of atom (l1, l2, s), i.e. �rl1l2s → �rl1l2s + �ul1l2s .
Here �ul1l2s is a small displacement for atom (l1, l2, s). The
total potential energy can be expanded in a Taylor series of
displacements �ul1l2s ,

V (�rl1l2s + �ul1l2s)

= V0 +
N1
∑

l1=1

N2
∑

l2=1

∑

s=A,B

∑

α=x,y,z

∂V

∂uα
l1l2s

uα
l1l2s

+
1

2

N1
∑

l1,l
′
1=1

N2
∑

l2,l
′
2=1

∑

s,s ′=A,B

∑

α,β=x,y,z

∂2V

∂uα
l1l2s

∂u
β

l′1l
′
2s

′

·uα
l1l2s

u
β

l′1l
′
2s

′ + ..., (3)

where higher order nonlinear terms have been omitted. The
first term V0 is the minimum potential energy of the system at
the optimized configuration. The second term vanishes due to
equilibrium condition for the optimized structure. The third
term describes a harmonic energy induced by the displacement
(vibration). Coefficients in front of the third term are normally
called the force constant matrix Kl1l2sα;l′1l′2s ′β = ∂2V

∂uα
l1 l2s∂u

β

l′1 l′2s′
.

Applying the Bloch’s theorem to all displacement vectors, we
get the potential variance up to the second order,

δV = 1

2

∑

ττ ′

∑

�k
Q̂

(τ )†
�k Q̂

(τ ′)
�k

∑

ss ′=A,B

∑

α,β=x,y,z

·Dsα;s ′β

(

�k
)

ξ (τ )
α (�k|00s)⋆ξ

(τ ′)
β (�k|00s ′). (4)

We have introduced the dynamical matrix,

Dsα;s ′β

(

�k
)

= 1√
msms ′

N1
∑

l1=1

N2
∑

l2=1

K00sα;l1l2s ′βei�k· �Rl1 l2 ,

(5)

where the summation over (l1, l2) can be truncated to the
summation over neighboring atoms in case of short-range
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interactions. The eigenvalue of the dynamical matrix gives
the eigen frequency,
∑

s ′β

Dsα;s ′β

(

�k
)

ξ
(τ ′)
β (�k|00s ′) = ω(τ )2(�k)ξ (τ ′)

α (�k|00s). (6)

The dynamical matrix is Hermitian, since the force constant
matrix K is symmetric. As a result, all eigen values ω2 are real.
However, there is no guarantee for the positive definiteness of
the dynamical matrix, i.e. it is possible to encounter ω2 < 0.
This positive definite property can actually be used to analyze
the structure stability. The relation of ω2 < 0 leads to
an imaginary frequency of the phonon mode, i.e. ω = iγ
with real number γ . If atoms in the system are displaced
according to the morphology of this imaginary mode, then the
oscillation amplitude is proportional to e−iωt = eγ t −→ +∞
in the limit of infinite time. An infinite vibration amplitude
indicates the instability of the configuration. As an example,
we note that this technique has been applied to predict the
instability of nanowires [23], the tension induced instability
of graphene [24], or the compression-induced buckling of the
single-layer molybdenum disulphide [25].

From the above, it is clear that the frequency from the
dynamical matrix is a linear property, because it is extracted
from the harmonic term. Phonon modes have infinite life
time in the linear regime. The phonon life time can be
limited by various scattering mechanisms. For instance,
the phonon–phonon scattering becomes more important at
high temperature, leading to a frequency shift and a finite
value for the phonon life time. This nonlinear information
can be accounted through mode coupling theory [26, 27],
effective phonon conception [28, 29], or Boltzmann equation
description [30].

2.3. Origin of flexural mode

2.3.1. Valence force field model. There are two major
ingredients in the dynamical matrix. The first one is a phase
factor, which is contributed by the space group symmetry of
the system. As we known, all unit cells can be repeated by
the (0, 0) unit cell via a corresponding symmetric operation
from the space group. The phase factor, ei�k· �Rl1 l2 , carries the
relationship between the vibration displacement of the (0, 0)
unit cell and the (l1, l2) unit cell.

The second ingredient in dynamical matrix is the force
constant matrix K00sα;l1l2s ′β . The force constant matrix can be
obtained mainly through three approaches; i.e. first-principles
calculations, empirical potential, or the force constant model.
For ionic materials, the shell model [31] or the bond charge
model [32] can be useful for the description of the charge
interaction.

In the first two methods, the force constant matrix is
calculated by Kl1l2sα;l′1l′2s ′β = ∂2V

∂uα
l1 l2s∂u

β

l′1 l′2s′
, where V is the total

potential energy from an empirical potential or the Columb
interaction in the first-principles calculations. uα

l1l2s
is the

displacement of the degree of freedom (l1l2sα). This formula
is realized numerically by calculating the energy change after
displacing a small value for the degrees of freedom (l1l2sα) and
(l′1l

′
2s

′β). There are some existing packages for such numerical

calculation. For instance, some common empirical potentials
have been implemented in the lattice dynamic properties
package GULP [33]. It gives the force constant matrix or
the phonon dispersion directly. The first-principles package
SIESTA [34] also gains some success in the calculation of the
force constant matrix or phonon dispersion.

For the third method, there are two popular force constant
models for the force constant matrix in graphene, i.e. mass-
spring model [35] and valence force field model (VFFM) [36].
In the mass-spring model, each atom is denoted by a mass, that
is connected to other atoms via springs. The force constant
of the spring governs the force constant matrix. This model
includes two-body interaction. It has been shown that the
fourth-nearest neighbors should be included in the calculation
of the phonon dispersion of graphene [16].

The VFFM aims to capture contribution from the valence
electrons on the vibration frequency. Energy variations
corresponding to both bond length and bond angle are included
in this model. As pointed out by Yu in his book [37], a big
advantage of the VFFM is its transferability; i.e. force constant
parameters in the model are almost the same for the same bonds
within different materials. We will illustrate the explicit form
of a VFFM for graphene in the following. The VFFM was
successful in diamond [38] and CdS [39]. A simplified version
has been proposed by Keating [40], which has gained success
in many covalent semiconductors.

There are five VFFM terms corresponding to five typical
vibration motions for the graphene sheet [36]. The equilibrium
position for atom i is �ri . The vector pointing from atoms i to
j is �rij = �rj − �ri . The distance between atoms i and j is the
modulus rij . We will write out interaction for one bond or one
angle explicitly. Figure 1(b) illustrates the three first-nearest-
neighboring atoms (2)–(4) and six second-nearest-neighboring
atoms (5)–(10) for atom 1. The interaction for other bonds
or other angles can be obtained analogously. The general
expressions can be found in [21, 36, 41].

(1) The bond stretching interaction between atoms 1–2,

Vl = kl

2
[(�u2 − �u1) · �e l

12]2. (7)

kl is the force constant parameter. �e l
12 = �r12/|�r12| is a unit

vector from atom 1 to atom 2. This is the bond stretching
interaction between two first-nearest-neighboring atoms.
There are similar interactions for other first-nearest-
neighboring carbon–carbon bonds, i.e. bond 1–3, 1–4, 2–5
and 2–6.

(2) The bond stretching interaction between atoms 1–5,

Vsl = ksl

2
[(�u5 − �u1) · �e l

15]2 (8)

with ksl the corresponding force constant parameter. This
term describes the bond stretching interaction between
two second-nearest-neighboring atoms. There are similar
interactions for other second-nearest-neighboring carbon–
carbon bonds.

4
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Figure 1. Graphene structure. (a) Honeycomb lattice of graphene.
Bases �a1 and �a2 are displayed by two short blue arrows. The long
red arrow illustrates a lattice vector �R−6,15 = −6�a1 + 15�a1.
(b) Sketch of the local environment of atom 1; i.e. three first-nearest
and six second-nearest neighboring carbon atoms.

(3) The angle bending interaction for � 213 is VBB ,

VBB = kBB

2
(cos θ ′

213 − cos θ213)
2; . (9)

where θ213 is the equilibrium angle and θ ′
213 is the angle in

vibration. This interaction term describes the bending of
angles, which are formed by two first-nearest-neighboring
C–C bonds. There are similar interactions for the other
angles: � 213, � 214, � 314, � 125, � 126 and � 526.

(4) The out-of-plane bond bending is a four-body interaction.
It describes the interaction between atom 1 and its
neighboring atoms 2–4. If atom 1 moves out of the plane,
then its neighboring atoms 2–4 will try to drag it back to
the plane. This potential is, Vrc,

Vrc = krc

2
[(3�u1 − (�u2 + �u3 + �u4)) · �ez]

2. (10)

�ez is the unit vector in the out-of-plane direction. Similar
interaction is also applied to atom 2.

(5) If the carbon–carbon bond 1–2 is twisted, then the
following twist potential will try to react the twisting
motion,

Vtw = ktw

2
[(�u3 − �u4 − (�u6 − �u5)) · �ez]

2. (11)

There are similar twisting interactions for the other first-
nearest-neighboring carbon–carbon bonds: 1–3, 1–4, 2–5
and 2–6.

2.3.2. Rigid translational and rotational invariance. The
crystal is rigid in the sense that its total potential energy should
not vary if the system is rigidly translated or rotated [1].
According to this requirement, the empirical potential energy
should satisfy two conditions.

• The rigid translational invariance. It says that, if �ui = �u0

is a constant vector for all atoms, then we should have
δV = 0.

• The rigid rotational invariance. It says that, if the system is
rotated by �ui = δ �ω×�ri , then we should also have δV = 0.
Here, the rotation angle is |δ �ω| and the rotation direction
is δ �ω

|δ �ω| .

We can check that the five terms in the above VFFM satisfy
both translational and rotational invariance.

For the translational invariance, the following relationship
can be easily found,

�ui = �uj (12)

�ui − �uj = 0. (13)

As a result, the translational invariance is satisfied, i.e.

Vl = Vsl = VBB = Vrc = Vtw = 0. (14)

We will now illustrate the rigid rotational invariance for the
above five VFFM potential terms [21]. During a rigid rotation
motion, the displacement for atom i is

�ui = δ �ω × �ri . (15)

As a result, we get following relationship,

�ui − �uj = δ �ω × (�ri − �rj ) = δ �ω × �rji . (16)

Using equation (16), we can get

(�uj − �ui) · �e l
ij = rij (δ �ω × �e l

ij ) · �e l
ij = 0. (17)

As a result, we find that (7) and (8) are zero under a rigid
rotational motion, i.e.

Vl = Vsl = 0. (18)

For the the other three potential terms (9)–(11), they become
summation over the following expressions, if the system is
rotated rigidly,

VBB ∼ kBB

4
[δ �ω · (�e l

12 × �e l
13 + �e l

13 × �e l
12)]

2 = 0; (19)

5
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Figure 2. The phonon dispersion in graphene along high symmetry
lines in the Brillouin zone from (a) Brenner potential, (b) VFFM
and (c) mass spring model.

Vrc ∼ krc

2
[δ �ω × (�r12 + �r13 + �r14) · �e z

1 ]2 = 0; (20)

Vtw ∼ ktw

2
[δ �ω × (�r43 − �r56) · �e z

12]2 = 0. (21)

Figure 2 shows the phonon dispersion in graphene along
high symmetric Brillouin line ŴKMŴ using three models.
The dispersion in panel (a) is calculated from the Brenner
potential [42]. In particular, the lowest branch around
Ŵ point is the flexural branch with a parabolic spectrum.

Figure 3. Vibration displacement for two flexural modes in
graphene. Arrow on top of each atom represents the vibration
component of the atom in this vibration mode. Red circles enclose
small pieces of graphene, which are effectively rotated around
y-axis.

Panel (b) shows that the spectrum of flexural mode is
also parabolic using the VFFM. Parameters in the VFFM
are kl = 5.8337 eV Å−2, ksl = 5.2936 eV Å−2, kBB =
10.2245 eV, krc = 14.8 N m−1 and ktw = 6.24 N m−1.
However, panel (c) shows that phonon spectrum of the
flexural mode from the mass spring model is linear instead
of parabolic. It is because the rigid rotation symmetry
is violated in the mass spring model. The longitudinal
and transverse parameters are considered up to the fourth
nearest-neighboring atoms [35]. These parameters for the
mass spring model are (kl, k⊥) = (27.7521, 4.4753) eV Å−2,
(6.8350, 0.1728) eV Å−2, (0.5054, 0.1021) eV Å−2 and
(0.2665, 0.0012) eV Å−2. The comparison in figure 2
demonstrates that the parabolic spectrum for the flexural mode
is closely related to the rigid rotational invariance.

The vibration displacement of the flexural mode is actually
directly related to the rigid rotational motion style. Figure 3
shows the vibration displacement of two flexural modes.
The arrow on top of each atom represents the vibration
displacement of each atom in this mode. We can divide the
system into lots of small pieces along the x-axis. It can be
shown that each piece is effectively rotated around the y-axis
in the flexural mode. Red circles in the figure illustrate two
graphene pieces, which are effectively rotated around the y-
axis. The rigid rotational invariance leads to zero recovery
force for this vibration to first order. That is the micro-origin
for the parabolic dispersion of the flexural mode.

For nanotubes with cylindrical hollow structure, the rigid
rotational invariance guarantees both the zero frequency of
twisting mode and the existence of flexural mode [43]. The
flexural mode (parabolic dispersion) turns into acoustic mode
(linear dispersion) gradually with the increase of the thickness
of the thin plate. We have used few-layer graphene as an
example to show this dimensional crossover phenomenon [44].

All three of the phonon spectra in figure 2 are computed
based on short-range empirical interaction potentials, which
are known to be less accurate than first-principles calculations
[45–47]. This may cause some errors because the long-range
interactions may impact the flexural mode. For instance, the
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long-range dipolar interaction force was considered in a model
for the flexural mode in graphene [48]. In particular, the
crossover in the two in-plane high frequency optical dispersion
deviates from the first-principles results.

Although the phonon spectra from empirical potentials
are less accurate than first principles methods, they have been
widely used in practice for many physical phenomena [49, 50].
For instance, classical molecular dynamics simulations are
commonly used for the study of the thermal transport
in graphene. In principle, the interatomic force can be
calculated from first-principles calculations, but the associated
computational cost renders such approaches infeasible for
systems larger than a thousand or so atoms. Hence, the
interatomic force is usually computed from an efficient
empirical potentials like the Brenner potential [42] or the
Stillinger-Weber potential [51]. The thermal conductivity
obtained from the molecular dynamics simulations can be
explained by the phonon spectra of graphene, which should
also be calculated based on the same empirical potentials
for consistency. In this sense, the phonon spectra that
are calculated from empirical potentials are certainly useful,
though they are not as accurate as from first-principles
calculations.

The inaccuracy in the optical branches in the phonon
spectra from empirical potentials will impact some of the
computed properties of graphene. For instance, the thermal
conductivity of pure graphene is mainly limited by phonon–
phonon scattering at room temperature. A typical phonon–
phonon scattering process requires the involvement of the
optical phonon, so the inaccuracy in the optical branches will
lead to some influence on such scattering processes. However,
these empirical potentials can give accurate acoustic branches
in the phonon spectra, as can be seen from figure 2. Acoustic
phonon branches are important for many physical phenomena,
such as thermal transport. The thermal conductivity in
graphene is mainly contributed by its three acoustic phonon
branches. As a result, the inaccuracy in the optical branches in
the phonon spectra has a much smaller effect on the computed
values for the thermal conductivity.

3. Thermal conduction

3.1. Introduction

Thermal transport occurs in the presence of temperature
gradient. In metals, both electrons and phonons are important
thermal energy carriers to deliver thermal energy. In insulators
or semiconductors, phonons carry most of the thermal energy,
while electrons only make limited contribution. The thermal
conductivity contributed by phonons is called lattice thermal
conductivity. Graphene is a well-known semiconductor with
zero electronic band gap. Experiments show that the electronic
thermal conductivity is around [52] 10 W m·K−1, which is less
than 1% of the overall thermal conductivity in graphene [53].
As a result, the electronic contribution can be safely ignored
in the study of the thermal conductivity in graphene. In the
following, we focus on the lattice thermal conductivity in
graphene.

The thermal conductivity (κ) and thermal conductance (σ )
are two related concepts that are useful in different thermal
transport conditions. They are related to each other from their
definitions: κ/L = σ/s, where L and s are the length and
the cross-sectional area, respectively. It should be noted that
for quasi-2D materials like graphene, the concept of cross-
sectional area is not a well defined concept, because it is
only one atom thick. It is crucial to use the same thickness
in the comparison of thermal conductivity from different
measurements or calculations. The thermal conductance
is useful in the ballistic thermal transport regime, which
is typically the primary transport mechanism in nanoscale
structures. The ballistic transport also happens at very low
temperature, where the phonon density is too weak for phonon–
phonon scattering. During ballistic transport, each phonon
mode delivers a quanta of thermal energy h̄ω across the system
without scattering. As a result, the thermal conductance is
quantized in the ballistic regime [54]. The ballistic thermal
conductance does not depend on the length of the system,
because of the infinite phonon mean free path.

The diffusive thermal transport happens in large systems
and/or at high temperatures. The thermal transport ability
is mainly limited by phonon related scattering mechanisms
in the diffusive regime. In this regime, phonon modes have
finite life time and finite mean free path. In other words,
the thermal energy carried by a phonon mode gets dissipated
with increasing distance. In the diffusive regime, the thermal
conductivity is a constant with respect to the length of the
structure.

The thermal transport in graphene has attracted significant
interest after the experimental observation of superior thermal
conductivity by Balandin et al in 2008 [8, 55]. The quasi-
ballistic thermal transport was reported in suspended single-
layer graphene below room temperature [56]. The measured
temperature dependence of the thermal conductance scales
as T 1.5, which is consistent with the contribution from the
flexural mode to the thermal conductance [12, 53, 57], The
ballistic thermal conductance in graphene was found to be
anisotropic [12, 58], while the thermal transport is size-
dependent in graphene [59–62] following a theoretical 2D
disk model [63]. The isotopic doping effect on the thermal
conductivity of graphene was investigated theoretically [64]
and verified experimentally [65], and the thermal rectification
phenomenon was observed in graphene with asymmetric
structures and nonlinear scattering [66–71].

Experiments showed that the thermal conductivity in
few-layer graphene decreases exponentially with increasing
layer number and eventually crosses over to that exhibited by
bulk, 3D graphite value [72]. This dimensional crossover
phenomenon has received intensive theoretical effort as
intrigued by the experimental work by Ghosh et al [73–82]. For
the single-layer graphene, all of these theoretical works have
shown that the single-layer graphene has the highest thermal
conductivity among all few-layer graphene systems. For few-
layer graphene with layer number above two, most theoretical
calculations demonstrated a monotonic decrease of the thermal
conductivity with increasing layer number; while the thermal
conductivity was found to be independent of the layer number
in a recent molecular dynamics simulations [82].
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It is important for nano devices to spread the thermal
energy generated during its operation. Graphene has a superior
thermal conductivity, which can be very helpful in delivering
heat from these devices. For instance, experiments have shown
that the graphene based composites have a much higher thermal
conductivity owning to graphene’s superior thermal transport
ability [83–85].

Lots of approaches have been proposed to manipulate the
thermal conductivity of graphene, including the application of
axial or bending strain [86–90], edge reconstruction [91–96],
interfaces [97–99], points defects [100–104], wrinkles [105],
substrate coupling [106–113], and asymmetric interactions
[63, 114, 115], amongst others.

In the following, we focus on the role of the flexural
modes on the thermal conductivity in graphene. There
have been a bunch of reviews focusing on different
aspects of the thermal conductivity of graphene. Wang
et al discuss the non-equilibrium Green’s function (NEGF)
approach in the calculation of the thermal conductivity for
nanomaterials [116, 117]. The comparison between the
thermal conductivity in graphene and other carbon materials
was summarized in [11]. Different theoretical approaches to
calculating the thermal conductivity in graphene is outlined
in [118]. Several reviews have been devoted to the discussion
of the anomalous thermal transport in low dimensional
nanoscale systems including graphene [119–125]. Some basic
issues on the heat transport in microscopic level are surveyed
in [126] by Dubi and Ventra. Zhang and Li discuss the
isotopic doping effect on thermal properties on nanomaterials,
including the isotopic doping effect on the thermal conductivity
in graphene [127]. Heat dissipation in nanoscale electronic
device is outlined by Pop in [128].

3.2. Simulation of thermal transport

There are several available approaches for the calculation of
thermal conductivity. The ballistic thermal conductance can be
predicted rigorously by the NEGF approach [116, 129–131].
For diffusive transport, several approaches are useful, such as
the NEGF method [116, 132], the mode coupling theory [27],
the Boltzmann transport equation method [74, 133], the
classical molecular dynamic (MD) simulation [134], and the
quantum non-equilibrium MD simulation [135–139]. The
thermal conductivity value can be obtained directly from some
open source simulation packages, such as LAMMPS [140].
In this section, we illustrate the simulation details for
thermal transport using direct MD simulation. The thermal
conductivity is determined by the Fourier law.

3.2.1. Fourier’s law. Fourier’s law is a linear empirical
law based on observation. It states that the heat flows from
high-temperature region to low-temperature region and that
the thermal current density is proportional to the temperature
gradient. We consider the in-plane heat transport along x

direction in figure 4. In this situation, the Fourier law says,

J = −κ
dT

dx
, (22)

Figure 4. The graphene is divided into three different regions,
including the two fixed ends, the two temperature-controlled regions
and the free region.

where J is the thermal current divided by the cross-sectional
area and κ is the thermal conductivity. The minus sign on
the right-hand side indicates that the heat flows from the high-
temperature region to the low-temperature region.

It should be noted that the Fourier law is valid only when
the local thermal equilibrium is achieved. This linear law
requires the thermal conductivity to be a constant with respect
to the structure dimension. However, it has been found that
the Fourier law is violated in nanomaterials. More explicitly,
the thermal conductivity calculated from the Fourier law is
size-dependent [141–145].

According to the Fourier law, the thermal conductivity can
be extracted based on the knowledge of the thermal current
density and the temperature gradient. In the following, we
show how to calculate these two quantities from direct MD
simulations.

3.2.2. Equations of motion. In the classical direct MD
simulation, typically, structure is divided into three regions,
i.e. the high temperature-controlled region, low temperature-
controlled region and the free central region. The graphene
nanoribbon shown in figure 4 has armchair edges. The
dimension is 185 × 12.3 Å. The thickness of the graphene is
taken to be 3.35 Å. This is the inter-layer distance in the 3D
graphite [16]. The fixed boundary is applied in the x-direction,
i.e. both left and right ends are fixed during the simulation.
Periodic boundary condition is applied in the y-direction. Free
boundary is applied in the out-of-plane direction.

In the central region, the degrees of freedom for atom i

(�ri , �vi) are controlled by the following equation of motion,

d�ri

dt
= �vi, (23)

d�vi

dt
= − 1

mi

∂V

∂�ri

. (24)

The Brenner potential is used to describe the interatomic
interaction in this calculation [42]. The time evolution for each
atom can be obtained by solving equation (24) numerically.

In the temperature-controlled regions, the motion of the
atom is influenced by the heat bath besides the inter-atomic
force. The heat bath helps to keep a constant temperature for
these regions. The heat bath is described by the thermostat
degrees of freedom. There are various thermostat algorithms
for temperature controlling, such as Nóse-Hoover heat bath
[146, 147], the classical or quantum Langevin heat bath
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[135–139], amongst others. We take the Nóse-Hoover heat
bath as an example in the following demonstration of the
simulation for the thermal transport. The movements of these
atoms in the temperature-controlled regions are governed by
the following coupled dynamic equations,

d�ri

dt
= �vi, (25)

d�vi

dt
= − 1

mi

∂V

∂�ri

− ηi �vi, (26)

dηi

dt
=





∑

j

mjv
2
j − gkBT



 /Q. (27)

Q = gkBT τ 2, (28)

g is the total degrees of freedom in the temperature-controlled
region. τ represents the interaction strength between the heat
bath and the system, so it is a kind of thermal relaxation
time for the Nóse-Hoover heat bath. This thermal relaxation
time has some direct effect on the thermal current across the
system as shown in figure 5. The top panel is for the thermal
fluctuation and the bottom panel is the average thermal current.
For τ = 4.5 ps, the response from the heat bath is very slow,
so it corresponds to a weak coupling between the heat bath
and the system. In this case, a longer thermalization time is
needed to realize a stable temperature distribution across the
system, although the influence from the heat bath is smaller.

For τ = 0.4 ps, the heat bath can respond very fast, so the
heat bath couples with the system strongly. As a result, shorter
thermalization time is required, but the heat bath will induce
more influence to the system. Similar thermal current are
obtained for τ = 0.4 ps and 1.4 ps. Simulations with different
relaxation time result in almost the same thermal conductivity.

3.2.3. Thermal current and temperature gradient. The
fundamental effect of the heat baths is to inject thermal energy
into the system through the high-temperature region and pump
out the same amount of thermal energy in the low-temperature
region. Due to energy conservation, the thermal current across
the system should equal to the energy exchange between the
heat bath and system in the temperature-controlled regions, as
long as there is no energy accumulation in the system [64, 148].

From equation (28), it can be found that,

mivi

dvi

dt
= − vi

∂V

∂ri

− ηimiv
2
i , (29)

so we have the following equation,

d

dt

(

∑

i

1

2
miv

2
i

)

+
dV

dt
= −

∑

i

ηimiv
2
i . (30)

The left-hand side is the rate of change in the total energy. As
a result, we get the energy flowing from the heat bath to the
system,

Eex = −
∫ t0+�t

t0

∑

i

ηimiv
2
i dt. (31)

�t is the total simulation time. The summation index i runs
over all atoms in the temperature-controlled region. We can
thus compute the thermal current in a more symmetric manner,

J = 1

s

E
high
ex − Elow

ex

2�t
, (32)

with s as the cross-sectional area. E
high
ex and Elow

ex are energy
from heat bath on the left and right sides. The thermal current is

shown in figure 5. The thermal fluctuation is dJ = E
high
ex −Elow

ex
2�t

.
The cross-sectional area is not included for these data shown
in the figure. For τ = 0.4, 1.4 and 4.5 ps, the thermal currents
are 0.87, 0.86 and 0.66 eV ps−1, respectively.

Equations (24) and (28) are solved iteratively, by
discretizing the time with a small time step, where the time
step in MD simulations for graphene is usually on the order
of femtoseconds. The highest-frequency phonon mode in
graphene is the in-plane optical mode, with frequency around
300 THz. For a time step of 1.0 fs, there are about 20 simulation
steps within one oscillation cycle of the optical mode. The
trajectory of each atom and the thermostat parameter from the
iterative solution are used to compute the thermal current.

The average kinetic energy for each atom gives the
temperature for the atom according to the equipartition
theorem 1

2 (v2
x + v2

y + v2
z ) = 3

2kBT , where kB is the Boltzmann
constant. Hence, the temperature profile T (�ri) is obtained
simultaneously from the MD simulation. Figure 6 shows
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a typical temperature profile in graphene. The temperature
profile within the central region x ∈ [0.25L, 0.75L] is linearly
fitted to give the temperature gradient within the system.
The resulted temperature gradients are −0.28, −0.26 and
−0.22 K Å−1, for the three different relaxation times τ = 0.4,
1.4 and 4.5 ps. The thermal conductivity can then be extracted
through the Fourier law in equation (22). The obtained thermal
conductivity values are 120.9, 128.7 and 116.7 W m·K−1.

3.3. Contribution from flexural mode

3.3.1. Long lifetime for flexural mode. It was shown in several
recent works that the Fourier law is not valid in nanoscale
structures [62, 119–121], where the thermal conductivity
becomes size-dependent and increases with increasing length.
For quasi-1D nanostructures, the thermal conductivity can be
written as a power function of the length, i.e. κ ∝ Lβ , where
the exponent β = 0 for purely diffusive transport and β = 1
for purely ballistic transport. The exponent deviates from 0
and becomes size-dependent in nanomaterials; i.e. the Fourier
law is violated.

The contribution from each phonon mode to the thermal
conductivity can be collected as follows [149–151],

κph = 1

V

∑

�k
τ σ

�k Cph(ω)v2
�k . (33)

V is the volume of the system. Cph = kBx2ex/(ex − 1)2 is the
heat capacity. x = h̄ω/(kBT ). v�k is phonon group velocity
in the thermal flow direction. The lifetime for each phonon in
this formula can be obtained using the single mode relaxation
time approximation. Following formula gives the lifetime for
phonon mode �k due to phonon–phonon scattering,

1

τps
=

(

4

3ρL

) (

h̄ωγ 2

v2
z

) ′
∑

n′σ ′

1

vg

ω′ω′′N
(

ω′, ω′′) . (34)

In this formula, ρL is the mass per length. vz is the phonon
velocity along the thermal current direction. vg = |v′ − v′′| is
the group velocity. The energy and momentum conservation
is implicated by the prime over the summation.

The phonon–phonon scattering is weak at low tempera-
ture, so the boundary scattering becomes more important, es-
pecially for systems with small size. Hence, it is also important
to consider the boundary scattering process [30],

1

τbs
=

vσ
�k

L
× 1 − p

1 + p
, (35)

where p is the spectacular parameter. The overall phonon
lifetime can be obtained as,

1

τtot
= 1

τps
+

1

τbs
. (36)

The above formula gives the phonon lifetime and thermal
conductivity due to boundary scattering and phonon–phonon
scattering. It was found that, in the frequency range
[50, 80] cm−1, the lifetime for the flexural mode is dominated
by the boundary scattering, as the phonon–phonon scattering
is weak [149]. These phonons with long lifetime transport
across the system almost ballistically, while the other phonons
with short lifetime behavior diffusively. As a result, the overall
behavior for the thermal conductivity is sandwiched between
the ballistic and diffusive transport regimes, i.e. the power
factor β sits in [0, 1].

The thermal conductivity in graphene was found to
increase with increasing size even in the µm range [9, 10].
When the width of the graphene is enlarged by a factor of 3,
the thermal conductivity increases by about a factor of 1.8.
There is still no conventionally accepted argument for such
violation of the Fourier law in graphene.

It is clear that the three acoustic phonon branches make
the largest contribution to the the thermal conductivity for
graphene. However, there is still no universally accepted
fact on the relative contribution from the flexural mode to the
thermal conductivity in graphene. Typically, the contribution
from the flexural mode depends on the temperature or defect
density or the substrate for the graphene sample. For
perfect graphene, using Boltzmann transport theory, Lindsay
et al found that the flexural mode dominates the thermal
conductivity of the graphene [74]. The flexural mode
contributes about 70% of the thermal conductivity in graphene,
while each of the other two acoustic phonon modes contribute
10%. The large contribution from the flexural mode is
attributed to the large density of states of the flexural mode
and the strict symmetry selection rule imposed on the flexural
mode, which leads to very long lifetime of the flexural mode.
We note that the symmetry selection rules are demonstrated in
the first Brillouin zone, which was combined with the phonon–
phonon scattering formula equation (34) to give the extremely
long lifetime for the flexural mode in graphene [9].

In other works, the flexural mode has been found
to make a smaller contribution than the other two
acoustic (LA and in-plane TA) modes, especially at higher
temperature [9, 118, 152, 153]. Aksamijaa and Knezevicb
found that the flexural mode has about a 50% contribution
at temperatures bellow 130 K for graphene with rough
edges [152]. However, the flexural mode contribution
decreases quickly with increasing temperature and the
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contribution from the flexural mode becomes less than 20% at
400 K. Chen and Kumar found that the LA mode dominates the
thermal conductivity of both isolated and supported graphene
on Cu substrate [153].

Furthermore, in practice, the symmetry selection rule will
be relaxed in experiments, where the high symmetry of the
perfect graphene is broken. For instance, the symmetry will
be lowered in suspended graphene samples, which is inevitably
bent during measurement. In this situation, the lifetime
of the flexural mode should be considerably reduced. For
deformed graphene samples, it is difficult to use the Boltzmann
transport theory to compute the thermal conductivity, because
the symmetry selection rule is no longer valid. Therefore,
classical MD simulations can be used to study the thermal
transport in the deformed graphene or graphene with defects.

Several theoretical works have shown that the temperature
dependence will scale as T 1.5 at low temperature for the
thermal conductance contributed by the flexural mode in the
ballistic regime [12, 53, 57]. In a recent experiment, Xu et al

measured the thermal conductivity of the graphene in a quasi-
ballistic regime and found that the temperature dependence
of the thermal conductivity scales as [56] T 1.5, which is
the same as the theoretical predictions. This consistency
gives one piece of evidence that the flexural mode makes an
important contribution to the thermal transport in graphene
in the quasi-ballistic regime. However, it should be noted
that, in practice, the sample quality plays an important role
on the temperature-dependence of the thermal conductivity.
In particular, the temperature-dependence for the thermal
conductivity in graphene is sensitive to the defect densities
or the grain size of the graphene sample [103, 104].

3.3.2. Projection operator for flexural mode. We provide a
normal mode projection operator for analyzing the contribution
from the flexural mode to the thermal conductivity in MD
simulations. From the lattice dynamic properties of the flexural
mode discussed in section 2, we can determine the eigenvector
for the flexural mode. The position of atom i is determined
by the vector �ri . The eigenvectors can be used to define the
normal mode projection operator, P k ,

P k = (�ξ1, �ξ2, �ξ3, ..., �ξN ) (37)

where N is the total number of atoms. From MD simulations,
we have the time history of the vibration displacement of each

atom,

�ui(t) = �ri(t) − �r0
i . (38)

where �r0
i is the initial position for atom i. Applying the normal

mode projection operator, P k , onto the vibration displacement
vector will give us a scalar normal mode coordinate, Qk(t),

Qk(t) =
N

∑

i=1

�ξ ∗
i · �ui(t). (39)

The normal mode projection technique can selectively disclose
the contribution to the thermal conductivity from each phonon
mode. Figure 7 compares the normal mode coordinate of
the first flexural mode, in-plane transverse acoustic mode and
longitudinal acoustic mode from the MD simulation at 300 K.
It is clear that the flexural mode has much larger normal
mode amplitude than the other two modes, indicating that the
flexural mode is the most important vibration morphology in
the graphene during the MD simulation. It shows explicitly
that the major contribution is from the flexural mode to the
thermal conductivity.

3.3.3. Tuning the thermal conductivity via flexural mode. The
graphene is very flexurable in the out-of-plane direction, so
it is easier to modify the flexural mode. Hence, it will be an
efficient way to manipulate the thermal conductivity through
the flexural motion.

The first method is to introduce inter-layer coupling
for the flexural mode; e.g. coupling different graphene
monolayers to form a few-layer graphene. Indeed, it was
observed in experiment that the thermal conductivity is
considerably reduced by increasing layer numbers in few-layer
graphene [72]. The thermal conductivity in bilayer graphene
is about 30% lower than that of the single-layer graphene.
The reduction of the thermal conductivity is attributed to the
enhanced phonon–phonon scattering for the flexural mode in
thicker few-layer graphene, where more scattering channels
are available.

The second direct method to manipulate the flexural mode
is to fold the graphene as shown in figure 8. A fold will
introduce inter-layer coupling to the flexural mode [154, 155].
This coupling can be further increased by compression the
inter-layer space in the folds. For a flat graphene, flexural
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Figure 8. Graphene is folded, introducing the inter-layer coupling
for the flexural mode.

mode is difficult to scatter with phonon modes from the high-
frequency optical branches, because the band gap between
the flexural mode and the optical branches is very large due
to the parabolic spectrum of the flexural mode. However,
the phonon–phonon scattering channels are considerably
increased when the inter-layer space is compressed in the folds.
The compression of the inter-layer space leads to considerable
shifting up of the flexural phonon spectrum, thus narrowing the
band gap between the flexural mode and the optical branches.
As a result, the phonon–phonon scattering channels increase
significantly. This results in a reduced thermal conductivity in
folded graphene.

The third method to manipulate the flexural mode is to
put the graphene on a substrate [106–113]. The thermal
conductivity can be reduced by an order of magnitude due
to damping of the flexural mode by the substrate [110].
Furthermore, the increase in the coupling strength between
graphene and substrate will enhance the thermal conductivity.
It is because of the coupling of the flexural mode to the substrate
Rayleigh waves, which results in a hybridized mode with
linear spectrum and higher group velocity than the original
flexural mode in graphene. Quite recently, Amorim and
Guinea examined the flexural mode of graphene on different
substrates, with the consideration of the dynamics of the
substrate [156].

4. Thermal expansion

4.1. Introduction

Negative coefficient of thermal expansion (CTE) occurs in
many materials, typically at low temperature. For example,

bulk Si and Ge are two well-known semiconductors with
negative CTE at temperatures below 100 K, which is attributed
to the inter-play between the bond-stretching and bond-
bending forces [157, 158]. Reference [159] summarizes
the negative CTE in different materials and various possible
mechanisms underlying this phenomenon.

The CTE for graphene was also found to be negative.
On the experimental side, in 2009, the CTE is found to be
about −7×10−6 K−1 at room temperature as measured by Bao
et al [13] The room temperature CTE is about −8 × 10−6 K−1

in the experiment by Yoon et al [160]. The measured CTE
is negative in a wide temperature range. Singh et al found
that graphene has a negative CTE for temperatures bellow
300 K [161], while Yoon et al obtained a negative CTE for
graphene for temperatures bellow 400 K [160].

On the theoretical side, there are several standard
approaches to compute the CTE. The lattice constant is
temperature dependent, which can be used to extract the CTE
value [46, 162, 163]. These calculations show a minimum
lattice constant at a transition temperature. Below this
transition temperature, the CTE decreases with increasing
temperature. Above this transition temperature, the CTE
increases with increasing temperature. This implies that CTE
is negative below the transition temperature and becomes
positive above the transition temperature. In our recent work,
the NEGF approach was implemented to compute the CTE of
graphene [164]. As an advantage of the NEGF approach, this
method is able to account for the quantum zero-point vibration
effect in a quite natural manner. Another advantage of the
NEGF approach is that it is straightforward to decompose the
contribution of each phonon mode to the total CTE value. We
will mainly discuss this NEGF approach in the following.

4.2. Green’s function approach for thermal expansion

The thermal expansion is usually studied by MD simulations
or the standard Grüneisen method [165]. In our recent
work, the NEGF approach is used to examine the thermal
expansion phenomenon in the single-walled carbon nanotube
and graphene, where the calculated CTE agrees quite well with
experiments [164]. In this section, we review some key steps
in this NEGF approach for the thermal expansion.

4.2.1. Green’s function approach. The potential energy
associated with the phonon modes is assumed to be,

V =
∑

ij

Kij

2
uiuj + Hn. (40)

It includes linear and nonlinear interactions. Both third and
fourth orders nonlinear interactions are considered,

Hn =
∑

lmn

klmn

3
ulumun +

∑

opqr

kopqr

4
uoupuqur . (41)

Klmn and Kopqr are force constant matrix elements. We have
extracted the nonlinear coefficients klmn and kopqr from the
Brenner potential [42].
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Details for the Green’s function approach in thermal
properties can be found in [116, 117]. We utilize the following
two GFs for the study of the thermal expansion,

Gj (τ ) = − i

h̄
〈Tτu

H
j (τ )〉, (42)

Gjk(τ, τ
′) = − i

h̄
〈Tτu

H
j (τ )uH

k (τ ′)〉. (43)

uH
j (τ ) is the vibrational displacement. For convenience, uH

j (τ )

also includes the square root of the atom’s mass. It is very nice
that Gj can be obtained analytically,

Gj =
∑

lmn

klmnG
>
lm(0)G̃r

nj [0]. (44)

G>(0) is the greater GF in time domain. G̃r [0] is the retarded
GF in frequency domain. These two GFs can be computed
without any integration. Using equation (42), we get the
average vibrational displacement for atom j , i.e. 〈uj 〉. CTE
can be computed from the derivative of the displacement with
respect to the temperature.

It is more convenience to work in the normal mode
space for the derivative of the one-point GF. After the Fourier
transformation, we get,

dGj

dT
= (−i)

∑

lmn

klmn









S









. . .
1

ωµ
(

df

dT
)

. . .









S†









lm

×
(

−K−1
)

nj
, (45)

where f is the Bose distribution function. K is the force
constant matrix. S stores the eigen vector of K , i.e. S†KS

is diagonal with diagonal elements ω2
µ.

A particular boundary condition is used for the NEGF
treatment of the thermal expansion phenomenon. Specifically,
the left end is fixed, while the right end is free. Periodic
boundary condition is applied in the in-plane lateral direction.
It was shown that graphene has a negative CTE for
temperatures bellow 600 K [164]. The minimum CTE value
is achieved around 200 K. These results are in good agreement
with the experimental findings. The NEGF approach is able to
examine the substrate coupling effect, which has been found
to be important for the CTE value of graphene [163].

4.2.2. Green’s function approach and Grüneisen method.

We will show that the NEGF approach is equivalent to the
traditional Grüneisen method in the weak nonlinear limit, if the
system is isotropically and uniformly deformed in the thermal
expansion phenomenon [166].

From above, the CTE from NEGF for atom N is,

αN = 1

L

∑

lmnµ

klmnSlµS∗
mµ

cµ

ω2
µ

(

−K−1
nN

)

, (46)

where cµ = h̄ωµdf/dT = Cph(ωµ) is the heat capacity for
phonon mode µ as introduced in equation (33). The Grüneisen

parameter for mode µ is,

γµ = − ∂ ln ωµ

∂ ln V

= − L

3ω2
µ

∑

lmn

SlµS∗
mµklmnǫn, (47)

where ǫn = δRn/L is the change of position for atom n with
respective to total length L. The CTE from Grüneisen method
is then,

α = 1

3B

(

∂P

∂T

)

V

= 1

3BV

∑

µ

γµcµ

= − 1

B

∑

lmnµ

ǫnklmnSlµS∗
mµ

cµ

ω2
µ

, (48)

where P is pressure, B is bulk modulus, V is volume and an
isotropic and uniform deformation has been assumed for the
system during the thermal expansion phenomenon.

To show the equivalence between these two methods,
let’s assume the system undergoes a uniform deformation by
external force F . In this situation, the displacement of atom n

can be obtained from the force constant matrix, or equivalently
from the bulk modulus,

un = K−1
nNF = ǫn

FL

B
, (49)

so,

1

B
ǫn = K−1

nN

L
. (50)

As a result, we find that,

α = αN .

From the comparison, we show that the NEGF approach has
three advanced properties over the Grüneisen method. First,
the NEGF approach can be applied to study structures which
have a nonuniform deformation, while the Grüneisen method
can only be applied for structures with uniform deformation
in the thermal expansion phenomenon. Second, the NEGF
approach is applicable for nanostructures without periodicity,
while the Grüneisen method requires periodicity with a well-
defined bulk modulus. Third, the NEGF approach is suitable
for systems with anisotropic CTE, while Grüneisen method
only works for systems with isotropic CTE.

In the meantime, we point out two disadvantages for the
NEGF approach as compared with the Grüneisen method.
First, the calculation of K−1 is computationally expensive in
the NEGF approach, especially for large systems. Hence, in
terms of computation cost, the Grüneisen method is better than
the NEGF approach for materials with isotropic CTE, where
both methods are applicable. Second, the NEGF approach
is based on a perturbation theorem and high-order nonlinear
terms have been omitted; while Grüneisen method includes an
overall effect from all high-order nonlinear interaction terms.
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Figure 9. Contribution to CTE from six lowest-frequency phonon modes in graphene sheet without substrate interaction. Blue solid line is
for graphene with (length, width) = (10, 8.5) Å, green dashed line is for (20, 17) Å and red dotted line is for (20, 8.5) Å. Insets are the
vibrational morphology for the corresponding mode. (a)–(c) and (e) are the first four bending modes. (d) is a tearing mode. (f ) is the
longitudinal phonon mode.

4.3. Contribution from flexural mode

We will now demonstrate that the large negative CTE in
graphene is due to its flexural modes. Equation (45) includes
the contribution from all phonon modes to the CTE through
the diagonal matrix,









. . .
1

ωµ
(

df

dT
)

. . .









.

This matrix is diagonal, which indicates that each phonon mode
makes separate contributes for the negative CTE. If this matrix
has a single nonzero element, 1

ωµ
(

df

dT
), then equation (45)

yields the sole contribution from the mode µ. Hence, we can
distinguish the independent contribution from each phonon
mode to the CTE.

Figure 9 shows the contribution from the six lowest-
frequency phonon modes. There is no substrate interaction
in this figure, i.e. γ = 0. The inset in each panel is the
corresponding vibration morphology of the phonon mode.
(a)–(c) and (e) are the first four bending modes and (d)
is an interesting tearing mode. Among all of these six
phonon modes, the first bending mode shown in (a) has 90%
contribution to CTE. Due to its bending morphology, this mode
induces a contraction effect in the graphene sheet and thus the
negative CTE.

If the substrate interaction is nonzero as shown in figure 10,
the CTE is clearly enhanced and the size effect becomes
weaker. The contribution from the second bending mode
is also very important. The substrate interaction is more
important for larger piece of graphene, because the bending
movement in larger graphene is more serious than smaller
piece of graphene when it is fixed on one edge. In case of
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Figure 10. Contribution to CTE from six lowest-frequency phonon modes in graphene sheet with substrate interaction γ = 0.001.

strong substrate interaction, graphene is so difficult to be bent
that all bending modes do not contribute. In this situation, the
CTE is dominated by the sixth mode, which leads to a positive
CTE. As a result, the CTE is positive in whole temperature
range and the size effect on the CTE becomes smaller.

5. Young’s modulus

5.1. Introduction

Graphene has many remarkable mechanical properties.
Readers are referred to [167–171] for comprehensive reviews
on various mechanical properties of graphene. For instance,
the Young’s modulus for graphene is on the order of TPa. There
are several different approaches for the investigation of the
Young’s modulus. The atomic force microscope can measure
the force-displacement relationship for graphene, from which
the Young’s modulus can be extracted. This method is used in
the experiment in 2008, which found the Young’s modulus
for graphene to be 1.0 ± 0.1 TPa. This method has also
been adopted in some theoretical works to study the Young’s
modulus in graphene [24, 172–182].

The classical theory of elasticity has been widely used to
predict the mechanical properties for graphene. Finite element
simulations, which are based on a numerical discretization
of the equations of elasticity, were used to explain the
edge stress induced warping phenomenon in the graphene
nanoribbon [183]. The finite element method has also been
coupled with atomistic calculations to simulate the crack
propagation in graphene in an efficient way [178]. The
elasticity approach has also been combined with atomic
potentials to study elastic properties for finite size graphene
[176, 184].

As an ultra-thin plate, graphene’s flexural mode is directly
related to its Young’s modulus [2]. The flexural mode has
the lowest frequency, so this mode is the easiest to be excited
by thermal vibration. As a result, the thermal vibration of
graphene is closely related to its Young’s modulus. Using this
relationship, it is possible to extract the Young’s modulus from
the thermal vibrations. In 1996, this idea was implemented
by Treacy et al to measure the Young’s modulus of carbon
nanotubes [185, 186]. In our recent work, we applied this
method to compute the Young’s modulus from graphene’s
thermal vibration [187]. In this section, we will review this
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approach and emphasize the relationship between the flexural
mode and the Young’s modulus of graphene.

5.2. Flexural mode and Young’s modulus

In the elasticity theory, the flexural mode is directly related to
the Young’s modulus of a plate. Here we review some key
derivation steps for the Young’s modulus of graphene [187].
The flexure mode for the elastic plate is governed by the
following equation [2],

ρ
∂2z

∂t2
+

D

h
�2z = 0, (51)

where ρ is the mass density. D = 1
12Yh3/(1 − µ2) is the

bending modulus. Y is the Young’s modulus. µ is the Poisson
ratio. h is the thickness of the plate. This partial differential
equation can be solved after the following boundary conditions
are applied,

z(t, x = 0, y) = 0,

z(t, x = L, y) = 0, (52)

z(t, x, y + L) = z(t, x, y).

According to this boundary condition, we can get following
solution [188],

ωn = k2
n

√

Yh2

12ρ(1 − µ2)
,

zn(t, x, y) = un sin(k1x) · cos(k2y) · cos(ωnt), (53)
�k = k1�ex + k2�ey .

The two wave vector components are k1 = πn1/L and k2 =
2πn2/L. This flexural mode is characteristic for its parabolic
phonon dispersion in the long wave limit. This solution shows
explicitly the relationship between the frequency of the flexural
mode and the Young’s modulus.

At finite temperature, the thermal vibration of the plate is
mainly controlled by the lowest-frequency flexural mode. The
Young’s modulus can be related to the thermal mean square
vibration amplitude 〈σ 2〉 as follows,

Y = 0.3 × S

h3
× kBT

〈σ 2〉 . (54)

The thickness is chosen as h = 3.35 Å. The Poisson ratio for
graphene is µ = 0.17 [189, 190]. S is the area. Equation (54)
can be used to extract the value for the Young’s modulus of
graphene. MD simulations are performed to obtain the thermal
vibration quantity 〈σ 2〉.

Equation (54) is derived based on the elasticity theory
shown in equation (51). In principle, the elastic theory works
only for very large system. However, it has been shown that
the elastic continuum theory is still valid in a very small
piece of graphene [174]. Such elasticity theory has also
been successfully applied to compute the elastic ripple-like
deformation at free edges in finite graphene nanoribbons and
other mechanics properties [176, 179, 183, 191, 192].

From the above, we are aware that the flexural mode,
especially the first flexural mode, is closely related to
the Young’s modulus of graphene. More specifically, the
frequency of the flexural mode is proportional to the square
root of the Young’s modulus. The flexural mode describes the
out-of-plane bending movement of graphene. However, it is
quite interesting that this out-of-plane property is governed by
the in-plane mechanical property, Young’s modulus. This is
due to the special bending vibration of the flexural mode.

5.3. Manipulation for Young’s modulus

The Young’s modulus for the bulk material is a constant value
with respect to the system size. However, for a small piece of
graphene, the dimension of the system has important effect on
the value of Young’s modulus [187]. The Young’s modulus
increases with increasing size. Similar size effect was also
found by Zhao et al [193]. The experimental value for the
Young’s modulus is around 1 ± 0.1 TPa [194].

In the above approach, the Young’s modulus is calculated
based on the elasticity equations, so the atomic orientation
dependence cannot be predicted by this approach. The Young’s
modulus in graphene nanoribbons with free edges was found
to be orientation dependent. Armchair and zigzag are the two
common orientation directions in graphene. Zhao et al used the
molecular mechanics method to compute the Young’s modulus
for graphene nanoribbon, using the Brenner potential [193].
They found that the Young’s modulus is larger in the armchair
direction than that in the zigzag direction. Based on the Tersoff
potential, Zhao and Xue also found a larger Young’s modulus
in the armchair direction [195]. For graphene nanoribbons
with periodic boundary conditions, the Young’s modulus is
insensitive to the orientation [182].

Due to grapheme’s exceptional mechanical properties,
it is often used to synthesize hybrid structures. These
composites usually have good mechanical performance. It
was shown that the mechanical properties for the graphene/h-
BN heterostructure is superior to pure h-BN [195]. More
recently, we have found that graphene/MoS2 heterostructures
also have enhanced mechanical properties, with a larger
Young’s modulus than pure MoS2 [196].

6. Nanomechanical resonator

6.1. Introduction

The one-atom thick graphene has large Young’s modulus
[180, 187, 194]. Lots of experimental and theoretical works
have demonstrated the application of graphene in the NMR
field. The GNMR has several advantages compared to their
micron-sized counterparts, which are typically made of silicon.
For mass sensor application, GNMR has a large surface to
volume ratio for the adsorption of more atoms. Furthermore,
GNMR has very low mass density, so it has a very high mass
sensitivity.

The GNMR can also serves as a good platform for
the study of quantum mechanics problems [197], quantum
information storage [198], electron pumping [199], gas
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sensing [200–202], or as a test for the classical Fermi–Pasta–
Ulam problem [203].

The resonant frequency and the quality (Q) factor are two
important factors for the description of the GNMR samples.
High Q-factor is essential for practical applications of the
GNMR. Experiments have achieved considerable success
in the preparation of the GNMR samples. Bunch et al

demonstrated the electromechanical resonant oscillation of the
graphene sheets in 2007 [204]. The GNMR samples are
prepared in the experiment in a large dimension [205, 206].
Currently, the resonant motion of the GNMR can be
detected using various techniques [207–210], and the strain
within the GNMR can also be measured by the Raman
spectroscopy [207]. It is found that the Q-factor increases
with decreasing temperature [205, 206, 211]. A substantial
increases in Q is obtained by increasing the size of the
GNMR [212].

It is important to understand the energy dissipation
mechanism for the GNMR, so that the Q-factor can be
enhanced. The resonant oscillation of the GNMR is actually
the vibration of the flexural mode. Hence, the scattering
between the flexural mode and in-plane phonon modes
becomes an important intrinsic nonlinear energy dissipation
in GNMR [213–215]. The grain boundary and imposed
mechanical strain also strongly impact the Q factor of
the GNMR [216–218]. The inter-layer van der Waals
interaction can be useful in the modulation of the Q factor
in GNMRs [219, 220]. The energy dissipation was found
to be dominated by ohmic losses in the GNMR with large
electronic current [221]. The free edges can lead to extremely
strong energy dissipation in the GNMR, due to the instability
of imaginary edge modes [222, 223]. A temperature scaling
law can be induced by the adsorbate diffusion in the Q factor
for GNMRs [224].

In this review, we concentrate on the connection between
the GNMR and the flexural mode. We focus on the explanation
of the actuation of the resonant oscillation with the usage
of the bending-like vibration of the flexural mode. For
comprehensive reviews on NEMS resonators, readers are
referred to [225–229].

6.2. Flexural mode and nanomechanical resonance

The mechanical oscillation of the GNMR is actuated following
the vibration morphology of the first flexural mode in graphene.
In following, we discuss the actuation that follows the vibration
morphology of the first flexural mode. We note that some
studies actuate the resonant oscillation using high order
flexural modes [230, 231].

6.2.1. Resonant frequency and quality factor. There are
two characteristic quantities for a nanomechanical resonator,
i.e. its resonant frequency (f ) and the Q factor. During
the mechanical oscillation, the potential energy and kinetic
energy exchange between each other at a frequency of 2f .
From the lattice dynamic analysis in section 2, we have
computed the frozen frequency for the flexural mode, i.e. the
frequency at zero temperature. This is an elastic property for

the graphene. The temperature dependence of the flexural
mode can be obtained after the consideration of the phonon–
phonon scattering. The resonant frequency of a GNMR is the
frequency of the flexural mode at finite temperature.

The amplitude of the mechanical oscillation decays
gradually. According to this decay, the mechanical oscillation
energy transforms into the random thermal vibration energy
of the GNMR. The temperature increases in the system as a
result of the decay of the resonant oscillation. The Q factor
is directly related to the decay rate of this energy oscillation
amplitude. There are several equivalent definitions for the Q
factor. In MD simulations, the Q factor is usually defined with
respect to the ratio of the initial mechanical oscillation energy
to the dissipated energy. Its explicit formula is [232],

Q = 2π
E0

MR

�EMR
,

where E0
MR is the initial oscillation energy. The remaining

oscillation energy after n cycles becomes,

En
MR = E0

MR

(

1 − 2π

Q

)n

. (55)

This formula is usually applied to extract the Q factor from
MD simulations.

In another alternative computation of Q factor, the
resonant mechanical oscillation of the GNMR is the vibration
of the flexural mode in graphene. The flexural mode has
angular frequency (ω = 2πf ) and lifetime (τ ) at finite
temperature. The lifetime can be interpreted as the critical
time, after which the vibration of the flexural mode decays
significantly. The Q factor is essentially the total oscillation
cycle number before the decay of the flexural mode,

Q = ωτ. (56)

This method was used to calculate the Q factor of graphene
torsional resonators [233].

6.2.2. GNMR actuation. MD simulations and continuum
elastic modeling are both useful approaches for the
investigation of GNMRs. We herein demonstrate the MD
simulation procedure for GNMRs. The Q factor is calculated
following equation (55). The actuation procedure is illustrated
in figure 11. Both left and right ends are fixed during the
whole simulation. Periodic boundary condition is applied in
the lateral in-plane direction. There are normally following
three steps for the actuation of the GNMR.

• Firstly, figure 11(a) shows the thermalization of the system
to a constant pressure and temperature within the NPT
(i.e. the particles number N , the pressure P and the
temperature T of the system are constant) ensemble. The
Nóse-Hoover [146, 147] heat bath can be used to control
both temperature and pressure.

• Secondly, in figure 11(b), the mechanical oscillation is
actuated by adding a velocity distribution to the system.
The overall shape of the velocity distribution is actually
the same as the morphology of the first flexural mode in
graphene.
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Figure 11. The actuation of GNMR. Arrows (red online) are velocities. (a) The system is thermalized at a constant temperature 4.2 K
within NVT ensemble. (b) The GNMR is actuated by adding a velocity distribution on the system. (d)–(j ) The mechanical oscillation of the
GNMR within NVE ensemble.

• Finally, figures 11(d)–(j ) display a free oscillation of the
system within the NVE (i.e. the particles number N , the
volume V and the energy E of the system are constant)
ensemble.

Simulation data from the final NVE stage will be used in
the analysis of the mechanical oscillation of the GNMR.
In particular, both resonant frequency and Q-factor can be
extracted from the time history of the kinetic energy.

6.3. Energy dissipation mechanisms

A high Q factor is crucial for the practical application of
GNMRs. Hence, it is meaningful to understand energy
dissipation mechanisms for the resonant oscillation. In this
section, we review some energy dissipation mechanisms in the
GNMR.

6.3.1. Phonon–phonon scattering. This dissipation
mechanism is a nonlinear effect. It is the result of the phonon–
phonon scattering phenomenon. In a pure and perfect GNMR
without free edge or adsorbates, the phonon–phonon scattering
is the only intrinsic energy dissipation mechanism. All phonon
modes are in thermal equilibrium state prior to the actuation
of the mechanical oscillation. After actuation, the first flexural
mode is driven into a highly non-equilibrium state. The energy
of the first flexural mode will flow into the other phonon
modes with the assistance of the phonon–phonon scattering.
It has been shown that the flexural mode is seriously scattered
by the in-plane phonon modes [213, 234]. As a result, the
mechanical oscillation energy of the GNMR decays and leads
to the temperature increase in the system. As a result of
the phonon–phonon scattering, the Q factor in the GNMR is
typically inversely proportional to the temperature [222, 223].

6.3.2. Edge effect. Kim and Park pointed out the importance
of the free edge on the Q factor of GNMRs [222]. The free
edge is able to reduce the Q factor of the GNMR by two orders.
This effect was explained in detailed by Jiang and Wang via
the lattice dynamic analysis [223]. The imaginary edge modes
are found to be responsible for such a large reduction in the
Q-factor. In these imaginary edge modes, the edge atoms have
large vibration amplitude, while the other inner atoms has very
weak vibration amplitude. Owning to its localization property,
these imaginary modes will localize the thermal energy. As a
result, the edge atoms will oscillate at larger amplitude than the
inner atoms. It means that the edge atoms break the resonant
oscillation of the whole GNMR. This contradiction leads to a
fast decay of the resonant oscillation.

Figure 12. Geometry of the GNMR. A is the actuation amplitude.
The effective amplitude is A/

√
2. The effective strain is determined

by the difference between the length of the effective shape and the
initial shape. From [235].

6.3.3. Effective strain. In a recent work, we found that
the mass sensitivity of the GNMR-based mass sensor can be
enhanced by driving the resonant mechanical oscillation with
large actuation energy [235]. As illustrated in figure 12, the
oscillating GNMR shape is equivalent to a stationary shape,
which is longer than the initial GNMR. The difference between
the effective shape and the initial shape yields the effective
strain during the resonant oscillation of the GNMR,

ǫα = 3

4
π2α

E0
k

mω2L2
. (57)

It was shown that this effective strain has the same effect as
the mechanical strain, i.e. the frequency of the GNMR can be
enhanced by the effective strain.

6.3.4. Adsorbate migration. The temperature dependence
for the Q-factor of GNMRs has been measured by several
experiments. There is an interesting scaling phenomenon. The
Q-factor increases exponentially with decreasing temperature
and the exponent value will change at a transition temperature
Tz [206, 211]. In a recent work, we have attributed this
temperature scaling phenomenon to the adsorb migration effect
on the surface of the GNMR [224]. For temperatures above Tz,
the adsorb is able to move far away from the GNMR surface
and will beat the GNMR frequently. This adsorb migration
effect leads to strong reduction in the Q-factor, resulting in the
transition of the temperature scaling factor.

We have selectively discussed some energy dissipation
mechanisms for the GNMR in the above. We concentrate on
the relationship between the flexural mode and the resonant
mechanical oscillation of the GNMR, which is the main focus
of the present review article. There are many other interesting
and important energy dissipation mechanisms for the GNMR
(for review, e.g. see [229]).

7. Summary and future prospects

In this review, we have introduced the basic lattice dynamics
of the flexural mode in graphene and summarized its important
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contribution to four of graphene’s thermal and mechanical
properties: thermal conduction, thermal expansion, elasticity
and nanomechanical resonance.

Although fruitful progress has been achieved in the
study of the flexural mode in graphene, there are still some
challenges and opportunities. For example, it is a long-
term and important objective to understand and develop the
lattice dynamic theory, particularly in combination with the
ongoing explosion in computational speed and power. As
CPU speed increases, lattice dynamical properties will be
able to be calculated based on first-principles simulations.
These first-principles calculations can serve as an effective
examination and prediction for existing results that were
obtained by applying lattice dynamical theory to classical
atomistic simulations.

Furthermore, the basic lattice dynamic theory can be used
in conjunction to study other practical scientific problems.
For example, quasi-particle phonons can be coupled with
other particles like electrons and photons [28, 29], which
will be useful for studying the electronic or thermal behavior
of transistor devices, whose properties and performance are
governed by such interactions.

Finally, it will be important to transfer the knowledge
gained regarding the important role of the flexural mode in
graphene to other 2D layered materials [236]. Inspired
by the novel physical properties of 2D graphene, there has
been increasing interest in studying other similar 2D layered
materials, because these other 2D materials may have superior
properties to graphene. For instance, MoS2 is a semiconductor
with a bulk bandgap above 1.2 eV [237–239], which has
attracted considerable attention in recent years [240–256]. It
is of practical significance to determine the contribution from
the flexural mode to the physical properties of this and other
2D materials.
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