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Abstract: TiO2 is seen as a low cost, well-known photocatalyst; nevertheless, its sluggish charge
kinetics does limit its applications. To overcome this aspect, one of the recent approaches is the use of
its composites with graphene to enhance its photoactivity. Graphene-based materials (nanosheets,
quantum dots, etc.) allow for attachment with TiO2 nanostructures, resulting in synergistic properties
and thus increasing the functionality of the resulting composite. The current review aims to present
the marked progress recently achieved in the use of TiO2/graphene composites in the field of photo-
catalysis. In this respect, we highlight the progress and insights in TiO2 and graphene composites in
photocatalysis, including the basic mechanism of photocatalysis, the possible design strategies of the
composites and an overview of how to characterize the graphene in the mixed composites. The use
of composites in photocatalysis has also been reviewed, in which the recent literature has opened
up more questions related to the reliability, potential, repeatability and connection of photocatalytic
mechanisms with the resulting composites. TiO2/graphene-based composites can be a green light in
the future of photocatalysis, targeting pollution remediation, energy generation, etc.

Keywords: titanium dioxide; graphene; nanomaterials; photocatalysis

1. Introduction

Photocatalysis involves the direct use of perpetual sunlight as an energy source and
therefore has become a spotlight of mainstream researchers. TiO2 is a promising semiconduc-
tor photocatalyst due to its low toxicity, low cost, stability and a favorable bandgap and band
edge position for photocatalytic applications. The search for a composite photocatalyst of
TiO2 arises from the limitations of using TiO2, which include low absorption in the visible
range of the solar spectrum, sluggish charge transfer kinetics and, primarily, the inevitable
precious metal consumption for obtaining satisfactory performance in practical applica-
tions [1,2]. Overcoming the limitations present in photocatalysis over TiO2, as well as the
search for metal-free photocatalysts for the modification of TiO2 with carbon-based materials,
in particular with graphene, has been a focus of current research [1,3,4]. Recently, abundant
research towards TiO2/graphene-based photocatalysts has been witnessed, as evidenced
by the increasing number of publications reported in the last three years (2022—12,300,
2021—15,200, 2020—11,900, source: Google scholar, keyword: TiO2/graphene photocatalyst).

Graphene is an exceptional material with a two-dimensional carbon sheet structure
that presents very unique electrical, electronic, optical, thermal and surface features. Com-
bined with a semiconductor, it can serve as a good electron sink or a support to separate and
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transport the charge effectively in photocatalytic reactions [3,4]. The key lies in its favorable
bandgap and unique electrical and electronic properties, which make it a potential macro-
molecular: (i) photocatalyst, (ii) photosensitizer under visible illumination or (iii) cocatalyst
in a composite photocatalyst [5,6]. Its unique surface can also provide copious active
sites for redox reactions and to chemisorb molecules [7,8]. Its polar derivative, graphene
oxide (GO) or reduced graphene oxide (RGO), has been reported to form unique mixed
composites with polymers [9] and semiconductors [10] in view of in-demand applications,
including, for instance, water remediation, energy storage devices, photocatalysis, etc. [11].
They possess a variety of oxygen functional groups (carboxyl, hydroxyl, carbonyl and
epoxy) which can form chemical bonds with TiO2, and this results in composites with
compatible interfaces and synergistic features [12].

Herein, we have highlighted the critical aspects and key features in TiO2/graphene
photocatalysts, considering also the recent marked interest in this field. We have first
included a brief overview of the basics involved in photocatalysis over TiO2, followed
by a discussion of the crucial factors affecting the use of TiO2 or graphene oxide as a
photocatalyst, including the role of graphene in a photocatalytic system. The progress in
obtaining and characterizing these composites together with their use in photocatalysis
has also been overviewed, resulting in a “how to” guide. This review provides a one-click
overview of TiO2/graphene photocatalysts, including current status, insights, progress,
limitations to be addressed and future use.

2. Photocatalysis Over TiO2: The Basics

TiO2 is one of the most used semiconductor photocatalysts due to its nontoxicity,
stability in aqueous solutions, good quantum efficiencies and suitable bandgap [13]. Under
illumination, electrons are promoted to the conduction band (CB) of TiO2 from the valence
band (VB), thereby leaving an electron vacancy, or the hole in the VB, as seen in Figure 1.
However, this happens only if the energy of the photon is equal to or greater than the
bandgap energy of the photocatalyst, i.e., in our case, TiO2 [14]. Moreover, for TiO2
photocatalysts, UV light illumination results in photoexcitation as a result of the bandgap
energy of the TiO2 photocatalyst, which, for anatase is 3.2 eV (λ = 385 nm) and for rutile is
3.0 eV (λ = 410 nm) [15].
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Photoexcitation results in the formation of photogenerated electron–hole pairs, and the
generated charge pairs can either contribute to a chemical reaction with adsorbed/surface
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species or undergoes recombination [14,16]. In a typical TiO2 photocatalyst, the electron–
hole pair can then follow the ensuing sequence of chemical reactions. Namely, the CB
electron interacts with molecular oxygen and leads to the formation of a superoxide radical
anion (O2

•− ), and the VB hole contributes to the water/hydroxide ion oxidation and hence
the formation of a hydroxyl radical (OH•) [14,16]. These generated radicals can then be
further involved in different reactions as a result of photocatalysis over TiO2, e.g., in reac-
tions such as nitrogen fixation [17], CO2 reduction [18], hydrogen gas production [19], and
the degradation of different pollutants [20]. In the presence of a pollutant (i.e., rhodamine
B [21], congo red, methyl orange, or methylene blue dye [22]), VB holes and CB electrons
can directly interact with the pollutant species and lead to pollutant mineralization due to
water and dioxygen radical formation [23,24].

2.1. Mechanism of Oxidation

In a general photocatalytic reaction, the photogenerated holes oxidize water (com-
monly the surface of a photocatalyst contains water and is generally referred to as absorbed
water). As previously mentioned, the oxidation of water results in the formation of OH•

radicals, which are, by nature, strong oxidizing agents and decompose dye [25]. In the
presence of an organic dye and oxygen, there is the formation of some intermediate radi-
cals in organic compounds [26]. This can result in radical chain reactions along with the
consumption of oxygen and finally in the decomposition of organic matter into water and
carbon dioxide [27–30].

2.2. Mechanism of Reduction

The reduction process in photocatalysis usually occurs in the presence of air; therefore,
it can be simply seen as the reduction of oxygen. The oxygen reduction reaction occurs as
an alternative to hydrogen generation reaction [29], and this is due to the fact that oxygen is
a relatively easily reducible species. The O2

•− radicals formed as a result of the interaction
between the CB electrons with dissolved oxygen further react with the intermediate organic
products formed during the oxidation reaction, thereby either producing peroxide or
decomposing to hydrogen peroxide and then to water. Such reduction reactions are more
frequent when photocatalytic processes occur in organic-compound-containing media,
rather than in pure water. Therefore, the presence of organic matter on the TiO2 surface
leads to the hindrance of charge recombination and hence to promoting photocatalytic
activity, and as more organic matter is present, there are more positive holes as well [27–30].

3. TiO2—Dependent Factors Affecting Photocatalysis

Photocatalysis is one of the most frequently used green sustainable technologies for en-
vironmental remediation [31]. Remarkable research and development has been conducted
in semiconductor-photocatalysis-based applications such as solar cells, water splitting,
photodynamic therapy, bacterial disinfection and, particularly, for the removal of environ-
mental pollutants [32]. In this context, for a decade, titanium dioxide (titania or TiO2) has
remained one of the most extensively investigated semiconductor photocatalysts, owing to
its suitable band gap (anatase TiO2—3.2 eV), chemical stability and non-toxicity [33]. TiO2
nanophotocatalysts provide increased effective photocatalytic activity under real conditions
due to their higher specific surface area compared to bulk TiO2 [34].

The overall photocatalytic activity of TiO2 can be influenced by the physiochem-
ical, chemical and optoelectronic properties of the TiO2 photocatalysts, which conse-
quently vary depending on the synthesis method, reaction conditions (precursors, reac-
tion medium or solvent, pH, time, reaction temperature, calcination temperature, etc.)
and photocatalytic experimental conditions, such as pH, concentration, illumination
power, etc. [35–37]. The key properties of TiO2 that can be tuned by the synthesis method
include the crystal phase, crystal lattice, exposed crystal facets, uncoordinated surface
sites, interface, specific surface area, degree of crystallinity, geometry, size, porosity, com-
position, lattice defects, etc. [38–40]. From these various properties, the crystal phase,
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morphology, pore size, band gap, active sites, use of sacrificial agent, dopants, cocatalysts
and interfacial defects are the leading factors directing the efficiency of the TiO2 photocat-
alyst’s photocatalytic activity. Some of these key factors that influence the photocatalysis
of TiO2 are further discussed below.

3.1. Morphology

The morphology of the TiO2 photocatalyst not only affects the separation of photogen-
erated charge carriers but also the type of the defects that originate during the synthesis.
Nanostructured TiO2 exhibits an increased number of active sites, as a result of the higher
surface-to-volume ratio, and subsequently, such nanostructured photocatalysts that also
have a larger specific surface area show improved photocatalytic activity and efficiency. Dif-
ferent TiO2 nanostructures, such as quantum dots [41], nanoparticles [42], nanotubes [43],
nanorods [44], nanosheets [45], nanoflakes [46] and hierarchically porous monoliths [47],
can be prepared by sol-gel, hydrothermal/solvothermal, flame hydrolysis, water-in-oil
microemulsion and chemical vapor deposition [48]. The morphology and geometry of TiO2
nanostructures can also modify the optoelectronic properties (e.g., mid-band-gap electronic
states) that can shift the absorption spectrum and alter the charge separation/migration.

Recently, Li et al. [46] investigated the impact of different TiO2 morphologies on pho-
tocatalytic hydrogen evolution. Structure engineering via the thermal transformation of
protonic titanate as a template was studied for the synthesis of TiO2 nanoflakes (length:
100−200 nm, width: 50−100 nm), nanorods (length: 3−7 µm, width: 800−1000 nm),
nanowires (length: 2−5 µm, width: 80−120 nm) and nanoflowers (diameter: 500 nm)
by varying experimental conditions. The following fabrication steps were followed, as
schematically represented in Figure 2: (a) nanoflakes by hydrothermal alkalization, the pro-
tonation of as-prepared titanium glycolate precursor (TGP) and calcination; (b) nanowires
by hydrothermal and reflux alkalization of TGP and by calcination; (c) nanoflowers by
hydrothermal alkalization and protonation and by calcination; (d) nanowires by hydrother-
mal alkalization, protonation and calcination of TiO2 nanoparticles; and (e) nanoflowers by
solvothermal method using tetrabutyl orthotitanate (TBT) in the presence of mixed solvents
N,Ndimethylformamide (DMF) and isopropyl alcohol (IPA) and then by calcination. The
highest hydrogen evolution rate of 3.63 mmol g−1h−1 was observed for TiO2 nanoflakes
as compared to nanorods, nanowires and nanoflowers. The exceptional photocatalytic
hydrogen evolution was attributed to: (i) the negative conduction band position, (ii) fast
photoinduced charge carrier separation and (iii) abundant active sites.

3.2. Phase

The three main polymorphs of TiO2, namely, anatase, rutile and brookite, are stable
under ambient and low-pressure conditions, and in addition, their relative stability varies
with particle size. For example, rutile in a bulk form is thermodynamically the most
stable polymorph of TiO2, and at the nanoscale, anatase is the most stable phase. Brookite
is considered a metastable form [49]. The geometric (crystallographic orientations) and
electronic structure of TiO2 influence the photocatalytic activity, i.e., anatase (indirect band
gap, Eg = 3.2 eV) and rutile (direct band gap, Eg = 3.0 eV) show the maximum photoactivity
among all phases. Typically, anatase is considered the most promising phase due to its
higher value of reduction potential and slow recombination rate of photoexcited electrons
and holes, but it also has a limited absorption in the ultraviolet (UV) region of only 4% of
the solar spectrum (as a consequence of the wider band gap) [50,51].

3.3. Surface

The surface chemistry, active sites, reactive facets and interfaces are additional crucial
factors that define the efficiency of the TiO2 photocatalysts [52]. The promotion of the
proton transfer between the different interfaces improves the surface chemical reactions
and hence the efficiency of the photocatalyst [53]. Modification strategies for tailoring
the surface properties of TiO2 photocatalysts through doping [54], co-doping [55], defect
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creation [56,57], sensitization [56], surface coatings and heterojunction formation using
functional nanomaterials (oxides, plasmonic metals, quantum dots, graphene-based nano-
materials, macromolecules, etc.) [52,58,59] have been widely investigated to enhance the
photocatalytic performance.
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3.4. Light Harvesting

One of the limiting factors for TiO2 photocatalysis is its narrow photocatalytic region,
namely, due to its wider band gap, TiO2 is UV-active. Further electronic structure modula-
tion in TiO2 photocatalysts can be performed by forming nanostructures, doping, co-doping,
sensitizer doping, semiconductor coupling, heterojunction formation, oxygen vacancies
formation, cocatalyst loading and defect engineering to transform it into a visible light
active photocatalyst [60,61]. The band gap modification facilitates photoinduced charge sep-
aration and migration and improves the photocatalytic activity [14,62–65]. Wang et al. [66]
reported the growth of nanorods and ultrathin nanowires on graphene aerogel for the
formation of TiO2 NR@GA and TiO2 ultrathin NW@GA composites, where the graphene
had a significant influence on the growth of TiO2. Numerous influencing factors such as
phase, morphology, size, band gap and intermediate energy levels were investigated as a
function of heterogeneous interfaces.

4. Graphene in Photocatalysis: Benefits and Impacts

Graphene, a dream material, is an atom-thick sheet of sp2-hybridized carbon and
has been in continuous use in scientific and engineering communities since its dis-
covery [11–13]. One of the most fascinating applications of graphene is in designing
heterogeneous semiconductor/graphene composite photocatalysts [14,15]. Heteroge-
neous photocatalysis is a promising and green process, well-known in the research
community [16,17], since Fujishima and Honda discovered water splitting on TiO2
photoelectrodes. To obtain high efficiencies in photocatalytic processes, photocatalysts
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and their design are crucial, and most investigated photocatalysts include TiO2 [18],
g-C3N4 [19], Fe2O3 [20], ZnO [21], SnO2 [22], and SnS2 [23], CdS [67] CuO2 [24],
BiVO4 [68], MoO3 [25] and MoS2 [69]. So far, most of the photocatalysts show poor
stability and quantum yield and are rarely activated by visible light, posing a major
challenge in the design of heterogeneous photocatalysts for practical applications. In
this respect, composites based on graphene and semiconductors possess the potential to
overcome these limitations, for instance, resulting in increased absorption in the visible
range and higher photocatalytic activity [26].

The fundamental properties of a photocatalyst which influence a photocatalytic reac-
tion are exceptional electrical conductivity and a strong electron-accepting ability, work
function and chemical, physical and surface properties. These properties depend on the
unique structure, interface and surface features, electronic structures, surface chemistry,
charge transport, activation ability for certain reactants and molecular adsorption [2,27].
The properties of graphene can be tuned by suitable chemical modification, for instance,
by controlling the level of oxidation which influences its electrical conductivity, or by its
structural order [28,29]. Below, the intrinsic and tunable features of graphene and its role
in a photocatalytic reaction are discussed.

4.1. Photocatalysis-Dependent Properties of Graphene

The performance of graphene and its derivatives varies with the nature of graphene,
for example, with the level of oxidation which affects the electrical conductivity and
semiconducting/semimetallic nature of graphene, the crystal structure and a variety of
functional groups over its surface, and these aspects are discussed in detail below.

4.1.1. Crystal Structure

A crucial factor in photocatalysis is the electronic properties, which, for graphene,
are exceptional due to its high-quality two dimensional crystal lattice. The band structure
of graphene is rather unique and primarily consists of sp2 hybridized carbon, where the
valence orbital of the carbon consists of a 2p orbital (2pz) perpendicular to the basal plane
of graphene and three planar δ orbitals at 120◦ with each other. The hexagonal lattice of
graphene is like a honeycomb and possesses two equivalent carbon sublattices per unit
cell, referred to as A and B. The π electrons are delocalized in the conjugated network of
carbon and are between the two adjacent carbons that are associated with π* (anti-bonding,
the lowest unoccupied CB) and π (bonding, the highest occupied VB) bands [2]. These two
bands meet at six points, known as neutrality or Dirac points. Due to the graphene’s crystal
symmetry, two points, K and K′, which are independent of one another, can show the linear
dispersion of orthogonal π and π* states without interactions in graphene. From the point
of view of its electronic properties, the contact of the two bands at Dirac points further
indicates that intrinsic monolayer graphene is a semimetal or zero-gap semiconductor [2,6].
In GO, an oxidized derivative of graphene, the VB maxima is composed of an O2p orbital
rather than the usual π orbital present in graphene, and the CB minima is composed of an
antibonding π* orbital [6].

4.1.2. Semimetallic Properties

Pristine graphene is a zero-bandgap, semimetallic material and therefore has a strong
ability to accept electrons, which is a key point in promoting the activity of graphene-based
photocatalysts. Specifically, in photocatalysis, graphene can accept, store and transfer
photogenerated electrons and thereby can serve as an alternative electron sink/reservoir
and a conductive support. Thus, graphene can extend the lifetime of photoinduced charge
carriers, enhance charge separation and extraction and subsequently promote the pho-
tocatalytic activity of graphene-based photocatalysts [70]. These properties of graphene
typically depend on an appropriate work function, in addition to the electrical conductiv-
ity. The contact barrier between a semiconductor and graphene can be controlled by the
graphene’s work function (please note that the latter determines the band alignment of
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different materials). The work function of graphene increases with the increase in graphene
layers and can be as large as that of graphite (≈4.6 eV) [71]. Furthermore, it can be changed
by additional methods, such as introducing atomic defects (hole doping) [72] or doping
(metal chloride, nitrogen) [73,74]. Moreover, the conductivity of graphene can be affected
by the presence of sp3-hybridized carbon, the density of oxygenated groups present in the
graphene nanosheets and the vacancy/defects that influence the electron density of states,
thereby affecting the conductivity of graphene [75].

4.1.3. Semiconducting Properties

As discussed above, the nature of pristine graphene can be changed by its modifica-
tion/oxidation. For instance, GO is the oxidized form of graphene, and the bandgap can
be adjusted by tuning its level of oxidation. The electronic features of GO depend on its
oxidation level, i.e., from pristine graphene, a semimetal, to GO, a semiconductor or an
insulator [76]. Jung et al. [75] described the gradual change in GO (an electrical insulator)
to graphene (a semimetal) during a thermal reduction process, thus showing an intimate
relationship between the electrical properties and chemical structure of GO. The depen-
dence of the GO’s optical properties on its oxidation level was further confirmed [77,78].
Mainly, the presence of oxygen atoms bonded to carbon, the sp3 bonds or/and the other
defects are responsible for an energy gap in the density of electron states. The nature of the
graphene/GO depends on the value of the bandgap. The RGO shows a gradual decrease
in the optical band gap from 3.5 eV to 1 eV as the C/O ratio increases [79].

4.1.4. Electrical Conductivity

As mentioned before, graphene possesses exceptional electrical and electronic features
due to the electrons confined in 2D geometrical symmetries. It is evident that semimetallic
graphene has a high electrical conductivity, whereas GO is electrically insulating, and that
the electrical conductivity can be controlled by the level of oxidation [80,81]. For example,
this is indicated by the thermal or chemical reduction of GO, leading to a significant
increase in conductivity as a result of the restoration of sp2 carbon, as present in the
graphitic network. The theoretical value of the charge carrier mobility for graphene is
2 × 105 cm2/Vs [82]. Below, in Table 1, the electrical conductivity of different graphene-
based materials is listed with the corresponding references.

Table 1. An overview of the electrical conductivity of different graphene-based films/morphologies.

Material Electrical Conductivity (S/m) References

Graphite thin film (~3 µm) 6120 [83]
Graphene (~3 µm) 1750 [83]

RGO thin film (1.5 cm2) 4.21 × 10−5 [84]
GO thin film (1.5 cm2) 4.57 × 10−5 [84]

RGO (by nascent hydrogen) 12,530 [85]
RGO (by hydrazine) 2420 [86]
RGO (by aluminium) 2100 [87]

RGO (by HI) 30,400 [87]
RGO (N2H4 and microwave reduction) 1180 [88]

The electrical properties of graphene can be improved by minimizing the role of
different defects, which act as scattering centers and can inhibit the charge transport in
graphene-based samples. During sp2 carbon restoration, the partial removal of oxygen
functionalities can result in the generation of defects which may affect the optoelectronic
properties. For instance, RGO with more defects shows lower electrical conductivity as
compared to an ideal monolayer of defect-free graphene [89]. The lower conductivity can
also influence the charge transfer and separation during photocatalysis.
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4.1.5. Surface Features

The properties of graphene vary with the functional groups attached to the graphene
surface (e.g., GO has different functional groups: carboxyl, carbonyl, hydroxyl and epox-
ide [9]) as a result of the oxidation or modification/functionalization of graphene. The same
is true for the specific surface area and density of defects in graphene sheets [90,91]. For a
monolayer graphene, the theoretical value of the specific surface area is 2630 m2/g [92],
whereas for monolayer GO, the estimated surface area is 2391 m2/g [93]. Esmaeili et al. [94]
reported the specific surface area of GO as ~53 m2/g. These surface features can play a cru-
cial role in the adsorption of targeted adsorbate and in redox reactions by photogenerated
active species (e.g., charge carriers and reactive oxygen species) on the graphene materials,
thereby improving the photocatalytic activity.

The unique two-dimensional honeycomb-like hexagonal graphene lattice offers a
useful platform for forming composites with different nanostructured semiconductors,
including quantum dots, nanowires/nanorods, nanosheets and porous structures, thereby
favoring the formation of multifunctional graphene-based composite photocatalysts [95].

4.2. The Role of Graphene in Photocatalysis

In a photocatalytic system, graphene derivatives can act as a photocatalyst, a co-
catalyst in most cases and/or as a photosensitizer [96], namely, as a photocatalyst because
of its suitable bandgap that can absorb light and generate charge carriers to catalyze
different species [97] and as a co-catalyst, owing to its unique electrical features and
charge transport properties, thus allowing it to effectively sink/capture electrons from the
semiconductor and to reduce photogenerated charge recombination [98]. When acting as a
sensitizer, graphene and its derivatives are the main species that absorb light and initiate a
photocatalytic process [98,99]. Below, we have further described the fundamental roles of
graphene in photocatalysis.

4.2.1. A Photocatalyst Itself

Pristine GO, exhibiting a certain level of oxidation, can be also a semiconductor mate-
rial and therefore can act as a photocatalyst itself [100], and when its bandgap lies in the
range of 2.4–4.3 eV, it can be used for photocatalytic hydrogen generation in water [97]. As
previously mentioned, an elevated degree of oxidation leads to an increase in the bandgap
of GO, and a well-oxidized GO possesses the suitable CB maxima and VB minima for H2
and O2 evolution. For example, Yeh et al. [100] evaluated the photocatalytic properties of
GO with different oxidation levels. Only the GO with the highest oxidation degree could
generate O2, and other less oxidized GO, though with a sufficient bandgap, could not gen-
erate O2 under light illumination. Please note that this is related to a typical phenomenon
where GO undergoes reduction under light illumination, and therefore, the position of the
VB minima can change. The GO with the highest oxidation degree was oxidized enough,
and therefore, the VB minima remained positive enough for water oxidation under light
illumination [100]. GO can act as a metal-free, eco-friendly and economical photocatalyst
material; however, it has the key ability of suppressing its photocorrosion either by modify-
ing GO (e.g., UV irradiation of GO causes its reduction, and after a certain time of exposure,
the RGO is stabilized [99]) or by some other method.

4.2.2. A Cocatalyst

Graphene in photocatalysis is also very well-known for its role as a co-catalyst, as a
substitute to the traditional costly noble metal co-catalysts. For example, in the case of
RGO, when used with TiO2, its higher work function facilitates the charge transfer from
TiO2 to analyte or to generate reactive oxygen species [101]. Under the illumination of
a composite based on RGO and TiO2, this facilitates the transfer of the photogenerated
electron from the CB of TiO2 to molecular oxygen. Such a process is used, for example, in
the photo-oxidation of arsenic, and further investigation into the participating radicals by
a competitive radical quencher test verified the simultaneous contribution from both the
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hydroxyl and the superoxide radicals. Overall, the composite’s results were similar to that
of the common Pt/TiO2 photocatalyst used in As(III) photo-oxidation [101].

4.2.3. A Sensitizer

Graphene can also act as a photosensitizer for visible light absorption in semiconductor-
based photocatalysis, as it is an ideal support for charge transport in typical photocata-
lysts [102] (e.g., with ZnO [103], TiO2 [99] and ZnWO4 [99]). This occurs when GO is the
main species that absorbs light, without affecting the bandgap of wide bandgap semi-
conductors such as TiO2. The key aspect lies in its suitable bandgap for visible light
activation, which makes it a potential macromolecular photosensitizer in a composite
photocatalyst [10,97,100]. This leads to extended light absorption in the visible region,
thereby resulting in promoted photocatalytic activity [96,99].

Therefore, it is clear that, in visible-light-driven photocatalysis, GO can also act as
a photosensitizer. For example, Nasir et al. [10] illuminated a TiO2/GO photocatalyst
with a visible light source, where the GO acts as a sensitizer (by transfer of electrons to
TiO2 and by direct interaction of VB holes with water to initiate reactive oxygen species),
which, in turn, degrades methylene blue (MB). Tismanar et al. [30] evaluated the visible
light activity of GO in a thin film of TiO2 and GO by degrading MB and imidacloprid. By
large-scale DFT calculations, Du et al. [104] validated the direct photo-excitation of the
upper VB electrons of graphene to TiO2 CB under visible light illumination, which was
also confirmed experimentally by the wavelength-dependent photocurrents of the similar
photoanode. Zheng et al. [99] used GO as a photosensitizer in visible light driven hydrogen
generation over TiO2/GO, and the photoexcited electrons in GO were transferred to TiO2,
thereby reducing water to generate H+ and then H2 gas.

In order to better elaborate and understand the role of GO as a cocatalyst or as a photo-
sensitizer, an example of GQDs and TiO2 heterojunction is included in Figure 3 [98]. In the
case of a cocatalyst, the GQDs separate and transport charges and thereby prohibit charge
recombination. The main species that absorbs light is TiO2, from where the photogenerated
electrons are injected into the CB of GQDs. The GQDs accept electrons and transfer them to
the electrolyte to generate hydrogen gas. As a photosensitizer, the main species that absorbs
light and generates photoexcited charge carriers is GQDs. The photogenerated electrons
are then transferred to TiO2 to further generate hydrogen gas [98]. Please note that the
reported bandgap of GQDs in this case is 2.26 eV, and therefore, they act as a cocatalyst
under UV illumination and as a photosensitizer for visible illumination.
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5. Design of Composite Graphene/TiO2 Photocatalysts

There are various techniques used for the synthesis of graphene–TiO2 nanocom-
posites [1,105,106]. In most, either (i) commercial/pre-synthesized TiO2 is mixed with
graphene or its derivatives by sonication [107] or by simple mixing followed by pho-
toreduction [1,108,109], or (ii) a graphene derivative is used as a support to immobilize
and grow TiO2 nanostructures (e.g., the hydrothermal method [110,111], solvothermal
method [106,112], sol gel [113,114], electrodeposition [115–117] etc.). However, there is no
optimal method that is well-known for the synthesis of these composite structures, and the
quest for a more suitable, scalable and refined method is still in progress and the focus of
researchers. Recently, Nasir et al. [10] introduced a one-step, UV-induced photocatalytic
synthesis of TiO2/GO composites. The composites obtained could be directly used for
visible-light-driven photocatalysis. Below, in Table 2, we have summarized some of the
most recent trends in the design of such graphene-based TiO2-mixed composites, taking
into account the starting Ti material, graphene derivatives and resulting photocatalysts in
view of the synthesis method used and of the resulting morphology.

Table 2. An overview of the recent methods for the design of graphene-based/TiO2 composites.

Ti Precursor Graphene Derivative Photocatalyst Synthesis
Method Morphology Reference

Commercial
P25 Pre-synthesized GO Photoreduced

GO/TiO2

Simple mixing,
followed by

photoreduction
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Table 2. Cont.

Ti Precursor Graphene Derivative Photocatalyst Synthesis
Method Morphology Reference

Titanium (IV)
isopropoxide

(TTIP)

GO by
Hummer’s method

1
wt%RGO/S0.05N0.1

TiO2
nanocomposite

Solvothermal
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Table 2. Cont.

Ti Precursor Graphene Derivative Photocatalyst Synthesis
Method Morphology Reference

Commercial
TiO2

GQDs by
hydrothermal method
Precursor: SWCNTs

GQDs by
hydrothermal method

Precursor: Carbon fiber

Graphene
quantum dots
anchored TiO2

Simple mixing
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Table 2. Cont.

Ti Precursor Graphene Derivative Photocatalyst Synthesis
Method Morphology Reference
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hydrothermal
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mixed-phase
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6. Characterizing Composite Photocatalysts of Graphene/TiO2

Of the existing characterization techniques, the ones that are the most used for confirm-
ing the presence and for characterization in view of evaluating graphene in TiO2/graphene
photocatalysts are: (i) Raman spectroscopy for the presence of graphene, graphite and the
typical structural characterization of TiO2 [133,134], (ii) Fourier-transform infrared spec-
troscopy (FTIR) for molecular groups and chemical bonding (only specific molecules can be
detected) [135], (iii) X-ray photoelectron spectroscopy (XPS) for chemical and compositional
properties of the material’s surface [136] and (iv) scanning electron microscopy (SEM) and
transmission electron microscopy (TEM), coupled with elemental mapping, for evaluating
morphology (atomic scale structural information and interactions with the support is also
possible with TEM coupled with elemental composition) [137].

6.1. Raman Spectroscopy

Raman spectroscopy is a powerful surface sensitive tool used to study the structure
of the composites, giving information related to their structural characterization. For
carbon-based materials, it stands as a high-resolution tool enabling the characterization
of the lattice structure and the electronic, optical and phonon properties [133,134]. The
Raman spectra of anatase TiO2 typically show four peaks at 148, 398, 514 and 641 cm−1,
attributed to Eg(1), B1g(1), A1g + B1g(2) and Eg(2) vibrations, respectively [138]. In the case
of graphite or graphene-based materials, Raman spectra provide detailed structural data
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related to the G and D bands [133,139]. For example, for GO, the usual peaks observed are:
(a) for the D band (disorder/sp3 carbon), usually at ~1350 cm−1, and (b) for the G band
(sp2 carbon), at ~1580 cm−1 [140], and pure graphite does not show a clearly evident D
band [141]. Generally, a higher disorder in the lattice results in broadening of the G and D
bands, and a higher relative intensity of the D band compared to the G band (evaluated
by their intensity ratio, the ID/IG ratio). The Raman spectrum of GO shows not only a
higher ID/IG ratio but also a blue shift in the peak position of the G band compared to
that of graphite [141]. Nasir et al. [10] observed the gradual emergence of the D band with
an increase in the GO’s oxidation level, hence revealing an interesting fact, that GO with
more oxygenated groups results in a higher ID/IG ratio. With the increase in the D band’s
intensity, additional characteristic disorder-related peaks appear, i.e., D + D′, 2D and D′ for
the more oxidized GO [10]. The D + D′ band (also referred as D + G) appears as a bumpy
peak at ~2940 cm−1 and can be observed in highly defective polyaromatic structures [142].
The 2D band appears due to physical defects (i.e., edge defects in graphene sheets), and a
D
′

peak appears at ~1620 cm−1 and can be related to any type of defect [10,142]. In contrast
to TiO2/graphite composites, for TiO2/GO, a more intense and broader G band is observed,
and this is typically used to confirm the formation of GO [10]. Cham sa-ard et al. [140]
evaluated the difference in the Raman spectra of GO and RGO, and namely, the ID/IG
ratio for GO and RGO was 1.02 and 1.17 due to the loss of oxygenated functional groups.
Shahrezaei et al. [138] used Raman spectroscopy to confirm the presence of a modified form
of graphene decorated on TiO2 multileg nanotubes, and the authors verified the presence
of the D and G bands in the composite, which were absent for the pristine nanotubes.

More interestingly, Liu et al. [143] used a TiO2 nanosheet as a support to directly
grow graphene, and Raman spectroscopy was used to observe the growth phenomena
as a function of the growth time, as shown in Figure 4. The D and G bands, typical
characteristics of carbon materials, became more pronounced after 2 h (180 min), as seen
in Figure 4a (inset I), where intense D and G bands can be observed together with the
appearance of the 2D and D + G bands, as well as with an increase in the D band. A
sharp change in the FWHM of the G band was measured at 0.5 h (30 min) as a result of
the complete formation of a graphene monolayer, with no further drastic change [143].
Nasir et al. [10] observed a sequential increase in the ID/IG ratio as a function of graphite
oxidation (directly dependent on the UV illumination time, which led to a gradual increase
in graphite oxidation), as indicated in Figure 4b.

The above are the most critical aspects of how graphene-based materials in a metal ox-
ide composite can be identified by Raman spectroscopy and of what to expect with respect
to their different oxidation level, particularly at trace concentrations of graphene-based ma-
terials. However, the main and initial fingerprint for the presence and investigation of GO
or its modified forms is therefore the appearance of the D and G bands and the ID/IG ratio.

6.2. FTIR Spectroscopy

Fourier-transform infrared spectroscopy (FTIR) is typically used for the identification
of chemical composition or molecular structure, specifically to identify the chemical bonds
and characteristic functional groups present in a material or a composite [144,145]. In
graphene-based materials, the extent of oxidation and the presence of oxygenated species
can be evaluated from its FTIR spectra. FTIR also provides information with respect to
the surface reactive sites of a material and their interactions with certain species [146].
FTIR spectroscopy is typically the second preferred characterization technique used to
identify the presence of GO in composites [146,147]. Figure 5 shows a very clear overview
of typical FTIR spectra for GO and its composites with TiO2 [148]. A typical IR spectrum of
GO shows a broad band between 3600–3200 cm−1 along with a band at 1400–1200 cm−1

corresponding to –OH groups, at ~1700 cm−1 for carbonyl groups, 1600–1400 cm−1 for the
C=C of graphene, 1100–1000 cm−1 for alkoxy groups and ~950 cm−1 for epoxy groups [9].
For TiO2, bands attributed to –OH groups are present, along with Ti–O/Ti–O–Ti peaks
in the ~900–400 cm−1 region [149]. In the case of the GO/TiO2 composites, overlapped
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spectra are observed. The main peaks taken into account for the identification of such
composite are: (i) –OH groups (3200–3600 cm−1, 1400–1200 cm−1), this is usually observed
in pristine anatase and (ii) a Ti–O–C peak, with a blue shift in the wavenumber compared
to the Ti–O/Ti–O–Ti peak [148,150]. In TiO2-RGO composites, the loss of functional groups
in the RGO results in less peaks in the spectra compared to the GO composite [148,150]. It
is important to note that, in most composites with titanium dioxide, the amount of GO is
quite low, and therefore, in the corresponding IR spectra, the functional groups of GO are
retained with a significant decrease in peak intensity [148,151]. Sim et al. [152] observed
the loss of the C–O peak at 1220 cm−1, ascribed to the interaction of the epoxide/phenolic
groups of GO with –OH groups in the Ag/TiO2 nanotubes, thereby forming Ti–O–C bonds
in their composites with GO (the absorption peak for Ti–O–C in combination with Ti–O–Ti
vibration appeared at 800 cm−1).
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6.3. XPS Spectroscopy

X-ray photoelectron spectroscopy (XPS) is one of the most used characterization
techniques, establishing the chemical and compositional properties of surfaces, with
a high surface sensitivity. XPS is also widely used for the evaluation of graphene-
based materials [153,154] or various graphene-based composites with semiconductor
oxides [155,156]. Moreover, up to now, the adventitious carbon peak is typically used
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for spectra calibration, and more recent reports have shown the drawbacks of such an
approach and how to further proceed in order to allow for reliable determination of the
chemical states [136,157,158], as well as for accurate peak fitting [157,158].
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Typically, the C1s peak of graphene-based materials (graphite, graphene and graphene
oxide) consists of the peaks discussed below: (i) for graphite, an sp2 peak at 284.1–284.8 eV
(showing an asymmetric peak shape) [158–161], C-OH groups at 285.6 eV and C-O groups at
286.6 eV due to atmospheric oxidation [141], as well as a shake-up feature related to the pi to pi*
transition observed around 290.5–291 eV [158,161,162]; and (ii) for graphene/graphene oxide,
an sp3 peak at 284.6–285.1 eV (typically 1 eV higher than the sp2, [113] C-O at 286.4–286.6 eV
(epoxide groups), C=O at 288.2 eV and COOH groups at 289.2 eV [158,163,164]. For this, there
is also the presence of adventitious carbon at 284.8 eV.

When evaluating graphene-based composites containing TiO2, spectra evaluation can
also include the Ti2p peak, and when changes occur to the structure of the graphene-based
materials, i.e., to the C1s peak position and shape, peak calibration can be performed
with the former. In this respect, Nasir et al. [10] obtained GO by the UV illumination of
grey TiO2/graphite nanocomposites, and XPS confirmed the conversion of graphite to GO.
Figure 6a–c show the high resolution C1s, Ti2p and O1s peaks of pure graphite powder and
of the 0, 4, 8, 24 and 120 h UV illuminated grey TiO2/graphite composites. The presented
XPS peaks clearly validate the changes occurring in the C1s peak (switch from graphite to
GO), as well as the decrease in the surface coverage of GO with grey TiO2 nanoparticles,
with increasing the UV illumination time (with more illumination time, an increase in
the intensity of the Ti2p and O1s peak is observed, together with a decrease in the C1s
peak intensity) [10]. The peak fitting of the pure graphite was in line with data from the
literature [158–160]. The 24 h UV-illuminated nanocomposite (Figure 6d) confirmed an sp3

contribution at 285.2 eV due to oxidized graphite (together with peaks attributed to C-O at
286.4 eV, for epoxide groups C=O at 288.16 eV and COOH groups at 289.2 eV) [10].

Similarly, Kumari et al. [156] evaluated the chemical state variations of GO/TiO2
nanocomposites, and in addition to confirming the presence of TiO2 (Ti2p3/2 at 458.8 eV),
the authors performed detailed investigations of the O1s and C1s peaks. Namely, the peak
fittings for the O1s and C1s were confirmed in the case of the O1s peak for the C=O and
C-OH functional groups at 531.4 eV and 533.6 eV, respectively, [156,165], and for the C1s
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peak, there were weaker residual oxygen-containing functional group peaks compared to
C=C (confirming the partial reduction of GO during composite formation) [156,166].

Rajender et al. [167] evaluated the changes in the mixed hybrid of TiO2 and GO
quantum dots (QDs) by investigating the C1s and O1s peaks. The fitted peaks (Figure 6e–h)
showed the relocation of oxygenated groups after the formation of the hybrid, i.e., the
C-O (ether) and COOH functional groups were significantly reduced in the hybrid sample,
meaning that some of the oxygen-related functional groups may have been converted to
in-plane epoxy groups to facilitate the possible formation of C-O-Ti bonds in the TiO2-GQD
hybrid, observed also in the O1s peak fitting in the peak at 531.7 eV.
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Figure 6. High-resolution XPS analysis: (a–c) raw data of Ti2p, C1s and O1s peak of the TiO2-GO
composite (increases in time show oxidation level of GO), (d) C1s spectra of 24 h UV-illuminated
composites [10] (Reprinted with permission from [10] Copyright 2022 John Wiley & Sons, Inc.),
Composites of GO quantum dots (gQD) and TiO2 (T16) with the corresponding peak fittings for
the (e,f) C1s spectra (GQDs and the T16/GQD composite) and the (g,h) O1s spectra (T16 and
T16/GQD) [167] (Reprinted with permission from [167] Copyright 2018 Elsevier Ltd.).

6.4. SEM and TEM

Scanning electron microscopy (SEM) is extensively used for evaluating the nanostruc-
ture and morphology of various materials, both in top-views or in cross-sections, whereas
transmission electron microscopy (TEM) enables the detailed evaluation of atomic-scale
structural information [137].

For example, SEM is generally used to study and confirm the presence of graphene
sheets in composites. The morphology of TiO2 can vary from 0D nanoparticles, to 1D-
nanotubes/nanowires, to 2D-nanosheets. Note that pristine graphite has a thick, layered
and non-transparent structure. At a magnification of 5–50 k, many stacks can be found
with a much bigger particle size of graphite flakes, whereas GO has a smaller particle size,
and only few stacks can be found at 40–300 k (see Figure 7). This is because GO is produced
by oxidation, and thereby the exfoliation of graphite structure leads to isolated mono- or
multilayer sheets of graphene [168].

The GO can, therefore, be characterized by crumpled, silk-veil-like, thin nanosheets
present with the TiO2 nanostructures. In the case of composites with TiO2 nanoparticles,
well-defined, mono or multilayer sheets of GO decorated with TiO2 nanoparticles and
agglomerates can be clearly observed [169], as seen in Figure 8a. Trapalis et al. [79] observed
2–6 layered sheets of graphene in the TiO2 nanoparticle/graphene composites (the graphene
content was only 1%). When combined with spaced TiO2 nanotubes [138] (showing distinct
spacing in between the tubes compared to the classical close-packed nanotubes [170]), the
graphene sheets were found on the top surface and in between the nanotubes as well, as
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seen in Figure 8b. In Figure 8c,d, SEM images of TiO2/RGO with 5% RGO concentration
have been included together with the as-obtained elemental analysis, confirming the
presence of carbon [171].
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TEM is an essential tool in the analysis of graphene-based nanosheets for more detailed
morphology insight into the nanosheets and for the confirmation of the GO’s nanoscale
features. For instance, in Figure 9, very translucent, wrinkled nanosheets of GO can be
clearly observed, and the inset in Figure 9b shows that the GO’s sheet thickness is in
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the nanometer range. Well-dispersed TiO2 nanorods can be seen on the GO sheet in
Figure 9b [172]. The lattice spacing of GO can also be estimated by TEM; for example,
Nasir et al. [10] obtained a lattice spacing of 0.35 nm (002) for GO and 0.35 nm (101) for the
TiO2 region.
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6.5. UV-Vis Spectroscopy

UV-Vis analysis is a simple analytical method for quantitative analysis and for evalu-
ating the molecular level mechanisms in a chemical compound/material, and it can also
estimate band gaps and evaluate the optical properties of the materials [173]. UV-Vis
spectroscopy does not give a direct mark for the presence of graphene or GO; however, it
proves useful in evaluating the extended range of light absorption in the visible region,
which is a usual characteristic of graphene-based semiconductor composites. The typical
characteristic features observed for identifying GO are: (i) a shoulder attributed to n−π*
plasmon peak, which usually appears at ∼310 nm [174] and (ii) a π−π* plasmon peak
between ∼230–300 nm for graphene, or at ∼230 nm for well-oxidized graphene [175], [174].
In graphene-based materials, the π−π* absorption peak corresponds to the sp2/sp3 charac-
ter. The amount of shift in the position of this peak towards the visible range corresponds
to the increase in the sp2 character, thereby increasing the growth of the number of sp2

layers [175].
Figure 10a includes the UV–Vis spectra of GO and RGO, and the main absorption edge

at 226 nm was shifted to 262 nm after reduction. This red shift suggests the restoring of the
electronic conjugation in the graphene sheets after reduction [176]. Mixed composites show
a red shift towards longer wavelengths and an increase in the visible range absorption
compared to pristine TiO2, as seen in Figure 10b, where TGPPCx stands for the TiO2
graphene photocatalyst and x stands for the content of graphene [175]. A modified form
of graphene (cyano graphene, cyano platinized graphene), when decorated on the TiO2
nanotubes, showed a red-shift (ca. 10–20 nm) in the absorption edge and relatively more
absorption in the visible range of light than the bare TiO2 nanotubes [138]. Zhang et al. [177]
observed a 30 nm red shift in the absorption edge of a layer-by-layer composite of TiO2 and
graphene. In this case, a strong visible range absorption was also observed, indicating high
photocatalytic activity in the UV and visible range. Similarly, Rong et al. [175] observed
a red shift in the TiO2 absorption spectrum, as a function of the graphene content with a
decrease in the band gap, especially at a higher graphene content.
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with permission from [176] Copyright 2017 Elsevier Ltd.) and (b) mixed composites with different
content of graphene [175] (Reprinted with permission from [175] Copyright 2015 Elsevier Ltd.).

7. TiO2—Graphene Composites: Current Status and Applications

TiO2 photocatalysis has made several breakthroughs in various practical and indus-
trial applications, primarily in the field of environmental safety (e.g., wastewater treatment,
air purification, microorganism inactivation/sterilization, etc.). As previously mentioned,
an ideal photocatalyst represents outstanding features such as economical features, envi-
ronmentally benign features, long-term stability, reproducibility, recyclability and efficient
photocatalytic activity [178]. Despite several advantages of TiO2 photocatalysts, there are
some limitations, such as (a) recyclability, which is relevant to separation and recovery,
(b) narrow regions of light harvesting due to its wide band gap, (c) faster recombination
of photogenerated carriers, (d) low surface area, (e) less adsorption capacity and (f) ag-
gregation issues [179]. Countermeasures usually include, for example, the modification,
optimization, design and development of a TiO2 photocatalyst to improve photocatalytic
efficiency, stability, reproducibility and recyclability [126,180,181].

Graphene-based TiO2 composites have emerged as efficient photocatalysts [1,6,182–186]
for the next generation photocatalytic applications [1,105,187–192]. The synergistic effect
between components in ternary photocatalysts (comprising three components, where each
photocatalyst component plays its potential role to maximize the photocatalytic activity) offers
significant merits, such as multiple interfaces, improved separation and migration/transfer
of charges, reduced recombination of photogenerated charge carriers, prevented agglom-
eration, high specific area and high stability [193]. Recent progress in the development of
TiO2/graphene-based photocatalysts in various applications, such as wastewater treatment
for the removal of pollutants, air purification, water splitting for hydrogen production, dye-
sensitized solar cells (DSSCs), photoconversion of CO2 into renewable fuels, NOx fixation and
deactivation of microorganisms (see also Figure 11), is further discussed in this section.

7.1. Remediation of Water

Typical water contaminants include sewage industrial effluent (e.g., textiles, paper,
pharmaceutical industry, etc.) and domestic contaminants (e.g., detergent, pharmaceuticals,
pesticides, etc.) [194]. The incorporation of graphene in TiO2 results in a good adsorbent
for the removal of organic pollutants (e.g., dyes, phenolic compounds, chlorinated prod-
ucts, antibiotics, pesticides and crude oil) and microbial inactivation due to electrostatic
attraction, π−π interaction, visible light absorption and larger electron mobility [195–200].
TiO2/graphene-based composites have revealed their potential as cost effective, envi-
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ronmentally friendly and sustainable photocatalysts in support of wastewater treatment
technology for the degradation of organic pollutants and environmental remediation [200].
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An example of such a wastewater treatment application is for xanthate degradation
(xahnthane is an environmental pollutant resulting from the mineral industry, i.e., from
the mineral flotation process, and is toxic for biota [201]). The photodegradation efficiency
of an 18% TiO2/G composite under simulated light irradiation was reported as 97.03%
after 100 min, much higher than for pure TiO2 (17.88%). This is attributed to an extended
photoresponse in the composite material from 200–380 nm to 200–800 nm [127]. Similarly,
high photocatalytic degradation was observed for TiO2/GO composites for picric acid
(also known as 2,4,6-trinitrophenol, which is a dangerous nitroaromatic environmental
pollutant generated from dye, leather and chemical industries, having low biodegradability
and high toxicity [202]) [12]. RGO-nano TiO2 composite (RGO-nTiO2) showed 88% degra-
dation efficiency for metachrome yellow dye (or alizarin yellow GG, an azo dye which
is textile effluent, highly toxic and carcinogenic [203,204]) under natural sunlight with
80% efficiency, higher than for that of plain TiO2. The enhanced efficiency was attributed
to the superoxide anion radical that played the key role in pollutant oxidation [20]. The
Z-scheme photocatalytic composite g-C3N4/ RGO/TiO2 showed an efficient performance
for ammonia–nitrogen removal from water. Ammonia–nitrogen is a toxic groundwater
pollutant, and its impact is widespread, as its excessive quantity causes malodor in river
water that can lead to eutrophication, weakening of the self-depuration capability of wa-
ter and threats to public health. Heavily polluted waters contain an ammonia–nitrogen
level of >15 mg/L, and a minor pollution level is considered to be 8–15 mg/L [205,206]).
The photogenerated electrons from the TiO2 conduction band can transfer to the g-C3N4
valence band by the Z-scheme mechanism. These electrons recombine in g-C3N4 with
photogenerated holes. The g-C3N4/RGO/TiO2 Z-scheme system shows improved redox
capacities for NH3–N oxidation and NO3− reduction (Figure 12) [207].
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The CGTC (graphene-oxide-bridged chitin-modified TiO2/carbon fiber) composite pre-
pared under hydrothermal conditions by chitin-modified and GO-bridged TiO2/carbon fibers
showed 97% photocatalytic degradation of Rhodamine B in 60 min [208]. Yanwen et al. [209]
reported the ternary composite N–TiO2/GO/PP fiber sheet (24.6 cm × 2.7 cm) fabricated
by the immobilization of N-doped TiO2 and GO on polypropylene (PP). Photocatalytic
degradation for 9 h under simulated sunlight of 10 mg L−1 roxithromycin (roxithromycin
is an antibiotic pollutant from domestic and industrial effluent; its low concentrations may
cause high ecological risk after long term exposure [210]) could reach up to 90%, with a
degradation rate constant of 0.2299 h−1 in surface water under alkaline conditions (pH 8–9).

7.2. Photoconversion of CO2

Carbon dioxide (CO2) emission is a major source of global warming. The photo-
conversion of CO2 into useful chemicals, such as CH3OH, CH4, CO, etc., is an attractive
approach to alleviate the issues of environmental pollution and climate change [211–214].
Kamal et al. [215] reported the synthesis of plasmonic gold nanoparticles photodeposited
on TiO2 and decorated on N-doped graphene (ANGTx) to form a heterostructure. The com-
posite photocatalyst showed enhanced photoconversion of CO2 to methane with high selec-
tivity. The optimized composite delivered the highest electron consumption rate (Relectron)
of 742.39 µmol g−1h−1 in 4 h for the reduced products. The outstanding performance of
such a photocatalyst was attributed to the synergistic effect between the components [215].
The improved light absorption, higher CO2 adsorption, faster charge transfer kinetics and
lower recombination rate originated from interfacial kinetics between components, and a
similar enhancement was also reported for Ni/GO–TiO2 composites [128].

7.3. Air Purification

Air pollution levels have become increasingly alarming, and outdoor and indoor air
purification is becoming indispensable in different urban areas of the world. Air pollution
includes organic and inorganic chemical contaminants such as volatile organic compounds
(VOCs), carbon monoxide (CO), nitrogen-containing compounds (NOx), sulfur-containing
compounds (SOx) and pathogens such as bacteria, viruses and fungi [216].

Photocatalytic air purification is the most proficient technology that facilitates the
formation of reactive oxygen species (ROS) to decompose air pollutants. Photocatalytic
technology offers the complete degradation of air pollutants into nontoxic final products
under ambient conditions. It does not need any chemical or external energy source and
operates in safe conditions [217]. The utilization of solar light under ambient conditions
makes it an ideal, feasible and preferable technique [218]. TiO2-based photocatalysts
facilitate the adsorption of environmental pollutants, owing to their favorable photocatalytic
properties applicable to self-cleaning, air-purifying and antimicrobial applications [219,220].
The mixing of TiO2 with construction materials such as cement could lower the air pollutant
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concentrations [221]. TiO2-based photocatalysts can also be applied as coatings on the
interiors of buildings to improve air quality [222].

This photocatalytic approach is also effective for the inactivation of airborne microbial
pathogens such as Anthrax and against the pandemic of the Coronavirus family [223,224].
Recently, an Ag/TiO2/RGO ternary composite was also investigated as an anti-bacterial
self-cleaning photocatalyst [225]. Additionally, disinfection by titania-based photocatalysts
is a relatively inexpensive, non-toxic and safe method.

7.4. Water Splitting

TiO2-based materials are considered a promising solar-light-driven photocatalyst for
water splitting [40]. Edge-sulfonated graphene (RGO-SO3H) was synthesized through
a diazotization reaction coupled with TiO2 nanoparticles to form an RGO-SO3H/TiO2
photocatalyst for a hydrogen evolution reaction (HER). The composite showed a hydrogen
production rate of 197.1 mmol h−1g−1, which was higher than that for TiO2 (5.38 times),
RGO/TiO2 (2.81 times) and SO3H/TiO2 (3.40 times). The improved performance of the
RGO-SO3H/TiO2 photocatalyst is to be attributed to the synergetic effect of covalently
functionalized graphene (photoelectron cocatalyst) and sulfonate ions (H+-adsorbed ac-
tive sites) [118].

Moreover, GO sheets anchored onto Fe2O3−TiO2 and V2O5−TiO2 particles exhibited
398.18 and 373.01 µmol h−1 HER rates under solar radiation. The enhanced HER rates were
attributed to higher surface areas provided by GO, the lower recombination of photogener-
ated carriers and faster electron transfer rates [226]. Higher photoelectrochemical activity
was also obtained for GO/In2S3/TiO2 nanorods used as photocatalysts for photoelectro-
chemical water splitting [227]. The improved performance was attributed to the larger
surface area, visible light absorption and improved carrier transport because of additional
defect states [92,228–230].

Put succinctly, binary [231] and ternary [232] graphene/TiO2-based composites offer
affordable photocatalysts with feasibility in processing, responses to visible light, promising
photocatalytic activity and lower recombination rates of photogenerated charge carriers.
Photostability and photocatalytic performance can be enhanced by heterojunction forma-
tion and Z-scheme photocatalysts.

8. Conclusions and Future Outlook

To resolve the limitations of TiO2 in photocatalysis, TiO2/graphene composites are
well-known and have the potential to overcome increasing energy demand and pollution
remediation by means of photocatalysis. Graphene offers advantages of (i) photosensitizing
TiO2 for visible light absorption, which results in an extended range of absorption in the
solar spectrum and thereby more photocatalytic activity; and (ii) cocatalysts, assisting in
charge transport, prohibiting charge recombination and overcoming the sluggish charge
transfer kinetics of TiO2. Typically, the presence of graphene affects electrical conductivity
and electronic features, as well as active sites (due to the good surface area of graphene
sheets), and, as a result, the overall photocatalytic activity. However, surface features, the
crystal structure, the extent of oxidation and the type of derivative of graphene are crucial
for this. In this review, the fundamental properties of graphene and their plausible role in
photocatalysis have been elaborated. The most critical aspects on how graphene and its
derivatives can be identified in composites by different spectroscopic analysis techniques
(such as Raman spectroscopy, FTIR spectroscopy and XPS), and what to expect with respect
to their different oxidation levels, particularly at trace concentrations of graphene-based
materials in a metal oxide composite, have been elaborated, with a possible ”how to” guide.
The current state-of-the-art applications of TiO2/graphene composites in photocatalysis,
including wastewater treatment for the removal of pollutants, air purification, water
splitting for hydrogen production and the photoconversion of CO2 into renewable fuels,
have been summarized.
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Despite a marked increase in the progress of these mixed composites, several ques-
tions still need to be addressed. For instance, there is no optimal method of synthesis of
these mixed composites, and the same is valid for obtaining large-scale preparations of
photocatalysts as well as for the synthesis of graphene with tunable and controlled degrees
of oxidation. The recent progress in the design of these photocatalysts has been reviewed,
and a need for an optimal and efficient fabrication method to increase the performance
of graphene derivatives and their semiconductor composites stands out. In this regard,
recently, a new study [10] on the direct obtaining of visible light active photocatalysts with
a controlled degree of oxidation of GO has been reported. The method is new and requires
further checks for large-scale implementation; however, it opens up an avenue towards the
easy and green obtaining of such mixed composites, which is a step forward towards an
ecofriendly design approach for GO. The mechanism of interaction of graphene derivatives
with TiO2 is still unclear or rather vague. There is a need for future efforts in order to
evaluate the underlying mechanism in promoted photocatalytic activities supported by
experimental and theoretical evidence as well (for instance, the positions of valence and
conduction bands, the lifetime of photogenerated charge carriers, also considering the
extent of graphene oxidation, etc.). The mineralization, or photocorrosion of the mixed
photocatalyst also needs to be addressed. Once well-known, these aspects can lead to de-
signs of highly efficient, reliable and very economical graphene/semiconductor composites
that can then be applied in different fields of photocatalysis.

At a glance, the progress in TiO2/graphene-based photocatalysis has been remarkable.
If the limitations are addressed step by step, undoubtedly, such composites will be very
useful in photocatalysis, and considerable breakthroughs can be expected in future.
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Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catal. 2018, 9, 345–364. [CrossRef]

57. Mohajernia, S.; Andryskova, P.; Zoppellaro, G.; Hejazi, S.; Kment, S.; Zboril, R.; Schmidt, J.; Schmuki, P. Influence of Ti3+

defect-type on heterogeneous photocatalytic H2 evolution activity of TiO2. J. Mater. Chem. A 2019, 8, 1432–1442. [CrossRef]
58. Zhou, X.; Liu, N.; Schmuki, P. Photocatalysis with TiO2 Nanotubes: “Colorful” Reactivity and Designing Site-Specific Photocat-

alytic Centers into TiO2 Nanotubes. ACS Catal. 2017, 7, 3210–3235. [CrossRef]
59. Gao, Z.-D.; Qu, Y.-F.; Zhou, X.; Wang, L.; Song, Y.-Y.; Schmuki, P. Pt-Decorated g-C3N4 /TiO2 Nanotube Arrays with Enhanced

Visible-Light Photocatalytic Activity for H2 Evolution. ChemistryOpen 2016, 5, 197–200. [CrossRef] [PubMed]
60. Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in

theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [CrossRef]
61. Mittal, A.; Mari, B.; Sharma, S.; Kumari, V.; Maken, S.; Kumari, K.; Kumar, N. Non-metal modified TiO2: A step towards visible

light photocatalysis. J. Mater. Sci. Mater. Electron. 2019, 30, 3186–3207. [CrossRef]
62. Kaur, N.; Shahi, S.K.; Shahi, J.; Sandhu, S.; Sharma, R.; Singh, V. Comprehensive review and future perspectives of efficient

N-doped, Fe-doped and (N,Fe)-co-doped titania as visible light active photocatalysts. Vacuum 2020, 178, 109429. [CrossRef]
63. Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over

doped-TiO2 nanoparticles. Sol. Energy 2020, 211, 522–546. [CrossRef]
64. Paumo, H.K.; Dalhatou, S.; Katata-Seru, L.M.; Kamdem, B.P.; Tijani, J.O.; Vishwanathan, V.; Kane, A.; Bahadur, I. TiO2 assisted

photocatalysts for degradation of emerging organic pollutants in water and wastewater. J. Mol. Liq. 2021, 331, 115458. [CrossRef]
65. Arora, I.; Chawla, H.; Chandra, A.; Sagadevan, S.; Garg, S. Advances in the strategies for enhancing the photocatalytic activity of

TiO2: Conversion from UV-light active to visible-light active photocatalyst. Inorg. Chem. Commun. 2022, 143, 109700. [CrossRef]
66. Wang, Y.; Li, L.; Lu, H.; Wang, C.; Zhao, Y.; Kuga, S.; Huang, Y.; Wu, M. Effect of morphology-induced interfacial defects on

band location and enhanced photocatalytic dye degradation activity of TiO2/Graphene aerogel. J. Phys. Chem. Solids 2021,
162, 110448. [CrossRef]

67. Cheng, L.; Xiang, Q.; Liao, Y.; Zhang, H. CdS-Based Photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391. [CrossRef]
68. Noor, M.; Sharmin, F.; Al Mamun, M.; Hasan, S.; Hakim, M.; Basith, M. Effect of Gd and Y co-doping in BiVO4 photocatalyst for

enhanced degradation of methylene blue dye. J. Alloy. Compd. 2021, 895, 162639. [CrossRef]

http://doi.org/10.1002/chem.201800799
http://www.ncbi.nlm.nih.gov/pubmed/29570871
http://doi.org/10.1002/ejic.201800097
http://doi.org/10.1080/02603594.2019.1592751
http://doi.org/10.1002/smll.201200564
http://doi.org/10.1016/j.mtchem.2021.100428
http://doi.org/10.1016/j.pnsc.2016.08.010
http://doi.org/10.1021/acs.iecr.2c01005
http://doi.org/10.1039/D1QM00220A
http://doi.org/10.1039/C7RA06925A
http://doi.org/10.1038/srep06582
http://www.ncbi.nlm.nih.gov/pubmed/25301286
http://doi.org/10.1021/cr5000893
http://doi.org/10.1038/srep04043
http://doi.org/10.1021/cr500055q
http://doi.org/10.1016/S1872-2067(15)60999-8
http://doi.org/10.1002/cphc.201000276
http://doi.org/10.1002/asia.201900532
http://www.ncbi.nlm.nih.gov/pubmed/31188545
http://doi.org/10.1021/acscatal.8b04068
http://doi.org/10.1039/C9TA10855F
http://doi.org/10.1021/acscatal.6b03709
http://doi.org/10.1002/open.201500219
http://www.ncbi.nlm.nih.gov/pubmed/27891298
http://doi.org/10.1016/j.jphotochemrev.2015.08.003
http://doi.org/10.1007/s10854-018-00651-9
http://doi.org/10.1016/j.vacuum.2020.109429
http://doi.org/10.1016/j.solener.2020.09.073
http://doi.org/10.1016/j.molliq.2021.115458
http://doi.org/10.1016/j.inoche.2022.109700
http://doi.org/10.1016/j.jpcs.2021.110448
http://doi.org/10.1039/C7EE03640J
http://doi.org/10.1016/j.jallcom.2021.162639


Energies 2022, 15, 6248 27 of 33

69. Singh, S.; Modak, A.; Pant, K.K.; Sinhamahapatra, A.; Biswas, P. MoS2–Nanosheets-Based Catalysts for Photocatalytic CO2
Reduction: A Review. ACS Appl. Nano Mater. 2021, 4, 8644–8667. [CrossRef]

70. Xiang, Q.; Yu, J.; Jaroniec, M. Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 2012, 41, 782–796. [CrossRef]
71. Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L.E.; Kim, K.S.; Kim, P. Tuning the Graphene Work Function by Electric Field Effect. Nano Lett.

2009, 9, 3430–3434. [CrossRef]
72. Kim, J.-H.; Hwang, J.H.; Suh, J.; Tongay, S.; Kwon, S.; Hwang, C.C.; Wu, J.; Park, J.Y. Work function engineering of single layer

graphene by irradiation-induced defects. Appl. Phys. Lett. 2013, 103, 171604. [CrossRef]
73. Akada, K.; Terasawa, T.-O.; Imamura, G.; Obata, S.; Saiki, K. Control of work function of graphene by plasma assisted nitrogen

doping. Appl. Phys. Lett. 2014, 104, 131602. [CrossRef]
74. Kwon, K.C.; Choi, K.S.; Kim, C.; Kim, S.Y. Role of Metal Cations in Alkali Metal Chloride Doped Graphene. J. Phys. Chem. C 2014,

118, 8187–8193. [CrossRef]
75. Jung, I.; Dikin, D.A.; Piner, R.D.; Ruoff, R.S. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at

“Low” Temperatures. Nano Lett. 2008, 8, 4283–4287. [CrossRef] [PubMed]
76. Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. Insulator to Semimetal Transition in Graphene Oxide. J. Phys. Chem.

C 2009, 113, 15768–15771. [CrossRef]
77. Jung, I.; Pelton, M.; Piner, R.; Dikin, D.A.; Stankovich, S.; Watcharotone, S.; Hausner, A.M.; Ruoff, R.S. Simple Approach for

High-Contrast Optical Imaging and Characterization of Graphene-Based Sheets. Nano Lett. 2007, 7, 3569–3575. [CrossRef]
78. Jung, I.; Vaupel, M.; Pelton, M.; Piner, R.; Dikin, D.A.; Stankovich, S.; An, J.; Ruoff, R.S. Characterization of Thermally Reduced

Graphene Oxide by Imaging Ellipsometry. J. Phys. Chem. C 2008, 112, 8499–8506. [CrossRef]
79. Trapalis, A.; Todorova, N.; Giannakopoulou, T.; Boukos, N.; Speliotis, T.; Dimotikali, D.; Yu, J. TiO2/graphene composite

photocatalysts for NOx removal: A comparison of surfactant-stabilized graphene and reduced graphene oxide. Appl. Catal. B
Environ. 2016, 180, 637–647. [CrossRef]

80. Mallick, B.C.; Hsieh, C.-T.; Yin, K.-M.; Li, J.; Gandomi, Y.A. Linear control of the oxidation level on graphene oxide sheets using
the cyclic atomic layer reduction technique. Nanoscale 2019, 11, 7833–7838. [CrossRef] [PubMed]

81. Wu, R.; Wang, Y.; Chen, L.; Huang, L.; Chen, Y. Control of the oxidation level of graphene oxide for high efficiency polymer solar
cells. RSC Adv. 2015, 5, 49182–49187. [CrossRef]

82. Kholmanov, I.N.; Magnuson, C.W.; Aliev, A.E.; Li, H.; Zhang, B.; Suk, J.W.; Zhang, L.L.; Peng, E.; Mousavi, S.H.; Khanikaev,
A.B.; et al. Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Lett. 2012, 12,
5679–5683. [CrossRef]

83. Si, Y.; Samulski, E.T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682. [CrossRef]
84. Jaafar, E.; Kashif, M.; Sahari, S.; Ngaini, Z. Study on Morphological, Optical and Electrical Properties of Graphene Oxide (GO)

and Reduced Graphene Oxide (rGO). Mater. Sci. Forum 2018, 917, 112–116. [CrossRef]
85. Pham, V.H.; Pham, H.D.; Dang, T.T.; Hur, S.H.; Kim, E.J.; Kong, B.S.; Kim, S.; Chung, J.S. Chemical reduction of an aqueous

suspension of graphene oxide by nascent hydrogen. J. Mater. Chem. 2012, 22, 10530–10536. [CrossRef]
86. Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of

graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565. [CrossRef]
87. Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

[CrossRef] [PubMed]
88. Husnah, M.; A Fakhri, H.; Rohman, F.; Aimon, A.H.; Iskandar, F. A modified Marcano method for improving electrical properties

of reduced graphene oxide (rGO). Mater. Res. Express 2017, 4, 064001. [CrossRef]
89. Loh, K.P.; Bao, Q.; Eda, G.; Chhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem.

2010, 2, 1015–1024. [CrossRef] [PubMed]
90. Ogino, I.; Fukazawa, G.; Kamatari, S.; Iwamura, S.; Mukai, S.R. The critical role of bulk density of graphene oxide in tuning its

defect concentration through microwave-driven annealing. J. Energy Chem. 2018, 27, 1468–1474. [CrossRef]
91. Zhang, H.; Huang, M.; Song, J.; Sun, D.; Qiao, Y.; Zhou, X.; Ye, C.; Liu, W.; Wei, Z.; Peng, G.; et al. Effect of the defect densities of

reduced graphene oxide network on the stability of lithium-metal anodes. Mater. Today Commun. 2021, 27, 102276. [CrossRef]
92. Moustafa, H.M.; Mahmoud, M.S.; Nassar, M.M. Photon-induced water splitting experimental and kinetic studies with a

hydrothermally prepared TiO2-doped rGO photocatalyst. Inorg. Chem. Commun. 2022, 141, 109546. [CrossRef]
93. Zhang, S.; Wang, H.; Liu, J.; Bao, C. Measuring the specific surface area of monolayer graphene oxide in water. Mater. Lett. 2020,

261, 127098. [CrossRef]
94. Esmaeili, A.; Entezari, M. Facile and fast synthesis of graphene oxide nanosheets via bath ultrasonic irradiation. J. Colloid Interface

Sci. 2014, 432, 19–25. [CrossRef]
95. Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686. [CrossRef] [PubMed]
96. Xiang, Q.; Cheng, B.; Yu, J. Graphene-Based Photocatalysts for Solar-Fuel Generation. Angew. Chem. Int. Ed. 2015, 54,

11350–11366. [CrossRef]
97. Yeh, T.-F.; Syu, J.-M.; Cheng, C.; Chang, T.-H.; Teng, H. Graphite Oxide as a Photocatalyst for Hydrogen Production from Water.

Adv. Funct. Mater. 2010, 20, 2255–2262. [CrossRef]

http://doi.org/10.1021/acsanm.1c00990
http://doi.org/10.1039/C1CS15172J
http://doi.org/10.1021/nl901572a
http://doi.org/10.1063/1.4826642
http://doi.org/10.1063/1.4870424
http://doi.org/10.1021/jp500646e
http://doi.org/10.1021/nl8019938
http://www.ncbi.nlm.nih.gov/pubmed/19367929
http://doi.org/10.1021/jp9051402
http://doi.org/10.1021/nl0714177
http://doi.org/10.1021/jp802173m
http://doi.org/10.1016/j.apcatb.2015.07.009
http://doi.org/10.1039/C8NR10118C
http://www.ncbi.nlm.nih.gov/pubmed/30964134
http://doi.org/10.1039/C5RA02099A
http://doi.org/10.1021/nl302870x
http://doi.org/10.1021/nl080604h
http://doi.org/10.4028/www.scientific.net/MSF.917.112
http://doi.org/10.1039/c2jm30562c
http://doi.org/10.1016/j.carbon.2007.02.034
http://doi.org/10.1038/ncomms1067
http://www.ncbi.nlm.nih.gov/pubmed/20865806
http://doi.org/10.1088/2053-1591/aa707f
http://doi.org/10.1038/nchem.907
http://www.ncbi.nlm.nih.gov/pubmed/21107364
http://doi.org/10.1016/j.jechem.2017.09.010
http://doi.org/10.1016/j.mtcomm.2021.102276
http://doi.org/10.1016/j.inoche.2022.109546
http://doi.org/10.1016/j.matlet.2019.127098
http://doi.org/10.1016/j.jcis.2014.06.055
http://doi.org/10.1039/C1CS15078B
http://www.ncbi.nlm.nih.gov/pubmed/21796314
http://doi.org/10.1002/anie.201411096
http://doi.org/10.1002/adfm.201000274


Energies 2022, 15, 6248 28 of 33

98. Raghavan, A.; Sarkar, S.; Nagappagari, L.R.; Bojja, S.; Muthukondavenkatakrishnan, S.; Ghosh, S. Decoration of Graphene
Quantum Dots on TiO2 Nanostructures: Photosensitizer and Cocatalyst Role for Enhanced Hydrogen Generation. Ind. Eng. Chem.
Res. 2020, 59, 13060–13068. [CrossRef]

99. Zeng, P.; Zhang, Q.; Zhang, X.; Peng, T. Graphite oxide—TiO2 nanocomposite and its efficient visible-light-driven photocatalytic
hydrogen production. J. Alloy. Compd. 2012, 516, 85–90. [CrossRef]

100. Yeh, T.-F.; Chan, F.-F.; Hsieh, C.-T.; Teng, H. Graphite Oxide with Different Oxygenated Levels for Hydrogen and Oxygen Production
from Water under Illumination: The Band Positions of Graphite Oxide. J. Phys. Chem. C 2011, 115, 22587–22597. [CrossRef]

101. Moon, G.-H.; Kim, D.-H.; Kim, H.-I.; Bokare, A.D.; Choi, W. Platinum-like Behavior of Reduced Graphene Oxide as a Cocatalyst
on TiO2 for the Efficient Photocatalytic Oxidation of Arsenite. Environ. Sci. Technol. Lett. 2014, 1, 185–190. [CrossRef]

102. Kusiak-Nejman, E.; Morawski, A.W. TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge
carrier transfer, antimicrobial and photocatalytic performance. Appl. Catal. B Environ. 2019, 253, 179–186. [CrossRef]

103. Yang, M.-Q.; Xu, Y.-J. Basic Principles for Observing the Photosensitizer Role of Graphene in the Graphene–Semiconductor
Composite Photocatalyst from a Case Study on Graphene–ZnO. J. Phys. Chem. C 2013, 117, 21724–21734. [CrossRef]

104. Du, A.; Ng, Y.H.; Bell, N.J.; Zhu, Z.; Amal, R.; Smith, S.C. Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer,
Hole Doping, and Sensitization for Visible Light Response. J. Phys. Chem. Lett. 2011, 2, 894–899. [CrossRef]

105. Morales-Torres, S.; Pastrana-Martinez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M. Design of graphene-based TiO2
photocatalysts—A review. Environ. Sci. Pollut. Res. 2012, 19, 3676–3687. [CrossRef] [PubMed]

106. Yadav, H.M.; Kim, J.-S. Solvothermal synthesis of anatase TiO2-graphene oxide nanocomposites and their photocatalytic
performance. J. Alloy. Compd. 2016, 688, 123–129. [CrossRef]

107. Guo, J.; Zhu, S.; Chen, Z.; Li, Y.; Yu, Z.; Liu, Q.; Li, J.; Feng, C.; Zhang, D. Sonochemical synthesis of TiO2 nanoparticles on
graphene for use as photocatalyst. Ultrason. Sonochem. 2011, 18, 1082–1090. [CrossRef] [PubMed]

108. Bell, N.J.; Ng, Y.H.; Du, A.; Coster, H.; Smith, S.C.; Amal, R. Understanding the Enhancement in Photoelectrochemical Properties
of Photocatalytically Prepared TiO2-Reduced Graphene Oxide Composite. J. Phys. Chem. C 2011, 115, 6004–6009. [CrossRef]

109. Bhanvase, B.A.; Shende, T.P.; Sonawane, S.H. A review on graphene–TiO2 and doped graphene–TiO2 nanocomposite photocatalyst
for water and wastewater treatment. Environ. Technol. Rev. 2017, 6, 1–14. [CrossRef]

110. Liang, Y.; Wang, H.; Casalongue, H.S.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid
materials. Nano Res. 2010, 3, 701–705. [CrossRef]

111. Wang, J.; Wang, P.; Cao, Y.; Chen, J.; Li, W.; Shao, Y.; Zheng, Y.; Li, D. A high efficient photocatalyst Ag3VO4/TiO2/graphene
nanocomposite with wide spectral response. Appl. Catal. B Environ. 2013, 136–137, 94–102. [CrossRef]

112. Huang, Q.; Tian, S.; Zeng, D.; Wang, X.; Song, W.; Li, Y.; Xiao, W.; Xie, C. Enhanced Photocatalytic Activity of Chemically Bonded
TiO2/Graphene Composites Based on the Effective Interfacial Charge Transfer through the C–Ti Bond. ACS Catal. 2013, 3,
1477–1485. [CrossRef]

113. Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of Visible-Light Responsive Graphene Oxide/TiO2
Composites with p/n Heterojunction. ACS Nano 2010, 4, 6425–6432. [CrossRef]

114. Rotami, M.; Hamadanian, M.; Rahimi-Nasrabadi, M.; Ganjali, M.R. Sol–gel preparation of metal and nonmetal-codoped
TiO2–graphene nanophotocatalyst for photodegradation of MO under UV and visible-light irradiation. Ionics 2019, 25,
1869–1878. [CrossRef]

115. Liu, C.; Teng, Y.; Liu, R.; Luo, S.; Tang, Y.; Chen, L.; Cai, Q. Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic
application. Carbon 2011, 49, 5312–5320. [CrossRef]

116. Zubair, M.; Kim, H.; Razzaq, A.; Grimes, C.A.; In, S.-I. Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2
nanotube arrays embedded with graphene quantum dots. J. CO2 Util. 2018, 26, 70–79. [CrossRef]

117. Wang, G.; Zhang, Q.; Chen, Q.; Ma, X.; Xin, Y.; Zhu, X.; Ma, D.; Cui, C.; Zhang, J.; Xiao, Z. Photocatalytic degradation
performance and mechanism of dibutyl phthalate by graphene/TiO2 nanotube array photoelectrodes. Chem. Eng. J. 2018,
358, 1083–1090. [CrossRef]

118. Wang, P.; Deng, P.; Cao, Y. Edge-sulfonated graphene-decorated TiO2 photocatalyst with high H2-evolution performance. Int. J.
Hydrog. Energy 2021, 47, 1006–1015. [CrossRef]

119. Wang, Z. Electrochemical Study and Synthesis of Highly-ordered TiO2 Nanorods Arrays on 3D Graphene Oxide Framework as
Photocatalyst for Acid Orange 7 Degradation. Int. J. Electrochem. Sci. 2022. [CrossRef]

120. Trinh, T.T.P.N.X.; Giang, N.T.H.; Huong, L.M.; Thinh, D.B.; Dat, N.M.; Trinh, D.N.; Hai, N.D.; Oanh, D.T.Y.; Nam, H.M.; Phong,
M.T.; et al. Hydrothermal synthesis of titanium dioxide/graphene aerogel for photodegradation of methylene blue in aqueous
solution. J. Sci. Adv. Mater. Devices 2022, 7, 100433. [CrossRef]

121. Winayu, B.N.R.; Mao, W.-H.; Chu, H. Combination of rGO/S, N/TiO2 for the enhancement of visible light-driven toluene
photocatalytic degradation. Sustain. Environ. Res. 2022, 32, 34. [CrossRef]

122. Ilhan, H.; Cayci, G.B.D.; Aksoy, E.; Diker, H.; Varlikli, C. Photocatalytic activity of dye-sensitized and non-sensitized GO-TiO2
nanocomposites under simulated and direct sunlight. Int. J. Appl. Ceram. Technol. 2022, 19, 425–435. [CrossRef]

123. Manojkumar, P.; Lokeshkumar, E.; Premchand, C.; Saikiran, A.; Krishna, L.R.; Rameshbabu, N. Facile preparation of immobilised
visible light active W–TiO2/rGO composite photocatalyst by plasma electrolytic oxidation process. Phys. B Condens. Matter 2022,
631, 413680. [CrossRef]

http://doi.org/10.1021/acs.iecr.0c01663
http://doi.org/10.1016/j.jallcom.2011.11.140
http://doi.org/10.1021/jp204856c
http://doi.org/10.1021/ez5000012
http://doi.org/10.1016/j.apcatb.2019.04.055
http://doi.org/10.1021/jp408400c
http://doi.org/10.1021/jz2002698
http://doi.org/10.1007/s11356-012-0939-4
http://www.ncbi.nlm.nih.gov/pubmed/22782794
http://doi.org/10.1016/j.jallcom.2016.07.133
http://doi.org/10.1016/j.ultsonch.2011.03.021
http://www.ncbi.nlm.nih.gov/pubmed/21482166
http://doi.org/10.1021/jp1113575
http://doi.org/10.1080/21622515.2016.1264489
http://doi.org/10.1007/s12274-010-0033-5
http://doi.org/10.1016/j.apcatb.2013.02.010
http://doi.org/10.1021/cs400080w
http://doi.org/10.1021/nn102130m
http://doi.org/10.1007/s11581-019-02861-5
http://doi.org/10.1016/j.carbon.2011.07.051
http://doi.org/10.1016/j.jcou.2018.04.004
http://doi.org/10.1016/j.cej.2018.10.039
http://doi.org/10.1016/j.ijhydene.2021.10.095
http://doi.org/10.20964/2022.06.46
http://doi.org/10.1016/j.jsamd.2022.100433
http://doi.org/10.1186/s42834-022-00143-w
http://doi.org/10.1111/ijac.13937
http://doi.org/10.1016/j.physb.2022.413680


Energies 2022, 15, 6248 29 of 33

124. Devi, A.D.; Pushpavanam, S.; Singh, N.; Verma, J.; Kaur, M.P.; Roy, S.C. Enhanced methane yield by photoreduction of CO2
at moderate temperature and pressure using Pt coated, graphene oxide wrapped TiO2 nanotubes. Results Eng. 2022, 14,
100441. [CrossRef]

125. Rawal, J.; Kamran, U.; Park, M.; Pant, B.; Park, S.-J. Nitrogen and Sulfur Co-Doped Graphene Quantum Dots Anchored TiO2
Nanocomposites for Enhanced Photocatalytic Activity. Catalysts 2022, 12, 548. [CrossRef]

126. Li, Z.; Liu, Z.; Yang, X.; Chen, A.; Chen, P.; Yang, L.; Yan, C.; Shi, Y. Enhanced Photocatalysis of Black TiO2/Graphene Composites
Synthesized by a Facile Sol–Gel Method Combined with Hydrogenation Process. Materials 2022, 15, 3336. [CrossRef] [PubMed]

127. Jiang, M.; Zhang, M.; Wang, L.; Fei, Y.; Wang, S.; Núñez-Delgado, A.; Bokhari, A.; Race, M.; Khataee, A.; Klemeš, J.J.; et al.
Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chem. Eng. J. 2021, 431,
134104. [CrossRef]

128. Quiroz-Cardoso, O.; Suárez, V.; Oros-Ruiz, S.; Quintana, M.; Ramírez-Rave, S.; Suárez-Quezada, M.; Gómez, R. Synthesis of
Ni/GO-TiO2 composites for the photocatalytic hydrogen production and CO2 reduction to methanol. Top. Catal. 2022, 2022,
1–13. [CrossRef]

129. Kisielewska, A.; Spilarewicz-Stanek, K.; Cichomski, M.; Kozłowski, W.; Piwoński, I. The role of graphene oxide and its reduced
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