
Available online: https://ejournal.ressi.id/index.php/aam 

Annals of Mathematical Modeling, 2 (2), 2020, 43-53 

 

Copyright © 2020, Annals of Mathematical Modeling, ISSN 7215-7822 

A review on the fluid structure interaction of circular plates using 
numerical methods 
 
Anju V Nair1*, Abdul Rahman Mohd Kasim2, Mohd Zuki Salleh3 

Universiti Teknologi Malaysia. 81310 Skudai, Johor, Malaysia 
* Corresponding author. Email: vijayan.nair@utm.my 

 
Abstract: Fluid structure interaction is a nonlinear multi physics phenomenon that have wide range of 
applications in science and engineering fields. This article presents the development of numerical methods 
to solve the fluid structure interaction problem deals with the vibration analysis of plate structures in 
contact with fluid. The modeling of fluid and structure are essential to study the fluid structure interaction 
problems. The development of suitable mathematical models and their validation are discussed herewith. 
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INTRODUCTION  

The interaction between fluid flows and immersed structures comes under nonlinear multi 
physics phenomena that have a broad range of scientific and engineering applications. Presently, 
finite element methods are widely used in the analysis of structures owing to the development of 
modern computing techniques; thus, providing significant benefits in designing safer and 
economical products. Commercial computing programs such as ANSYS, ADINA, OpenFOAM were 
commonly used in the fluid analysis and its applications in product design such as in airplane and 
flow pipes(Lavrov & Guedes Soares, 2016; Liu, , Wang, Waite, & Leslie, 2016; Ruiz-Díez, Hernando-
García, Ababneh, Seidel, & Sánchez-Rojas, 2016). Two major application areas of fluid flow 
analysis at present are aerodynamic compressible flow analysis during airplane design and 
incompressible and compressible flow analysis in mechanical and civil engineering design. 

Numerical simulations in aeronautics and its application in mechanical engineering had 
started and gained attention since 1950’s (Kolsky, 1949; Lighthill, 1953; Resler Jr & Sears, 1958). 
Although the expense required for flow simulations in mechanical engineering is lower compared 
to structural analysis, the number of applications in fluid flow analysis is higher. This is largely 
due to valuable analysis capabilities that are now available for many practical cases of fluid flow 
in mechanical engineering. Furthermore, the coupling of solutions of fluid flows with structural 
interactions develops a new field of analysis known as Fluid Structure Interaction (FSI). 

Stability and response of aircraft wings (aerospace engineering), the flow of blood through 
veins (biomedical applications), the response of bridges and tall buildings to winds (civil 
engineering), and oscillation of heat exchangers and pressure vessels (nuclear industry) (Bathe, 
1998)are some of the distinctive realistic examples of multidisciplinary interfacing. Although 
these interfaces perform a distinguished role in most of the scientific and engineering fields, still 
an adequate study of FSI remains as a challenge due to its strong nonlinearity and 
multidisciplinary nature. Furthermore, these problems are often too complicated (cost 
effectiveness and time-consuming procedure) to resolve analytically and to overcome this 
limitation, the numerical simulation technique is preferred. The usage of the numerical 
formulation can reduce the amount of time consumed for experimental techniques to evaluate 
many alternative designs. An improved understanding of the problem is obtained through a 
computational approach owing to the increased amount of information gathered during 
computation. The continuous research progress in the fields of computational fluid dynamics and 
computational solid mechanics had reached a maturity level in solving large industrial and 
academic problems that were not accessible in the past. 
In general, a fluid structure interaction system is classified as either strongly or weakly coupled. 

(a) Weakly coupled fluid structure system: If a structure in the flow field or containing flowing 
fluid deforms slightly or vibrates with small amplitude, it will affect negligibly the flow 
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field because of the relatively low pressure. Even if significant thermal stresses in the solid 
may be induced by thermal gradients in the flow field, the flow field may not be greatly 
affected if the resulting deformation of the solid is too small. These FSI systems are called 
weakly coupled systems, if a thermo - fluid deforms a structure while the deformed 
structure hardly alters the flow field. 

(b) Strongly coupled fluid – structure system: On the other hand, the fluid structure systems 
are called strongly coupled systems if the alteration of the flow field is due to large 
deformation or high amplitude vibration of the structure which cannot be neglected. In 
such strongly coupled FSI systems in which large structural deformation or displacement 
results in a significant alteration of the original flow field, both altered and original flow 
fields cannot be linearly super – imposed upon each other. 
The investigation of FSI as in the form known to engineers working in the area of pressure 

vessels and piping systems is considered to have begun in the 1960’s. From the early 1970’s 
to the late 1980’s a lot of investigators studied the dynamics interaction between fluid and 
elastic shell systems including pipes, tubes, vessels and co – axial cylinders. Nowadays, various 
techniques for simulating the strongly coupled fluid structure systems numerically are under 
development as Computational Fluid Dynamics (CFD) analysis techniques which evolves 
rapidly. 

FLUID STRUCTURE INTERACTION OF PLATE STRUCTURES 

The static and dynamic nature of plate structures under various loading conditions has 
great in importance in both theoretical and practical point of view. The influence of fluid on the 
natural frequencies of plates is of interest since the natural frequencies and mode shapes of the 
fluid is different from the air. These studies help to get useful information for FSI problems in 
science as well as engineering fields such as aerospace, construction engineering, bioscience etc. 

 

Figure 1: Fluid structure interaction and its applications 

Many research works have been carried out to explain the interaction behavior of plates in 
contact with fluid, especially circular plates. The analytical and numerical approaches used to 
estimate the natural frequencies of circular plates in contact with a liquid on one side and placed 
into the hole of an infinite rigid wall was studied by Lamb(Amabili & Kwak, 1996). The eigen 
vectors of free vibration in vacuum was evaluated using Rayleigh-Ritz method as well as the 
NAVMI factor was calculated using integration method. Using the Rayleigh – Ritz method, it was 
found that the fundamental mode and frequency, for all the plate boundary conditions considered, 
is well estimated by the NAVMI factor method. The effect of fluid on the natural frequencies of 
circular plates vibrating axisymmetrically in contact with fluid was also investigated (Kwak & Kim, 
1991). The ratio between the natural frequencies in fluid and the natural frequencies in air is a 
function of so-called added virtual mass incremental (AVMI) factor, which reflects the increase of 
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inertia due to the presence of fluid. The nondimensional added virtual mass incremental (NAVMI) 
factor was evaluated for simply supported and clamped plates using integration techniques as well 
as the natural frequencies of plates in contact with fluid were evaluated. It was shown that the 
effect of fluid on the natural frequencies decrease with mode orders. Moreover, the effect of fluid 
on the natural frequencies of annular plates placed on the annular aperture of an infinite rigid wall 
and in contact with a fluid on one side was studied (Amabili, Frosali, & Kwak, 1996). The fluid 
domain is assumed to be incompressible, inviscid and unbounded. The Hankel transform is used 
to solve the fluid plate coupled system; boundary conditions are expressed by integral equations. 
Eigenfunctions of the plate vibrating in vacuum are assumed as admissible functions and the 
Rayleigh quotient for coupled vibration is used to obtain a Galerkin equation. The effects of fluid 
were explained by evaluating NAVMI factors using assumed modes approach. Besides, study on 
the vibration response of a cantilever cylinder surrounded by an annular fluid, which is known to 
be the pioneering study of fluid structure interaction for power plants (Fritz & Kiss, 1966). 

However, The non-dimensionalized added virtual mass incremental factors for uniform 
circular plates having simply supported, clamped and free edge boundary conditions were 
obtained by employing the integral transformation technique in conjunction with the Fourier–
Bessel series approach(Kwak, 1997). It was found that the NAVMI factors for circular plates 
vibrating in an infinite rigid wall with one side exposed to water are larger than those for circular 
plates which rest on a free surface. Furthermore, vibrations of circular plates resting on a sloshing 
liquid free surface were studied by solving the fully coupling problem between sloshing modes of 
the free surface and bulging modes of the plate using Rayleigh Ritz method (Amabili, 2001). It was 
verified experimentally that only small changes in the wet mode shapes occur under fluid 
movement which enable us to assume that the wet mode shapes are almost equivalent to the dry 
mode shapes. 

A finite element analysis of the fluid–structure systems considered the coupled effect of 
elastic structure and fluid (Maity & Bhattacharyya, 2003). The equations of motion of the fluid 
considered inviscid and compressible were expressed in terms of the pressure variable alone. The 
hydro-elastic vibration of two identical circular plates coupled with a bounded fluid were 
investigated using an analytical method based on the finite Fourier–Bessel series expansion and 
the Rayleigh–Ritz method(Jeong, 2003). The numerical calculations have been carried out by 
assuming that a rigid cylindrical container is filled with the ideal fluid and the two plates are 
clamped along the container edges. It was found that the normalized natural frequency of the 
system monotonically increases with an increase in the number of nodal diameters and circles by 
virtue of a decrease in relative hydrodynamic mass. 

The mathematical model for the vibration analysis of any kind of curved structure subjected 
to turbulent flow was developed using a combination of the finite element method and Sanders’ 
shell theory(Kerboua, Lakis, Thomas, & Marcouiller, 2008). The transverse displacement function 
of the plate finite-element is derived from the equation of motion. Then, mass and stiffness 
matrices required by the finite element method are determined by exact analytical integration. 
The velocity potential and Bernoulli’s equation are adopted to express the fluid pressure acting 
on the structure. The product of the pressure expression and the developed structural shape 
function is integrated over the structure-fluid interface to assess the virtual added mass due to the 
fluid. Variation of fluid level is considered in the calculation of the natural frequencies. 

The dynamic response analysis of fluid-structure systems based on the finite element 
discretization of the complete system assuming pressure to be the nodal unknown for the 
compressible fluid domain was explored(Sharan & Gladwell, 1985). Some approximations such as 
reduced ‘added equivalent mass’ matrix for the structure, diagonalized ‘mass’ and ‘damping’ 
matrices for the fluid were proposed. Besides, the researchers presented finite element frequency 
domain and time domain methods to investigate the flutter behavior of curved panels at 
supersonic flow(Ghoman & Azzouz, 2012b, 2012a). The von-Kàrmàn large deflection theory and 
quasi – steady thermoelectricity was used in the formulation. The Newton – Raphson method was 
used to determine the panel deflection under static thermos aerodynamic loading and eigen value 
solution, was used to predict the critical dynamic pressure. 
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The nonlinear flutter dynamics of a cantilever plate in supersonic flow has been investigated 
by using simple proper orthogonal decomposition method and semi – analytical proper 
orthogonal decomposition method and a comparison was carried out in this study(Xie & Xu, 
2015). The aero elastic instability of a plate in a gas flow has been discussed using direct time 
domain numerical simulation by considering three types of plate responses such as stability, static 
divergence and flutter( Vedeneev, Shishaeva, Kuznetsov, & Aksenov, 2014). Amplitudes and 
frequencies of flutter oscillations were evaluated. In case of high Mach numbers excellent 
correlation with classical results based on piston theory has been achieved. Maximum stress 
amplitude was attained at chaotic oscillations and much higher than for other flutter types because 
of the higher mode shapes dominating in shape of the plate oscillations. Furthermore, the 
dependence of amplitude on the frequencies of the nonlinear aero elastic behaviour of isotropic 
rectangular plates in supersonic gas flow was examined (Baghdasaryan, Mikilyan, Saghoyan, 
Cestino, Frulla, & Marzocca, 2015). The influence of flow speed and associated aero dynamic 
loading on the amplitude frequency characteristics of nonlinear aero elastic oscillations of thin 
and relatively thick plates were presented in this study. It can be seen that frequency increases 
with increasing amplitude. The aero elastic performance of flexible plate under a uniform axial flow 
was investigated using lumped vortex panel method and nonlinear Bernoulli beam model 
respectively(Dessi & Mazzocconi, 2015). 

The free vibration of a rectangular isotropic plate in contact with fluid was investigated by 
calculating the natural frequencies for general boundary conditions(Chang & Liu, 2000). The 
natural frequencies of the plate in contact with the fluid are determined by calculating the added 
virtual mass incremental (AVMI) factor which represents the kinetic energy due to the fluid. Also, 
the nonlinear flutter behavior of an orthotropic composite laminated rectangular plate under 
aerodynamic pressures and transverse excitation was also presented (Chen & Li, 2016). The air 
pressures were modeled by applying first-order linear piston theory. The nonlinear governing 
equations of motion were derived for the plate using Hamilton’s principle based on Reddy's third 
order shear deformation plate theory and von-Kàrmàn type equation for the geometric 
nonlinearity. The partial differential governing equations were transformed into a set of nonlinear 
ordinary differential equations by employing Galerkin method. The critical Mach number for 
occurrence of the flutter of the plate was investigated by solving the eigenvalues problem. The 
relationship between the limit cycle oscillation and the critical Mach number was analyzed based 
on the nonlinear equations. The numerical simulation studies the influences of the transverse 
excitation on the nonlinear dynamics of the composited laminated plate. 

Moreover, the effects of the nondimensionalized added virtual mass incremental (NAVMI) 
factor and various parameters on the natural frequencies and hence the vibration behavior of 
plates submerged in fluid were investigated using dual integration technique and Galerkin method 
respectively(Cheung & Zhou, 2002; Kwak, 1991). The hypersonic fluid structure interaction of 
cantilever plate involving shock impingement has been studied numerically and experimentally ( 
Currao, Neely, Kennell, Gai, & Buttsworth, 2019). The shock induces a pressure differential across 
the plate thickness that drives its oscillatory behavior as well as the data are used to predict the 
performance of two- dimensional control surfaces using boundary layer interaction. 

Also, fluid structure interaction solver based on finite difference method for compressible 
flows on plate structures discussed the coupling between the nonlinear dynamics of plate and 
blast loading (Bailoor, Annangi, Seo, & Bhardwaj, 2017). The effects of material properties as well 
as length of the plate on the flow induced deformation is studied. The discontinuous Galerkin 
method is used to solve the FSI problem deals with compressible viscous flow with nonlinear 
elastic structures (Kosík, Feistauer, Hadrava, & Horáček, 2015). The flow is described by Navier 
Stoke’s equations and Kirchhoff model is applied for structural deformation. Furthermore, the FSI 
problem of thin hot plate inside an enclosure has been solved by the assumption that the plate is 
isothermal and fixed at an alterable point(Mehryan, Alsabery, Modir, Izadpanahi, & Ghalambaz, 
2020). The finite element method associated with Arbitrary Lagrangian Eulerian (ALE) 
formulation is used to get steady state contours of isotherms and streamlines for various fixed 
points. FSI with compressible multiphase flows involving large structural deformation has been 
studied by using immersed boundary layer method(Wang, Currao, Han, Neely, Young, & Tian, 



Annals of Mathematical Modeling, 2 (2), 2020, - 47 

Anju V Nair, Abdul Rahman Mohd Kasim, Mohd Zuki Salleh 

Copyright © 2020, Annals of Mathematical Modeling, ISSN 7215-7822 

2017). The mathematical modeling of structure interaction with fluid also depends on its material 
property in nature. The interaction of circular plates with fluid is important in the industrial 
application for the proper and safer design of structures. For most FSI problems, analytical 
solutions to the model equations are impossible to obtain, whereas laboratory experiments 
are limited in scope; thus, to investigate the fundamental physics involved in the complex 
interaction between fluids and solids, numerical simulations may be employed to find a solution 
for the governing equations of the individual problems. 

NUMERICAL METHOD TO SOLVE THE FLUID STRUCTURE INTERACTION PROBLEM 

A circular plate of isotropic material properties with clamped boundary condition is 
considered herewith. The non - dimensionalized added virtual mass incremental (NAVMI) factor 
for plates in contact with the fluid is evaluated using integral transformation method by taking 
the advantage of the admissible function which satisfies the boundary condition(Nair, Kasim, & 
Salleh, 2017). Galerkin method is applied to evaluate the natural frequencies and mode shape of 
the circular plate in the air and are used to evaluate the natural frequencies of the plate in contact 
with a fluid for practical applications. 

 

Figure 2: A circular plate in contact with fluid with respect to clamped boundary conditions 

The numerical formulation is produced using the hypothesis that the fluid is inviscid, 
incompressible and irrotational. Since the diameter of the plate is notably greater than the 
wavelength, the motion will be very small. Due to the strong loading of liquid there are minute 
changes in kinetic as well as potential energies of structures in contact with fluid from the air. The 
governing mathematical equation of circular plates in contact with liquid based on the above 
assumptions can be written as 

𝑫𝜵𝟒𝒘 −
𝟏 − 𝒗

𝒓
(

𝝏𝟐𝒘

𝝏𝒓𝟐
+

𝝏𝒘

𝝏𝒓
) + 𝝆𝝆𝒉 + 𝜹

𝝏𝟐𝒘

𝝏𝒓𝟐
= 𝟎 

where w is the plate’s deflection, 𝐷 =
𝐸ℎ3

12(1−𝑣2)
 is the flexural rigidity, 𝜌, is the mass density of the 

plate, 𝜹 is the AVMI factor and  = 0.3 is the Poisson’s ratio. 
A suitable admissible function for W (r) is introduced to simplify the calculations and the 
Rayleigh-Ritz method is applied to obtain the mode shapes of the circular plate. For various 

mode orders of the plate, the shapes under wet mode can be supposed as a harmonic function, 
which can be written as 

𝑤(𝑟, 𝜃, 𝑡) =  ∑ ∑ 𝑊(𝑟) cos 𝑠𝜃 sin 𝜔𝑡

∞

𝑛=0

∞

𝑠=0

 

The following parameters for plates are also considered 

𝑎 = 1𝑚; ℎ0 = 0.5𝑚; 𝜌𝑝 =
2,44𝑥103𝑘𝑔

𝑚3
; 𝜌𝑓 = 1000𝑘𝑔/𝑚3 

Since the fluid is assumed to be irrotational, the velocity potential and can be indicated as 

(1) 

(2) 

(3) 
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Ũ(𝑟, 𝜃, 𝑧, 𝑡) =  ɸ(𝑟, 𝜃, 𝑧)𝑓(𝑡) = ɸ(𝑟, 𝑧)𝑓(𝑡) 
where (r z, ) is the spatial distribution which satisfies the Laplace equation,  

𝛻2ɸ =  
𝜕2ɸ

𝜕𝑟2 +
1𝜕ɸ

𝑟𝜕𝑟
+

𝜕2ɸ

𝜕𝑧2 = 0   in F, the fluid domain 

and 𝑓(𝑡) = 𝑒𝑖𝜔𝑡  is the frequency of the circular plate coupled with the fluid. 

The boundary condition of the rigid wall on 𝑆𝑎can be expressed as 
𝜕ɸ(𝑟,𝑧)

𝜕𝑧
= 0 at z=0 on 𝑆𝑎, signifies 

the layer between the fluid and rigid wall. Furthermore, the boundary condition for the interaction 

amid the fluid and the surface is indicated by 
𝜕ɸ(𝑟,𝑧)

𝜕𝑛
= −𝑊(𝑟) at z=0 on 𝑆𝑏, indicates the layer 

between the fluid and the plate. Since the distance from the plate becomes very large,  and the 

velocities 
𝜕ɸ

𝜕𝑟
 plus 

𝜕ɸ

𝜕𝑧
 tends to zero. ie, ɸ(𝑟, 𝜃, 𝑧),

𝜕ɸ(𝑟,𝜃,𝑧)

𝜕𝑟
,

𝜕ɸ(𝑟,𝜃,𝑧)

𝜕𝑧
→ 0 for 𝑟, 𝑧 → ∞ on 

𝑆∞, represents the infinity surface.  
Based on Rayleigh’s quotient, we can write 

𝑓𝑎
2  ∝  (

𝑉𝑝

𝑇𝑝
∗)

𝑎𝑖𝑟

 and 𝑓𝑎
2  ∝  (

𝑉𝑝

𝑇𝑝
∗+𝑇𝑙

∗)
𝑓𝑙𝑢𝑖𝑑

 

Where 𝑓𝑎 is the natural frequency of the plate, 𝑓1is the natural frequency of the plate in 
contact with the fluid, 𝑇𝑝

∗ and 𝑉𝑝are the reference kinetic energy and maximum potential energy 

of the plate and 𝑇1
∗is the reference kinetic energy of the fluid due to the motion of the plate (Nair, 

Kasim, & Salleh, 2017) Besides, the relation between reference ad maximum kinetic energies can 
be written as 𝑇𝑚𝑎𝑥 =  𝑇∗𝜔2 where  is the frequency in radians per second (Meirovitch, 1975). 
Using the hypothesis that due to the dynamic loading of liquid the kinetic energy and potential 
energy of the circular plate coupled with fluid have a trivial effect on mode shapes as well as wet 
mode shape is equal to dry mode shape, eqn. (5) can be reduced to 

𝑓1 =
𝑓𝑎

√1 + 𝛿
 

where  is called AVMI factor which is the ratio of the kinetic energy of the plate to the kinetic 

energy of the plate itself. Hence,  can be signified as 𝛿 =
𝑇𝑙

∗

𝑇𝑝
∗ =  

𝜌𝑙

𝜌𝑝
(

𝑎

ℎ
) 

where  is termed of non-dimensionalized NAVMI factor, 𝜌𝑙 is the density of the fluid and 𝜌𝑝 is the 

mass density of the plate. Using the assumption that the fluid is irrotational, the reference kinetic 
energy of the fluid can be evaluated from its velocity potential as 

𝑇𝑙
∗ = −

1

2
𝜌𝑙 ∫ ∫

𝜕𝜙(𝑟, 𝑧)

𝜕𝑛
𝜙(𝑟, 𝑧)𝑑𝑟𝑑𝜃

∞

−∞

2𝜋

0

 

Using eqn. (2), the reference kinetic energy of the plate can be represented as 

𝑇𝑝
∗ =

1

2
𝜌𝑝 ∫ ∫ ℎ𝑊̃(𝑟)𝑟 𝑑𝑟 𝑑𝜃

𝑎

0

2𝜋

0

 

where 𝑊̃(𝑟) is the mode shape of the plate in the air. 
The reference kinetic energies of the fluid as well as the plate can be evaluated from eqns. 

(8) and (9) and hence the values of 𝑓𝑙 are calculated using eqn. (5). The mode shapes of the plates 
in the air are evaluated using the differential equation which can be taken as 

𝑫𝜵𝟒𝒘 −
𝟏 − 𝒗

𝒓
(

𝝏𝟐𝒘

𝝏𝒓𝟐
+

𝝏𝒘

𝝏𝒓
) + 𝝆𝝆𝒉

𝝏𝟐𝒘

𝝏𝒓𝟐
= 𝟎 

By considering the following assumptions: 
ℎ(𝑟) = ℎ0𝑓(𝑟); 𝑓(𝑟) = 1 − 𝜇𝑟2 as well as 𝑤(𝑟, 𝑡) = 𝑊(𝑟)𝑓(𝑡) = 𝑊(𝑟)𝑒𝑖𝜔𝑡 where ℎ0 denotes the 
thickness of the centre of the plate whereas  is the taper parameter of the varying curve leads 
the equation to the following form 

𝑭𝜵𝟒𝑾 −
𝟏 − 𝒗

𝒓
(𝑭𝒓𝒓

𝝏𝟐𝒘

𝝏𝒓𝟐
+ 𝑭𝒓

𝝏𝒘

𝝏𝒓
) + 𝟐𝒇𝑾 = 𝟎 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 
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Where 𝐹 =  𝑓3(𝑟)  and 2 =  
12(1−𝑣2)𝜌𝑝𝜔2

𝐸ℎ0
2  

According to Galerkin method, assume the interpolating function in the algebraic form as given in 
eqn. (12). 

Ẃ𝑛 = ∑ 𝑏𝑚 (
𝑟2

𝑎2
− 1)

𝑚+1𝑁

𝑚=1

 

which satisfies the clamped boundary conditions at r = 0, w′ = 0; At r = a, w = 0, w′ = 0. 
Then the Galerkin formula can be represented in the integral form as 

∫ ∫ 𝐸𝑛 (
𝑟2

𝑎2
− 1)

𝑚+1

𝑟𝑑𝑟𝑑𝜃 = 0                    𝑚 = 1,2, … , 𝑁

𝑎

0

2𝜋

0

 

where 𝐸𝑛 is the residual. 
The expression for 𝐸𝑛 can be attained by substituting eqn. (12) into eqn. (11) and could be 

illustrated as 𝐸𝑛 = ∑ 𝑒𝑛 (
𝑑𝑛𝑤

𝑑𝑟𝑛 ) − 2𝑓𝑤2
𝑛−1  where 𝑒𝑛 is the derived coefficient and 𝑛2 =

12(1−𝑣2)𝜌𝑝𝜔2

𝐸ℎ0
2 . 

The ordinary differential equation can be reduced from the governing equations by 
introducing the Hankel transform (Amabili, Frosali, & Kwak, 1996). 

ɸ̅(𝜉, 𝑧) =  ∫ 𝑟

∞

0

ɸ(𝑟, 𝑧)𝐽𝑠(𝜉𝑟)𝑑𝑟 

Therefore, eqn. (4) is reduced to the ordinary differential equation of the form 
𝑑2ɸ̅

𝑑𝑧2
− 𝜉2ɸ̅ = 0 

The inversion formula for Hankel transform is defined by, 

ɸ(𝑟, 𝑧) = ∫ 𝜉ɸ̅(𝜉, 𝑧

∞

0

)𝐽𝑠(𝜉𝑟)𝑑𝜉 

Introduce the nondimensionalized parameters: 

𝜌 =
𝑟

𝑎
; 𝜓 = 𝑎𝜉; 𝐴(𝜓) = 𝜓𝐵(𝜓) 

Therefore, the integral equations can be described as the forms given in eqns. (18) and (19) 
respectively. 

∫ 𝜓𝐴(𝜓)
∞

0
𝐽𝑠(𝜓𝜌)𝑑𝜓 = 0 for 𝜌 > 1 

∫ 𝜓𝐴(𝜓)

∞

0

 [𝐽𝑠(𝜓𝜌) + ℎ0𝜇𝑎𝜌𝐽𝑠+1(𝜓𝜌)]𝑑𝜓 = √𝜇2ℎ0
2𝑎2𝑝2 + 1 ∑ (𝑏𝑚)𝑛. 𝑎3. (𝑝2 − 1)𝑚+1;

𝑁

𝑚=1

  

𝑛 = 1,2, … , 𝑁 𝑓𝑜𝑟 0 ≤ 𝜌 ≤ 1 
The solution of integral eqns. (18) and (19) can be attained through the properties of Hankel 

transform as well as the inversion theorem of Hankel transform. Hence, the solution A() can be 
evaluated from the following equation 

𝐴(𝜓) = ∫ 𝜌 [√𝜇2ℎ0
2𝑎2𝑝2 + 1  ∑ (𝑏𝑚)𝑛. 𝑎3. (𝑝2 − 1)𝑚+1

𝑁

𝑚=1

] ×  [𝐽𝑠(𝜓𝜌) + ℎ0𝜇𝑎𝜌𝐽𝑠+1(𝜓𝜌)]𝑑𝜌

1

0

 

 

= 𝑎3. ∑ (𝑏𝑚)

𝑁

𝑚=1

[√𝜇2ℎ0
2𝑎2𝑝2 + 1  ∑ (𝑏𝑚)𝑛. 𝑎3. (𝑝2 − 1)𝑚+1

𝑁

𝑚=1

× [𝐽𝑠(𝜓𝜌) + ℎ0𝜇𝑎𝜌𝐽𝑠+1(𝜓𝜌)]𝑑𝜌] 

The solution A() is evaluated using numerical integration techniques by taking the 
advantage of MAPLE software, and hence, the values of B() as well as (r z, ) can be calculated 
using numerical calculations respectively. Therefore, the kinetic energy of the fluid can be 
computed 11 from eqn. (8) by evaluating the velocity potential function (r z, ) , as well as the 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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reference kinetic energy of the plate, can be measured using eqn. (8) by approximating the mode 
shapes of the plate. The values NAVMI factor is estimated using these values of kinetic energies of 
the plate as well as fluid. Hence, the natural frequencies of plate associated with fluid can be 
determined from eqn. (6) by applying the values of NAVMI factors. 

RESULTS AND DISCUSSION 

The numerical approximation for the fluid structure interaction of circular plates coupled 
with fluid is presented as an example. The NAVMI factor and corresponding natural frequencies 
are formulated using the Galerkin method and as well as integration techniques based on Rayleigh 
quotient. The results for clamped boundary conditions are compared with the known literature 
values(M.-F. Liu & Chang, 2004).  

Table 1 represent the values of NAVMI factor for clamped circular plates where n, as well as N, 
indicate the order of the mode number and number of terms used in the interpolating function 

to estimate the mode shape respectively. 

N n = 1 n = 2 n = 3 n = 4 n = 5 

1 0.6823 
(0.6826) * 

- - - - 

2 0.6668 
(0.6671) * 

0.3150 
(0.3153) * 

- - - 

3 0.6665 
(0.6668) * 

0.2826 
(0.2829) * 

0.2065 
(0.2068) * 

- - 

4 0.6665 
(0.6668) * 

0.2805 
(0.2808) * 

0.1749 
(0.1752) * 

0.1527 
(0.1530) 

* 

- 

5 0.6665 
(0.6668) * 

0.2797 
(0.2800) * 

0.1673 
(0.1670) * 

0.1288 
(0.1291) 

* 

0.1189 
(0.1192) 

* 

From Table 1, when considering the values of the NAVMI factor, the first mode plays a 
leading role since the values in the first mode are greater than those of the other modes. 
Furthermore, the values of NAVMI decreases as the order of mode number increases due to the 
fluid drive stroke of the lower mode is greater than the higher mode. Besides, it can be noted that 
the fluid has significant influence on fluid structure interaction of plate structures as the presence 
of fluid decreases with mode number regardless of boundary conditions. 

 

Table 2 indicates the corresponding natural frequencies of circular plates in contact with fluid 
with respect to clamped boundary conditions. 

  fl  

 n = 1 n = 2 n = 3 

−0.8 0.0126 
(0.0130) * 

0.0615 
(0.0619) * 

0.1592 
(0.1596) * 

−0.6 0.0113 
(0.0117) * 

0.0570 
(0.0574) * 

0.1465 
(0.1469) * 

−0.4 0.0100 
(0.0104) * 

0.0522 
(0.0526) * 

0.1353 
(0.1357) * 



Annals of Mathematical Modeling, 2 (2), 2020, - 51 

Anju V Nair, Abdul Rahman Mohd Kasim, Mohd Zuki Salleh 

Copyright © 2020, Annals of Mathematical Modeling, ISSN 7215-7822 

−0.2 0.0087 
(0.0091) * 

0.0473 
(0.0477) * 

0.1240 
(0.1244) * 

0 0.0074 
(0.0078) * 

0.0422 
(0.0426) * 

0.1122 
(0.1126) * 

0.2 0.0062 
(0.0066) * 

0.0370 
(0.0374) * 

0.1005 
(0.1009) * 

0.4 0.0050 
(0.0054) * 

0.0316 
(0.0320) * 

0.0875 
(0.0879) * 

0.6 0.0038 
(0.0042) * 

0.0252 
(0.0256) * 

0.0730 
(0.0734) * 

0.8 0.0026 
(0.0030) * 

0.0183 
(0.0187) * 

0.0575 
(0.0579) * 

It can be observed from Table 2 that as the value of µ increases the natural frequency of 
plate decreases. The natural frequencies under clamped conditions is compared with the 
reference values (M.-F. Liu & Chang, 2004)which shows the accuracy of the hypothetical 
formulation. The highest value of the taper parameter shows the highest values of the NAVMI 
factor as well as the smallest values of natural frequencies implies the influence of fluid on the 
fluid structure interaction of structures. Figure 1 shows the graphical illustration of natural 
frequencies with respect to different taper parameter and it shows the pattern of how the taper 
parameter effects on the natural frequencies. 

 

Figure 3: The values of natural frequencies of circular plates in contact with fluid with respect to 
various taper parameter. 

The numerical methods are important because it concerns the circumstance of the coupling 
is limited only to the fluid interface. Subsequently, these numerical techniques reduce the 
instability of the fluid-structure problem of different structures and it confirms the stability for 
fluid motion. Hence, the values of natural frequencies will help the engineers to design the plate 
structures in contact with fluid safer and more economical. 

CONCLUSION 

The article reviews the interaction of plate structures in contact with fluid. Owing to the 
multidisciplinary nature of FSI problems, the numerical procedures used by various methods to 
solve the interface conditions between fluids and structures. The FSI problems of plates in contact 
with fluid under clamped boundary conditions are considered. The NAVMI factor as well as the 
corresponding natural frequencies are evaluated using Galerkin method and integration 
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techniques based on Rayleigh quotient. The comparison of numerical results for clamped circular 
plates indicates that the numerical hypothetical formulation gives accurate results within the 
engineering accuracy. Hence these formulations will be useful to the designers in many fields of 
engineering such as automotive, aircraft, civil engineering and can be adopted as a guide to the 
design of structures specifically for circular plates in contact with a fluid. 

DAFTAR PUSTAKA 

Amabili, M. (2001). Vibrations of circular plates resting on a sloshing liquid: solution of the fully 
coupled problem. Journal of Sound and Vibration, 245(2), 261–283. 

Amabili, M., Frosali, G., & Kwak, M. K. (1996). Free vibrations of annular plates coupled with fluids. 
Journal of Sound and Vibration, 191(5), 825–846. 

Amabili, M., & Kwak, M. K. (1996). Free vibrations of circular plates coupled with liquids: revising 
the Lamb problem. Journal of Fluids and Structures, 10(7), 743–761. 

Baghdasaryan, G. Y., Mikilyan, M. A., Saghoyan, R. O., Cestino, E., Frulla, G., & Marzocca, P. (2015). 
Nonlinear LCO “amplitude–frequency” characteristics for plates fluttering at supersonic 
speeds. International Journal of Non-Linear Mechanics, 77, 51–60. 

Bailoor, S., Annangi, A., Seo, J. H., & Bhardwaj, R. (2017). Fluid–structure interaction solver for 
compressible flows with applications to blast loading on thin elastic structures. Applied 
Mathematical Modelling, 52, 470–492. 

Bathe, K.-J. rgen. (1998). Fluid-structure interactions. Mechanical Engineering, 120(04), 66–68. 

Chang, T.-P., & Liu, M.-F. (2000). On the natural frequency of a rectangular isotropic plate in 
contact with fluid. Journal of Sound and Vibration, 236(3), 547–553. 

Chen, J., & Li, Q. S. (2016). Analysis of flutter and nonlinear dynamics of a composite laminated 
plate. International Journal of Structural Stability and Dynamics, 16(06), 1550019. 

Cheung, Y. K., & Zhou, D. (2002). Hydroelastic vibration of a circular container bottom plate using 
the Galerkin method. Journal of Fluids and Structures, 16(4), 561–580. 

Currao, G. M. D., Neely, A. J., Kennell, C. M., Gai, S. L., & Buttsworth, D. R. (2019). Hypersonic fluid–
structure interaction on a cantilevered plate with shock impingement. AIAA Journal, 57(11), 
4819–4834. 

Dessi, D., & Mazzocconi, S. (2015). Aeroelastic behavior of a flag in ground effect. Journal of Fluids 
and Structures, 55, 303–323. 

Fritz, R. J., & Kiss, E. (1966). The vibration response of a cantilevered cylinder surrounded by an 
annular fluid. Knolls Atomic Power Lab., Schenectady, NY. 

Ghoman, S. S., & Azzouz, M. S. (2012a). Supersonic aerothermoelastic nonlinear flutter study of 
curved panels: frequency domain. Journal of Aircraft, 49(4), 1075–1090. 

Ghoman, S. S., & Azzouz, M. S. (2012b). Supersonic aerothermoelastic nonlinear flutter study of 
curved panels: time domain. Journal of Aircraft, 49(4), 1178–1183. 

Jeong, K.-H. (2003). Free vibration of two identical circular plates coupled with bounded fluid. 
Journal of Sound and Vibration, 260(4), 653–670. 

Kerboua, Y., Lakis, A. A., Thomas, M., & Marcouiller, L. (2008). Vibration analysis of rectangular 
plates coupled with fluid. Applied Mathematical Modelling, 32(12), 2570–2586. 

Kolsky, H. (1949). An investigation of the mechanical properties of materials at very high rates of 
loading. Proceedings of the Physical Society. Section B, 62(11), 676. 

Kosík, A., Feistauer, M., Hadrava, M., & Horáček, J. (2015). Numerical simulation of the interaction 
between a nonlinear elastic structure and compressible flow by the discontinuous Galerkin 
method. Applied Mathematics and Computation, 267, 382–396. 

Kwak, M. K. (1991). Vibration of circular plates in contact with water. 

Kwak, M. K. (1997). Hydroelastic vibration of circular plates. Journal of Sound and Vibration, 
201(3), 293–303. 



Annals of Mathematical Modeling, 2 (2), 2020, - 53 

Anju V Nair, Abdul Rahman Mohd Kasim, Mohd Zuki Salleh 

Copyright © 2020, Annals of Mathematical Modeling, ISSN 7215-7822 

Kwak, M. K., & Kim, K. C. (1991). Axisymmetric vibration of circular plates in contact with fluid. 
Journal of Sound and Vibration, 146(3), 381–389. 

Lavrov, A., & Guedes Soares, C. (2016). Modelling the heave oscillations of vertical cylinders with 
damping plates. International Journal of Maritime Engineering, 158(A3), A187–A197. 

Lighthill, M. J. (1953). Oscillating airfoils at high Mach number. Journal of the Aeronautical Sciences, 
20(6), 402–406. 

Liu, M.-F., & Chang, T.-P. (2004). Axisymmetric vibration of a varying-thickness circular plate in 
contact with fluid. Mechanics Based Design of Structures and Machines, 32(1), 39–56. 

Liu, X., Wang, Y., Waite, T. D., & Leslie, G. (2016). Fluid structure interaction analysis of lateral fibre 
movement in submerged membrane reactors. Journal of Membrane Science, 504, 240–250. 

Maity, D., & Bhattacharyya, S. K. (2003). A parametric study on fluid–structure interaction 
problems. Journal of Sound and Vibration, 263(4), 917–935. 

Mehryan, S. A. M., Alsabery, A., Modir, A., Izadpanahi, E., & Ghalambaz, M. (2020). Fluid-structure 
interaction of a hot flexible thin plate inside an enclosure. International Journal of Thermal 
Sciences, 153, 106340. 

Meirovitch, L. (1975). Elements of vibration analysis. McGraw-Hill Science, Engineering & 
Mathematics. 

Nair, A. V, Kasim, A. R. M., & Salleh, M. Z. (2017). Vibration analysis of circular plates in contact 
with fluid: A numerical approach. IOP Conference Series. Materials Science and Engineering 
(Online), 203(1). 

Resler Jr, E. L., & Sears, W. R. (1958). The prospects for magneto-aerodynamics. Journal of the 
Aerospace Sciences, 25(4), 235–245. 

Ruiz-Díez, V., Hernando-García, J., Ababneh, A., Seidel, H., & Sánchez-Rojas, J. L. (2016). In-liquid 
characterization of in-plane and high order out-of-plane modes of AlN-based square 
microplates. Microsystem Technologies, 22(7), 1701–1708. 

Sharan, S. K., & Gladwell, G. M. L. (1985). A general method for the dynamic response analysis of 
fluid-structure systems. Computers & Structures, 21(5), 937–943. 

Vedeneev, V., Shishaeva, A., Kuznetsov, K., & Aksenov, A. (2014). Nonlinear Multi-Modal Panel 
Flutter Oscillations at Low Supersonic Speeds. Fluids Engineering Division Summer Meeting, 
46223, V01BT12A008. 

Wang, L., Currao, G. M. D., Han, F., Neely, A. J., Young, J., & Tian, F.-B. (2017). An immersed boundary 
method for fluid–structure interaction with compressible multiphase flows. Journal of 
Computational Physics, 346, 131–151. 

Xie, D., & Xu, M. (2015). A comparison of numerical and semi-analytical proper orthogonal 
decomposition methods for a fluttering plate. Nonlinear Dynamics, 79(3), 1971–1989. 

 


