
Chapter 9

A Review on the Scalar Field/Bose-Einstein
Condensate Dark Matter Model

Abril Suárez, Victor H. Robles and Tonatiuh Matos

Abstract We review the work done so far aimed at modeling in an alternative way

the dark matter in the Universe: the scalar field Bose-Einstein condensate dark matter

(SFDM/BEC) model. We discuss a number of important achievements and character-

istics of the model. We also describe some of our most recent results and predictions

of the model compared to those of the standard model of ΛCDM.

9.1 Introduction

It is a pleasure for us to review the different theoretical basis of the SFDM/BEC model

as a dark matter (DM) candidate. We think this review is important for mainly two

reasons: the considerable progress in the model since it was proposed as a serious

candidate to the dark matter paradigm, improved theoretical understanding of the

nature of the DM and the significant advances in the cosmological and astronomical

observations are leading us to put more constraints and will allow us to test the model

and decide if it can still stand as a viable DM paradigm or if it should be discarded.

Recent observations of the Universe have found that only 4 % of the total content

of the Universe is baryonic matter, being 22 % of the rest remaining non-baryonic

dark matter (DM) and the rest in some form of cosmological constant.

The incorporation of a new kind of DM different from that proposed by the stan-

dard model, also known by Λ-Cold Dark Matter model (ΛCDM), into the Big Bang

Theory holds out the possibility of giving alternative answers to some of the unsolved

issues of the standard cosmological model. Several authors have proposed interest-

ing alternatives in where they try to solve the difficulties that the ΛCDM scenario

seems not to solve. In fact, the alternative Scalar Field Dark Matter (SFDM/BEC)
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scenario has received much attention in the last few years. The main idea is simple, in

this models the nature of the DM is completely determined by a fundamental scalar

field Φ [45].

The idea was first considered in [59] and independently introduced in [45, 46, 65]

suggesting bosonic dark matter as a model for galactic halos, see also [33]. In the

SFDM/BEC model, DM halos can be described, in the non-relativistic regime, as

Newtonian gravitational condensates made up of ultra-light bosons that condense

into a single macroscopic wave function.

Several authors have introduced a dynamical scalar field with a certain potential

V (Φ) as a candidate to be the dark matter, although there is not yet an agreement for

the correct form of the potential field. Other interesting works consider a single scalar

field to unify the description of dark matter, dark energy and inflation [55, 72, 73].

Different issues of the cosmological behavior of the SFDM/BEC model have been

studied in a wide variety of approaches, see for example [3, 6, 26, 51, 53, 56, 61, 77,

79, 82–84, 110, 111, 119, 123, 125]. For example, [56] proposed fuzzy dark matter

composed of ultra-light scalar particles initially in the form of a BEC. Recently

[51, 53] developed a further analysis of the cosmological dynamics of SFDM/BEC

as well as the evolution of their fluctuations (see also [26]). In the same direction,

[78, 119] studied the growth of scalar fluctuations and the formations of large-scale

structure within a fluid and a field approach for the SFDM/BEC model.

In addition, many numerical simulations have been performed to study the grav-

itational collapse of the SFDM/BEC model [13–15, 28, 38, 47–49, 90, 92]. [24, 25]

found an approximate analytical expression and numerical solutions of the mass-

radius relation of SFDM/BEC halos. Recently, [106] gave constraints on the boson

mass to form and maintain more than one vortex in SFDM/BEC halos. These con-

straints are in agreement with the ultra-light mass found in previous works (see for

example, [60]). Lately, [75] performed N-body simulations to study the dynamics

observed in the Ursa Minor dwarf galaxy. They modeled the dark matter halo of Ursa

Minor as a SFDM/BEC halo to establish constraints for the bosons mass. Moreover,

they introduced a dynamical friction analysis within the SFDM/BEC model to study

the wide distribution of globular clusters in Fornax. An overall good agreement is

found for the ultra-light mass of bosonic dark matter.

In this paper we review a number or results and important characteristics of the

SFDM/BEC model, its dynamical mechanism and some of its predictions. We also

discuss some of the trending topics nowadays in the subject which attempt to predict

and ask how well the model is achieving its goals. As we will see, a number of them

studies results which are in reasonable agreement with the general features required

by the theory and the data.

The outline of the paper is as follows. In Sect. 1 we have given a brief synopsis

on the current state-of-the-art of the model. In the Sect. 2 we describe the dark

matter paradigm and briefly resume the standard model of cosmology. In Sect. 3

and 4 we describe in some detail why Scalar Field/Bose–Einstein condensate Dark

Matter (SFDM/BEC) can be a good alternative candidate to be the dark matter in our

Universe, we summarize some representative papers for this sections, and in Sect. 5

we include topics for future works and our conclusions.
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9.2 The Dark Matter Paradigm and the Standard Model

of Cosmology

In this millennium, new technologies are opening wider windows to explore our

Universe. For some time we could only relay on inaccurate evidence found in the

local neighborhood of our galaxy to infer the history of our Universe, now it turns

it is possible for us to see the evolution of the Universe as far as 100,000 years after

the Big Bang and in more detail.

With these advances, nowadays some inquires of our cosmic evolution can be

determined by giving an answer to question like: How much matter is in the Universe?

Since the discovery of the expansion of the Universe done by Hubble and Slipher

[57] in the 1920’s, the common believe had been that all energy in the Universe was in

the form of radiation and ordinary matter (electrons, protons, neutrons, etc.). Over the

past few decades, theories concerning the stability of galaxies ([9, 112]) indicated

that most of the mass in our Universe is dark (i.e., it does not emits or absorbs

light [93, 121]), therefore resulting unobservable by telescopes. The suggestion that

“dark matter” may form a large fraction of the density in the Universe was raised

by Zwicky in 1937. Back then he used the virial theorem to obtain the average

mass of galaxies within the Coma cluster and obtained a value much larger than

the mass of the luminous material, he then realized that some mass was “missing”

in order to account for observations. This missing mass problem was confirmed

many years later by more accurate measurements of rotation curves of disc galaxies,

[17, 19, 23, 99, 112]. The rotation curves of neutral hydrogen clouds in spiral

galaxies measured by the Doppler effect are now found to be roughly flat with a

typical rotation velocity equal to v∞ ∼ 200 km/s up to the maximum observed

radius of about 50 kpc. With these observations the mass profile results much more

extended than the common distributions which typically converge within ∼ 10 kpc.

This would imply that galaxies might be surrounded by an extended halo of dark

matter whose mass M(r) ∼ rv2
∞/G increases linearly with radius (here r is the radius

and G Newton’s gravitational constant).

In the 1980’s, the proposal of dark matter found its basis in the so called “infla-

tionary scenario” [1, 42, 74], a theory of the first 10−30 s developed to give answer to

several questions left unanswered by the Big Bang model, like for example: Why is

the Universe so homogeneous and isotropic? and; Where did the initial homogeneities

that gave rise to the structures we see today came from? [12, 43, 44, 54, 118]. The

inflationary theory predicts that the Universe is spatially flat; which according to

Einstein’s theory of general relativity, this fixes the total energy density of the Uni-

verse making it equal to the critical value, ρc ≡ 3H 2
0 /8πG ∼ 1.7 × 10−29g cm3,

where H0 is the current value of the Hubble parameter.

Several astrophysical observations of distant type Ia supernovae have also shown

that the content of the Universe is made of about 74 % of dark energy, 22 % of dark

matter and 4 % of baryonic (visible) matter, [22, 31, 34, 35, 50, 100, 103, 115, 126].

Inflation thus seemed to call for dark matter.
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It then results that most matter in the Universe is non-luminous. The observed

flatness of the galactic rotation curved indicating the presence of dark matter halos

around galaxies [112]. Summed to these evidences are the observations of the cosmic

microwave background (CMB) anisotropies [58, 64, 117] combined with large-scale

structure and type Ia supernova luminosity data [100, 103–105] which all together

constrain the cosmological parameters also finding once more that visible matter

contributes only about 4 % of the energy density of the Universe, gravitational

lensing [102] and X-ray spectra [36, 37, 71, 89, 121] in elliptical galaxies, and the

high velocity dispersion and gas temperature in clusters of galaxies [76, 121], all

of them leading to a picture in which galaxies are composed of a luminous galactic

disk surrounded by a galactic halo of dark matter. Also the relative contribution of

the dark matter component is usually specified in terms of the mass-to-light ratio,

M/L; which reflects the total amount of mass relative to the total light within a

given scale. The increase on this ratio suggests that there is relatively more dark

than luminous matter with increasing scale [112]. This has led to the general belief

that clusters have more dark matter per unit luminosity than individual galaxies and

that superclusters may have even more. This widely accepted monotonic increase of

M/L with scale determines to a large extent the prevalent views about the location

of the dark matter and the total mass density of the Universe. Recent studies of the

dependence of the mass-to-light ratio on scale indicate that M/L is nearly constant

on large scales ranging up to supercluster size (10 Mpc), suggesting no additional

dark matter is tucked away on large scales [10]. More recently, a clear separation

between the center of baryonic matter and the total center of mass was observed in

the Bullet cluster [27] and later in other galaxy cluster collisions [20].

The observational evidence for dark matter continues to grow, and particle physi-

cists have proposed various particles, motivated by supersymmetry and unified

theories, that could reasonably explain it. These observations reinforce the claim

that dark matter is indeed composed of weakly interacting particles and is not a mod-

ification of gravity. However, even taking into account all these results the properties

of dark matter are still mysterious.

It then also results that an important question in cosmology has to do with knowing

the nature of the so far undefined one quarter part of the content of the Universe, the

dark matter. As mentioned before, the cosmological observations seem to support

the idea that dark matter can be made of some kind of non-baryonic, non-relativistic

and weakly interactive massive particle. Many efforts trying to give an answer to this

question have been done in the past few decades, mainly motivated by the idea that

the answer will probably change our understanding of the Universe and its dynamics.

One of the explanations for DM is the SFDM model.

In the Standard Model of cosmology, the total energy density of the Universe is

dominated today by the densities of two components: the “dark matter” which has an

attractive gravitational effect like usual matter and the “dark energy” which can be

considered as a kind of vacuum energy with a negative pressure, which seems con-

stant today (i.e., a cosmological constant, Λ). Although the real nature of these two

components remains unknown, in the standard model dark matter is generally mod-

eled as a system of collisionless particles. This is known as the “Λ Cold Dark Matter”
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model, which predicts that the Universe contains primarily cold neutral weakly in-

teractive massive particles (WIMPs) which are non-baryonic [95, 128], pressureless,

behave like a cold gas, one beyond those existing in the Standard Model of parti-

cle physics and have not yet been detected in accelerators or specialized indirect

searches, in particular, the lightest supersymmetric particles, the most popular of

which is the neutralino, with a particle mass of the order of 100 GeV. Efforts are

underway to measure the presence of these particles, but no direct detection has yet

been reported.

In order to explain observational data, the ΛCDM model was developed, [94, 96]

and it is the most simple possibility. In the Standard Model of cosmology the matter

component ΩM ∼ 26 % of the Universe decomposes itself into baryons, neutrinos,

etc., and cold dark matter which would be responsible for the formation of structure in

the Universe. Observations indicate that stars and dust (baryons) represent something

like 0.4 % of the total content of matter in the Universe. The measurements of neutrino

masses indicate that these contribute nearly with the same amount as matter. In other

words, ΩM = Ωm + ΩDM = Ωb + Ων + · · · + ΩDM ∼ Ωm + ΩCDM, where ΩCDM

represents the cold dark matter part of the matter contributions, and has a value of

ΩCDM ∼ 0.22. The value of the amount of baryonic matter is in accordance with the

limits imposed by nucleosynthesis, [114]. This model then considers a flat Universe

(ΩΛ+ΩM ≡ 1) with 96 % of unknown matter but which is of great importance in the

cosmological context. It also supposes a homogeneous and isotropic Universe which

evolution can be best described today by Friedmann’s equations coming from general

relativity and whose main ingredients can be described by fluids with characteristics

very similar to those we see in our Universe. We now know that the Universe is not

exactly homogeneous and isotropic, but the standard model does give a framework

within which the evolution of structures such as galaxies or clusters of galaxies can

be studied with their origins coming from small fluctuations in the density of the

early Universe. The model assumes a “scale-invariant” spectrum of initial density

fluctuations, a spectrum in which the magnitude of the inhomogeneity is the same on

all length scales, again as predicted by standard inflationary cosmology [12, 43, 118,

126]. Moreover, ΛCDM seems to be until today the most successful model fitting

current cosmological observations [11].

The ΛCDM model successfully describes the accelerated expansion of the Uni-

verse, it explains the Cosmic Microwave Background radiation in great detail and

provides a framework within which one can understand the large-scale isotropy of

the Universe, it also describes the important characteristics of the origin, nature and

evolution of the density fluctuations which are believed to give rise to galaxies and

other cosmic structures, the Lyman-α forest, the large scale matter distribution, and

the main aspects of the formation an the evolution of virialized cosmological ob-

jects. So far the ΛCDM model is consistent with the observed cluster abundance

at z ∼ 0, it then predicts a relatively little change in the number density of rich

clusters as a function of redshift because, due to the low matter density, hardly any

structure growth has occurred since z ∼ 1. The ΛCDM model can then be “forced”

to agree approximately with both the cluster abundance on small scales and the CMB

fluctuations on large scales by tilting the power spectrum (by about 30 %) from its
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standard shape. This tilted variant of the ΛCDM model then results nearly consistent

with observations. The power spectra of ΛCDM can then be normalized so that it

agrees with both the CMB and cluster observations. But as the estimates of the cold

dark matter density become more precise, it becomes even more imperative for its

composition to be identified.

There remain, however, certain conflicts at galactic scales, like the cusp profile

of central densities in galactic halos, the overpopulation of substructures predicted

by N-body numerical simulations which are an order of magnitude larger than what

has been observed, among others, see for example [27, 63, 88, 98]. And until today

the nature of the dark matter that binds galaxies remains an open question.

9.3 Why Scalar Field Dark Matter?

In the big bang model, gravity plays an essential role: it collects the dark matter in

concentrated regions called ‘dark matter halos’. Within these large dark matter halos,

the baryons are believed to be so dense that they radiate enough energy to collapse

into galaxies and stars. The most massive halos, hosts for the brightest galaxies, are

formed in regions with the highest local mass density. Less massive halos, hosts

for the less bright galaxies, appear in regions with low local densities [97]. These

situations appear to be the same as in our extragalactic neighborhood, but there are

still problems. Despite all its successful achievements the ΛCDM model requires

further considerations.

The ΛCDM paradigm faces several challenges to explain observations at galactic

scales, such as the central densities of dark halos, dwarfs and Low Surface Brightness

(LSB) galaxies, the excess of satellite galaxies predicted by N-body simulations, the

formation of bars in disc galaxies, etc. [27, 88, 98]. In other words, there is not a

match between ΛCDM predictions at galactic scales and what is being observed.

Problems with an otherwise successful model are often the key to a new and deeper

understanding.

Observations point out to a better understanding of the theory beginning with the

Local Void, which contains just a few galaxies that are larger than expected. This

problem would be solved if structure grew faster than in the standard theory, therefore

filling the local void and giving rise to more matter in the surroundings [97].

Another problem arises for the so called pure disk galaxies, which do not appear in

numerical simulations of structure formation in the Standard Model. These problems

would be solved again if the structure grew faster than it does in the standard paradigm

[97].

On the other hand, [68] also found that the collision velocity of 3000 km/s at R200

for the Bullet Cluster is very unlikely within the ΛCDM paradigm, which moves it

to a challenge for the Standard Model of cosmology.

A final example of inconsistencies can be seen in a paper by [120], who found

anomalies in the mass power spectrum obtained by the SDSS and the one obtained

with the ΛCDM model, i.e., anomalies in the predicted large-scale structure of the
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Universe. With these and other results it seems necessary to change the ΛCDM

paradigm to try and explain the formation of structure in the Universe.

Given these discrepancies, it seems necessary to explore alternatives to the

paradigm of structure formation. These are some of the reasons why we need to

look for alternative candidates that can explain the structure formation at cosmologi-

cal level, the observed amount of dwarf galaxies, and the dark matter density profiles

in the core of galaxies. Recently, several alternative models have been proposed.

One of them invokes a scalar field as dark matter in the Universe [83, 84]. This

model supposes that dark matter is a real or complex scalar field Φ minimally coupled

to gravity, endowed with a scalar potential V (Φ) and that at some temperature it

only interacts gravitationally with the rest of the matter. This scalar field can be

added to the particles standard model lagrangian or to the general relativity one,

supposing that the coupling constant with the rest of the matter is very small. It has

been also suggested that this scalar field can be derived from higher dimensional

theories. It has also been proposed that this dark matter scalar field, i.e., this spin-0

fundamental interaction, could lead to the formation of Bose-Einstein condensate in

the way of cosmic structure [33, 51, 53, 56, 82] with an ultra-light mass of order

m ∼ 10−22 eV. From this mass it follows that the critical temperature of condensation

Tc ∼ 1/m5/3∼ TeV is very high, therefore, they may form Bose-Einstein condensate

drops very early in the Universe [83] that behave as cold DM. Lee and Koh [65], and

independently Matos and Guzmán [45], suggested bosonic dark matter as a model

for galactic halos. In addition, the Compton length λc = 2πh̄/m associated to this

boson results of about ∼kpc, and corresponds to the dark halo size of typical galaxies

in the Universe. Thus, it has been supported that these drops are the halos of galaxies

(see [82]), i.e., that halos are huge drops of SF. In a recent paper, Ureña [123] studied

the conditions for the formation of a SFDM/BEC in the Universe, also concluding

that SFDM/BEC particles must be ultra-light bosons.

In the SFDM model the initial halos of galaxies do not form hierarchically, they

are formed at the same time and in the same way when the Universe reaches the

critical temperature of condensation of the SF. From this it follows that galaxies

can share some properties because they formed in the same manner and at the same

moment [69]. Therefore, from this paradigm we have to expect that there exists well

formed galaxy halos at higher redshifts than in the ΛCDM model. Recently Suárez

and Matos [119] developed a hydrodynamical approach for the structure formation

in the Universe with the scalar potential V (Φ) = m2Φ2/2 +λΦ4/4. They found that

when λ = 0 the evolution of perturbations of the SFDM model compared to those

of ΛCDM are identical. They also showed that this potential can lead to the early

formation of gravitational structures in the Universe depending on the sign of the

self-interaction parameter λ.

The most simple model having both an exponential behavior and a minimum is a

cosh-like potential. Another interesting work was done by [80] an independently by

[113] who used a potential of the form V (Φ) = V0[cosh(ηΦ − 1)] where V0 and η

are constants to explain the core density problem for disc galaxy halos in the ΛCDM

model (see also [29, 101]) and to perform the fist cosmological analysis in the context

of SFDM. They showed that the evolution of the Universe, its expansion rate and
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the growth of linear perturbations in this model are identical as those derived in the

standard model. In [45] they model the dark matter in spiral galaxies, assuming dark

matter as an arbitrary scalar field endowed with a scalar potential.

Another scalar potential widely used to describe dark matter is V (Φ) = m2Φ2/2

[83, 122]. This potential is very interesting because it can mimic the cosmological

evolution of the Universe predicted by the ΛCDM model. Also, it is known that an

exponential-like scalar field potential fits very well the cosmological constraints due

to the form of its solutions (see for example [29, 101, 127]). If the self-interaction of

the SF is considered, we need to add a quartic term to the SF potential [3, 6–8, 21],

in this case the equation of state of the SF results to be that of a polytrope of index

n = 1 (see [4, 51, 53, 70, 119]).

Another interesting result is that the predicted density of neutrinos at the recom-

bination epoch is in agreement with the observations of the Wilkinson Microwave

Anisotropy Probe (WMAP). In the same direction, Rodríguez–Montoya et al. [110]

studied ultra-light bosons as dark matter in the Universe with the framework of kinetic

theory, through the Boltzmann–Einstein equations, and they found that this kind of

ultra-light particles is consistent with the acoustic peaks of the cosmic microwave

background radiation if the boson mass is around m ∼ 10−22 eV.

[66] pointed out that SFDM/BEC can explain the spatial separation of the dark

matter from visible matter, as derived from X-ray maps and weak gravitational

lensing, in the Bullet Cluster, see also [27].

Other works have used the bosonic dark matter model to explain the structure

formation via high-resolution simulations. [123, 124] reviewed the key proper-

ties that may arise from the bosonic nature of SFDM models. On the other hand,

several authors have numerically studied the formation, collapse and viralization

of SFDM/BEC halos as well as the dynamics of the SFDM around black holes

[13, 25, 30, 39, 47–49, 129]. In [2], Alcubierre et al. found that the critical mass for

collapse of the SF is of the order of a Milky Way-sized halo mass. This suggests that

SFDM/BEC can be plausible candidate to dark matter in galactic halos. In addition,

Lora et al. [75], studied, through N-body simulations, the dynamics of Ursa Minor

dwarf galaxy and its stellar clump assuming a SFDM/BEC halo to establish con-

straints for the boson mass. Moreover, they introduced a dynamical friction analysis

with the SFDM/BEC model to study the distribution of globular clusters in Fornax.

An overall good agreement is found for the ultra-light mass ∼ 10−22 eV of bosonic

dark matter.

In this model the scalar particles with ultra-light mass are such that their wave

properties avoid the cusp problem and reduce the high number of small satellites by

the quantum uncertainty principle [52, 56, 63, 77, 107]. Robles and Matos [107], (see

also [16, 18, 52]) showed that BEC dark matter halos fit very well high-resolution

rotation curves of LSB galaxies, and that the constant density core in dark halos

can be reproduced. Also, [69] showed how the SFDM/BEC paradigm is a good

alternative to explain the common mass of the dark halos of dwarf spheroidal galaxies.

Recently, Rindler–Daller and Shapiro, [106], investigated the formation of vortex

in SFDM/BEC halos. They found constraints on the boson mass in agreement with
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the ultra-light mass found in previous works (see also [60, 87, 130]), some of these

issues will be discussed in more detail in Sect. 4.

Summarizing, it is remarkable that with only one free parameter, the ultra-light

scalar field mass (m ∼ 10−22 eV), the SFDM model fits:

i) The evolution of the cosmological densities [83].

ii) The central density profile of the dark matter is flat [16].

iii) The acoustic peaks of the cosmic microwave background [110].

iv) The scalar field has a natural cut off, thus the substructures in cluster galaxies are

suppressed naturally. With a scalar field mass of mΦ ∼ 10−22 eV the amount

of substructures is compatible with the ones observed [82, 56, 119].

v) We expect that SFDM forms galaxies earlier than the ΛCDM model, because

they form BEC’s at a critical temperature Tc ≫ M eV. So if the SFDM model is

right, we have to see big galaxies at high redshifts with similar features [83, 119].

vi) Adding self-interaction and Temperature correcctions, the rotation curves of big

galaxies and LSB galaxies [5, 16, 53, 70, 108].

vii) With this mass, the critical mass of collapse for a real scalar field is just 1012M⊙,

i. e., the observed in galaxy halos [2].

vii) The observed properties of dwarf galaxies, i. e., the minimum length scale, the

minimum mass scale, and their independence from the brightness [69].

ix) And recently it has been demonstrated that the SFDM halos would have cores

large enough to explain the longevity of the cold clump in Ursa Minor and the

wide distribution of globular clusters in Fornax [75].

Then, the SFDM/BEC model has provided to be a good candidate for dark matter

halos of galaxies in the Universe because it can explain many aspects where the

standard model of cosmology fails ([16, 18, 52, 66, 67, 69, 75, 107]). Therefore,

not only the many successful predictions of the Standard Model of cosmology at

large scales are well reproduced by SFDM, but also the ones at galactic scales.

The scalar field models presents some advantages over the standard ΛCDM model

like the ones mentioned above. Also, its self-interaction can, in principle, explain the

smoothness of the energy density profile in the core of galaxies [82, 86]. Nevertheless,

its important to remark that when a new dark matter candidate is proposed the study

of the final object that will be formed as a result of a gravitational collapse is always

an important but difficult task that requires continuos work since the baryonic physics

is still poorly understood.

9.4 Current Status of the SFDM model

9.4.1 Self-Gravitating Bose-Einstein Condensate Dark Matter

Following [18], dark matter halos as a self-gravitating Bose-Einstein condensate

with short-range interactions have been widely discussed [24, 25, 107, 108]. In

these models, it is supposed that the cosmic BEC has a relatively low mean mass
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density so that the Newtonian approximation can be used. In the literature, when

T = 0 all the bosons have condensed and the system can be described by one

order parameter ψ(r, t), called the condensate wave function. In the mean-field

approximation, the ground state properties of the condensate are described by the

Gross-Pitaevskii equation:

ih̄
∂ψ

∂t
(r, t) = − h̄2

2 m
�ψ(r, t) + mΦtot (r, t)ψ(r, t).

where Φtot is the total potential exerted on the condensate. With this equation, [24]

studied the structure and the stability of a self-gravitating BEC with short-range inter-

actions. In this case, the results obtained in the absence of self-coupling and the results

of [18] obtained for self-coupled BECs in the Thomas-Fermi approximation have

been connected. The case of attractive short-range interactions were considered and

the existence of a maximum mass above which no equilibrium state exists was found.

This study was motivated by the proposal that dark matter halos could be gigantic

cosmic BEC’s, [5, 18, 41, 56, 65]. In this case, gravitational collapse is prevented by

the Heisenberg uncertainty principle or by the short-range interaction. This sugges-

tion still remains highly speculative since the nature of dark matter remains unknown.

On the other hand, whatever the nature of its constituents, if dark matter is viewed

as a collisionless system described by the Vlasov equation, dark matter halos could

result from processes of violent collisionless relaxation. In that case, gravitational

collapse can be prevented by a Lynden-Bell type of exclusion principle, because this

form of relaxation could be more rapid and efficient than a collisional relaxation. Fur-

thermore, it generates a density profile with a flat core and a r−2 outer density profile

for the halo, yielding flat rotation curves. These features are remarkably consistent

with observations making this alternative scenario quite attractive.

In [25] the same author obtained the exact mass-radius relation of self-gravitating

BECs with short-range interactions by numerically solving the equation of hydro-

static equilibrium taking into account quantum effects. He compared his results with

the approximate analytical relation obtained in [24] from a Gaussian ansatz. He found

that the Gaussian ansatz always provide a good qualitative agreement with the exact

solution, and that the agreement is quantitatively very good.

In one of his most recent works Chavanis [26] assumed that the dark matter in

the universe could be a self-gravitating BEC with short-range interactions, and he

then theoretically explored the consequences of this hypothesis. He considered the

possibilities of positive and negative scattering lengths.

At the level of dark matter halos a positive scattering length, equivalent to a re-

pulsive self-interaction generating a positive pressure, is able to stabilize the halos

with respect to gravitational collapse. This leads to dark matter halos without den-

sity cusps with an effective equation of state equal to that of a polytrope of index

n = 1. Alternatively, if the scattering length is negative, equivalent to an attractive

self-interaction generating a negative pressure, the dark matter is very unstable and

collapses above a very small critical mass Mmax = 1.012h̄/
√

|as |Gm, where as is the

scattering length. When these ideas were applied to an infinite homogeneous cosmic

fluid, it was found that a negative scattering length can increase the maximum growth

rate of the instability and accelerate the formation of structures. The virtues of these
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results could be combined by assuming that the scattering length changes sign in

the course of the evolution. It could be initially negative to help with the formation

of structures and become positive to prevent complete gravitational collapse. The

mechanism behind this change of sign remains unknown. However, some terres-

trial experiments have demonstrated that certain atoms can have negative scattering

lengths and that it is possible in principle to manipulate the value and the sign of as .

It has also been found that a SFDM/BEC universe with positive scattering length,

having a positive pressure, is not qualitatively very different from a classical Einstein-

de Sitter universe. It also emerges at a primordial time t = 0 from a big-bang

singularity where the density is infinite, and then undergoes a decelerating expansion.

A difference, however, is that the initial scale factor a(0) is finite. On the other hand,

a SFDM/BEC universe with an always negative scattering length, having a negative

pressure, markedly differs from previous models. It starts from t −→ −∞ with a

vanishing radius and a finite density, it has an initial accelerating expansion then

decelerates and asymptotically behaves like the EdS universe. This model universe

exists for any time in the past and there is no big-bang singularity. When the effect of

radiation, baryonic matter and dark energy were added, the picture is quite different.

In that case, a SFDM/BEC universe with attractive or repulsive self-interaction started

from a singularity at t = 0 where the density was infinite. It first experiences a

phase of decelerating expansion followed by a phase of accelerating expansion. For

k −→ 0 (k = 2πas h̄
2/m3c2 being a polytropic constant appearing the equation

of state of the BEC and which depends on the scattering length as) the standard

ΛCDM model was recovered but for k �= 0, the evolution of the scale factor in a

SFDM/BEC universe turned out to be substantially different. The model with k > 0

expands more rapidly than the standard model. The initial scale factor is finite and

the radiation never dominates. The model with k < 0 expands less rapidly than the

standard model. The initial scale factor vanishes and the radiation dominates leading

to a decelerating expansion. In both models, the dark energy dominates at large times

leading to an accelerating expansion. Finally, a dark fluid with generalized equation

of state p = (αρ + kρ2)c2 having a pressure component p = kρ2c2 similar to a BEC

dark matter and a component p = αρc2 mimicking the effect of the cosmological

constant was considered. Optimal parameters (α, k) that gave a good agreement with

the standard model were found. Also the growth of perturbations in these different

models was studied and confirmed the previous observation of Harko, [53], that the

density contrast increases more rapidly in a BEC universe than in the standard model.

In conclusion, it was pointed out that the idea that dark matter could be a BEC is

fascinating and probably deserves further research.

9.4.2 BEC Dark Matter and Cosmological Perturbations

Through out this work we have shown how the SFDM/BEC model could be a serious

alternative to the dark matter in the Universe. In [78] they studied in quite some

detail the growth and virialization of Φ2-dark matter perturbations in the linear and
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nonlinear regimes. Following the spherical collapse model, they also studied the

nonlinear regime of the evolution of Φ2-dark matter perturbations. They showed that

the evolution of an overdense region of Φ2-dark matter can collapse and virialize in a

bound structure. However, they found that the scalar perturbations collapse at earlier

times of the Universe than those in the CDM model. Thus, the standard and the

SFDM/BEC model can be confronted in their predictions concerning the formation

of the first galaxies. Massive galaxies at high redshifts is a prediction of the model

and may be used to distinguish between SFDM/BEC paradigm and CDM.

As the study in [78] is detail in the analysis of perturbations we include a brief

summary. In the study of the cosmological dynamics of the SFDM model it was

considered the simplest case: a single scalar field Φ̃(x, t), with self-interacting

double-well potential. They used the potential

V (Φ̃) = λ

4

(

Φ̃
2 − m̃2

λ

)2

.

In a very early stage of the Universe, this scalar field was in local thermodynamic

equilibrium with its surroundings see [21]. At some time, the scalar field decoupled

from the rest of the matter and started a lonely journey with its temperature T de-

creased by the expansion of the Universe. Thus, it is considered the scalar field in

a thermal bath of temperature T, whose scalar field potential, extended to one loop

corrections, is given by

V (Φ̃) = −1

2
m̃2Φ̃

2 + λ

4
Φ̃

4 + λ

8
T 2Φ̃

2 − π

90
T 4 + m̃4

4λ
,

where m̃ is a mass parameter before the breaking of symmetry and λ is the self-

interacting constant. From here, it can be calculated the critical temperature Tc at

which the Z2 symmetry of the real SF breaks. To do that, they calculated the critical

points of the scalar potential from

0 =
(

−m̃2 + λΦ̃
2 + λ

4
T 2

)

Φ̃.

The negative term −m̃2 permits the breaking of symmetry of the potential. One

critical point is at Φ̃ = 0. If the temperature T is high enough, the scalar potential

has a minimum at this critical point. Furthermore, the critical temperature Tc in which

Φ̃ = 0 becomes a maximum is

T 2
c = 4m̃2

λ
.

This critical temperature defines the symmetry breaking scale of the scalar field.

To study the dynamics of the SFDM in the background Universe it is assumed

a Friedmann–Lemaitre–Robertson–Walker metric with scale factor a(t). The back-

ground Universe was composed by SFDM (Φ0) endowed with a scalar potential

V ≡ V (Φ0), baryons (b), radiation (z), neutrinos (ν), and a cosmological constant
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Fig. 9.1 Left: evolution of the density parameters Ωi for the background universe. Scalar field dark

matter model mimics the standard ΛCDM behavior. Right: evolution of the scalar field dark matter

equation of state for the background universe

(Λ) as dark energy. For the basic background equations, we have from the energy-

momentum tensor T for a scalar field, the scalar energy density T 0
0 and the scalar

pressure T i
j are given by

T 0
0 = −ρΦ0

= −
(

1

2
Φ̇

2

0 + V

)

, (9.1)

T i
j = PΦ0

=
(

1

2
Φ̇

2

0 − V

)

δi
j , (9.2)

where the dots stand for the derivative with respect to the cosmological time and δi
j

is the Kronecker delta. Thus, the cosmological Equation of State for the scalar field

is PΦ0
= ωΦ0

ρΦ0
with (Fig. 9.1)

ωΦ0
=

1
2
Φ̇

2

0 − V

1
2
Φ̇

2

0 + V
.

In order to solve the Friedmann equations with analytic methods with the approx-

imation m ≫ H they performed a transformation and compared their result with

numerical ones. Here the scalar field and the variables of the background depend

only on time, e.g., Φ = Φ0(t).

They computed the growth of the SFDM overdensities δρΦ in the linear regime,

in this regime, the density contrast δ ≡ δρΦ/ρΦ0 was much smaller than unity. It

is believed that the Universe was almost uniform after inflation, with a very small

density contrast. As the Universe expanded, the small overdensities grew until they

began to collapse, leading to the formation of structure in the Universe. Thus, only

small deviations in the FLRW model are considered, so that they can be treated

by linear perturbation theory. After introducing the perturbed metric tensor in the

FLRW background, only scalar perturbations considered. In their paper they gave

the equation of energy-momentum conservation and the Einstein field equations for
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Fig. 9.2 Evolution of the

density contrast δ for a

perturbation with wavelength

λk ∼ 2 Mpc
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the perturbed metric. Within the linear theory of scalar perturbations the evolution

of the density contrast can be written as

δ̇ + 3H

(〈

δPΦ

δρΦ

〉

− 〈wΦ0
〉
)

δ = 3φ̇k〈FΦ〉 − 〈GΦ〉

where

FΦ = 1 + wΦ0

GΦ = 2k2

a2k2

φ̇k + Hφk

ρφ0

, (9.3)

being φk the gravitational potential. This equation differs from the density contrast

equation forΛCDM. However, in [78] they show that the extra termsFΦ andGΦ tend

to the values of the standard equation of ΛCDM. Therefore the scalar perturbations

in this model grow up exactly as in the ΛCDM paradigm (Fig. 9.2).

The evolution of the scalar perturbations in the nonlinear regime when δ≫1 was

also studied. Here, an analysis was made within the framework of the spherical col-

lapse model [94]. This formalism is very useful to understand the structure formation

process in the Universe in the nonlinear regime. Focused on the era where the radi-

ation density is equal to the SFDM density, the T ≪Tc, and therefore,it is expected

that the scalar potential reaches the Φ2
0 profile. They also studied if Φ2-dark matter

perturbations (once the breaking of symmetry was achieved and the SF had reached

its minimum) where able to form bound structures as in the standard model.

Following the same path, [119] obtained that for the matter dominated era the

low-k modes grow. When CDM decouples from radiation in a time just before

recombination it grows in a milder way than it does in the matter dominated era

(Fig. 9.3).

Although in general a scalar field is not a fluid, it can be treated as if it behaved

like one and the evolution of its density can be the appropriate for the purpose of
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Fig. 9.3 Evolution of the

perturbations for the CDM

model (red dots) and SFDM

model (green line) for

k = 1 × 10−3hMpc−1. Notice

how after the epoch of

equality (aeq ∼ 10−4) the

evolution of both

perturbations is identical,

a = 1 today. In this case the

self-interacting parameter is

λ = 0 [119]

structure formation, because locations with a high density of dark matter can support

the formation of galactic structure.

In [119] they assumed that there was only one component to the mass density,

and that this component was given by the scalar field dark matter. In this case the

equation for the perturbations reads

d2δ

dt2
+ 2H

dδ

dt
+

[

(v2
q + wρ̂0)

k2

a2
− 4πGρ̂0

]

δ = 0,

valid for all sub-horizon sized perturbations in the non-relativistic regime.

It was shown that the scalar field with an ultralight mass of 10−22 eV simulates

the behavior of CDM in a Universe dominated by matter when λ = 0, because in

general in a matter dominated Universe for low-k, vq (called the quantum velocity)

tends to be a very small quantity tending to zero, so from the equation of the density

contrast we could see that on this era we have the ΛCDM profile given by

d2δ

dt2
+ 2H

dδ

dt
+

(

c2
s

k2

a2
− 4πGρ̂0

)

δ = 0,

i.e., the SFDM density contrast profile is very similar to that of the ΛCDM model,

Fig. 9.3. On the contrary for λ �= 0 both models have different behavior as can be

seen from Fig. 9.4, results which show that linear fluctuations on the SFDM can grow,

even at early times when the large-scale modes (small k) have entered the horizon

just after aeq ∼ 10−4, when it has decoupled from radiation, so the amplitudes of

the density contrast start to grow faster than those for CDM around a ∼ 10−2. Here

an important point is that although CDM can grow it does so in a hierarchical way,

while from Fig. 9.4 we can see that SFDM can have bigger fluctuations just before

the ΛCDM model does, i.e., it might be that no hierarchical model of structure

formation is needed for SFDM, and it is expected that for the non-linear fluctuations

the behavior will be quite the same as soon as the scalar field condensates, which

could be in a very early epoch when the energy of the Universe was about ∼TeV.

These facts can be the crucial difference between both models.
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Fig. 9.4 Evolution of the

perturbations for the CDM

model (red dots) and SFDM

model (green line) for

k = 1 × 10−2hMpc−1 and

λ �= and negative. Notice how

after the epoch of equality

(aeq ∼ 10−4) the evolution of

both perturbations is now

different from the one in

Fig. 9.3, a = 1 today. In this

case we can clearly see that

the SFDM fluctuations grow

faster than those for the CDM

model

Additionally, in [61] the growth of cosmological perturbations to the energy den-

sity of dark matter during matter domination was considered when dark matter is a

scalar field that has undergone Bose-Einstein condensation. In this case, the inhomo-

geneities were considered within the framework of both Newtonian gravity, where

the calculation and results resulted more transparent, and General Relativity. The

direction taken was again in deriving analytical expressions, which where obtained

in the small pressure limit. Throughout their work the results where again compared

to those of the standard cosmology, where dark matter is assumed pressureless, using

analytical expressions to showcase precise differences. They also find, compared to

the standard cosmology, that Bose-Einstein condensate dark matter leads to a scale

factor, gravitational potential and density contrast that again increases at a faster rate.

9.4.3 Galaxies and BEC Dark Matter Mass Constraints

Magaña et al. [75] considered a model where ultra-light bosons are the main com-

ponents of the dark halos of galaxies. The main goal of this work was to constrain

the mass of the scalar particles. They constructed stable equilibrium configurations

of SFDM in the Newtonian limit to model the DM halo in UMi. They studied two

relevant cases of SFDM halos: with and without self-interaction.

Since galactic halos are well described as Newtonian systems, the work was done

within the Newtonian limit. In this limit, The Einstein–Klein–Gordon equations for a

complex scalar field Φ minimally coupled to gravity and endowed with a SF potential

V (Φ) = m2
φΦ2/2+λΦ4/4, can be simplified to the Schrödinger–Poisson equations:

ih̄∂t ψ = − h̄2

2mφ

∇2ψ + Umφψ + λ

2mφ

|ψ|2ψ, (9.4)

∇2U = 4πGm2
φψψ∗, (9.5)
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Fig. 9.5 Snapshots of the clump in UMi galaxy, at t = 0, 5, and 10 Gyr. The clump is set on a

circular orbit in the (x, y)-plane at a distance of = 0.39 kpc from UMi’s center. The mass of the

boson is mφ = 10−23 eV and Λ = 0. The total mass of the galaxy is M = 9.7 × 109M⊙

where mφ is the mass of the boson associated with the scalar field, U is the gravita-

tional potential produced by the DM density core, λ is the self-interacting coupling

constant, and the field ψ is related to the relativistic field Φ through

Φ = e−imφc2t/h̄ψ.

UMi is a diffuse dSph galaxy located at a distance of 69±4 kpc from the Milky Way

center and has a luminosity of LV = 3 × 105L⊙. Its stellar population is very old

with an age of 10–12 Gyr. Dynamical studies suggest that UMi is a galaxy dominated

by DM, with a mass-to-light ratio larger than 60M⊙/L⊙. Among the most puzzling

observed properties of UMi is that it hosts a stellar clump, which is believed to be a

dynamical fossil that survived because the underlying DM gravitational potential is

close to harmonic. This condition is accomplished if the DM halo has a large core.

In that work, it is mentioned that the most remarkable feature in UMi structure

is the double off-centered density peak. The second peak or clump is located on the

north-eastern side of the major axis of UMi at a distance of ∼0.4 kpc from UMi’s

center. The velocity distribution of the stars contained in the clump is well fitted by

two Gaussians, one representing the background. The most appealing interpretation

is that UMi’s clump is a disrupted cluster with an orbit in the plane of the sky,

which has survived in phase-space because the underlying gravitational potential is

harmonic, implying that the dark halo in UMi has a large core (Fig. 9.5).

The fact that SFDM halos have cores might solve other apparent problems in

dwarf galaxies. In their work the timing problem of the orbit decay of GCs (Globular

clusters) in dwarf elliptical galaxies and dSph galaxies was considered. In fact, in

a cuspy halo, GCs in these galaxies would have suffered a rapid orbital decay to

the center due to dynamical friction in one Hubble time, forming a nucleated dwarf

galaxy. For instance, under the assumption that mass follows light or assuming a NFW

profile, Fornax GCs 3 and 4, which are at distances to the center < 0.6 kpc, should

have decayed to the center of Fornax in ∼ 0.5-1 Gyr; this clearly represents a timing

problem. Assuming a cuspy NFW halo, GCs 1, 2, 3 and 5 can remain in orbit as long as

their starting distances from Fornax center are � 1.6 kpc, whereas one of them needs
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an initial distance � 1.2 kpc. However, there is no statistical evidence to suggest that

the initial distribution of GCs is so different to the stellar background distribution. In

addition, studies of the radial distribution of GCs in giant elliptical galaxies show that

the distribution of metal-rich GCs matches the galaxy light distribution. Assuming

that GCs formed along with the bulk of the field star population in dwarf galaxies,

the probability that Fornax GCs were formed all beyond 1.2 kpc is ∼ (0.03)5 ≃
2.5 × 10−8. Therefore, it is very unlikely that all the GCs in Fornax were formed at

such large distances and even if they did, there is still a timing problem.

The persistence of cold substructures in UMi places upper limits on mφ . Using

N-body simulations, it was found that the survival of cold substructures in UMi

was only possible if mφ < 3 × 10−22 eV in the Λ = 0 case. On the other hand,

by imposing a plausible upper limit on M , lower limits on mφ where placed. All

together, it was found that for Λ = 0, mφ should be in the window

0.3 × 10−22 eV < mφ < 3 × 10−22 eV.

Since the timing problem of the orbital decay of the GCs in Fornax can be alleviated

if mφ < 1×10−22 eV for Λ = 0, the most favored value resulted around (0.3−1)×
10−22 eV.

For SFDM models with self-interaction, the upper limit on mφ increases with Λ.

Bosons of mass � 6 × 10−22 eV could account for the observed internal dynamics

of UMi. In the limit Λ≫1, it was found that m4
φ/λ � 0.55 × 103 eV4 would explain

the longevity of UMi’s clump and the surviving problem of GCs in Fornax.

The window of permitted values for mφ resulted quite narrow. Even so, it is

remarkable that the preferred range for the mass of the boson derived from the

dynamics of dSph galaxies resulted compatible with those given by other authors to

ameliorate the problem of overabundance of substructure and is also consistent with

the CMB radiation [56, 80, 110].

In a recent posting, Slepian and Goodman constrained the mass of bosonic DM

using rotation curves of galaxies, and Bullet Cluster measurements of the scattering

cross section of self-interacting DM under the assumption that these systems are

in thermodynamic equilibrium, [116]. If their assumptions are verified, repulsive

bosonic DM will be excluded and, thereby, the only remaining window open is

non-interacting bosons. Nevertheless, the static diffusive equilibrium between Bose-

Einstein condensate and its non-condensated envelope, as well as finite temperature

effects need to be reconsidered. In addition, other authors [106, 111] argue that

scattering cross sections for bosonic DM are much smaller than those derived from

the condition of thermodynamic equilibrium by Slepian and Goodman.

9.4.4 SFDM Halos and Lensing

There are two observations of galaxies that can give us some information about the

nature of dark matter; rotation curves and gravitational lensing,these two related with

the presence of dark matter. While the first one can be studied using the Newtonian

limit, the second one results completely relativistic. Each one separately can not
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determine the nature of DM, but together can give us important information about

this open problem.

In their work, [91], Núnez et al. used a static and spherically symmetric metric to

model DM halos. The metric had two free functions, one associated with the distri-

bution of mass and the other one with the gravitational potential. They used galactic,

typical rotation curves to determine the kinematics of the halos. They calculated the

mass functions for a perfect fluid and a scalar field, separately and demonstrated that

both models can fit the observations. They then employed lensing to discriminate

between the models.

With these examples it was shown how a perfect fluid and a scalar field can be

consistent with the observations of rotation curves of DM halos, though they lead

to different conclusions to the mass function. The deflection of light was then used

to discriminate between the two models. Even though the mass function for some

models did not have the intuitively expected behavior, it was necessary to use the

observations in order to discard the model.

Recently Gonzále-Morales et al. presented an observational constraint to the

model of SFDM arising from strong lensing observations in galaxies, [40]. Their

result pointed to a discrepancy in the properties of SFDM halos for dwarf and lens

galaxies, mainly because halo parameters resulted related to the physical quantities

of the model.

They showed that a discrepancy between lensing and dynamical studies appeared

if they considered that the SFDM mass density profile in

ρ(r) =
{

ρc
sin(πr/rmax )

(πr/rmax )
for r < rmax

0 for r ≥ rmax

described the inner regions of galactic halos at different redshifts, up to radii of order

5–10 Kpc. They found that lensed galaxies at z ∼ 0.5, if described by a SFDM halo

profile, should be denser than dwarf spheroidals in the local universe, in order to

satisfy the conditions necessary to produce strong lensing.

On the other hand more recently, Robles and Matos have investigated the gravi-

tational constraints imposed to dark matter halos in the context of finite temperature

scalar field dark matter, [109]. They gave a strong lensing constraint of a finite

temperature scalar field DM halo.

They showed that there are differences with respect to the full Bose–Einstein

condensate halo when the temperature of the scalar field in dark matter halos is taken

into account. They extended the previous analysis of a fully condensed system at

temperature zero, and showed that multiples images are possible with more than one

state of the scalar field, i.e., the non-zero temperature allows the scalar field to be

in excited states. As finite temperature DM halos are not of only one radius, then,

their constraint expresses two limits, either the halos of strong lensing systems are

10 times larger or 10 times denser than dwarf galaxy halos.

They also provided a way to identify the excited state of the DM halo by means of

measuring their Einstein radius, the closer it is to the center the more probable that

the SFDM halo is in a higher excited state. A deeper analysis can be used as a test

to the validity of the SFDM model, mainly, because identifying the excited states
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of various halos can give information about their evolution which can be compared

with simulations and work as test to the model.

9.4.5 SFDM Density Profiles and LSB Galaxies

An analysis of the Newtonian regime at Temperature zero can be found in Bohmer and

Harko (2007), they assumed the Thomas–Fermi approximation which neglects the

anisotropic pressure terms that are relevant only in the boundary of the condensate,

the system of equations describing the static BEC in a gravitational potential V is

given by

∇p
( p

m

)

= −p∇V , (9.6)

∇2V = 4πGρ, (9.7)

with equation of state

p(ρ) = U0ρ
2,

where U0 = 2πh̄2a
m

, ρ is the mass density of the static BEC configuration and p is

the pressure at zero temperature, p is not the usual thermal pressure but instead it is

produced by the strong repulsive interaction between the ground state bosons.

In [107], Robles and Matos found that the BEC dark matter model can give a

density contrast profile consistent with RC’s of dark matter dominated galaxies. The

profile resulted as good as one of the most frequently used empirical core profiles,

the pseudo Isothermal profile (PI), but with the advantage of coming from a solid

theoretical frame. In [107] The data was fitted within 1 kpc and a logarithmic slope

α = −0.27 ± 0.18 was found in perfect agreement with a core. They emphasized

that the cusp in the central regions is not a prediction that comes from first principles

in the CDM model, it is a property that is derived by fitting simulations that use

only DM. For a detail discussion of the cusp and core problem in the standard model

see [32] and references there in. They also explained an ambiguity in the usual

interpretation of the core radius, they proposed a new definition for the core and core

radius that takes away this ambiguity and that has a clear meaning that allows for a

definite distinction of when a density profile is core or cusp. Using their definition

they found the core radius in the BEC profile to be in most cases over 2 kpc bigger

than the core radius in the PI profile. They assumed a great number particles were in

the ground state in the form of a condensate. This led to good results for their sample

of galaxies, but it proved necessary to consider more than these simple hypotheses

when dealing with large galaxies.

The solution to the system above is

ρB(r) = ρB
0

sin(kr)

kr
(9.8)
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Fig. 9.6 Contribution of the baryons to the rotation curve for F568-3 and F583-1. We denote

observed data by black dots with error bars, dark matter with blue asterisks, the disk with cyan

squares and the the gas with magenta squared boxes. The figures on the left were fitted asumming

the minimum disk hypothesis while the ones on the right are only the dark matter. In the fits shown

are, BEC in solid line(red in the online version), PI dashed (green in the online version) and NFW

double-dashed (black in the online version) profiles

it can be seen that the BEC model satisfies ρ ∼ r0 near the origin, but a priori this

does not imply consistency with observed RC’s. Therefore, the profiles were fitted

to thirteen high resolution RC data of a sample of LSB galaxies. The RC’s were

taken from a subsample of de Blok et al. (2001), galaxies that have at least 3 values

within ∼1 kpc where chosen, not presenting bulbs and the quality in the RC in Hα

is good as defined in McGaugh S. S. et al. (2001). Because the DM is the dominant

mass component for these galaxies they adopt the minimum disk hypothesis which

neglects baryon contribution to the observed RC. In order to show that in LSB and

dwarf galaxies neglecting the effect of baryons was a good hypothesis, they included

two representative examples, see Fig. 9.6.
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For these galaxies the contribution of the gas was plotted, disc and dark matter

separately. They did the fitting first considering the total contribution and then using

only DM. They found no substantial difference in their values.

As a second result and direct consequence of the core definition, they where able

to obtain the constant value of μ0 which is proportional to the central surface density.

This result is one of the conflicts of the current standard cosmological model due to

the hierarchical formation of galaxies.

As the density profile Eq. (9.8) is not enogh to describe the large galaxies as

discussed in [108], Robles and Matos thus gave a physically motivated extension to

the SFDM model that includes the DM temperature corrections to the first loop in

perturbations. Their idea is to use the Z2 spontaneous symmetry break of a real scalar

field as a new mechanism in which the early DM halos form. As stated earlier, when

the real scalar field rolls down to the minimum of the potential, the perturbations

of the field can form and grow. They gave an exact analytic solution for an static

spherically symmetric SF configuration, which in the SFDM model represents a DM

halo. Their solution naturally presents a flat central density profile,just as Eq. (9.8),

but now it can accommodate more than just the ground state as the temperature

T �= 0, in this way they solved previous discrepancies in rotation curve fits at T = 0,

for instance, having a constant halo radius for all galaxies and the incapability to

fit at the same time the inner and outermost regions of RC in large galaxies. Both

issues were solved using this scenario which includes temperature of the DM and

the exited states of the SF.

The perturbed system of a scalar field with a quartic repulsive interaction but with

temperature zero has been studied before [28, 38]. The study for the evolution of

the SF with the temperature correction in a FRW universe is analogous. The metric

tensor was written as g = g0 + δg, where as always g0 is the unperturbed FRW

background metric and δg the perturbation. The perturbed line element in conformal

time η given by

ds2 = a(η)2[ − (1 + 2ψ)dη2 + 2B,i dηdxi + (1 − 2φ)δij + 2E,ij dxidxj ]

with a the scale factor, ψ the lapse function, φ gravitational potential, B the shift,

and E the anisotropic potential. The energy-momemtum tensor and the field where

separated as T = T 0 + δT and Φ(xμ) = Φ0(η) + δΦ(xμ) respectively. As the linear

regime was studied δΦ(xμ)≪Φ0(η), the approximation V (Φ) ≈ V (Φ0) could be

made. They worked in the Newtonian gauge where the metric tensor g becomes

diagonal and as a result, in the trace of the Einstein’s equations the scalar potentials

ψ and φ are identical, therefore, ψ relates to the gravitational potential.

The work was mainly focused in the galactic scale DM halos after their forma-

tion. Robles and Matos constrained themselves to solve the Newtonian limit of the

perturbed KG equation, that is,

✷δΦ + λ̂

4
[k2

B(T 2 − T 2
C ) + 12Φ2

0]δΦ − 4Φ̇0φ̇ + λ̂

2
[k2

B(T 2 − T 2
C ) + 4Φ2

0]Φ0φ = 0

valid when Φ is near the minimum of the potential and after the SB, where the SF is

expected to be stable. Here TC is the temperature of the symmetry break.
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Fig. 9.7 Rotation curve of

NGC 1560 and NGC1003

from [108], where non zero

temperature is considered.

The wiggles are visible in the

outer region of the RCs. The

solid line is the temperature

corrected velocity profile and

the dashed line is the Einasto

fit [108]

Additionally to solving these two disagreements they mentioned why it does not

seem necessary to include high amounts of feedback to fit and reproduce the inner

core and wiggles found in high-resolution RC’s, see Fig. 9.7. Also, this model can be

tested with high redshift observations, the SFDM model predicts initial core profiles

as opposed to the initially cuspy ones found in CDM simulatios which are expected

to flatten due to redistribution of DM by astrophysical processes.

Finally one conclusion is that if observations of more galaxies with core behavior

are confirmed, this model can be a good alternative to ΛCDM.

9.4.6 BEC Dark Matter and the Power Spectrum

From another point of view in [125] it was again assumed that dark matter is composed

of scalar particles that are able to form a Bose-Einstein condensate at some critical

redshift zcr, but in this case it was used to study the matter power spectrum.

After the BEC forms its effective pressure can assume a polytropic equation of

state such as Pbe ∼ ρ
γ

be if an arbitrary non-linearity term is assumed, in this case γ .
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The exact value of γ is defined by the non-linear contribution of the Gross-Pitaevskii

equation which in its standard form leads to [18]

ρbe = 2πh̄2la

m3
χ

ρ2
be.

In this case, the scattering length la and the mass mχ of the dark matter particle again

determine the dynamics of the fluid. Assuming that the condensate does not interact

with any other form of energy, the above pressure, via the conservation balance,

leads to

ρbe =
m3

χ

2πh̄2la

ρ0

a3 − ρ0

where

ρ0 = 1.266 × Ωbe0 × (mχ/1 meV)−3 × (la/109 fm)

1 + 1.266 × Ωbe0 × (mχ/1 meV)−3 × (la/109 fm)
.

The current value of the scale factor a was taken as a0 = 1 and the current fractional

density of the BEC dark matter as Ωbe0 = ρbe0/ρc where ρc is the critical density.

When the above relations are combined the equation of state parameter of the BEC

dark matter is obtained

wbe = ρ0

a3 − ρ0

.

If the inertial effects of the pressure become relevant as for example during the

radiation phase or at the onset of the accelerated expansion, Newtonian cosmology

fails and a more appropriate set of equations is needed. The inclusion of pressure in

the Newtonian cosmology gives rise to the neo-Newtonian cosmology. In this case,

the matter power spectrum is defined as always

P (k) = |δb(z = 0; k)|2,

where δb(k) is the baryonic density contrast calculated from equations

δ′′
b + δ′

b

(

H ′

H
+ 3

a

)

− 3

2

Ωb

H 2a2
δb = 3Ωbe

2 H 2a2
(1 + c2

s )δbe,

and

δ′′
be +

(

H ′

H
+ 3

a
− w′

be

1 + wbe

− 3wbe

a

)

δ′
be +

[

3wbe

[

H ′

Ha
+ (2 − 3wbe)

a2

]

+ 3w′
be

a(1 + wbe) + (k/k0)2c2
s

H 2a4

− 3

2

Ωbe

H 2a2
(1 + 3c2

s )(1 + wbe)

]

δbe

= 3

2

Ωb

H 2a2
(1 + c2

s )δb (9.9)
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at the present time [125]. The baryonic agglomeration δb is supposed to be driven by

the gravitational field which is sourced by all the forms of energy. In order to solve

this set of equations it was needed to set the initial conditions for δb and δbe and their

derivatives at zcr where the condensation took place. Since zcr = zcr(la , mχ ) for each

chosen couple of values (la , mχ ) different initial conditions where needed.

In [125] it was shown that if such phase transition occurred in the recent Universe

this process would be able to leave small, but perceptible, imprints on the large scale

structure perceptible in the matter power spectrum. Assuming la = 106 fm the BEC

dark matter model does shows differences of the order of a few percents for masses

15–35 meV. Adopting la = 1010 fm corrections of the same order where obtained

for masses 300–700 meV.

Although the BEC phase is shown to have a small influence on the matter power

spectrum, a more quantitative analysis could be performed to estimate the preferred

values of the model parameters.

For the relevant parameter values studied in that work, the transition to the BEC

phase was shown to occur at low redshifts. Since the standard cosmology remains

unchanged before zcr the CMB physics at the last scattering surface remained the

same. However, the BEC dark matter would modify the gravitational potential just

after zcr while the speed of sound is nonzero leading to a contribution to the integrated

Sachs–Wolfe effect.

9.4.7 Vortices in BEC Dark Matter

The conditions to form vortices in a SFDM/BEC halo have also been studied in

[106, 130]. As it has been pointed out, these halos can be described as fluids, obey-

ing quantum-mechanical fluid equations, so that the effects that make up this form

of dark matter behave differently from standard ΛCDM, resulting in new effects

with potentially observable consequences. The idea is that ultralight particles with

m≪1 eV will have very large de Broglie wave lengths which means that quantum sta-

tistical effects are important and macroscopic coherent lumps of matter can emerge.

These light Bose particles will have a transition temperature to the condensed state

that is of order Tc ∼ 2 · 109 K, which is the expected temperature in the Universe

after about 1 s.

There are essentially two limiting cases that can be considered. First, for quantum-

coherence to be relevant on the scale of a halo of radius R, the particle de-Broglie

wavelength

λdeB = h

mv
,

should be considered to be of the order of the halo size, λdeB � R, or else require

λdeB≪R but with a strong repulsive self-interaction to hold the halo up against

gravity. In the first case, if v ≃ vvirial for the halo, this translates into a condition for
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the dark matter particle mass,

m � mH = 1.066 · 10−25(R/100 kpc)−1/2(M/1012M⊙)−1/2 eV cm3,

where mH is a mass that depends on the properties of the halo and gH is determined

by the density and the radius of the halo. In the second case, for the repulsive self-

interaction pressure force to exceed the quantum pressure, it is required that g≫gH =
2.252·10−64(R/100 kpc)(M/1012M⊙)−1 eV cm3. If R is taken to be the radius of the

virialized object supported against gravity by the dominant repulsive self-interaction,

this imposes a condition on the particle mass given by m � mH

4

√
15 g/gH .

However, it seems that rotating BEC haloes add new phenomenology, and the

possibility to distinguish this form of dark matter from other candidates. To this

aim, in [106] they have studied the question of whether an angular velocity could be

sufficient to create vortices in BEC/CDM cosmologies. As quantum fluid systems,

BEC haloes can be modeled as uniformly rotating ellipsoids, with and without inter-

nal motions superposed. To this aim, in [106] the authors derived equations which

relate the eccentricities of haloes to their λ-spin parameter. Once the latter is fixed,

the eccentricities can be uniquely determined. They analytically studied necessary

and sufficient conditions for vortex formation. In their results they found that vortex

formation requires as a necessary condition that the halo angular momentum satisfies

L ≥ LQM = Nh̄, which implies a lower bound on m/mH , i.e. on the dark matter

particle mass. However, a sufficient condition for vortex formation could be estab-

lished by an energy analysis, which aimed to find the conditions of when a vortex

becomes energetically favored.

They studied two classes of models for rotating halos in order to analyze stability

with respect to vortex formation in two limits, one forL/LQM≫1 and forL/LQM = 1,

respectively. In what they called Halo-Model A (L/LQM≫1) these where modeled

as homogeneous Maclaurin spheroids. The minimum angular momenta for vortex

formation in this case was (L/LQM)crit = (5.65, 4.53, 4.02) for λ = (0.01, 0.05, 0.1),

respectively, which corresponded to a constraint on the particle mass m/mH ≥
(m/mH )crit, where (m/mH )crit = (309.41, 49.52, 21.73), respectively. As long as

m/mH satisfied this condition, the strength of the self-interaction also satisfied the

condition g/gH ≥ (g/gH )crit, where (g/gH )crit = (1.02 · 105, 2549.24, 454.54) for

the same λ-values, respectively.

For Halo-Model B (L/LQM = 1), which was an (n = 1)-polytropic Riemann-S

ellipsoid, strictly irrotational prior to vortex formation, even L/LQM = 1 resulted to

be sufficient for vortex formation if the self-interaction strength was large enough.

The condition L/LQM = 1 fixed the value of m/mH for each λ according to

L

LQM

= m

mH

κn

10

2Ω̃

√

1 − e2
1e

4
1

(2 − e2
1)(1 − e2

1)5/6(1 − e2
2)1/3

= m

mH

κn

10
×

(

2B12

qn

)1/2 (

2 + e4
1

4(1 − e2
1)

)−1/2
e4

1

(1 − e2
1)5/6(1 − e2

2)1/3
,

(9.10)
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and the condition of virial equilibrium

y(x) = π√
8
g(e1, e2)−1/2x,

thereby also fixing g/gH . For λ = (0.01, 0.05, 0.1), these values where given by

m/mH = (44.58, 9.49, 5.01) and g/gH = (1595.07, 68.00, 17.20), respectively.

Halo-Model B then made vortex formation energetically favorable for these values

of m/mH and g/gH . They interpreted this to mean that, for L/LQM > 1, vortex

formation will also be favored, as long as g/gH > (g/gH ). Furthermore, any values

of m/mH and g/gH which satisfy the condition for vortex formation in Halo-Model

A would automatically satisfy that found by Halo-Model B, which resulted less

stringent but more accurate.

In conclusion they imagined vortex formation in BEC haloes composed of repul-

sively interacting particles as follows: If the angular momentum of a rotating BEC

halo fulfills L < LQM, no vortex would form, and the halo can be modeled by a

mildly compressible, irrotational Riemann-S ellipsoid, which has a polytropic index

of n = 1. For L = LQM, the irrotational Riemann-S ellipsoidal halo can make a tran-

sition to a non-rotating, spherical halo with a vortex at the center if the self-interaction

is strong enough. For a range of angular momenta fulfilling LQM < L ≤ 2LQM, a

central vortex can be expected but now with the excess angular momentum deform-

ing the halo such that again a Riemann-S ellipsoid forms. Finally, if L≫LQM, oblate

haloes described as Maclaurin spheroids had a central vortex if m/mH ≥ (m/mH )crit

and g/gH ≥ (g/gH )crit with the critical values given by Halo-Model A. Those crit-

ical values determined when a single vortex was energetically favored, but since

L/LQM≫1, it is also possible that multiple vortices could form.

From another point of view, in [130] it was assumed that the particles where

non-interacting and therefore only gravity acted on the system. Following [56], the

authors based on Jeans instability analysis to estimate their parameters. The growing

mode under gravity was given by eγ t with γ 2 = 4πGρ, whereas the free field was

supposed oscillatory; e−iEt with E = k2/2 m. The latter was then written as eγ t with

γ 2 = −(k2/2 m)2. Noting that this is like normal Jeans analysis with sound speed

c2
s = k/2 m then γ 2 = 4πGρ − (k2/2 m)2. Setting this to zero, for the Jeans scale

they found

rJ = 2π/kJ = π3/4(Gρ)1/4m−1/2 = 55m
−1/2
22 (ρ/ρb)−1/4(Ωmh2)−1/4 kpc,

where m22 = m/10−22eV, and the background density is ρb = 2.8 · 1011Ω2
mhM⊙

Mpc−3. It is supposed that below the Jeans scale the perturbations are stable and

above it they behave as ordinary CDM [56]. As always, the stability below the Jeans

scale was guaranteed by the uncertainty principle. If the particles are confined further,

their momenta increases and oppose gravitational contraction.

Moreover, in [130] the author also considered the suggestion that superfluid BEC

dark matter in rotation would likely lead to vortices as seen in atomic BEC experi-

ments. As already noted in [41], BEC dark matter with self-interactions could actually

constitute a superfluid. In the case of a repulsive self-interaction in [130] the author
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too argued that the vortex size should be determined locally by the coherence length.

This means that there would be two scales in the problem: A galactic one, given by

the de Broglie wavelength from the tiny mass, and a sub galactic one determined by

the mass and the two-body interaction strength. He also explored the consequences

of self-interactions on the virialization of gravitationally bound structures and found

almost no effects for reasonable values of m and a. Here the case considered was

also that of a quartic self-interaction λφ4.

In [18] there was a brief discussion of the effect on the Lane–Emden equation,

whereas in other works a BEC of axions with a single vortex arising from global

rotation in the early Universe has been considered. This latter scenario is, however,

less likely to occur since the global rotation rate of the Universe can be estimated

from various observations and is very small but nevertheless non-zero.

Under the assumption of dark matter being an ultra-light BEC, the rotation of spiral

galaxies would cause vortex lattices to form. In [130], the author also considered

possible effects of sub galactic vortices in the dark matter on the rotation velocity

curves of virialized galaxies with standard dark matter halo profiles. He found that one

can actually get substructure in the rotation curves that resemble some observations,

but that this required large vortex core size and small vortex-vortex distances. The

mass and interaction strength needed to realize this were found to be fine-tuned, but

could possibly be accommodated in more general setups.

If dark matter contains a component of condensed BEC particles that is superfluid

and if the halos are rotating then it is not inconceivable that there can be vortex

formation. However, the quantized vortex discussion makes an important assumption

about the coherence length, ξ , entering Ωc (angular velocity of the halo) in

Ωc = h̄

mR2
ln

(

1.46R

ξ

)

= 6.21 · 10−17

m22R2
ln

(

1.46R

ξ

)

.

Here ξ is taken to be of kpc size. It then results that with no self-interaction there

is only the gravitational scale h̄2/GMm2 available, which becomes of galactic size

for masses m ∼ 10−22eV. However, when including self-interactions through the

scattering length a, there is also a scale given by ξ = 1/
√

8πan, which is the usual

Gross-Pitaevskii coherence length. The latter coincided with the characteristic length

over which the density is expect to go to zero in a vortex.

If the additional assumption that the vacuum expectation value, φ0, arises from a

mechanism that preserves parity, the interaction term results

(mc2)2φ4

4(h̄c)2φ2
0

= g
φ4

4
.

This terms is of course merely the standard interaction term in the Gross–Pitaevskii

theory of interacting condensed bosons. Therefore he also concludes that the self-

interacting scenario emerges from this procedure.

These investigations and simple numerical experiments pointed to an interest-

ing effect that could arise from bosonic dark matter. However, to fully explore the

influence that vortex lattice formation and stellar feedback on structure formation
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has in luminous matter, an ultralight BEC dark matter component in large N-body

simulations should be considered.

9.4.8 Bose Dark Matter Additional Constraint

In [111] BE condensation inside the primeval fireball, at zero-order in perturbation

theory has been studied. Here, the process of condensation was considered to be

driven by self-interactions of high-energy bosonic particles.

In this work it was found that in the instantaneous decoupling approximation, the

subsequent evolution of the full bosonic system was only affected by the expansion

rate of the Universe and small gravitational instabilities.

The evolution of bosonic DM after decoupling was analyzed as follows: their

velocity and temperature affected only by the expansion rate of the Universe.

In

m = Ωcρcr

n
(0)
c

= ΩHρcr

n
(0)
T

,

the temperature was needed in order to calculate the mass of the bosonic DM. Here Ωc

and ΩH represent the content of bosonic CDM and bosonic HDM (hot dark matter)

respectively, nc is the number density of condensed bosons and nT the number density

of thermal bosons.

As an additional remark, they also address a bound on the strength of the bosons

self-interactions.

In their study, the bosonic DM parameters where addressed as the mass, m, and

the factor gx (amount of degrees of freedom); where bounds on their values have

been obtained from a statistical analysis of cosmological data. The constraints found

for the temperature of the boson gas T
φ

0 = 2.14±0.02K, and for the boson-antiboson

gas T
φφ̃

0 = 1.91 ± 0.05K.

Finally, from a similar analysis for fermionis they found bounds in the sum of

neutrino masses and the number of extra relativistic species,
∑

mν � 0.45eV, N =
1.10 ± 0.18, in concordance with some previous reports.

In summary, they presented a generic study of DM based on BE condensation,

from which, CDM and HDM, result intrinsically related.

9.4.9 SFDM and Black Holes

The rapid decay of the energy density of the scalar field for the case of super-

massive black holes, indicates that scalar fields may not be maintained around a

black hole during cosmological time scales in the whole space; so either the scalar

field gets accreted or it escapes through future null infinity. The fact is that when a
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Schwarzschild black hole that is asymptotically flat is considered, scalar fields tend

to vanish from the spatial domain.

An appropriate coordinate system to study the propagation of scalar fields in the

Schwarzschild space-time is using hyperboloidal slices, because it has been seen

that such slices reach future null infinity instead of spatial infinity, which results as

a natural boundary for a wave-like processes, including electromagnetic fields and

gravitational radiation.

In this case the Klein-Gordon equation for a scalar field φ̃T can be written

as [30]: ✷̃φ̃T − dṼ
dφT

=0, where ✷̃φ̃T = 1√
−g̃

∂μ[
√

−g̃g̃μν∂ν φ̃T ], with a potential of the form

Ṽ = 1
2 m2

B |φ̃T |2+ λ
4 |φ̃T |4, where mB has the units of mass. Then the KG equation in the

conformal metric can be expressed as:

✷̃φ̃T − 1

6
R̃φ̃T − (m2

B φ̃T + λφ̃3
T ) = Ω3

[

✷φT − 1

6
RφT − (m2

BΩ−2φT + λφ3
T )

]

= 0,

provided the relationship between the physical scalar field φ̃T and the conformal

scalar field φT to be φT = φ̃T /Ω. Here R = 12Ω
r2 [r + (2r − 1)] is the Ricci scalar

of the conformal metric and ✷ = ∇μ∇μ corresponds to the conformal metric. The

case for which this last equation results conformally invariant corresponds to the

zero mass case mB = 0.

In their work [30], used initial scalar field profiles with m2
B = 0.0, 0.1, 0.2. In order

to explore the parameter space, various values of the amplitude A = 0.01, 0.1, 1.0

and different widths of a Gaussian pulse, which in physical units corresponded to

σ1 = 0.5, σ2 = 1 and σ3 = 5 to the right from r0 = 0.8. This range of parameters

allowed the authors to cover length ranges that involve Compton wave-length related

to effects of interaction and reflection that may involve reflection and absorption

effects.

In their work, [30], one of the conclusions was that one potential ingredient that

would help at maintaining massive scalar field densities during longer times is the

rotation of the black hole and also of the scalar field. It would then be of major interest

to use foliations that approach future null infinity and study if the same effects occured

and also the study of scalar field configurations with non-zero angular momentum.

In fact, the results in their work where obtained assuming the maximum cross section

of accretion due to the spherical symmetry, which in turn worked as upper bounds

accretion rates in more general cases.

Yet another possibility results on considering solutions that asymptotically may

contain a cosmological constant, which would be appropriate if a background energy

density in the universe where assumed. This would imply that black hole candidates

should not be considered to be asymptotically flat. Other possibilities may include

black hole candidates of a different nature like boson stars. For further reading on

subjects related to black holes with scalar fields and gravitational instability see for

example, [62].
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9.4.10 Threats to Scalar Field Dark Matter, Black Holes?

As mentioned in the last subsection, the existence of a long-lasting scalar field con-

figurations surrounding a black hole have been studied [13, 30]. Another motivation

for these studies is the possibility that super-massive black holes at galactic centers

may represent a serious threat to the scalar field dark matter models.

As a first step, a relatively simple model has been considered [13]. There,

stationary scalar field configurations to the Klein–Gordon equation

(✷ − μ2)φ = 0,

where looked for on a Schwarzschild space-time background,

ds2 = −N (r)dt2 + dr2

N (r)
+ r2dΩ2, N (r) := 1 − 2M/r ,

with the d’Alambertian operator defined as ✷ := (1/
√−g)∂μ(

√−ggμν∂ν), M being

the mass of the black hole and dΩ2 := dθ2 + sin2θdϕ2 the standard solid angle

element. So far, the case has been restricted to the case of a canonical, massive,

non self-interacting minimally coupled scalar field φ. With these conventions φ

results dimensionless, while μ has dimensions of length−1. The associated quantum

mechanical “mass” of the scalar field given by h̄μ.

In order to look for the stationary solutions of

[

1

N (r)

∂2

∂t2
− ∂

∂r
N (r)

∂

∂r
+ Ul(μ, M; r)

]

ψ
lm

= 0,

a further decomposition of the functions ψ
lm

(t , r) was done into oscillating modes

of the form:

ψ
lm

(t , r) = eiωlmtulm(r),

with ωlm a real frequency and ulm(r) a complex function of r in the interval (2M , ∞).

Although stationary solutions were found for the scalar field,

||u||2 :=
∫ ∞

2M

(

N (r)

∣

∣

∣

∣

∂u

∂r

∣

∣

∣

∣

2

+ Ul(μ, M; r)|u|2
)

dr

they have been shown to be unphysical, in the sense that their energy density inte-

grates to infinity in a compact region just outside the event horizon. However, there

seem to exist long-lasting, quasi-stationary solutions of finite energy, which are found

by evolving initial data that was constructed by slightly modifying a particular subset

of the stationary solutions. The solutions found so far show as an overall behavior

an exponential energy decay, caused by scalar field leaking into the black hole, that

in some cases can be very slow.
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The stationary solutions where obtained by solving a time-independent

Schrödinger-like equation

[

− ∂2

∂r∗2
+ Veff(r

∗)

]

u(r∗) = ω2u(r∗), − ∞ < r∗ < ∞,

with an effective potential

Veff(r
∗) := N (r)Ul(μ, M; r), r = r(r∗).

and hence they where characterized only by the properties of the potential. This fact

is strictly true for the stationary solutions, but interestingly it was found that the

quasi-stationary solutions, for which the Schrödinger-like equation no longer holds,

can also be characterized by the properties of that same effective potential. Then,

the cases of interest where those in which the effective potential contained a local

minimum given by the condition

Mμ2r3 − l(l + 1)r2 + 3M(l2 + l − 1)r + 8M2 = 0.

The existence of this minimum then depended solely on the combination of the

parameters Mμ and l. Although none of the possible forms of the effective potential

proposed allowed for bound states, the existence of the well was enough to allow for

resonant states, which where the ones that where useful in constructing initial data

that could give rise to long-lasting quasi-stationary configurations of finite energy.

As mentioned by the authors, it could be objected that in order to obtain the men-

tioned quasi-stationary solutions very particular initial data should be constructed.

However, it seems that the crucial factor is the existence of the potential well. Even

when starting with modified stationary solutions that are not resonant, after an ini-

tial abrupt energy loss, the late time behavior observed resulted very similar to that

of the resonant quasi-stationary solutions. These solutions seemed to evolve as a

combination of the resonant modes. As mentioned before, the value of μ for scalar

field dark matter models is expected to be given approximately by h̄μ = 10−24eV in

physical units, which gives rise to effective potentials with a local minimum for all

values of l.

When evaluating the characteristic times of the solutions it was found that the

longest lasting configurations could last for thousands of years. Although cosmo-

logically this is very short time, for technical reasons, the authors where only able

to study cases with relatively large values of Mμ. Noting how fast the characteristic

times seemed to increase with decreasing μ, it resulted unreasonable to expect that

configurations with Mμ ∼ 10−6 could last for cosmological time-scales.

Some aspects of this study are still open for some improvement. For example, a

self-gravitating scalar field has not yet been considered. Second, much smaller values

of the parameter μ, and much larger scalar field distributions, could be needed to do a

more realistic representation of dark matter halos. The main difficulty in dealing with

such configurations result in handling the very different scales numerically. Third,

besides studying possible quasi-stationary or long-lasting configurations with an
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already existing black hole, it would also be interesting to consider more dynamical

scenarios such as the formation and/or growth of the black hole and the possibility of

survival of the scalar field afterwards. The results presented by Barranco et al. in [13]

seem to indicate that it is indeed possible for scalar field halos around super-massive

black holes to survive for cosmological time-scales.

9.5 Conclusions

In this work we have revisited an alternative DM paradigm of the Universe known

as scalar field dark matter or Bose–Einstein condensate dark matter model. In this

model a fundamental scalar field plays the role of dark matter.

We have reviewed a large number of recent quantitative and qualitative results

aimed at explaining a variety of trends seen in the SFDM/BEC model. These trends

include a brief description of Bose-Einstein condensates as dark matter, analysis

and growth of its cosmological perturbations, its effect on the dynamics of galaxies,

density profiles and the mass power spectrum, among others.

The key parameters of an ultralight BEC dark matter model are naturally shown

to be the mass of the boson, which must be extremely small and, for the self-

interacting scenario, the coupling strength of two-body repulsive interaction among

the condensed particles. Dark matter is then suggested to arise from a single scalar

field coupled to gravity undergoing a spontaneous symmetry break and hence rolls

to a new minimum which gives a new vacuum expectation value. The breaking of

symmetry can be done via a Ginzburg–Landau potential with quadratic and quartic

terms. These give the mass and the interaction terms to the scalar field.

In the cosmological regime, it has been shown, that the SFDM/BEC model with

an ultralight mass of 10−22 eV mimics the behavior of the cosmological expansion

rate predicted with the ΛCDM model.

Another interesting cosmological behavior of the SF indicates that their scalar

fluctuations can be appropriate for the purpose of structure formation,mainly because

overdense regions of SFDM/BEC can produce the formation of galactic structure.

Thus, the standard and the SFDM/BEC models can be contrasted in their predictions

concerning the formation of the first galaxies. If in the future we observe more and

more well formed and massive galaxies at high redshifts, this could be also a new

indication in favor of the SFDM/BEC paradigm.

Much of the interest in this model has focussed on its ability to predict and agree

with observations of the existence of dark matter and its capability to compete with

the standard model of cosmology ΛCDM. Most of the themes we have described

attempt to provide a wider view of what the model is and what is its current status.

There are many other works in this field of research that are not less important,

however, we trust that the interested reader will be able to deepen its knoledge with

the references cited in this article.

Clearly there are a large number of competing models to describe the dark matter

of the Universe, and slight differences such as vortex formation or small shifts in
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cosmological perturbations may not be enough to decide which one is the best,

however, detail observations give us a means to discard several of them and identify

the ones that can stay.

Finally, the SFDM/BEC model can have important implications in the nature of

dark matter in the Universe. Additional work is needed if we are to fully understand

this model, it would be desirable to have a unify framework that involves rotation

curves, vortex formation, if present, and black hole effects. With all these intriguing

results, we consider that the SFDM/BEC should be taken as a serious alternative to

the dark matter problem in the Universe. The observational evidence seems to be in

favor of some kind of cold dark matter, if we continue to observe even more galaxies

at higher redshifts and if higher resolution observations of nearby galaxies exhibit a

core density profile, this model can be a good alternative to ΛCDM. We expect that

future observations in galaxy surveys can get us closer to the nature of dark matter.
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