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Abstract

Variable-order (VO) fractional differential equations (FDEs) with a
time (t), space (x) or other variables dependent order have been success-
fully applied to investigate time and/or space dependent dynamics. This
study aims to provide a survey of the recent relevant literature and find-
ings in primary definitions, models, numerical methods and their appli-
cations. This review first offers an overview over the existing definitions
proposed from different physical and application backgrounds, and then re-
views several widely used numerical schemes in simulation. Moreover, as a
powerful mathematical tool, the VO-FDE models have been remarkably ac-
knowledged as an alternative and precise approach in effectively describing
real-world phenomena. Hereby, we also make a brief summary on different
physical models and typical applications. This review is expected to help
the readers for the selection of appropriate definition, model and numerical
method to solve specific physical and engineering problems.
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1. Introduction

Fractional calculus, containing differentiation and integration (i.e., in-
tegration and differentiation of an arbitrary real order), has a history of
more than three hundred years [66, 108]. Compared with the integer or-
der calculus, many real-world phenomena can be better described by using
fractional operator. In fact, the fractional calculus has been acknowledged
as a promising mathematical tool to efficiently characterize the historical
memory and global correlation of complex dynamic systems, phenomena or
structures. However, various literature indicated that the memory and/or
nonlocality of the system may change with time, space or other conditions
[66, 106]. The VO fractional operators depending on their non-stationary
power-law kernel can describe the memory and hereditary properties of
many physical phenomena and processes. Therefore, to accurately charac-
terize complex physical systems and processes, VO fractional calculus was
availably employed as a potential candidate to provide an effective math-
ematical framework [137]. Subsequently, VO-FDEs have attracted more
and more attention, ascribing to its suitability in modeling along with a
large variety of phenomena, ranging many fields of science and engineering
fields, including anomalous diffusion [19, 103, 139], viscoelastic mechan-
ics [30, 36, 50, 96], control system [59], petroleum engineering [80], and
many other branches of physics and engineering, just to mention a few
[8, 16, 54, 56, 60, 71, 84, 131, 135].

Samko and Ross [89] firstly proposed the concept of VO integral and
differential as well as some basic properties in 1993. Lorenzo and Hartley
[67] summarized the research results of the VO fractional operators and
then investigated the definitions of VO fractional operators in different
forms. After that, some new extensions and valuable application potentials
of the VO-FDE models have been further explored [30]. It has become a
research hotspot and has aroused wide concern in the last ten years. A
detailed description will be offered in Section 5.

Extensive investigations have devoted to the physical modeling using
VO-FDE models. For examples, Kobelev et al. [58] demonstrated the vari-
able memory problems concerning statistical and dynamical systems, where
the fractal dimension changes with time and coordinate. Coimbra et al.
[30] investigated the viscoelasticity oscillator via VO fractional operators.
Sweilam and Al-Mekhlafi [111] presented a novel multi-strain tuberculosis
model using VO fractional derivative as an extension of the nonlinear ordi-
nary differential equation. We also investigated the application potentials
of VO-FDE models in characterizing transient diffusion [103].

Whereafter, it is necessary to seek exact solutions or numerical solu-
tions for VO-FDEs. However, it is usually difficult to obtain the analytical
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solution of VO-FDEs. In general, the numerical methods are employed as
efficient developed methods for the numerical approximation of VO-FDEs
[27, 90]. For examples, Liu et al. [65] studied the stability and convergence
of a new explicit finite-difference approximation for the VO nonlinear frac-
tional diffusion equation. Razminia et al. [86] proved the existence for
the solution of VO-FDEs. Zayernouri and Karniadakis [133] developed an
exponentially accurate fractional spectral collocation method for solving
linear/nonlinear VO-FDEs. Chen et al. [22] introduced a new implicit nu-
merical method to solve the two dimensional (2D) VO fractional percolation
equation smoothly. Zhao et al. [138] proposed a second-order approxima-
tion formulae for the time VO fractional derivative to describe anomalous
diffusion and wave propagation. Afterwards, Cao and Qiu [17] derived a
high-order numerical method for VO-FDEs in the light of a second-order
numerical approximation. Some properties and inversion formula of the
VO operator dα(x)f(x)/dxα(x) using the Riemann-Liouville definition and
Fourier transform have been discussed [89]. Furthermore, more details in
progress in numerical algorithms for VO-FDEs will be investigated in Sec-
tion 4.

This paper is organized as follows. Section 2 introduces preliminary
definitions of VO fractional calculus. In Section 3, VO fractional integral
and derivative models and physical interpretations are investigated. Section
4 provides a review on several widely used numerical methods for VO-FDEs.
A wide range of applications concerning VO-FDE models are offered in
Section 5. Some conclusions are reported in Section 6.

2. Primary definitions of variable-order fractional calculus

The VO fractional integration and differentiation are increasingly de-
veloped and discussed, after the first definition proposed by Samko [88].
Notably, there are three ways to define the mathematical basis for VO
fractional integrals and derivatives, including directly extension from frac-
tional operators [89], Laplace-transform [30] and physical-driven [66, 102].
In this section, we offer existing definitions of fractional integral and frac-
tional derivative operators.

2.1. Riemann-Liouville definition. In the beginning, the Cauchy for-
mula for integer order integration is studied [79]

Inf(x) =
1

(n− 1)!

∫ x

0
(x− y)n−1f(y)dy. (2.1)
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The fractional order integral is then defined as [82, 91]

Iαt f(t) =
1

Γ(α)

∫ t

0

f(τ)

(t− τ)1−α dτ, α > 0, (2.2)

where Γ(·) is the Gamma function as an extension of the factorial function
to real numbers [25, 110]

Γ(t) =

∫ ∞

0
τ t−1 exp(−τ)dτ, t > 0. (2.3)

The left-hand and the right-hand Riemann-Liouville fractional derivatives
with order α are defined as [69]

Dα
a+f(x) =

dαf(x)

d+xα
=

1

Γ(n− α)

dn

dxn

x∫
a

f(ξ)

(x− ξ)α+1−n dξ, (2.4)

and

Dα
b−f(x) =

dαf(x)

d−xα
=

(−1)n

Γ(n− α)

dn

dxn

b∫
x

f(ξ)

(ξ − x)α+1−n dξ, (2.5)

where n is an integer, n − 1 < α ≤ n, and a and b are the left and right
boundary points, respectively. When the fractional order is allowed to
vary with time or space, a generalized Riemann-Liouville time integration
operator can be written as bellow [65]

aI
α(t)
t f(t) =

1

Γ(α(t))

∫ t

a
(t− τ)α(t)−1f(τ)dτ. (2.6)

The definitions of left and right VO Riemann-Liouville integrals with hiding
memory are then proposed as [5]

aI
α(t,τ)
t f(t) =

∫ t

a

1

Γ(α(t, τ))
(t− τ)α(t,τ)−1f(τ)dτ, (2.7)

and

tI
α(t,τ)
b f(t) =

∫ b

t

1

Γ(α(t, τ))
(τ − t)α(t,τ)−1f(τ)dτ. (2.8)

The left-side and right-side VO Riemann-Liouville fractional derivatives
are stated as [19]

RL
a D

α(t)
t f(t) =

1

Γ(n− α(t))

dn

dtn

∫ t

a
(t− ξ)n−α(t)−1f(ξ)dξ, n−1 < α(t) < n,

(2.9)
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and

RL
t D

α(t)
b f(t) =

(−1)n

Γ(n− α(t))

dn

dtn

∫ t

a
(ξ − t)n−α(t)−1f(ξ)dξ, n−1 < α(t) < n.

(2.10)
Meanwhile, the left Riemann-Liouville fractional derivative of order α(τ, t)
is defined as [66, 114]

RL
a D

α(τ,t)
t f(t) =

dn

dtn

(
1

Γ(n− α(τ, t))

∫ t

a
(t− τ)n−α(τ,t)−1f(τ)dτ

)
. (2.11)

The right Riemann-Liouville fractional derivative of order α(τ, t) is stated
as

RL
t D

α(τ,t)
b f(t) =

dn

dtn

(
(−1)n

Γ(n− α(τ, t))

∫ b

t
(τ − t)n−α(τ,t)−1f(τ)dτ

)
. (2.12)

2.2. Caputo definition. Because the initial conditions for the FDEs with
the Caputo derivatives are the same as the integer order differential equa-
tions, Caputo type definition is extremely useful in many application fields
[125]. The Caputo fractional derivative of f(t) is defined as [126]

C
a D

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1 dτ, n− 1 < α < n. (2.13)

As a direct extension, the VO fractional derivative is defined as [138]

C
a D

α(t)
t f(t) =

1

Γ(n− α(t))

∫ t

a

f (n)(τ)

(t− τ)α(t)−n+1
dτ, n − 1 < α(t) < n, (2.14)

and

C
t D

α(t)
b f(t) =

(−1)n

Γ(n− α(t))

∫ b

t

f (n)(τ)

(τ − t)α(t)−n+1
dτ, n − 1 < α(t) < n. (2.15)

Using inverse Laplace transform, Coimbra [30] proposed a formulation
of VO differential operator for physical modeling

CDα(t)f(t) =
1

Γ(1− α(t))

∫ t

0+
(t− τ)−α(t)f ′(τ)dτ +

(f(0+)− f(0−))t−α(t)

Γ(1− α(t))
,

(2.16)
where 0 ≤ α(t) < 1. Coimbra’s definition provided a precise and direct
meaning of the VO derivative for a given configuration [81].

If the order α(t) is a constant, then the VO fractional operators are
reduced to the corresponding constant-order (CO) derivatives. These two
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definitions of VO derivatives are not generally equivalent, but they are
related by the following relationship

RL
0 D

α(t)
t f(t) =

n−1∑
k=0

f (k)(0)tk−α(t)

Γ(k + 1− α(t))
+ C

0 D
α(t)
t f(t). (2.17)

When α(t) ∈ (0, 1), the following relationship between (2.9) and (2.13) can
be formulated [17]

C
0 D

α(t)
t f(t) = RL

0 D
α(t)
t [f(t)− f(0)] . (2.18)

In addition, the operator C
0 D

α(t)
t satisfies the following property (1<α(t)<2)

[12]

C
0 D

α(t)
t tγ =

{
0, 0, 1,

Γ(γ+1)
Γ(γ+1−α(t)) t

γ−α(t), γ = 2, 3, ....
(2.19)

Considering the hiding memory, the left Caputo derivative with order
α(τ, t) is defined as

C
a D

α(τ,t)
t f(t) =

∫ t

a

1

Γ(n− α(τ, t))

f (n)(τ)

(t− τ)α(τ,t)−n+1
dτ, n − 1 < α(τ, t) < n.

(2.20)
The right Caputo derivative with order α(τ, t) is written as

C
t D

α(τ,t)
b f(t) =

∫ b

t

(−1)n

Γ(n− α(τ, t))

f (n)(τ)

(τ − t)α(τ,t)−n+1
dτ, n− 1 < α(τ, t) < n.

(2.21)
Furthermore, with consideration of the initial condition, the left Caputo
derivative with order α(t) ∈ (0, 1) is established as [114]

C
a D

α(t)
t f(t) =

1

Γ(1− α(t))

d

dt

∫ t

a
(t− τ)−α(t) [f(τ)− f(a)]dτ, (2.22)

and the right Caputo derivative with order α(t) can be written as

C
t D

α(t)
b f(t) =

−1

Γ(1− α(t))

d

dt

∫ b

t
(τ − t)−α(t) [f(τ)− f(b)]dτ. (2.23)

More details on the relationship between two types of Caputo VO fractional
derivatives can be found in related reference [114].
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The relationship between Caputo (2.20) and Riemanm-Liouville (2.9)
VO fractional derivatives (α(t) ∈ (0, 1)) is stated as follows [114]

RL
a D

α(t)
t f(t) = C

a D
α(t)
t f(t)+

f(a)

Γ(1− α(t))

d

dt

∫ t

a
(t− τ)−α(t)dτ

= C
a D

α(t)
t f(t)+

f(a)

Γ(1− α(t))
(t− a)−α(t)

+
f(a)α′(t)
Γ(2− α(t))

(t− a)1−α(t)

[
1

1− α(t)
− ln (t− a)

]
,

(2.24)

and

RL
t D

α(t)
b f(t) = C

t D
α(t)
b f(t)+

f(b)

Γ(1− α(t))
(b− t)−α(t)

+
f(b)α′(t)

Γ(2− α(t))
(b− t)1−α(t)

[
1

1− α(t)
− ln (b− t)

]
.

(2.25)

2.3. Grünwald-Letnikov definition. Gründwald-Letnikov fractional de-
rivative is defined as follows [15, 69, 94]

G
a D

α
t f(t) = lim

h→0+

1

hα

t−a
h∑

r=0

(−1)r
(

α
r

)
f (t− rh) , α > 0, (2.26)

(
α
k

)
=

α(α− 1)(α − 2) · · · (α− k + 1)

k!
=

Γ(α+ 1)

k! Γ(α − k + 1)
. (2.27)

Using a direct extension, the Grünwald-Letnikov VO fractional integra-
tion is proposed as [118]

G
a I

α(t)
t f(t) = lim

h→0+

1

hα(t)

t−a
h∑

r=0

(−1)r
( −α(t)

r

)
f (t− rh) , α(t) > 0. (2.28)

The left fractional VO derivative of Grünwald-Letnikov type is formulated
as [67]

G
a D

α(t)
t f(t) = lim

h→0+

1

hα(t)

t−a
h∑

r=0

(−1)r
(

α(t)
r

)
f (t− rh) , α(t) > 0, (2.29)

and the right VO fractional derivative is stated as

G
t D

α(t)
b f(t) = lim

h→0+

1

hα(t)

b−t
h∑

r=0

(−1)r
(

α(t)
r

)
f (t+ rh) , α(t) > 0, (2.30)
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where the order α(t) also can be replaced by α(rh) or α(t − rh), which
has the same meaning as the α(τ) in the Riemann-Liouville and Caputo
derivatives.

2.4. Riesz definition. The Riesz type of VO time fractional integration
is defined as [45]

RI
α(x,t)
t f(x, t) =

1

2 cos(πα(x, t)/2)Γ(α(x, t))

+∞∫
−∞

f(x, η)

|t− η|1−α(x,t)
dη. (2.31)

More specifically, the Riesz type VO time-dependent fractional derivative
of the function u is expressed as [87]

∂α(t)u(x, t)

∂|x|α(t)
= −(−Δ)α(t)/2u(x, t) = −�

−|ξ|α(t)�u(ξ, t). (2.32)

Then the Riesz type VO space-dependent fractional derivative is obtained
in the spatial domain x ∈ [a, b] [139]

∂α(x)u(x, t)

∂|x|α(x)
= − 1

2 cos(πα(x)/2)

[
aD

α(x)
x u(x, t) + xD

α(x)
b u(x, t)

]
, (2.33)

and the alternative expression is

−(−Δ)α(x)/2f(x) = − 1
2 cos(πα(x)/2)

[
1

Γ(n−α(x))

∫ x
a

fn(η)dη

(x−η)α(x)−n+1

+ (−1)n

Γ(n−α(x))

∫ b
x

fn(η)dη

(η−x)α(x)−n+1

]
.

(2.34)

It is worth stressing that the Riesz fractional derivative is recognized
as a powerful tool to describe some nonconservative models, but it is not
suitable for all kinds of variational problems.

2.5. Other definitions. To the best of our knowledge, an extension to
Hadamard fractional operator was presented by Almeida and Torres [3].
The left and right Hadamard VO fractional integrals are defined respec-
tively as (α(t)>0)

aI
α(t)
t x(t) =

1

Γ(α(t))

∫ t

a
(ln

t

τ
)
α(t)−1 x(τ)

τ
dτ, (2.35)

and

tI
α(t)
b x(t) =

1

Γ(α(t))

∫ b

t
(ln

τ

t
)
α(t)−1 x(τ)

τ
dτ. (2.36)

While the left and right Hadamard VO fractional derivatives are respec-
tively given by [3]

aD
α(t)
t x(t) =

1

Γ(1− α(t))

d

dt

∫ t

a
(ln

t

τ
)
−α(t) x(τ)

τ
dτ, (2.37)
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and

tD
α(t)
b x(t) =

−t

Γ(1− α(t))

d

dt

∫ b

t
(ln

τ

t
)
−α(t)x(τ)

τ
dτ. (2.38)

Furthermore, many different definitions of the VO fractional integral
and derivative have been introduced. Ultimately, for more information
about definitions, we suggest that readers check the book [2]. In addition,
the VO fractional operator has also been used in other non-local definitions
with non-singular kernels, which is beyond the scope of this review [99, 127].

3. Physical discussion on VO fractional integral
and derivative models

3.1. VO fractional operators in system memory characterization.
VO fractional integral and derivative are non-local operators to character-
ize the memory property of systems. It offers a new approach to investigate
the complex dynamics, hereditary effects and self-similarity from physical
viewpoints [83, 85, 106, 111]. Therefore, increasing attentions have been fo-
cused on theoretical analysis and physical modeling by using VO fractional
derivative and integral.

There are two types of definitions regarding the memory systems which
are discussed by the VO fractional integral/derivative. That is to say, one
is to describe the system memory changes with time and spatial coordi-
nates [58]. Another one is associated with the history memory of orders;
namely, VO is influenced by previous values of the differentiation orders
and has a special feature of memory [92, 118]. The difference of these two
definitions in characterizing the system memory property has been inves-
tigated by considering VO fractional relaxation-type differential equation
in [106]. In addition, Zhang and Liu [136] investigated the influence of
time-dependent memory and variable spatial correlation of medium het-
erogeneity on tracer dynamics. Dabiri et al. [34] proposed an optimization
method, VO fractional proportional-integral-derivative, to obtain the opti-
mal control parameters and assess bounded closed-loop response for linear
dynamical systems under distinct initial conditions.

3.2. Dynamic-order fractional dynamic system. In recent years, the
usage of fractional order dynamical systems play a vital role in real-world
applications, including for examples, the affine cipher using date of birth
fuzzy [77], fractional integral sliding mode control [10], fractional order
modified Duffing systems [39], fractional order King Cobra chaotic system
[75], digital cryptography [74], and authenticated encryption scheme [76].
Hence, we investigate the fractional order dynamical systems which have
great application potentials in real-world engineering fields.



36 H.G. Sun, A. Chang, Y. Zhang, W. Chen

In some VO fractional dynamic systems, the VO is a function of cer-
tain variables, such as temperature, concentration, density and so on. For
instance, Glöckle and Nonnenmacher [41] have found that the differential
order of protein relaxation is a function of temperature. He and Luo [44]
extensively investigated the dynamic behavior which is the chaotic prop-
erty of fractional order Duffing systems. Wang and Wu [120] proposed the
fractional order 5D hyperchaotic system based on the hyperchaotic Lorenz
system. Nowadays, the nonlinear dynamic systems of fractional order and
the synchronization of VO fractional chaotic systems have become the focus
in scientific research.

The dynamic-order fractional dynamic system has been employed to ex-
plore the physical mechanism of VO fractional dynamic system and further
provides the determination method. Furthermore, the multi-system inter-
action and multi-field coupling from the VO fractional derivative modeling
approach have been increasingly investigated. Especially, the behavior of
a dynamic system may change with the VO in multi-system physical pro-
cesses. In our previous work, a dynamic-order fractional dynamic system
has been investigated to explain the multi-system physical processes, which
can be written as below [107]⎧⎪⎨

⎪⎩
dα(y(t))x(t)

dtα(y(t))
= Ax(t) +B,

dα(x(t))x(t)

dtα(x(t))
= Cy(t) +D,

(3.1)

in which α(x(t)) and α(y(t)) are VO fractional derivative orders, and A,
B, C and D are system parameters. Then a generalized form of dynamic-
order fractional dynamic system has been pointed as a powerful tool to
tackle the real-world complex phenomena and problems [57]. In addition,
the VO fractional derivative can be well approximated through a fuzzy
system; hereby this physical system can be recognized as a fuzzy-order
dynamic system [108].

3.3. Random-order fractional dynamic system. Recently, the random-
order fractional derivative model is generally used to describe the system
relaxation, attenuation and diffusion phenomena. In the real-world ap-
plications, the physical systems usually suffer from some noises including
fluctuations of the external pressure field in anomalous diffusion system,
or unstable temperature field in the energy dissipation [102]. These noises
inevitably cause the fluctuations of the whole system. In this case, the
random-order fractional derivative model is a preferential choice to depict
this type of fluctuation process.
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In consequence, to better describe the influence of system noise on
the dynamic behavior of physical system, the random-order FDE models
have been effectively developed. For the models, the fractional derivative
order include a constant and a random term, in which the constant term
characterizes the average memory rate of the system and the random term
represents the fluctuations caused by the random noises. The definition of
random-order fractional integral can be stated as follows

Iα0+εt
0+ f(t) =

1

Γ(α0 + εt)

∫ t

0
(t− τ)(α0+εt−1)f(τ)dτ, α0 + εt > 0. (3.2)

The expression of random-order fractional derivative is then developed as

Dα0+εt
0+ f(t) =

dn

dtn
(In−α0−εt

0+ f(t)), n− 1 < α0 + εt < n. (3.3)

In the real-world engineering problem analysis, the random-order frac-
tional derivative model can be quantitatively employed to evaluate and
describe the fluctuation of the system. It is pointed that some possible
applications include environmental pollution prediction, engineering risk
estimates, system stability analysis, etc. [105]. In addition, the random-
order fractional derivative can be extended into random-order FDE model
to display anomalous diffusion on discrete finite domains [122].

4. Numerical methods for VO-FDEs

It is notable to mention that the derivation of an analytical solution
for VO-FDE is still in its infancy due to the definitions of VO fractional
operators. Hence, many numerical approximation methods and computa-
tional techniques have been suggested to investigate the VO-FDE models.
For this purpose, many numerical methods have been studied in litera-
ture, such as finite difference methods (FDMs), spectral methods, matrix
methods and spline interpolation methods, etc. [7, 23, 138]. Especially,
more and more mathematical physical equations have been solved by using
computationally efficient numerical methods [73, 95, 124].

4.1. Numerical methods for time FDEs. It is well-known that the fi-
nite difference schemes for VO time and/or space FDEs have been widely
studied. There are several discretization schemes regarding different defi-
nitions.
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The discretization of the Caputo-type VO time fractional derivative can
be stated as follows

∂αk+1
i u(xi,tk+1)

∂tα
k+1
i

=
1

Γ(1− α(xi, tk+1))

∫ (k+1)τ

0

∂u(xi,τ)
∂τ

(tk+1 − τ)α(xi,tk+1)
dτ

=
1

Γ(1− α(xi, tk+1))

k∑
j=0

u(xi, tj+1)− u(xi, tj)

τ

∫ (j+1)τ

jτ

dτ

(tk+1 − τ)α(xi,tk+1)

=
τ−αk+1

i

Γ(2− αk+1
i )

{
u(xi,tk+1)− u(xi,tk) +

k∑
j=1

[u(xi,tk+1−j)− u(xi,tk−j)]

× [(j + 1)1−αk+1
i − j1−αk+1

i ]
}
+O(τ).

(4.1)

Cao and Qiu [17] introduced the following shifted Grünwald approxi-
mation concerning VO Riemann-Liouville derivative

Aα(t)
τ,p y(t) =

1

τα(t)

∞∑
k=0

g
α(t)
k y(t− (k − p)τ). (4.2)

Moreover, Lorenzo [66] proposed the derivation of the Laplace transform
of the VO integral as follows

L
{
0D

−α(t)
t f(t)

}
=

∫ ∞

0
e−st

(∫ t

0

(t− τ)α(t−τ)−1

Γ(α(t− τ))
f(τ)dτ

)
dt, α(t) > 0, t > 0.

(4.3)
In our previous investigations, we have examined three finite differ-

ence schemes including the explicit scheme, the implicit scheme and the
Crank-Nicholson scheme for VO time FDEs. The accuracy, stability and
convergence of these three schemes are tested and summarized [104]. The
Crank-Nicholson scheme for the VO time fractional derivative can be for-
mulated as follows

∂αk+1
i u(xi,tk+1)

∂tα
k+1
i

= τ−αk+1
i

Γ(2−αk+1
i )

(u(xi, tk+1)− u(xi, tk)

+
k∑

j=1
[u(xi, tk+1−j)− u(xi, tk−j)]

[
(j + 1)1−αk+1

i − (j)1−αk+1
i

]
.

(4.4)
It is well known that Burgers’ equation has been employed to model

gas dynamics, traffic flow, turbulence and fluid mechanics, etc. Tavares et
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al. [114] applied the approximation techniques to solve 1D linear inhomo-
geneous VO fractional Burgers’ equation as follows{

C
0 D

α(t)
t u(x, t) + ∂u

∂x(x, t)− ∂2u
∂x2 (x, t) =

2t2−α(t)

Γ(3−α(t)) + 2x− 2, t ∈ [0, 1],

u(x, 0) = x2, x ∈ (0, 1).

(4.5)
Bhrawy and Zaky [11] introduced Jacobi spectral collocation method as
an efficient alternative approach to solve 2D VO fractional nonlinear cable
equation in the following form

∂u(x, y, t)

∂t
= 0D

1−γ1(x,y,t)
t Δu(x, y, t)− μ0D

1−γ2(x,y,t)
t Δu(x, y, t) + f(x, y, t).

(4.6)
Jiang and Liu [53] proposed a new numerical method based on reproducing
kernel theory and collocation method for the time VO fractional mobile-
immobile advection-dispersion model

β1
∂C(x, t)

∂t
+ β2D

γ(x,t)
t C(x, t) = −v

∂C(x, t)

∂t
+D

∂2C(x, t)

∂t2
+ f(x, t), (4.7)

where v is the flow velocity, and D denotes the diffusion coefficient.
Furthermore, in terms of the numerical methods, the FDM is used to

study the VO nonlinear fractional wave equation in [112]. Similarly, the
numerical approximation of VO has been developed by Zayernouri and Kar-
niadakis [133] by using FDMs, and various FDMs for VO fractional diffusion
equations have been proposed. Sierociuk et al. [94] demonstrated a numeri-
cal scheme for a VO derivative based on matrix approach. Fu et al. [38] ap-
plied the method of approximate particular solutions for fractional diffusion
model. Wei et al. [121] employed the local radial basis function method to
solve the VO time fractional diffusion equation. Li and Wu [63] proposed a
reproducing kernel method; afterward, they solved VO fractional boundary
value problems for fractional differential equations based on the reproduc-
ing kernel theory. Chen et al. [24] demonstrated the Bernstein polynomials
to seek the numerical solution of the VO fractional equation. Hafez and
Youssri [43] developed the shifted Jacobi collocation method to solve the
VO fractional linear subdiffusion and nonlinear reaction-subdiffusion equa-
tions. Based on the linear B-spline approximation with the Caputo sense
and the Du Fort-Frankel algorithm, Moghaddam and Machado [72] pro-
posed a stable three-level explicit FDM for conducting the nonlinear time
VO-FDEs. Tayebi et al. [115] proposed an accurate and robust meshless
method to solve the VO time fractional advection-diffusion equation model
on 2D arbitrary domains.

From theoretical analysis aspect, the stability and convergence of nu-
merical methods are discussed. Atangana [5] investigated the telegraph
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equation with VO fractional derivatives, and the stability as well as the
convergence analysis are successfully verified. Subsequently, Jiang and Li
[52] proposed a space-time spectral collocation method for the 2D VO frac-
tional percolation equation, and then the exponential convergence was well
confirmed. Chen [20] proposed a numerical simulation method with second-
order temporal accuracy and fourth-order spatial accuracy on account of
the second-order compact approximation formula of first-order derivative,
to simulate the modified fractional diffusion equation. Umarov et al. [117]
proved the existence and uniqueness theorem with respect to the Cauchy
problem for VO fractional pseudo-differential equations. Lin et al. [65]
studied the stability and convergence of an explicit finite-difference approx-
imation for the VO nonlinear fractional diffusion equation. Zhang et al.
[137] proposed a VO time fractional mobile-immobile advection-dispersion
model and established an implicit Euler approximation which was proved
to be unconditionally stable. Subsequently, an implicit numerical method
for the 2D VO fractional percolation equation in non-homogeneous porous
media was explored while the stability and convergence of the proposed
method were discussed [22]. Moreover, Jia et al. [51] relied on the simpli-
fied reproducing kernel method to solve the efficient numerical scheme for
VO fractional equation and verified its convergence.

4.2. Numerical methods for VO space FDEs. The relationship be-
tween the Riemann-Liouville and Grünwald-Letnikov definitions is impor-
tant for the numerical approximation of FDEs with meaningful initial-
and boundary-values, respectively. For example, using the relationship
between Riemann-Liouville and Grünwald-Letnikov derivatives, a discrete

approximation to the space fractional derivative terms D
α(x,t)
a+ u(x, t) and

D
α(x,t)
b− u(x, t) may be defined from the standard Grünwald-Letnikov for-

mula [139]

D
α(x,t)
a+ u(x, t) = lim

M1→∞
(h1)

−α(x,t)
M1∑
j=0

g
(j)
α(x,t)u(x− jh1, t), (4.8)

and

D
α(x,t)
b− u(x, t) = lim

M2→∞
(h2)

−α(x,t)
M2∑
j=0

g
(j)
α(x,t)u(x+ jh2, t), (4.9)

whereM1 andM2 are positive integers, h1 = (x−a)/M1, h2 = (b−x)/M2,
and the normalized Grünwald-Letnikov weights are defined by

g
(0)
α(x,t) = 1, (4.10)
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g
(j)
α(x,t) = −α(x, t)− j + 1

j
g
(j−1)
α(x,t) for j = 1, 2, 3, ... (4.11)

Yang et al. [128] proposed the VO-FDEs depending on the reproducing
kernel splines method. Most importantly, this method is able to successfully
reduce computational cost and provided accurate approximate solutions.
The VO-FDE is stated as

Dα(x)
x u(x) + a(x)u′(x) + b(x)u(x) + c(x)u(τ(x)) = f(x), x ∈ [0, 1], (4.12)

where D
α(x)
x is the VO fractional derivative in Caputo sense, and α(x) ∈

[1, 2). In addition, Zeng et al. [134] presented a new spectral collocation
method to effectively solve the VO-FDE with high accuracy. The equation
is built as follows{

CD
α(x)
x u(x) + C(x)u(x) = f(x), x ∈ (xL, xR), 0 < α(x) < 1,

u(xL) = 0.
(4.13)

Subsequently, Zaky et al. [132] developed Laguerre spectral collocation
methods to solve the VO fractional initial value problem

a(x)u′(x) + b(x)CDα(x)
x u(x) + c(x)u(x) = f(x), (4.14)

where α(x) ∈ (0, 1). Furthermore, the VO fractional derivative has been
employed to model the solute transport process in porous media

∂c(x, t)

∂t
= k(x, t)Ra(x,t)c(x, t)− v(x, t)

∂c(x, t)

∂x
+ f(c, x, t), (4.15)

where k(x, t) denotes the dispersion coefficient, and Rα(x,t) is the spatial
fractional derivative of Riesz style [58]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(−Δ)α(x,t)/2f(x) = − 1

2 cos
πα(x,t)

2

[
aD

α(x,t)
x f(x) + xD

α(x,t)
b f(x)

]
,

(m− 1 < α(x, t) < m),

a+D
α(x,t)
x f(x) =

m−1∑
j=0

f(i)(a)(x−a)j−α(x,t)

Γ(−α(x,t)+j+1) + 1
Γ(m−α(x,t))

∫ x
a

f(m)(η)

(x−η)α(x,t)−m+1dη,

xD
α(x,t)
b− f(x) =

m−1∑
j=0

(−1)m−jf(i)(b)(b−x)j−α(x,t)

Γ(−α(x,t)+j+1)

+ 1
Γ(m−α(x,t))

∫ b
x

f(m)(η)

(η−x)α(x,t)−m+1dη.

(4.16)
Then Kameni et al. [55] presented the VO fractional advection-dispersion
equation for modeling the movement of groundwater pollution and used
the Fourier transform to solve this equation

R
∂C(x, t)

∂t
= −v

∂α(y)C(x, t)

∂xα(y)
+D

∂2C(x, t)

∂x2
− λRC(x, t), 0 < α(y) ≤ 1,

(4.17)
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where λ represents the radioactivity decay rate, R denotes the retardation
coefficient. Furthermore, an operational matrix method has been demon-
strated to solve the VO fractional biharmonic equation [47]. The fractional
Fourier transform has been investigated through VO fractional differential
operators by Tseng [116]. Atangana and Cloot [7] studied the stability
and convergence of the Crank-Nicolson difference scheme for the space VO
fractional Schrödinger equation with Caputo derivative.

5. Applications of VO-FDE models

5.1. VO fractional diffusion equation models. To our best knowledge,
anomalous diffusion is ubiquitous phenomena and the growth rate or shape
of the particle distribution is not comply with Gaussian distribution [35].
For instance, some typical examples include heat conduction, solute trans-
port, groundwater pollution, gas flow in highly heterogeneous fractured or
disordered porous media, relaxation in synthetic or biopolymers, propaga-
tion of seismic waves, for more details, see [4, 18, 48, 93, 97, 119, 129].
These applications motivate the development of the new mathematical and
physical models. However, how to deal with the diffusion process in which
the diffusion pattern changes with time evolution, spatial variation or sys-
tem parameters, is still an open topic in anomalous diffusion modeling.
Recently, in order to overcome the drawbacks of the integral order frac-
tional models, the VO fractional derivative models are employed to provide
a robust and rigorous approach for describing the memory effects, hered-
itary properties, and the delay behavior in physical applications [61, 80].
Hence, the VO derivative models have become an important research tool
in complex anomalous diffusion modeling.

Obembe et al. [80] investigated the fluid flow through VO time frac-
tional diffusion models in fractal geometry or heterogeneous media. Then,
a generalized time dependent non-local flux law is employed at different
scales as follow

u = −βKa

μ0
D

α(t)
t (∇p), (5.1)

where Ka is the pseudo-permeability, β is the transmissibility conversion
factor, μ0 is the oil viscosity. The VO derivative models can be used to de-
scribe the diffusion process with time dependence, the non-uniform medium
particle migration and diffusion process of intermittent turbulence [98]. A
VO fractional diffusion equation for describing the liquid infiltration in
porous media is proposed [40]

∂α(U)U

∂tα(U)
=

∂

∂x
(K(U)

∂U

∂x
), (5.2)
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where U is a liquid content, and then

∂α(U(x,t))U(x, t)

∂tα(U(x,t))
= lim

τ→0

∞∑
k=0

AkU(x, t− kτ)

τα(U(x,t))
. (5.3)

Furthermore, the definition of the VO fractional derivative, can also
consider another description of the system memory. The governing equation
of time-dependent fractional anomalous diffusion can be expressed as the
following form [103]

CD
α(t)
0+ c(x, t) = K

∂2c(x, t)

∂x2
, 0 < α(t) < 1, (5.4)

where K is the dispersion coefficient. Based on the basic concept of def-
inition, the order α(t) can be substituted by other variables. The VO
time-space dependent anomalous diffusion model is defined by

D
α(x,t)
t c(x, t) = K

∂2c(x, t)

∂x2
, 0 < α(x, t) < 1. (5.5)

Straka [101] derived a VO fractional Fokker-Planck equation with variable
anomalous exponent

D
β(x)
t P (x, t) = K

∂2P (x, t)

∂x2
. (5.6)

In consequence, the VO-FDE models can efficiently describe anomalous dif-
fusion process in complex anisotropic medium. Space-dependent VO-FDE
model is used to describe location-dependent diffusion process. Addition-
ally, Chen et al. [28] proposed a concentration-dependent VO fractional
diffusion equation model to describe the coupled chloride diffusion-binding
processes in reinforced concrete

∂p(Cf )Cf (x, t)

∂tp(Cf )
= K

∂2Cf (x, t)

∂x2
, 0 < x < +∞, t > 0, (5.7)

where 0 < p(Cf ) < 1 is the VO of time-fractional derivative.
In certain circumstances, the diffusion behavior of some physical, chemi-

cal and biological fields are affected by the solute concentration which deter-
mines the diffusion or migration process [29]. Consequently, the concentration-
dependent VO-FDE model has very important application potentials, and
has been concerned in some chemical or biology diffusion processes. This
application background makes us to conduct further research on concentration-
dependent characteristics of VO fractional diffusion model

CD
α[c(x,t)]
0+ c(x, t) = K

∂2c(x, t)

∂x2
, < α[c(x, t)] < 1. (5.8)
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In addition, in some practical diffusion processes, physical parameters,
such as the porosity, Reynolds number, fractal dimension and Hurst num-
bers may change over time or have different values in different space position

CD
α[f(x,t)]
0+ c(x, t) = K

∂2c(x, t)

∂x2
, 0 < α[f(x, t)] < 1. (5.9)

In the above equation, the f(x, t) represents an independent variable-function.
In order to make the readers intuitively understand those models, we

summary the VO-FDE models in Table 1.

Authors Model name
Governing
equation

Physical
meaning

Gerasimov,
Kondratieva
& Sinkevich
(2010)[40]

Content-
dependent
anomalous
diffusion
model

∂α(U)U
∂tα(U) =

∂
∂x(K(U)∂U∂x )

Exploring
liquid

infiltration
in porous
media

Sun, Chen & Chen
(2009)[103]

VO time-space
dependent
anomalous
diffusion
model

D
α(x,t)
t c(x, t) =

K ∂2c(x,t)
∂x2

0 < α(x, t) < 1

Depicting
concentration
breakthrough
curve exhibits

diverse
anomalous
behaviors

Straka
(2018)[101]

VO fractional
Fokker-Planck

equation

D
β(x)
t P (x, t) =

K ∂2P (x,t)
∂x2

Describing
spatial

heterogeneity
in complex
anisotropic
medium

Chen, Zhang & Zhang
(2013)[28]

Concentration-
dependent

VO fractional
diffusion

equation model

∂
p(Cf )

Cf (x,t)

∂t
p(Cf ) =

K
∂2Cf (x,t)

∂x2

0 < x < ∞,
t > 0

Describing
the coupled
chloride
diffusion
-binding
processes

in reinforced
concrete

Table 1. The applications of different VO fractional diffu-
sion models.
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Regarding the more complex transient dispersion in heterogeneous me-
dia, we used the left and right spatial VO fractional differential operators
to offer a generalized model

∂α(x,t)

∂tα(x,t)
u(x, t) = −v

∂

∂x
u(x, t)+D+

∂β(x,t)u(x, t)

∂+xβ(x,t)
+D−

∂β(x,t)u(x, t)

∂−xβ(x,t)
, (5.10)

where D+ and D− are the positive and negative diffusion coefficients, re-
spectively.

As a remark, we can conclude that the VO fractional diffusion equa-
tion model is a developed and promising approach to characterize time-
dependent, space-dependent or concentration-dependent anomalous diffu-
sion process in heterogeneous porous media [104].

5.2. VO fractional viscoelasticity constitutive models. There are
many viscoelastic materials in engineeing, including polymers, metal ma-
terial, non-Newtonian fluid, plastic, rubber, soil, oil, concrete and so on.
These materials are widely used in chemical, petroleum engineering, bi-
ology, medicine, environmental engineering, and other fields [104]. For
viscoelastic materials, stress is a functional strain [85]. The two kinds of
situations collectively known as the rheological phenomenon have shown
as: relaxation, meaning that stress decreases under the condition of con-
stant strain; creep, that is, deformation continuously increases under the
phenomenon of constant stress.

Then the generalized time-dependent model for viscoelastic deformation
has been proposed [49]

σ(t) = μDα
t ε(t), (5.11)

where σ is the stress, ε is the strain, μ is the dimensional coefficient and Dα

is the fractional differential operator. Bagley [9] offered that the polymer
linear viscoelastic stress relaxation with a given fixed temperature can be
well described by FDE models. A practical fractional derivative rheological
model has been documented by Smit and DeVries [96]

σ = E
dαε(t)

dtα
, (5.12)

where E is the material parameter and 0 < α < 1. When α = 0, the
above function becomes Hooke’s law; when α = 1, it is the Newton viscous
law. However, it is clear that the variation of material feature has not
been well considered by the CO fractional derivative models. From the
implementation point of view, Sweilam et al. [113] thought the VO-FDE is
an important tool to study some systems, such as the control of nonlinear
viscoelasticity oscillator. In order to deal with the variable mechanical
behaviors depending on time, space variation or system parameters, the
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VO constitutive models have received much attention in the viscoelasticity
fields. The constitutive model can be written as [70]

σ = E
dα(t)ε(t)

dtα(t)
. (5.13)

The dimension changes with α(t), and any intermediate value between 0
and 1 can be captured with the function α(t) [100]. Furthermore, the con-
stitutive model can capture accurately mechanical responses and represent
the transition of mechanical property. Hence, for a viscoelastic material, it
is exhibited that the stress is a function not only of the actual strain and
strain rate at the current stage of the deformation process, but also of the
previous strain history [49]. Thereupon, a differential operator of VO in
constitutive relation for viscoelastic material has been introduced by Suz-
dalnitsky and Ingman [110]. Pedro et al. [81] employed a VO derivative to
account for the strong non-linearity flow. In addition, the evidence of the
VO nature of the particles dynamics flows was provided by the behavior of
an oscillating particle in a fluid [31, 32]. Subsequently, Bouras et al. [14]
developed a novel non-linear thermo-viscoelastic rheological model based
on VO time fractional derivative for high temperature creep in concrete,
which can be expressed as

D
α(T (t))
t ε(t) =

σ(t)

ηα(T (t))
. (5.14)

Li et al. [62] argued that a VO-FDE model of the shape-memory behav-
ior is more suitable than CO-FDE models in terms of modeling the memory
behavior of shape-memory polymer. The viscoelastic behavior of a single
particle oscillating in a non-Newtonian fluid can capture the macroscopic
viscoelasticity of suspensions of colloidal particles. Normally, the fleld of
rheology (including the behavior of suspensions and polymers) is mainly de-
voted to study the stress-strain relationship of materials by VO fractional
model [100].

In addition, Wu et al. [123] proposed a creep model based on VO
fractional derivative for describing the time-dependent mechanical property
of rock during the creep. The stress-strain relationship of the Abel dashpot
is written as

ε(t) =
σ

η0

tβ

Γ(1 + β)
, 0 ≤ β ≤ 1. (5.15)

In this way, the order of the VO fractional derivative can be regarded as a
function of time

σ(t) = ηα(t)
C
tk−1

D
α(t)
t ε(t), 0 ≤ α(t) ≤ 1, tk−1 ≤ t ≤ tk. (5.16)
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According to different creep stages of the experimental results, it is found
that the improved creep model based on VO fractional derivative agrees
well with the experimental data. It shows that the evolution of mechanical
properties of materials can be well characterized by changing the derivative
order during the whole process.

In conclusion, based on the idea of using the fractional order to charac-
terize the mechanical property, a VO fractional viscoelastic model is derived
from the corresponding fractional viscoelastic model. The VO model is ex-
pected to represent the transition of mechanical feature including strain
softening behaviors through the variable fractional order [70].

5.3. VO fractional control model. Fractional derivative model has been
recognized as a powerful modeling approach in many natural and engineer-
ing fields [28, 33]. Therefore, the VO fractional calculus has also received
extensive attention in the field of control.

Diaz and Coimbra [37] proposed a control technique and applied the
VO approach as the control action to stabilize a chaotic dynamical system.
At the same time, the VO fractional operators can be also applied to de-
scribe VO fractional noise and estimate the VO fractional derivative of an
unknown signal in noisy environment based on the wavelet analysis [26].
Heydari and Avazzadeh [46] demonstrated a new computational method
based on the Legendre wavelets for solving the VO fractional optimal con-
trol problems.

5.4. Other applications. There are many other complex physical phe-
nomena that can be described by the VO fractional derivatives, which will
be explored in this section.

For example, Chen et al. [22] studied a 2D VO fractional percolation
equation in non-homogeneous porous media via a modified Darcy’s law with
VO Riemann-Liouville fractional derivatives defined as follows

qx = kx
∂α(x,y)p

∂xα(x,y)
, qy = ky

∂β(x,y)p

∂yβ(x,y)
, 0 < α(x, y), β(x, y) < 1. (5.17)

The VO Riemann-Liouville fractional derivative is defined as

∂α(x,y)p

∂xα(x,y)
=

1

Γ(1− α(x, y))

(
∂

∂ξ

∫ ξ

0

p(s, y, t)

(ξ − s)α(x,y)
ds

)
ξ=x

. (5.18)

Then the 2D VO fractional percolation equation is given by

∂p
∂t = ∂

∂x

(
A(x, y) ∂α(x,y)

∂xα(x,y)p
)
+ ∂

∂y

(
B(x, y) ∂β(x,y)

∂xβ(x,y)p
)
+ f(x, y, t),

(x, y) ∈ Ω, 0 ≤ t ≤ T.
(5.19)

Meanwhile, the VO fractional telegraph equation has been proposed in
many complex processes that is an extension of CO fractional derivative [5]
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D
α(x,t)
t w+ k

∂w

∂t
− a

∂2w

∂x2
+ bw = 0, 1 < α(x, t) ≤ 2, k > 0, b > 0, (5.20)

where k is a natural number.
A generalized groundwater flow equation using the concept of VO frac-

tional derivative was investigated by Atangana et al. [6], due to the ground-
water flow changes in time and space. Thus, the governing equation is
obtained as

SD
α(x,t)
t φ(r, t) = TDrrφ(r, t) +

1

r
Drφ(r, t), 0 < α(x, t) < 1, (5.21)

where φ is the piezometric head, and S is the storativity.
The VO fractional derivative is good at depicting memory properties

that change with time or spatial location [68]. For instance, Bhrawy and
Zaky [13] explored a high-order numerical scheme for soving the multi-
dimensional VO fractional Schrödinger equations. Moghaddam et al. [73]
developed a technique for the approximate solution in regard to the VO
fractional Bagley-Torvik and Basset differential equations in the area of
fluid dynamics; meanwhile, the accuracy of the proposed algorithm was
properly verified. Due to many parameters involved in the existing phys-
iological models for bone remodeling, Neto et al. [78] presented a new
approach with VO derivative to simplify its structure and provide more
compact models that lead to similar results. Gómez-Aguilar [42] analyzed
a VO fractional alcoholism model to describe the complex dynamics and il-
lustrated the uniqueness and existence of the solutions employing the fixed
point postulate. Almeida et al. [1] proposed the Malthusian growth model
with a time VO-FDE to determine the fractional order function. In fact,
a great quantity of natural phenomena can be modeled by the VO-FDE
models and the study of such problems has attracted much attention.

6. Conclusions

VO fractional calculus has been extended from the notion of CO frac-
tional calculus with the order of differentiation or integration varying with
time (t), space (x), and other variables. In general, the facilitation of VO
fractional calculus enables it to better characterize many memory systems,
hereditary properties, and dynamic processes. Moreover, based on pre-
vious investigations, the physical meaning of VO fractional calculus has
been explored. But it should be noted that the analytical solutions of
VO-FDE models are extremely difficult to derive, and the efficient numer-
ical/approximate solutions are of great importance in practice. We hope
this work can play a vital role in studying of VO fractional calculus, which
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is designed to unravel some uncanny features of systems and handle some
hard issues in real-world applications.
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[42] J.F. Gómez-Aguilar, Analytical and numerical solutions of a nonlinear
alcoholism model via variable-order fractional differential equations.
Phys. A 494 (2018), 52–75.

[43] R.M. Hafez, Y.H. Youssri, Jacobi collocation scheme for variable-order
fractional reaction-subdiffusion equation. Comput. Appl. Math. 37, No
4 (2018), 5315–5333.

[44] G. He, M. Luo, Dynamic behavior of fractional order Duffing chaotic
system and its synchronization via singly active control. Appl. Math.
Mech. 33, No 5 (2012), 567–582.

[45] R. Herrmann, Uniqueness of the fractional derivative definition. arXiv
Preprint, arXiv:1303.2939 (2013).

[46] M.H. Heydari, Z. Avazzadeh, A new wavelet method for variable-order
fractional optimal control problems. Asian J. Control 20, No 5 (2017),
1–14.

[47] M.H. Heydari, Z. Avazzadeh, An operational matrix method for solv-
ing variable-order fractional biharmonic equation. Comput. Appl. Math.
37, No 4 (2018), 4397–4411.

[48] Y. Hong, J. Lin, W. Chen, Simulation of thermal field in mass con-
crete structures with cooling pipes by the localized radial basis function
collocation method. Int. J. Heat Mass Tran. 129 (2019), 449–459.



A REVIEW ON VARIABLE-ORDER FRACTIONAL . . . 53

[49] D. Ingman, J. Suzdalnitsky, Control of damping oscillations by
fractional differential operator with time-dependent order. Comput.
Method. Appl. Mech. Eng. 193, No 52 (2004), 5585–5595.

[50] D. Ingman, J. Suzdalnitsky, M. Zeifman, Constitutive dynamic-order
model for nonlinear contact phenomena. J. Appl. Mech. 67, No 2
(2000), 383–390.

[51] Y. Jia, M. Xu, Y. Lin, A numerical solution for variable order fractional
functional differential equation. Appl. Math. Lett. 64 (2017), 125–130.

[52] W. Jiang, H. Li, A space-time spectral collocation method for the two-
dimensional variable-order fractional percolation equations. Comput.
Math. Appl. 75, No 10 (2018), 3508–3520.

[53] W. Jiang, N. Liu, A numerical method for solving the time variable
fractional order mobile-immobile advection-dispersion model. Appl.
Numer. Math. 119 (2017), 18–32.

[54] S. Jiang, J. Zhang, Z. Qian, Z. Zhang, Fast evaluation of the Caputo
fractional derivative and its applications to fractional diffusion equa-
tions. Commun. Comput. Phys. 21, No 3 (2017), 650–678.

[55] S.N. Kamenia, J.D. Djidaa, A. Atangana, Modelling the movement of
groundwater pollution with variable order derivative. J. Nonlinear Sci.
Appl. 10 (2017), 5422–5432.

[56] A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications
of Fractional Differential Equations. Elsevier (2006).

[57] Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Statistical physics of
dynamic systems with variable memory. Dokl. Phys. 48, No 6 (2003),
285–289.

[58] Y.L. Kobelev, L.Y. Kobelev, Y.L. Klimontovich, Anomalous diffusion
with time-and coordinate-dependent memory. Dokl. Phys. 48, No 6
(2003), 264–268.

[59] P. Kumar, S.K. Chaudhary, Analysis of fractional order control system
with performance and stability. Int. J. Eng. Sci. Tech. 9, No 5 (2017),
408–416.

[60] T.A.M. Langlands, B.I. Henry, Fractional chemotaxis diffusion equa-
tions. Phys. Rev. E 81 (2010), # 051102.

[61] J.R. Leith, Fractal scaling of fractional diffusion processes. Signal Pro-
cess. 83, No 11 (2003), 2397–2409.

[62] Z. Li, H. Wang, R. Xiao, S. Yang, A variable-order fractional differen-
tial equation model of shape memory polymers. Chaos Soliton. Fract.
102 (2017), 473–485.

[63] X. Li, B. Wu, A numerical technique for variable fractional functional
boundary value problems. Appl. Math. Lett. 43 (2015), 108–113.



54 H.G. Sun, A. Chang, Y. Zhang, W. Chen

[64] X. Li, B. Wu, A new reproducing kernel method for variable order
fractional boundary value problems for functional differential equations.
J. Comput. Appl. Math. 311 (2016), 387–393.

[65] R. Lin, F. Liu, V. Anh, I. Turner, Stability and convergence of a new
explicit finite-difference approximation for the variable-order nonlinear
fractional diffusion equation. Appl. Math. Comput. 212, No 2 (2009),
435–445.

[66] C.F. Lorenzo, T.T. Hartley, Variable order and distributed order frac-
tional operators. Nonlinear Dynam. 29, No 1 (2002), 57–98.

[67] C.F. Lorenzo, T.T. Hartley, Initialization, conceptualization, and ap-
plication in the generalized fractional calculus. Crit. Rev. Biomed. Eng.
35, No 6 (2007), 477–553.

[68] R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion
expressed through fractional order differential operators in the Bloch-
Torrey equation. J. Magn. Reson. 190, No 2 (2008), 255–270.

[69] M.M. Meerschaert, C. Tadjeran, Finite difference approximations for
two-sided space-fractional partial differential equations. Appl. Numer.
Math. 51, No 1 (2006), 80–90.

[70] R. Meng, D. Yin, C. Zhou, H. Wu, Fractional description of time-
dependent mechanical property evolution in materials with strain soft-
ening behavior. Appl. Math. Model. 40, No 1 (2016), 398–406.

[71] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffu-
sion: a fractional dynamics approach. Phys. Rep. 339, No 1 (2000),
1–77.

[72] B.P. Moghaddam, J.A.T. Machado, A stable three-level explicit spline
finite difference scheme for a class of nonlinear time variable order frac-
tional partial differential equations. Comput. Math. Appl. 73, (2017),
1262–1269.

[73] B.P. Moghaddam, J.A.T. Machado, H. Behforooz, An integro qua-
dratic spline approach for a class of variable-order fractional initial
value problems. Chaos Soliton. Fract. 102, Suppl. C (2017), 354–360.

[74] P. Muthukumar, P. Balasubramaniam, Feedback synchronization of
the fractional order reverse butterfly-shaped chaotic system and its ap-
plication to digital cryptography. Nonlinear Dynam. 74, No 4 (2013),
1169–1181.

[75] P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization
and an application of a novel fractional order King Cobra chaotic sys-
tem. Chaos 24, No 3 (2014), # 033105.

[76] P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Synchronization
of a novel fractional order stretch-twist-fold (STF) flow chaotic system



A REVIEW ON VARIABLE-ORDER FRACTIONAL . . . 55

and its application to a new authenticated encryption scheme (AES).
Nonlinear Dynam. 77, No 4 (2014), 1547–1559.

[77] P. Muthukumar, P. Balasubramaniam, K. Ratnavelu, Fast projective
synchronization of fractional order chaotic and reverse chaotic systems
with its application to an affine cipher using date of birth (DOB).
Nonlinear Dynam. 80, No 4 (2015), 1883–1897.

[78] J. Pinheiro Neto, R. Moura Coelho, D. Valério, S. Vinga, D. Siero-
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