
lrs: A Revised Implementation of the Reverse Search Vertex Enumeration

Algorithm

David Avis

School of Computer Science
McGill University

3480 University, Montréal, Québec, Canada H3A 2A7
avis@cs.mcgill.ca

January 26, 1999

ABSTRACT

This paper describes an improved implementation of the reverse search ver-
tex enumeration/convex hull algorithm for d-dimensional convex polyhedra. The
implementation uses a lexicographic ratio test to resolve degeneracy, works on
bounded or unbounded polyhedra and uses exact arithmetic with all integer pivot-
ing. It can also be used to compute the volume of the convex hull of a set of
points. For a polyhedron with m inequalities in d variables and known extreme
point, it finds all bases in time O(md2) per basis. This implementation can han-
dle problems of quite large size, especially for simple polyhedra (where each
basis corresponds to a vertex and the complexity reduces to O(md) per vertex).
Computational experience is included in the paper, including a comparison with
an earlier implementation.

1. Introduction
This paper describes lrs [1], a revised version of the reverse search vertex enumeration algo-

rithm proposed by Fukuda and the author [2]. This implementation is a major improvement on
rs, a program released by the author in 1992, and revised in 1994 [4], which was based on the
original method described in [2]. The improvements in speed are attributable to many factors,
including an improved piv ot selection procedure to resolve degeneracy lexicographically, faster
arithmetic based on integer rather than rational arithmetic, and optional cacheing to reduce back-
track pivots. The new implementation is more general, as it handles bounded and unbounded
polyhedra, does not require non-negativity of variables, and performs automatic transformations
to allow solution of facet enumeration and Voronoi diagram problems.

The main function of lrs is to find the vertices and extreme rays of a polyhedron described
by a system of linear inequalities. A description of the theory underlying the current implementa-
tion of this function is the purpose of this paper. Additional functions of lrs are built on top, and
are described briefly here. These include: facet enumeration, computation of Voronoi vertices,
volume computation, estimation of the output size, and restart capability. The remainder of this
introduction contains an informal description of how lrs works. Section 2 of the paper gives
some background material and basic definitions. Section 3 describes dictionaries, their relation-
ship to vertices and extreme rays and pivoting. Section 4 describes lexicographic pivoting and
proves that each vertex and extreme ray is representable by a lex-positive basis. Section 5 is con-
cerned with the unique representation of vertices and extreme rays by lex-min bases. Section 6
contains a description of reverse search, and an efficient implementation of the reverse function as
used in lrs. Section 7 describes some implementation issues, including the integer pivoting for-
mulae used. Section 8 describes briefly how the additional functions mentioned above are

- 2 -

implemented. Section 9 concludes with some limited computational experience comparing the
current version lrs to the earlier version rs. More extensive experience, and an empirical analysis
of the various speedups is contained in Avis[7].

Briefly and informally, the reverse search algorithm works as follows. Suppose we have a
system of m linear inequalities defining a d-dimensional polyhedron in Rd and a vertex of that
polyhedron given by the indices of d inequalities whose bounding hyperplanes intersect at the
vertex. These indices define a cobasis for the vertex. The complementary set of m − d indices are
called a basis. For any giv en linear objective function, the simplex method generates a path
between adjacent bases (or equivalently cobases) which are those differing in one index. The path
is terminated when a basis of a vertex maximizing this objective function is found. The path is
found by pivoting, which involves interchanging one of the hyperplanes defining the current coba-
sis with one in the basis. The path chosen from the initial given basis depends on the pivot rule
used, which must be finite to avoid cycling. The original implementation rs used Bland’s least
subscript rule [8]. If we look at the set of all such paths from all bases of the polyhedron, we get
a spanning forest of the graph of adjacent bases of the polyhedron. The root of each subtree of
the forest is a basis of an optimum vertex. The reverse search algorithm starts at each root and
traces out its subtree in depth first order by reversing the pivot rule.

The algorithm is particularly easy if the polyhedron is simple (non-degenerate): each vertex
lies on exactly d hyperplanes, and so has a unique basis. The spanning forest has one component,
which is a spanning tree of the skeleton of the polyhedron, and each vertex is produced once. An
example of such a polyhedron is the cube, and Figure 1.1 shows a possible reverse search tree for
it.

Figure 1.1

A complication of the original implementation was the need to handle a degenerate starting
vertex. A dual form of Bland’s rule had to be implemented in order to compute all bases of this
vertex. Each of these bases was then used as the start for a (primal) reverse search. A serious
drawback of the algorithm as originally implemented, was that it computed all bases of the input
polyhedron. For many polyhedra encountered, especially combinatorial polytopes, the number of
bases is much larger than the number of vertices.

The standard approach to reducing the number of bases is perturbation: make small changes
to the input data so that the resulting polyhedron is simple. The resulting perturbed polyhedron
will typically have more vertices, but far fewer bases, than the original polyhedron. Numerical
perturbation was implemented for rs, but abandonded because: (i) perturbed vertices have to be
transformed back to give true vertices; (ii) the answer may no longer be correct as vertices may be
lost; (iii) perturbation increases the cost of the extended precision arithmetic; (iv) a vertex is

- 3 -

output more than once.

The current version lrs resolves degeneracy by use of the well-known lexicographic pivot
selection rule for the simplex method. This rule is defined for a subset of the bases, known as lex-
positive. The subgraph of lex-positive bases forms a connected subgraph of the basis graph
which covers all vertices of the polyhedron. Furthermore an objective function can be chosen so
that the simplex method initiated at any lex-positive basis terminates at a unique lex-positive opti-
mum basis. If we initiate the reverse search method at this basis and reverse the lexicographic
pivot rule we generate a spanning tree of the graph of all lex-positive bases. This is the core of lrs.

As we will see in Section 5, the lex-min basis for each vertex is lex-positive. We can test the
property of being a lex-min basis quickly, and report only lex-min bases. Lexicographic pivoting
is sometimes referred to as symbolic perturbation, since the graph of lex-positive bases can be
viewed as the skeleton of a simple polyhedron obtained by perturbation of the original polyhe-
dron. Indeed, it is often described by adding powers of a small indeterminate ε to the right hand
side of each inequality to resolve degeneracy. Howev er it can be implemented without any
change to the original data, and so all of the objections (i)-(iv) above are resolved. Furthermore
we can use the same method for the dual problem of computing the facets of the convex hull of as
set of vertices and extreme rays. In this dual context, properly interpreted, the graph of lex-
positive bases corresponds to a triangulation of the convex hull. Since the determinant of each of
these simplices is known (see Section 7), an additional advantage is that we can obtain the vol-
ume of a polytope given by a set of vertices for the same cost as computing the facets of its
convex hull.

A remarkable feature is that no additional storage is needed at intermediate nodes in the
tree. Going deeper in the tree we explore all valid "reverse" pivots in order by basic index from
any giv en intermediate node. For backtracking, we can use the pivot rule to return us to the parent
node along with the current pivot indices. From there it is simple to continue by considering the
next basic index as a "reverse" pivot, etc. The algorithm is therefore non-recursive and requires no
stack or other data structure. The output is produced as a duplicate free stream (see Section 5),
which may be useful even if the computation is too large to complete. Empirically, about 80-90%
of the running time of lrs is spent pivoting. Since backtracking generates exactly half of the piv-
ots, considerable savings can however be obtained by "cacheing" dictionaries along the current
path from the root.

Although lrs is a large improvement on rs, it is far from an efficient general solution to the
vertex enumeration problem. Such a solution should reasonably be required to generate all ver-
tices in time polynomial in the input and output size. Currently no such algorithm is known to
exist. Examples contained in Avis, Bremner and Seidel [6] show that all pivot algorithms using
numeric or symbolic perturbation may behave extremely badly: the number of bases computed
can be super-polynomial in the number of vertices. This is born out in practice for combinatorial
polytopes. lrs is efficient for vertex enumeration of simple (or near-simple) polyhedra, or dually
for facet enumeration of simplicial (or near-simplicial) polyhedra. Recently Bremner, Fukuda
and Marzetta [9] developed an ingenious primal-dual method for vertex enumeration of highly
degenerate simplicial polytopes that satisfy a hereditary property. It works by simulating the
reverse search tree generated by lrs for the (easy) dual facet enumeration problem for simplicial
polytopes. Dually, this method can be used for facet enumeration of simple polytopes. For poly-
topes with zero-one vertices, a polynomial time vertex enumeration algorithm was recently
announced by Bussieck and Luebbecke [12].

lrs can be efficiently parallelized, as has been done by Br"ungger, Marzetta, Fukuda and
Nievergelt [10]. This parallel version has been used to solve some extremely large problems
which do not seem solvable by other methods.

2. Background
For a general introduction to convex polyhedra, the reader is referred to Ziegler [20].

Throughout the paper we will assume that P is a d-dimensional polyhedron in Rd . A classic
result is that P can be represented in two ways. An H-representation is given by a m × d matrix

- 4 -

A = (ai, j) and a m-vector b = (bi):

P = {y ∈ Rd | b + Ay ≥ 0} (2.1)

If A is minimal, that is no row can be deleted without changing P, then P has m facets, each
defined by one of the inequalities in (2.1). A vertex y ∈ Rd is a point of P that satisfies an affinely
independent set of d inequalities as equations. We assume throughout that P has at least one ver-
tex, which implies that m ≥ d + 1. An extreme ray z ∈ Rd is a direction such that for some vertex
y and any positive scalar t, y + tz is in P and satisfies some set of d − 1 affinely independent
inequalities as equations. Note that an extreme ray is unique only up to a positive scalar, since if
z is an extreme ray then so is tz for any positive scalar t. An equivalent V-representation of P is
given by a minimal set of s vertices y1, . . . , ys and u extreme rays z1, . . . , zu:

P = {y ∈ Rd | y =
s

i=1
Σ λ i yi +

u

j=1
Σ µ j z j , λ i ≥ 0, µ j ≥ 0,

s

i=1
Σ λ i = 1}. (2.2)

The vertex enumeration problem is to produce a V -representation from an H-representation, and
the facet enumeration problem is to provide the reverse transformation. It is well known that
these problems are essentially equivalent, see Section 8.1. In this paper we treat the problem pri-
marily from the vertex enumeration perspective.

As an example, consider the unbounded three dimensional polyhedron P defined by the sys-
tem of 8 inequalities:

1 + x1 ≥ 0
1 + x2 ≥ 0
1 − x1 ≥ 0
1 − x2 ≥ 0

1 − x1 + x3 ≥ 0
1 − x2 + x3 ≥ 0
1 + x1 + x3 ≥ 0
1 + x2 + x3 ≥ 0

It has a V -representation given by the 5 vertices

(1, 1, 0), (−1, 1, 0), (1, −1, 0), (−1, −1, 0), (0, 0, −1)

and one extreme ray (0,0,1). Note that the vertices do not have unique cobases. For example the
vertex (-1,-1,0) can be defined by choosing any three of the first two and last two inequalities and
replacing them by equations. The extreme ray has four representations, one with each of the first
four vertices. For example (1, −1, 0) + (0, 0, t) satisfies both the second and third inequalities as
equations, and is in P for all t > 0. These representations with distinct vertices are called geomet-
ric rays.

3. Dictionaries
Much of the material in this section is adapted to the vertex enumeration setting from stan-

dard results in linear programming, see for example Chvátal [13] and Ignizio and Cavalier [18].
As with the simplex method, the essential calculations are performed on a dictionary derived
from (2.1). We distinguish decision variables x1, . . . , xd and slack variables xd+1, . . . , xd+m. It
is easy to see that solutions to (2.1) can be put in 1-1 correspondence to solutions of

xd+i = bi +
d

j=1
Σ ai, j x j , i = 1, . . , m.

xd+i ≥ 0, i = 1, . . . , m

by identifying x j = y j , j = 1, . . . , d . lrs is initiated from a vertex of P, which is either supplied
by the user or is computed by solving a linear program over (2.1). It is convenient to order the
rows of (2.1) so that the final d rows define this initial vertex. Since these rows are affinely inde-
pendent, we can rewrite the above system of m equations as the equivalent system

- 5 -

xi = bi +
d

j=1
Σ a′i, j xm+ j , i = 1, . . , m. (3.1)

for a suitable coefficients bi and a′i, j . For reasons that become clear later, we augment this sys-
tem by adding the additional equation

x0 = b0 +
d

j=1
Σ a′0, j xm+ j (3.2)

where b0 = 0 and a′0, j = −1, j = 1, . . . , d . From the vector b = (b0, . . . , bm) and (m + 1) × d
matrix A′ = (a′i, j) we form the (m + 1) × (d + m + 1) dimensional matrix

A = [I − A′]

where I is an (m + 1) × (m + 1) identity matrix. Then the augmented system of equations can be
rewritten as

Ax = b. (3.3)

For any matrix such as A, A j refers to the j-th column of A, and AJ refers to the submatrix of
columns of A indexed by J . We use similar notation for vectors. The notation Ai and AI refers
to row i and the submatrix of A with rows indexed by I respectively. Let B be an ordered
m+1-tuple indexing a set of m + 1 affinely independent columns of A, and let N be an ordered d-
tuple indexing the remaining d columns. Then we may rewrite (3.3) as AB xB + AN xN = b,
which is equivalent to the system:

I xB + A−1
B AN xN = A−1

B b (3.4)

The system (3.4) is called a dictionary, and consists of m + 1 rows. The t-th row corresponds to
the t-th index in B. All essential calculations involve manipulating this dictionary. The index set
B is called a basis, and the index set N is called a cobasis. From any dictionary we obtain a
basic solution x by setting xB = A−1

B b and xN = 0. B is a feasible basis, x is a
basic feasible solution, and (3.4) is a feasible dictionary if:

(i) {0, . . , d} ⊂ B, and

(ii) xi ≥ 0, i ∈ B, i = d + 1, . . . , d + m.

In other words, B contains x0 and all decision variables, and x is non-negative for all slack vari-
ables. The next two propositions show how the vertices and extreme rays of P can be recovered
from dictionaries.

Proposition 3.1: Every vertex y of P can be extended to a basic feasible solution of (3.4), and
every basic feasible solution x of (3.4) can be restricted to a vertex of P.

Proof: Let y be a vertex of P. It is defined by choosing a a set of d inequalities in (2.1) and
replacing them by equations. Let N be the set of all indices i + d such that inequality i is chosen,
and let B = {0, . . . , d + m} − N . Let x j = y j , j = 1, . . . , d , define xd+i , i = 1, . . . , m by (3.1) and x0
by (3.2). Clearly xN = 0 and (i) and (ii) are satisfied since y satisfies (2.1). Conversely, if x is a
basic feasible solution, we define y by y j = x j , j = 1, . . . , d . Since xN = 0, N indicates a set of d
inequalities from (2.1) that are solved as equations to define y. Condition (ii) indicates y is feasi-
ble for (2.1), hence it is a vertex.

Proposition 3.2: For every extreme ray z of P, there is a feasible basis B and index s ∈ N such

that letting a = A−1
B As:

(a) zi = −tai, 1 ≤ i ≤ d , and some t > 0,

(b) ai ≤ 0, d + 1 ≤ i ≤ m

Proof: From the definition, each extreme ray of P is a feasible direction z ∈ Rd , so that for some
vertex y and any positive scalar t, y + tz satisfies a set of d − 1 inequalities from (2.1) as

- 6 -

equations. Let N ′ index this set. Since P does not admit lines, this ray is terminated by one addi-
tional inequality being satisfied as an equation. Let s index this inequality and set N = N ′ + s. We
obtain a set of d cobasic indices N which determine the vertex y of P. Let a = A−1

B As. By (b) we
can obtain feasible solutions x = A−1

B b − at by setting xN ′ = 0 and xs = t for any positive scalar t.
All these solutions satisfy inequalities indexed by N ′ as equations, so restricting to coordinates
1, . . . , d of −a, we obtain the extreme ray z.

Under the conditions of Proposition 3.2, we say that B represents the geometric ray y + tz.
lrs computes feasible dictionaries from which vertices and extreme rays of P may be obtained.
The basic operation is a pivot between two bases B and B, which is defined by indices r ∈ B and
s ∈ N by setting B = B − r + s. This notation means that s replaces r in its position (say t) in the
basis B. The operation is the computation of (3.4) for B, which is done as follows. Let
a = A−1

B As.

Pivot Operation.
(a) Divide row t of (3.4) by at .

(b) For i = 0, . . . , t − 1, t + 1, . . . , m, subtract ai times the new row t from row i of (3.4).

We discuss the mechanics in Section 7. The pivot is feasible if both xB and xB are basic feasible
solutions, which implies that both xr and xs are slack variables. The decision variables do not
play any active role in pivot selection, they are "carried" along merely to enable the vertex and
extreme ray coordinates to be computed (they are columns of this part of the dictionary).

Let B* = {0, . . . , m} and N * = {m + 1, . . . , m + d}. This is the initial basis and cobasis, and
the initial dictionary is given by (3.2) and (3.1), which we write:

I xB* + AN * xN * = b. (3.5)

The first equation in this system is

x0 +
i ∈ N *
Σ xi = 0 (3.6)

If we interpret x0 to be the value of an objective function, then the basic solution of this dictio-
nary with xN * = 0 has objective value zero. Since for all basic feasible solutions we have
x j ≥ 0, j ∈ N *, it is clear that the maximum of x0 over all basic feasible solutions is zero, and the
initial dictionary achieves this maximum. This initial dictionary is the root of the reverse search
tree constructed by lrs. All other bases are obtained by pivoting from this dictionary. The initial
basis inverse is the (m + 1) × (m + 1) identity matrix. To perform lexicographic pivots from any
feasible basis B, it will be necessary to have access to the basis inverse A−1

B . This can be readily
obtained from the dictionary (3.4) with basis B as follows. Let ei be the unit m + 1-vector
indexed 0, . . . , m with a one at index i.

Proposition 3.3: Let B be a feasible basis. Then, for i = 0, . . . , m, column i of A−1
B is er if i = Br

for some r, otherwise it is the column A−1
B Ai .

Proof: The dictionary (3.4) corresponding to B is obtained by standard row and column opera-
tions from the equivalent system (3.5). It follows from elementary linear algebra that the columns
indexed by B* = {0, . . . , m} (3.4) are the basis inverse A−1

B .

4. Lex-positive Bases and Lexicographic Pivot Selection
The earlier program rs computed all basic feasible solutions, and so by Proposition 3.1 this

guarantees all vertices will be found. For degenerate polyhedra there are many more feasible
bases than vertices, so it useful to identify a smaller set of bases that still cover all the vertices.
We call a vector lex-positive if its first non-zero coordinate is positive. We call a feasible basis B
lex-positive if each of the rows indexed d + 1, . . . , , m of the (m + 1) × (m + 1) matrix

D =

A−1
B b A−1

B

=

β0

.

.

.

βm

α 0,1

α m,1

. . .

. . .

α 0,m

.

.

.

α m,m

(4.1)

- 7 -

is lex-positive. The initial basis B* is lex-positive, since in this case (4.1) is [b I], and the con-
dition follows from the feasibility of B*. Every feasible basis B contains indices 0,...,d and so the
columns with these indices in (4.1) remain unchanged, they are the first d + 1 columns of the
identity matrix. We will show that each vertex has a lex-positive basis. To do this we introduce
lexicographic pivoting, which preserves the property that the basis is lex-positive.

Let B be a lex-positive basis. Let s ∈ N and consider the column a = A−1
B As. If

ai ≤ 0, d + 1 ≤ i ≤ m, this column defines an extreme ray, as described in Proposition 3.2. Other-
wise, let t be the index such that Dt /at is the lexicographically minimum vector of

Di

ai

: ai > 0, d + 1 ≤ i ≤ m

(4.2)

Such a minimum is unique, because D has full row rank. Let r be the basic index in B corre-
sponding to row t. We abbreviate this in the notation:

r = lexminratio(B, s)

In case (4.2) is empty and we set r = 0.

Proposition 4.1: Given a lex-positive basis B and s ∈ N, let r = lexminratio(B, s) ≠ 0.

(a) B = B − r + s is a lex-positive basis.

(b) s = lexminratio(B, r).

Proof: Let t be the row of D corresponding to basic index r ∈ B, and set a = A−1
B As. The pivot

operation produces the matrix D for B from D according to the formulae:

D
t =

Dt

at

, D
i = Di − ai D

t
, 0 ≤ i ≤ m, i ≠ t. (4.3)

To prove the lex-positivity of B we need only consider rows indexed d + 1 ≤ i ≤ m. Since each
row of D is lex-positive, and at > 0, D

t
is lex-positive. Therefore, for each i with ai ≤ 0, D

i
is the

sum of a lex-positive vector with either zero or a lex-positive vector, so it is lex-positive. For each
i with ai > 0 we can rewrite its equation above as

D
i

ai

=
Di

ai

−
Dt

at

.

Since t was chosen as the lexicographically minimum vector in (4.2), it follows that the right
hand side and hence Di is lex-positive. This proves part (a). For part (b) set

a = A−1
B Ar .

In the dictionary with basis B, column r is the identity column et . Therefore it follows from the
pivot operation that

at =
1

at

, ai = − ai at , d + 1 ≤ i ≤ m, i ≠ t.

Using these definitions, for any i, d + 1 ≤ i ≤ m, i ≠ t such that ai > 0 we can deduce from (4.3)

D
i

ai

=
Di

ai

+
D

t

at

.

Since both terms on the right hand side are lex-positive, we conclude that D
i
/ai is lexicographi-

cally greater than D
t
/at . Therefore row t is the minimizer for basis B. This proves part (b), since

s ∈ B is the index corresponding to row t of the updated dictionary.

- 8 -

The lexicographic pivot rule for the simplex method for linear programming chooses pivots
in the following way. Assuming the problem is to maximize x0, the index s ∈ N of the entering
variable is chosen so that it has a negative coefficient in row zero of (3.4). If no such index exists,
the current basic feasible solution is optimum. We then choose r = lexminratio(B, s) as the index
of the leaving variable. If no such index exists, the problem is unbounded. The proof of Proposi-
tion 4.1 shows that each pivot adds a positive multiple of the lex-positive row r to the objective
function. Since the objective row increases lexicographically with each pivot, this proves no basis
can repeat and the optimum (or an unbounded solution) must eventually be reached. Further-
more, if pivots are chosen in this way, an optimum solution will be found with a lex-positive
basis, even though in general it may have many other bases that are not lex-positive. We may now
strengthen Proposition 3.1.

Proposition 4.2: Every vertex y of P can be extended to a basic feasible solution of (3.4) with a
lex-positive basis.

Proof: It is well known that for every vertex y of P there is a linear function which obtains its
maximum over P at the unique point y. We use this function instead of the the one specified in
(3.2), and initiate the simplex method using lexicographic pivoting on the resulting dictionary
(3.4) with the initial lex-positive basis B*. By the above discussion, we will obtain the optimum
solution y with a lex-positive basis.

We call a feasible basis B and its corresponding dictionary optimum if row zero of A−1
B A is

non-negative. As described above, this is the normal stopping criterion for the simplex method.
An important feature of lex-positive bases is that there is a unique optimum dictionary, eliminat-
ing the need to initiate reverse search on multiple dictionaries. A similar result was obtained by
Bremner et al.[9] using a different argument.

Proposition 4.3: B* is the unique optimum lex-positive basis.

Proof: Row zero of the initial dictionary is the m + d + 1 vector (1,0,...,0,1,...,1) with m zeroes,
derived from equation (3.6), where the cobasis is N * = {m + 1, . . . , m + d}. Suppose there exists
another lex-positive optimum basis B ≠ B*. Let k1, . . . , kq be indices in B − B*. Each index is
necessarily in N *. Consider row zero of the system (3.4). It is obtained from (3.6) by subtracting
equations with variables indexed by k1, . . . , kq from (3.4), since these variables are eliminated
from the cobasis N *. The coefficients of variables x0, . . . , xm in these equations are the corre-
sponding rows in (4.1), each of which is lex-positive by assumption. Since both B and B* are
optimum, β k j

= 0. It follows that (α 0,1, . . . , α 0,m) is lexicographically negative, so α 0, j < 0 for
some index d + 1 ≤ j ≤ m (in fact, the first non-zero coefficient). This contradicts the optimality
of B.

The results of this subsection are summarized in the following theorem.

Theorem 4.4: For each vertex y of P there is a lex-positive basis B with basic feasible solution x
such that xi = yi , i = 1, . . . , d. The simplex method initiated on the corresponding dictionary

(3.4) generates a sequence of lex-positive bases terminating in the basis B*.

5. Lex-minimum Bases of Vertices and Extreme Rays
Even with lex-positive piv oting, for a non-simple polyhedron the same vertex will often be

generated with many bases. Fortunately, a unique representative basis can easily be identified for
each vertex. For a given basic feasible solution x of (3.4), its lexicographically smallest basis B is
called lex-min.

Proposition 5.1: B is lex-min for some basic feasible solution x if and only if there does not exist

r ∈ B and s ∈ N such that (i) r > s, (ii) xr = 0, and (iii) (A−1
B As)r ≠ 0.

- 9 -

Proof: Clearly if B is lex-min we cannot satisfy (i)-(iii), for otherwise, the basis B = B − r + s has
the same basic feasible solution x and is lexicographically smaller than B. On the other hand,
suppose B is not lex-min. Let Bmin be the lex-min basis with the same basic feasible solution x.
Note that this implies that if xi ≠ 0, i is contained in both B and Bmin. Let s be the smallest index
in Bmin − B. Since B is a basis there is some index r ∈ B − Bmin such that B = B − r + s is a feasi-
ble basis. By the choice of r and s we must have both (i) and (ii). Finally (iii) follows from the
fact that r and s define a valid pivot for the dictionary with basis B.

Given a dictionary for B, conditions (i)-(iii) of Proposition 5.1 can be checked in O(md) time.

Proposition 5.2: The lex-min basis B of each basic feasible solution x is lex-positive.

Proof: We must show the rows indexed d + 1, . . . , m of (4.1) are lex-positive. Since x is feasible,
we need only check rows with β i = 0. Let r ∈ B be a basic index corresponding to such a row.
Suppose the smallest index j for which α i, j ≠ 0 is such that α i, j < 0. Now if r ≤ m from Proposi-
tion 3.3 we have α i,r = 1, so j < r. On the other hand, if r ≥ m + 1, then trivially j ≤ m < r. Also
j ∈ N since it indexes a column of (4.1) that is not a unit vector. Therefore B = B − r + j is a fea-
sible degenerate pivot yielding a lexicographically smaller basis for the same feasible solution x.
Since this is a contradiction, it must be that α i, j > 0 and so row i is lex-positive.

Note that the proof of the proposition implies that in a lex-min basis B, if i ∈ B and i ≥ m + 1, then
necessarily xi > 0.

Next we consider extreme rays. Here the situation is more complicated, due to the existence
of parallel rays incident to distinct vertices, known as geometric rays, as illustrated in Section 2.
In a non-simple polyhedron, the same geometric ray may appear in many dictionaries, ie. it may
have many cobasis representations with the same basic solution. It is not necessarily true that a
geometric ray incident with a vertex y will appear in the lex-min dictionary for this vertex. To see
this, note that a dictionary can only identify at most d distinct rays, but a cone, for example, may
have many more. There is, however, a way to identify the lex-min basis for any giv en geometric
ray.

Proposition 5.3: The lexicographically minimum basis representing the geometric ray y + tz is
lex-positive.

Proof: Let B be any basis representing the geometric ray y + tz, with dictionary given by (3.4).
Let s ∈ N index the column in this dictionary corresponding to z, and let a = A−1

B As. We consider
an augmented dictionary by adding a new variable xq, q = m + d + 1, and appending to (3.4) the
new equation:

xs + xq = 1.

This corresponds to adding the constraint xs ≤ 1 to the original problem. The augmented dictio-
nary has basis B + q and basic feasible solution (xB, xq) = (A−1

B b, 1). Column s no longer defines
a ray in the augmented dictionary, and it is possible to pivot on this column with variable xq leav-
ing the basis, and xs entering with value one. After the pivot the augmented system has basis
B + s, basic feasible solution (xB, xs) = (A−1

B b − a, 1), and represents the vertex y + z of the aug-
mented problem. By Proposition 5.2, the lex-min basis Bmin for this vertex is lex-positive. Let
Nmin be the corresponding cobasis. Since the basic feasible solution has xs = 1, s ∈ Bmin. Let
Bmin = Bmin − s. We hav e q ∈ Nmin, since if not xq would be in the basis Bmin at value zero. As
q = m + d + 1, it is the largest index, any degenerate pivot with q leaving the basis would produce
a lexicographically smaller basis with the same basic feasible solution, contradicting the minimal-
ity of Bmin. Since q ∈ Nmin, the row in the dictionary for xs is all zeroes except for a one in the
columns for xs and xq.

We consider the pivot interchanging xs and xq in the augmented dictionary with basis Bmin.
Before the pivot, the column for xq is (a, 1), since increasing xq to one changes the basic feasible
solution from (xBmin

, xq) = (A−1
B b − a, 1) to (xBmin

, xs) = (A−1
B b, 1). The pivot preserves lex-

- 10 -

positivity, since in the column for xq only the last entry, corresponding to xs, is positive. After
the pivot the column for xs is (a, 1). If we delete the extra row from the augmented dictionary
after the pivot, we get a dictionary for the original problem with lex-positive basis Bmin. It has
basic feasible solution xBmin

= A−1
B b and column s has value −a, so it represents the geometric ray

y + tz. We claim that B is lexicographically at least as large as Bmin. This follows from the fact
that B + s is a basis for the vertex y + z in the augmented problem, and so is lexicographically
greater than or equal to the lex-min basis for this vertex, Bmin = Bmin + s.

A basis representing a geometric ray can be tested for lex-minimality quite efficiently. The next
proposition is analogous to Proposition 5.1, Note conditions (i)-(iii) are identical.

Proposition 5.4: B is the lex-min basis representing a geometric ray y + tz with basic feasible
solution x if and only if there does not exist r ∈ B and s ∈ N such that (i) r > s, (ii) xr = 0, (iii)

(A−1
B As)r ≠ 0, and (iv) (A−1

B Au)r = 0, where A−1
B Au represents the ray z.

Proof: The proof is similar to Proposition 5.1. If (i)-(iv) hold then the pivot interchanging r and s
produces a smaller basis with the same properties. Conversely let Bmin be the lex-min basis and B
any other basis representing y + tz. Choose r and s as in Proposition 5.1. As shown there, (i)-(iii)
must hold. It remains to observe that condition (iv) must hold or else the pivot would change col-
umn u by other than multiplication by a positive scalar, and the new basis would not represent
y + tz.

The conditions of Proposition 5.4 can be tested in O(md) time given the current dictionary. The
results of this section are summarized in the following theorem.

Theorem 5.5: Each vertex y and each geometric ray y + tz of P can be represented uniquely by
its lex-min basis, which is lex-positive.

The goal of a vertex enumeration algorithm is to produce a minimum V -representation (2.2)
for P. In this minimum representation each direction z producing one or more extreme rays
should be output once. When the polyhedron P is a pointed cone, the result of Theorem 5.5 is
enough to achieve this. Since there is only one vertex, the origin, the only geometric ray with
direction z is tz. In this case the set of lex-min bases gives a minimum V -description of P. An
important application of this is to facet enumeration of polytopes, see Section 6. For unbounded
polyhedra with more than one vertex, we do not know any local necessary and sufficient condi-
tion to determine the lex-min basis for a ray (as opposed to a geometric ray). The following nec-
essary condition allows some parallel geometric rays to be eliminated. Note conditions (i) and
(iv) are the same as in Proposition 5.4.

Proposition 5.6: B is the lex-min basis whose dictionary represents a ray z in column A−1
B Au only

if there does not exist r ∈ B and s ∈ N such that (i) r > s, (ii) (A−1
B As)r > 0, (iii) r is an index which

minimizes the ratio (A−1
B b)i/(A−1

B Au)i , over all i ∈ B for which the denominator is positive, and (iv)

(A−1
B Au)r = 0.

Proof: Conditions (i) - (iii) of the proposition imply that it is possible to make a feasible pivot to
the basis B = B − r + s, which is lexicographically smaller than B. Condition (iv) implies that the
pivot does not change the column of the dictionary representing z. Let x be the basic feasible
solution for basis B. B is not necessarily lex-positive, but its dictionary represents the geometric
ray x + tz. By Proposition 5.3, the lex-min basis for this geometric ray is lex-positive. Since it is
lexicographically no larger than B, this proves B is not the lex-min basis of the ray z.

Testing the conditions of Proposition 5.6 requires O(md) time, but is more expensive than testing
those of Propositions 5.1 and 5.4 due to the additional ratio test required for condition (iii).

6. Reverse Search
Based on Theorems 4.4 and 5.5 we can design pivoting algorithms to generate the vertices

and extreme rays of P. An algorithm of this type is initiated with the lex-positive basis B* and
uses lexicographic pivoting to generate all lex-positive bases. A duplicate free list of vertices and

- 11 -

geometric rays is obtained by outputting only the lex-min bases for each vertex and geometric ray.
The algorithm can be described as a search of the graph whose nodes are lex-positive bases, and
whose edges correspond to lexicographic pivots between these bases. A standard graph traversal
algorithm, such as depth first search, could be used but suffers from the disadvantage that it is
necessary to keep a list of all bases discovered. Even for rather small inputs, the size of such a list
can be prohibitively large. lrs implements reverse search (see [2]), which is a method that
enables the graph to be searched without maintaining a list of visited nodes. In the reverse search
algorithm, only the current basis B, cobasis N and corresponding dictionary are stored.

The research search algorithm makes use of the following four functions.

(a) pivot(B, r, s). B is the basis of the current dictionary, r = Bi is a basic index and s = N j is a
cobasic index. The dictionary is pivoted to the new basis B − r + s as described in Section 3. The
basic and cobasic indices B and N are updated by setting Bi = s and N j = r.

(b) selectpivot(B, r, j). B is the basis of the current dictionary, which is assumed non-optimal.
selectpivot returns indices r ∈ B and s ∈ N chosen by the lexicographic pivot rule applied to the
dictionary with basis B. First the least index s = N j is found with negative coefficient in row zero,
ie. such than (A−1

B As)0 < 0. Then the lexicographic ratio test is performed on this column as
described in Section 4, ie. we compute r = lexminratio(B, s). The indices r and j are returned.

(c) lexmin(B, s). B is the current basis representing a vertex y and s is either zero, or else s ∈ N
and the corresponding column of the dictionary for B represents a ray. When s is zero, lexmin
determines if B is the lex-min basis for y, and if so returns true. Otherwise s ∈ N and this column
of the dictionary represents a ray z. lexmin determines if B is the lex-min basis for the geometric
ray y + tz, and if so returns true. The operations required are given in Propositions 5.1 and 5.4.

(d) re verse(B, u, v). Given basis B and cobasic index v ∈ N , reverse determines if there is a basic
index u ∈ B such that the lexicographic pivot rule applied to the dictionary with basis
B = B − u + v generates a pivot back to B. In other words, reverse determines if there is an index
u ∈ B so that selectpivot applied to the dictionary with basis B − u + v would compute the indices
r = v and s = u. This will happen if the first negative coefficient in row zero of the dictionary for
B has index u, and if v = lexminratio(B, u). In this case, reverse returns true with the index u,
otherwise it will return false. If the column v represents a ray, the ray is output if lexmin(B, v) is
true. reverse can be implemented by using pivot and selectpivot, but this is very inefficient. An
efficient implementation is discussed below.

Using these four functions, the reverse search algorithm lrs can be described by the pseudo-
code given in Figure 6.1. It is assumed that the dictionary with current basis B is available to all
functions.

A general discussion of reverse search, proof of correctness and complexity analysis is
given in[5], to which the reader is referred for more information. The main while loop is
executed for each basis B, starting with the optimum basis. Each cobasic column of the current
dictionary is examined by reverse to see if there is a lex-positive piv ot using this column, for
which the resulting dictionary pivots back to B using the lexicographic simplex method. If so the
pivot is formed, and the while loop is executed for each column of the new dictionary. When the
while loop terminates for a given basis, selectpivot and pivot are used to return to its parent in the
reverse search tree, and the while loop is continued for this basis. Note that for this it is essential
that the value of j be correctly restored, as is done in selectpivot. The until statement is used to
terminate the algorithm after the last column of the starting optimum dictionary has been exam-
ined.

Inspection of the pseudo-code shows that there are two piv ots for each basis except the ini-
tial basis B*: one in the while loop when a new basis is found, and one in the backtracking step,
when a simplex piv ot is used to move to the parent basis. Since pivoting is the most time consum-
ing operation, a speedup can be achieved by saving the recent dictionaries in a cache, so they can
be reloaded rather than recomputed. More critically, it is clear that reverse is executed d times for
each basis and so must be implemented efficiently. This can be achieved by using the following
proposition.

- 12 -

B = B*; j = 1;
repeat

while j ≤ d
{ v = N j ;

if re verse(B, u, v)
then { pivot(B, u, v); // new basis found //

if lexmin(B, 0) then output current vertex;
j = 1;

}
else j = j + 1;

}
selectpivot(B, r, j); // backtrack //
pivot(B, r, N j);
j = j + 1;

until j > d and B = B*.

Figure 6.1: Pseudo-code for lrs

Proposition 6.1: Given basis B, index v ∈ N, let a = A−1
B Av, and for any t = 1, . . . , m let wt be

the vector of coefficients of row t of the current dictionary (3.4). The function reverse(B, u, v) is

true and returns u = Bi if and only if (i) w0
v < 0, (ii) u = Bi = lexminratio(B, v) ≠ 0, and

(iii) setting w = w0 − a0wi/ai , we have w j ≥ 0, for all j ∈ N , j < u.

Proof: Let B = B − u + v. First suppose reverse(B, u, v) is true, which implies that selectpivot
applied to the dictionary with basis B returns r = v and s = u. This implies that
v = lexminratio(B, u) ≠ 0. By Proposition 4.1(b), u = lexminratio(B, v), giving (ii). It also
implies that ai > 0, and so w is well defined. It follows from the pivot operation (Section 3) that
w is the vector of coefficients of row zero of the dictionary with basis B. Since selectpivot
chooses s = u, wu must be the first negative component of w, so (iii) holds. Also by the pivot for-
mula, wu = w0

v/ai . Since ai is positive, (i) holds.

For the converse, assume (i) - (iii) hold. Define B as above. As argued, w is the vector of
coefficients of row zero of the dictionary corresponding to B. From (ii) ai > 0 and from (i)
w0

v < 0, so wu < 0. Together with (iii) this implies that selectpivot applied to the dictionary with
basis B will select u as the entering index. Since u ≠ 0, we can apply Proposition 4.1(b), getting
v = lexminratio(B, u). Therefore v is chosen as the leaving index by selectpivot and so
reverse(B, u, v) is true.

From Proposition 6.1 we see that reverse requires a lexicographic ratio test for each neg-
ative coefficient in row zero of the dictionary. If the ratio test succeeds, meaning the column does
not represent an extreme ray, part of the row zero of the updated dictionary is computed. The ratio
test dominates the cost of this, requiring O(md) time for degenerate dictionaries in the worst case.
For non-degenerate dictionaries, the ratio test requires only O(m) time, which since m > d is also
the time for testing all of the conditions (i)-(iii).

Referring to the pseudo-code in Figure 6.1, we see that the total time required by reverse for
a basis B is O(md2) for degenerate dictionaries and O(md) for non-degenerate dictionaries. The
time required for an execution of pivot, lexmin or selectpivot is O(md). This proves the following
result.

Theorem 6.2: lrs finds all bases and hence all vertices of a polyhedron in time O(md2) per basis
and O(md) space. It finds all vertices of a simple polyhedron in time O(md) per vertex.

- 13 -

7. Implementation Issues and Integer Pivoting
To minimize space, lrs uses the reduced form of the dictionary (3.4) given by

xB = A−1
B b − A−1

B AN xN (7.1)

which is stored as a (m + 1) × (d + 1) array. Note that the signs of the coefficients of cobasic vari-
ables are the reverse of those in (3.4). Therefore the optimum dictionary is characterized by a row
zero having non-positive coefficients. For any non-optimum dictionary, the candidates for enter-
ing variable for the simplex method are those with a positive coefficient in row zero. For definite-
ness, we choose the one with minimum index. For the lexicographic ratio test required to find the
leaving variable, the rows of (4.1) required for (4.2) are recovered column by column, using
Proposition 3.1, until a unique minimum is found. We can interpret lex-positivity in the context
of the dictionary (3.4). B is a lex-positive basis if and only if for each i ∈ B with i ≥ m + 1 and
basic feasible solution xi = 0, the first non-zero coefficient in its corresponding row of (7.1) is
negative.

The basic and cobasic indices B and N are maintained in increasing order in lrs. In order to
avoid moving the data in the dictionary, pointers are maintained to the actual row and column
locations in the dictionary. This ordering allows certain operations to be optimized. For example,
the test B = B* can be achieved by checking if Bm = m. Similarly the tests required in select-
pivot, lexmin and reverse can be speeded up by processing the indices in order.

The reverse search method is extremely sensitive to numerical error. A single mistake in the
sign of a dictionary element can mean that an entire subtree of the reverse search tree is not dis-
covered. For that reason, exact arithmetic is used. lrs uses arrays to hold long integers, using the
data format and basic routines given by Gonnet and Baeza-Yates [16]. The division routine is
based on Knuth [19] and was implemented by Jerry Quinn.

The earlier version rs used rational arithmetic, and each entry in the dictionary was stored as
a rational in reduced form, requiring gcd computations after each arithmetic operation. Most of
these computations are eliminated in lrs by the use of integer pivoting method of Edmonds [15]
(which is connected to Cramer’s rule, see the appendix of Chvátal [13].) In integer pivoting, only
the numerators of coefficients of the dictionary (7.1) are stored, with respect to a common denom-
inator, which is the absolute value of the determinant of the current basis. The absolute value of
the determinant is used so that the signs of the numerators agree with the signs of the rational
numbers they represent. Let ai, j , 0 ≤ i ≤ m, 0 ≤ j ≤ d denote the array of coefficients of (7.1), and
let det(B) be the determinant of the current basis B. If a piv ot is to be performed on row r and
column s, the updated (barred) coefficients are given by:

ai, j = (ai, j ar,s − ai,sar, j)/det(B)

ar, j = −ar, j , ai,s = ai,s, ar,s = det(B), det(B) = ar,s

where in the above formulae, i ≠ r and j ≠ s. It can be shown that the integer division has no
remainder. Since no gcd computations are required in integer pivoting, the only gcd operations
performed in lrs are before printing the output. Empirically, integer pivoting appears to be
between two and ten times faster than rational pivoting, with gcd computation using Euclid’s
algorithm.

8. Other Functions of lrs

In this section we briefly described other functions of lrs that are built on top of the basic
function of vertex enumeration. The details are given elsewhere, as noted.

8.1. Facet Enumeration
The facet enumeration problem is to produce an H-representation (2.1) of P from a V -

representation (2.2). In lrs a standard lifting technique (see for example Ziegler [20]) is used to
convert the facet enumeration problem to an equivalent vertex enumeration problem. The input
V -representation is lifted to a pointed cone in one higher dimension, for which the two problems

- 14 -

are equivalent. Specifically, each vertex (a1, . . . , ad) of P is transformed to the inequality

x1 + a1 x2 + . . . + ad xd+1 ≥ 0 (8.1)

and each ray (a1, . . . , ad) of P is transformed to the inequality

a1 x2 + . . . + ad xd+1 ≥ 0.

The resulting system of inequalities describes a pointed cone P in d + 1-dimensions. A ray
(z1, . . . , zd+1) of P corresponds to the facet

z1 + z2 x1 + . . . + zd+1 xd ≥ 0

of P. Note that no lifting is required if the input polyhedron P is a pointed cone. Also, if the input
is the V -representation of a polytope containing the origin, it can also be solved without lifting by
interpreting the input points as inequalities (8.1), with x1 set to the constant one. Somewhat
remarkably, although lifting increases degeneracy, lrs sometimes runs faster on lifted polytopes.
This is due to the fact that rays are detected more efficiently than vertices, each of which require
one (or two) additional pivots.

8.2. Voronoi Vertices

Given a set of m points in Rd , it is required to find the set of Voronoi vertices, each charac-
terized by being the centre of an empty hypersphere spanned by at least d + 1 input points. It is
well known (see for example, Edelsbrunner [14]) that the Voronoi vertices of a set of points in
Rd can be obtained by solving a vertex enumeration problem in Rd+1. Each input point
(a1, . . . , ad) is transformed to the inequality

(a2
1 + . . . + a2

d) − 2a1 x1 − . . . − 2ad xd + xd+1 ≥ 0

The resulting system of inequalities describes a polyhedron P in Rd+1. There is a one-to-one cor-
respondence between the vertices of P and the Voronoi vertices of the input set of data. Indeed,
each vertex (y1, . . . , yd+1) of P projects to the Voronoi vertex (y1, . . . , yd). The inequalities
described by the cobasic indices for a vertex of P also correspond to the input points defining the
corresponding Voronoi vertex.

8.3. Volume Computation

Given a set of m points in Rd it is required to find the volume of their convex hull. Let P be
the polytope spanned by the input data points. As described in subsection 8.1, the facet enumera-
tion of P can be obtained from the rays of the d + 1-dimensional cone P. It can be shown that the
lex-positive bases of P form a decomposition of the polytope P into non-overlapping simplices.
This follows from the fact that the lex-positive bases of P correspond to the vertices of a simple
polyhedron obtained by a suitable perturbation of P. The dual of this simple polyhedron is simpli-
cial, and its projection gives the required decomposition of P. As we saw in Section 7, the deter-
minant of each basis of P is readily available during the computation. The determinant is a equal
to d! times the volume of the corresponding simplex of P. Hence summing these determinants
and dividing by d! giv es the required volume of P. See B"ueler et al. [11] for more details and a
comparison with other volume computation methods.

8.4. Estimation
The number of vertices in the V -representation of a polyhedron represented by m inequali-

ties in Rd can vary from one to m d/2 . P may have as many as md feasible bases, of which as

many as m d/2 may be lex-positive. Clearly, for even small values of m and d , if P achieves
these upper bounds the vertex enumeration problem is intractable. As the running time of lrs is
directly proportional to the number of bases computed, it is useful to estimate this number.
Reverse search is amenable to a technique of tree estimation due to Hall and Knuth [17]. As
described by Avis and Devroye [3], lrs can be used to estimate the number of lex-positive bases,
and also the number of vertices and rays (or facets for facet enumeration problems). Similarly

- 15 -

estimates for the volume of a polytope can be obtained. The estimates are unbiased, and tech-
niques are given to lower the variance. In spite of the enormous range of the quantities to be esti-
mated, the estimates obtained appear to give a good indication of the tractability of solving the
given problem completely.

8.5. Restart Capability
A feature of algorithms based on reverse search is that they can easily be interrupted and

restarted in the middle of a computation. In the vertex enumeration setting, it is necessary to
record only the indices of the current cobasis before interrupting the program. Then using this
cobasis and the original input file, the current dictionary can be recomputed, and the computation
resumed from this node of the reverse search tree. If cacheing is used, the cache is lost after the
program is interrupted, but is restored automatically as new piv ots are made after restarting.

9. Computational Results
In [4] some preliminary computational experience was given on a set of seven test prob-

lems. To illustrate the evolution of the code, we ran both the original program ve01 and version
2.3 of lrs on these test problems, using the latest incarnation of mutt, a DEC AlphaServer 1000
4/23. The results are shown in Figure 9.1. In the table, #V, #R, #B refer respectively to the num-
ber of vertices, rays and bases computed. Note that due to lexicographic pivoting, lrs computes
considerably fewer bases on the degenerate problems 2, 3 and 6. Problem 1 has a matrix gener-
ated uniformly in the range -1000..1000 and b vector all ones. Problem 2 is due to Akihisa
Tamura, and has all data from the set {0,-1,1}. Problem 3 is the truncated Metric Cone on four
points, consisting essentially of all triangle inequalities and non-negativity constraints on these
four points. Problems 4 and 5 were constructed arbitrarily with integer data in the range
-100..100. Problem 6 was arbitrarily constructed with matrix entries in the range -10..10 and b
vector 1..13. Problem 7 is a Kuhn-Quandt problem, with matrix entries randomly chosen in the
range 0..1000 and b vector entries all 10000. Its solution required integers with up to 63 decimal
digits.

ve01 lrs
Problem m d #V #R #B secs #B secs

1 34 4 31 31 2.81 31 .06
2 16 5 18 1247 7.48 76 .05
3 19 6 8 10845 86.43 188 .12
4 12 7 54 54 .43 54 .05
5 14 9 89 33 97 1.14 94 .09
6 23 10 332 302 3656 83.65 824 1.69
7 20 10 1188 1188 208.98 1188 2.78

Figure 9.1: Computational Results

One of the largest problems solved was a configuration polytope with 96 inequalities in 86
dimensions. The output of 323,188 vertices was obtained by computing 1,621,760 bases in a
computation lasting 30 days. Even larger problems have been solved using a parallel version of
lrs described by Br"ungger et al. in [10]. For example, they report computing the more than 3 mil-
lion vertices and 57 million bases of a configuration polytope defined by 71 inequalities in 60
dimensions. More extensive computational experience, and an empirical analyses of the various
speedups, is reported in Avis[7].

10. Acknowledgements
This paper was written while the author was on leave at IASI-CNR in Rome, whose support

is gratefully acknowledged. Various people helped with aspects of the development of lrs,

- 16 -

including David Bremner, Komei Fukuda, Ambros Marzetta, and Jerry Quinn. Finally, I would
like to thank the users of lrs for suggestions, encouragement....and reporting bugs!

References

1. lrs Home Page, November 1997. ftp://mutt.cs.mcgill.ca /pub/C/lrs.html

2. D. Avis and K. Fukuda, ‘‘A Piv oting Algorithm for Convex Hulls and Vertex Enumeration
of Arrangements and Polyhedra,’’ Discrete and Computational Geometry, vol. 8, pp.
295-313, 1992.

3. D. Avis and L. Devroye, ‘‘Estimating the Number of Vertices of a Polyhedron,’’ in Snap-
shots of Computational and Discrete Geometry, ed. D. Avis and P. Bose, vol. 3, pp.
179-190, School of Computer Science, McGill University, 1994.
ftp://mutt.cs.mcgill.ca/pub/doc/avis/AD94a.ps.gz

4. D. Avis, ‘‘A C Implementation of the Reverse Search Vertex Enumeration Algorithm,’’ in
RIMS Kokyuroku 872, ed. H. Imai, Kyoto University, May 1994. ftp://mutt.cs.mcgill.ca
/pub/doc/avis/Av94a.ps.gz

5. D. Avis and K. Fukuda, ‘‘Reverse Search for Enumeration,’’ Discrete Applied Math, vol. 6,
pp. 21-46, 1996.

6. D. Avis, D. Bremner, and R. Seidel, ‘‘How Good are Convex Hull Algorithms?,’’ Computa-
tional Geometry: Theory and Applications, vol. 7, pp. 265-301, 1997.

7. D. Avis, ‘‘Computational Experience with the Reverse Search Vertex Enumeration Algo-
rithm,’’ Optimization Methods and Software, 1998 (to appear). ftp://mutt.cs.mcgill.ca
/pub/doc/avis/Av98b.ps.gz

8. R. G. Bland, ‘‘New Finite Pivoting Rules for the Simplex Method,’’ Math. Operations
Research, vol. 2, pp. 103-107, 1977.

9. D. Bremner, K. Fukuda, and A. Marzetta, ‘‘Primal-Dual Methods of Vertex and Facet Enu-
meration,’’ Discrete and Computational Geometry, vol. 20, pp. 333-358, June 1997.

10. A. Br"ungger, A. Marzetta, K. Fukuda, and J. Nievergelt, The Parallel Search Bench ZRAM
and its Applications, 1997.
ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/zram_poc970924.ps.gz

11. B. B"ueler, A. Enge, and K. Fukuda, Exact Volume Computation for Polytopes: A Practical
Study, January 1998. ftp://ftp.ifor.math.ethz.ch/pub/fukuda/reports/vol_article980112.ps.gz

12. M. Bussieck and M. Luebbecke, ‘‘The Vertex Set of a 0/1-Polytope is Strongly P-
Enumerable,’’ ISMP ’97, Lausanne, August 1997.

13. V. Chvátal, Linear Programming, W.H. Freeman, 1983.

14. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

15. J. Edmonds and J.-F. Maurras, ‘‘Note sur les Q-matrices d’Edmonds,’’ Recherche Opéra-
tionelle (RAIRO), vol. 31, pp. 203-209, 1997.

16. G.H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data Structures-2nd Edi-
tion, Addison-Wesley, 1991.

17. M. Hall and D.E. Knuth, ‘‘Combinatorial Analysis and Computers,’’ Am. Math. Monthly,
vol. 72, pp. 21-28, 1965.

18. J. Ignizio and T. Cavalier, Linear Programming, Prentice Hall, 1994.

19. D. E. Knuth, The Art of Computer Programming, Vol 2: Seminumerical Algorithms, Addi-
son-Wesley, Reading, MA, 1981.

20. G. Ziegler, Lectures on Polytopes, Springer, 1994, revised 1998. Graduate Texts in Mathe-
matics.

