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Abstract— We are presenting new and efficient methods for
numerical differentiation, i.e., for estimating derivatives of a
noisy time signal. They are illustrated, via convincing numerical
simulations, by the analysis of an academic signal and by the
feedback control of a nonlinear system.

I. INTRODUCTION

A. Numerical differentiation

Numerical differentiation, i.e., the derivatives estimation

of noisy time signals, is an important but difficult ill-posed

theoretical problem. It has attracted a lot of attention in many

fields of engineering and applied mathematics (see, e.g., in

the recent control literature [2], [3], [4], [14], [15], [16], [17],

[18], [19], [23], and the references therein). Our purpose here

is to improve a new approach which started in [8], [13], and

in [7], [9], [10], for solving various questions in control and

in signal and image processing. Let us briefly describe our

differentiators which are obtained via iterated time integrals

of the noisy signal.

B. Short summary of our approach

Start with the first degree polynomial time function

p1(t) = a0 + a1t, t ≥ 0, a0, a1 ∈ R. Rewrite thanks to

classic operational calculus (cf. [25]) p1 as P1 = a0

s + a1

s2 .

Multiply both sides by s2:

s2P1 = a0s + a1 (1)

Take the derivative of both sides with respect to s, which

corresponds in the time domain to the multiplication by −t

(cf. [25]):

s2 dP1

ds
+ 2sP1 = a0 (2)

The coefficients a0, a1 are obtained via the triangular system

of equations (1)-(2). We get rid of the time derivatives, i.e., of

sP1, s2P1, and s2 dP1

ds , by multiplying both sides of equations

(1)-(2) by s−n, n ≥ 2. The corresponding iterated time

integrals are low pass filters which attenuate the corrupting

noises, which are viewed as highly fluctuating phenomena

(see [6] for more details). A quite short time window is

sufficient for obtaining accurate values of a0, a1.

The extension to polynomial functions of higher degree is

straightforward. For derivatives estimates up to some finite

order of a given smooth function f : [0, +∞) → R, take

a suitable truncated Taylor expansion around a given time

instant t0, and apply the previous computations. Utilizing

sliding time windows permit to estimate derivatives of vari-

ous orders at any sampled time instant.

C. Difficulties and improvements

The above method becomes more and more ill-conditioned

for higher order truncation of the Taylor expansion. This

is a major impediment for obtaining good estimates for

higher order derivatives in a noisy setting. Using elimination

techniques and Jacobi orthogonal polynomials (see, e.g., [1],

[24]), we propose here individual and independent deriv-

atives estimators for each given order. A judicious choice

of the point at which the derivatives are estimated in each

sliding time window permits to take advantage of the extra-

modeling capability afforded by a higher order truncation.

D. Organization of our paper

Section II discusses the mathematical foundations of our

differentiators. The first illustration in Section III applies the

above techniques for estimating the derivative of a noisy

academic signal. The second illustration in Section IV, which

is borrowed from [5], deals with the nonlinear feedback con-

trol of a DC motor joined to an inverted pendulum through

a torsional spring. We provide in both cases convincing

computer simulations1.

1Interested readers may obtain the corresponding computer programs
from one of the authors (cedric.join@cran.uhp-nancy.fr). Ref-
erence [11], from which the second example is taken, contains many more
applications to various topics in nonlinear control. Most useful discussions
and comparisons may be found in [21] where an interesting concrete case-
study is analyzed.



II. DERIVATIVES ESTIMATION

Let y(t) = x(t) + n(t) be a noisy observation on a finite

time interval of a real-valued signal x(t), the derivatives of

which we want to estimate. Assume that x(t) is analytic on

this time interval. Consider without any loss of generality

the convergent Taylor expansion x(t) =
∑

i>0 ci
ti

i! at t = 0.

The truncated Taylor expansion xN (t) =
∑N

i=0 ci
ti

i! satisfies

the differential equation dN+1

dtN+1 xN (t) = 0. It reads in the

operational domain as

sN+1x̂N (s) = sNxN (0) + sN−1ẋN (0) . . . + x
(N)
N (0) (3)

where x̂N (s) is the operational analog of xN (t). To ease the

notation, we subsequently ignore the argument s.

A. Simultaneous estimation

Replace xN (t) by the noisy observed signal y(t). Then the

estimates x̃
(i)
N (0) of the derivatives at the origin x

(i)
N (0)

△
=

di

dti x(t)
∣

∣

∣

t=0
are directly obtained from the linear triangular

system of equations (see [8], [13])

s
−ν dm

dsm

n
x̃N (0)sN + . . . + x̃

(N−1)
N (0)s + x̃

(N)
N (0)

o
=

s
−ν dm

dsm

n
s

N+1
ŷ
o

(4)

m = 0, . . . , N , where ν > N + 2 ensures strict properness.

To obtain the numerical estimates, it suffices to express

(4) back in the time domain, using the classical rules of

operational calculus ([25]). Denote by T the estimation time.

We end up with the following closed form expression

Pν(T )











x̃N (0)
˜̇xN (0)

...

x̃
(N)
N (0)











=

∫ T

0

Qν(τ)y(τ)dτ (5)

where the nonzero entries of the triangular matrix Pν(T ) are

given, for i = 0, . . . , N , j = 0, . . . , N − i, by

{Pν(T )}ij =
(N − j)!

(N − i − j)!

T ν−N+i+j−1

(ν − N + i + j − 1)!

and

{Qν(τ)}i =

i
∑

ℓ=0

qi,ℓ (T − τ)ν−N−2−ℓ τ i−ℓ

with

qi,ℓ =

(

i

ℓ

)

(N + 1)!

(N + 1 − ℓ)!

(−1)i−ℓ

(ν − N − 2 − ℓ)!

Finally, for each estimation time interval of length T , IT
t+ =

[t, t + T ], we obtain the derivatives estimates at time t by

replacing y(t) in (5) by y(t+τ). These estimates are however

not causal. To obtain causal estimates, i.e., the estimates at

time t, based on the signal observation in IT
t
−

= [t−T, t], it

suffices to replace y(t + τ) by −y(t − τ), τ ∈ [0, T ].

B. Individual estimation

The matrix Pν(T ) in (5) is in general ill-conditioned,

and yields therefore poor estimates especially in a noisy

setting. A solution to this problem is to obtain an independent

estimator for each order of derivation2. Reconsider (3).

Examine for 0 6 n 6 N the nth order derivative. Annihilate

the remaining coefficients x
(j)
N (0), j 6= n by multiplying by

linear differential operators of the form

ΠN,n
κ =

dn+κ

dsn+κ
·
1

s
·

dN−n

dsN−n
κ > 0

It yields the following estimator for x(n)(0)

x̃
(n)
N (0)

sν+n+κ+1
=

(−1)n+κ

(n + κ)!(N − n)!

1

sν
ΠN,n

κ

(

sN+1x̂
)

(6)

which is strictly proper whenever ν is of the form ν =
N + 1 + µ, µ > 0. We obtain a family of strictly proper

estimators which is parametrized by κ, µ and N . Write

x̃
(n)
0 (κ, µ; N) the corresponding estimator. If N = n the

differential operator ΠN,n
κ reduces to Πn

κ = dn+κ

dsn+κ ·
1
s : we will

then use the simplified notation x̃
(n)
0 (κ, µ). The following

result is straightforward:

Lemma 1: For any N > n and µ > 0, x̃
(n)
0 (κ, µ; N) in

(6) belongs to the set

F = spanQ{x̃
(n)
0 (κℓ, µℓ), ℓ = 0, . . . , min (n + κ, N − n)} (7)

where κℓ = κ + N − n − ℓ and µℓ = µ + ℓ.
Proof: Set q = N −n and p = n+κ. The proof follows

by direct inspection, upon writing ΠN,n
κ (sN+1x̂) in the form

ΠN,n
κ (sN+1

x̂) =

qX
i=0

 
q

i

!
(q + 1)!

(q + 1 − i)!

dp

dsp

n
s

q−i(sn
x̂)(q−i)

o
=

qX
i=0

min (p,q−i)X
j=i

ai,js
q−jΠn

κ+q−j{s
n+1

x̂}

(8)

where

ai,j =

(

q

i

)(

p

j − i

)

(q + 1)!

(q + 1 − i)(q − j)!

This lemma shows that an nth-order truncated Taylor expan-

sion is appropriate for estimating the nth-order derivative.

C. Least squares interpretation3

A common way for estimating the derivatives of a signal

is to resort to a least squares polynomial fitting on an interval

and then take the derivatives of the resulting polynomial

function. The estimators derived here rely however on a

different approach: the derivatives are estimated pointwise.

This depature is furthermore apparent with the developments

of the preceding subsection. Nonetheless, a least squares

interpretation may be attached to our approach, as shown

below.

Start with the estimation of the first order derivative.

2The system (5) being triangular, a closed-form expression for the
estimator of x(i)(t) may be derived from it. The corresponding solutions
would however exhibit the same sensitivity to noise perturbations.

3The authors would like to thank A. Sedoglavic for bringing this question
to their attention.



a) N = 1: With ν = µ + 2, equation (6) becomes

1

sµ+κ+4
˜̇x0(κ, µ) =

(−1)κ+1

(κ + 1)!

�
x̂(κ+1)

sµ+1
+ (κ + 1)

x̂(κ)

sµ+2

�
(9)

It reads in the time domain:

˜̇x0(κ, µ) =
µ + 2

T

(

µ + κ + 3

κ + 1

)
∫ 1

0

p(τ)τκ(1 − τ)µy(Tτ)dτ

(10)

where p(τ) = (µ+κ+2)τ −(κ+1), and T is the estimation

time (the estimation interval is IT
0+

). We replace of course

the signal x by its noisy observation y.

Consider now the Jacobi orthogonal polynomials (cf.

[24], [1]) {P κ,µ
i (t)}i>0, associated to the weight function

wκ,µ(t) = tκ+1(1 − t)µ+1 on the interval [0, 1].
Lemma 2: The first order derivative estimate, given in

equation (10), reads as

˜̇x0(κ, µ) =
1

‖P κ,µ
0 (t)‖2

∫ 1

0

P
κ,µ
0 (τ)wκ,µ(τ)ẏ(Tτ)dτ

△
=

〈P κ,µ
0 (τ), ẏ(Tτ)〉κ,µ

‖P κ,µ
0 (τ)‖2

(11)

Proof: Observe that P
κ,µ
0 (t) = 1 and p(τ)τκ(1−τ)µ =

− d
dτ {τ

κ+1(1 − τ)µ+1}. Integration by parts shows that

the integral in (10) reduces to T 〈P κ,µ
0 (τ), ẏ(Tτ)〉κ,µ. The

equality ‖P κ,µ
0 ‖2 = (µ+1)!(κ+1)!

(κ+µ+3)! completes the proof.

This estimate of the first order derivative appears as the

orthogonal projection of the unobserved signal derivatives,

on P
κ,µ
0 (t). Expanding ẋ(Tτ), τ ∈ [0, 1] in the basis of the

Jacobi polynomials

ẋ(Tτ) = a0P
κ,µ
0 (τ) + a1P

κ,µ
1 (τ) + a2P

κ,µ
2 (τ) + · · · (12)

shows that ˜̇x0(κ, µ), which coincides with a0, actually turns

out to correspond to an estimate of ẋ(Tτ0) for some τ0 > 0.

Using a first order approximation of ẋ(Tτ)

ẋ(Tτ0) ≈ a0P
κ,µ
0 (τ0) + a1P

κ,µ
1 (τ0) = a0

allows one to identify τ0 as the solution of P
κ,µ
1 (τ0) = 0.

This value of τ0, given by

τ0 =
κ + 2

µ + κ + 4
(13)

is “experimentally” confirmed by the numerical simulations

below. The resulting derivative estimation is thus subject to

a time delay.
b) N = 2: It allows to avoid such a delay, which may

not be tolerable in real-time processing. Equation (8) yields

˜̇x0(κ, µ; 2)

sµ+κ+5
=

(−1)κ+1

(κ + 1)!

{(

x̂(κ+2)

sµ+1
+ (κ + 2)

x̂(κ+1)

sµ+2

)

+ (κ + 3)

(

x̂(κ+1)

sµ+2
+ (κ + 1)

x̂(κ)

sµ+3

)}

(14)

It reads in the time domain after some algebraic manipula-

tions:

˜̇x0(κ, µ; 2) =
〈P κ,µ

0 (τ), ẏ(Tτ)〉κ,µ

‖P κ,µ
0 ‖2

+ P
κ,µ
1 (0)

〈P κ,µ
1 (τ), ẏ(Tτ)〉κ,µ

‖P κ,µ
1 ‖2

(15)

where P
κ,µ
1 (0) = −τ0 = − κ+2

µ+κ+4 . We therefore deduce

that ˜̇x0(κ, µ; 2) corresponds to an estimate of the first order

derivative ẋ(t) at t = 0. The estimation of ẋ(t) from a second

order truncation of the Taylor expansion is therefore delay

free.

We now show how this interpretation can be exploited to

obtain better estimates. According to Lemma 1 and using

(14), it is easy to verify that the relation

˜̇x0(κ, µ; 2) = λ0
˜̇x0(κ, µ + 1) + λ1

˜̇x0(κ + 1, µ) (16)

holds for λ0 = κ + 3 and λ1 = −(κ + 2). Let us now

extend the set F in (7), by allowing the coefficients of the

linear combinations therein to be real, rather than rational. In

particular, given a point τ1 ∈ [0, 1], one may always choose

the λi’s such that (16) becomes

˜̇xτ1
(κ, µ; 2) =

〈P κ,µ
0 (τ), ẏ(Tτ)〉κ,µ

‖P κ,µ
0 ‖2

+ P
κ,µ
1 (τ1)

〈P κ,µ
1 (τ), ẏ(Tτ)〉κ,µ

‖P κ,µ
1 ‖2

(17)

In this case, ˜̇xτ1
(κ, µ; 2) will represent the estimate of

ẋ(Tτ1), obtained from the truncated Taylor expansion

x2(t) = x(τ)+ ẋ(τ)(t−τ)+ ẍ(τ)
2 (t−τ)2 = x2(0)+[ẋ(τ)−

τẍ(τ)]t+ ẍ(τ)
2 t2 at τ = Tτ1. A direct verification will show

that the values for λ0 and λ1, associated to τ1 are given by

λ0 = (κ + 3) − (µ + κ + 5)τ1 and λ1 = 1 − λ0.

Let us now turn to the question pertaining to the selection

of a value for τ1. Expansion (12) shows that a good choice

for τ1 is given by the smallest (resp. largest) root of the

polynomial P
κ,µ
2 when the estimation interval is IT

t+ (resp.

IT
t
−

). Indeed, choosing τ1 as a zero of P
κ,µ
2 annihilates the

contribution of the orthogonal projection of the signal on

P
κ,µ
2 in the estimation error. On the other hand, recall that

τ1 (resp. 1− τ1 for IT
t
−

) represents a delay in the estimation.

Choosing the smallest (resp. largest) root thus translates to

a lower delay. Note also that the delay τ1 is smaller than τ0,

since the zeros of P
κ,µ
2 and P

κ,µ
1 interlace.

The above analysis may be easily generalized to the nth

order derivative estimation, n ≥ 2.

III. FIRST ILLUSTRATION: DERIVATIVE OF A NOISY

SIGNAL

Let y(t) = x(t)+n(t), 0 ≤ t ≤ 5, be a noisy measurement

of the signal

x(t) = tanh(t − 1) + e−t/1.2 sin(6t + π)

The noise level, measured by the signal to noise ratio

in dB, i.e., SNR = 10 log10

(P
|y(ti)|

2P
|n(ti)|2

)

, corresponds to

SNR = 25 dB (see Figure 1). In all the subsequent

numerical simulations, the integrals are computed via the

classical trapezoidal rule.

Begin with the first order derivative and N = 1. The

estimates ˜̇x0(κ, µ), obtained from (10) with κ = µ = 2,

are displayed in Figure 2 (solid line). It corresponds to

the estimation results in the successive intervals IT
t+, with

T = 60Ts and for t = iTs, i = 0, . . . , ⌊ 5−T
Ts

⌋. The exact
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Fig. 1. Noisy observation signal, SNR = 25dB.
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Fig. 2. Estimation of the signal derivative: N = 1.

derivative of the noise-free signal is also displayed (dashed

line) in order to gauge the estimation accuracy. For this,

we have introduced a shift corresponding to the delay τ0

in (13). Observe how this predicted value of τ0 fits with

the experiment. Of course with N = 1, the truncated

Taylor series model is linear, resulting in poor estimates

on the intervals where the signal’s dynamic is strong. For

high signal-to-noise ratio, the estimates may be improved

by reducing the estimation time T . Alternatively, one may

consider a richer signal model, e.g., with N = 2. This is the

case of the next experiment. We now consider the sliding

windows IT
t−, with T = 110Ts. The estimates ˜̇x0(κ, µ; 2),

based on (14), (15), are plotted (solid line) in Figure 3 below,

for κ = µ = 0.

There is no estimation delay, as expected. However, the

performance significantly degrades as compared to the pre-

ceding results although the signal model is more precise. If

we now relax this delay-free constraint, it becomes possible

to take advantage of the more flexible second order model

for the signal.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−6

−4

−2

0

2

4

6

Fig. 3. Estimation of the signal derivative: N = 2, no delay

This is illustrated in the following simulation (see Figure

4), where we keep the same settings for T , κ and µ. The

solid line curve in Figure 4 represents the estimates obtained

τ T2

τ 1T

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

−6

−4

−2

0

2

4

6

Fig. 4. Estimation of the signal derivative: N = 2, with delay τ1.

from (16)-(17) where τ1 is the largest root of P
κ,µ
2 . Using the

same idea with N = 3, we obtain the estimates ˜̇x0(κ, µ; 3),
plotted with dashed line. The associated estimator reads as

˜̇x0(κ, µ; 3) =

2
∑

i=0

λi
˜̇x0(κ + 2 − i, µ + i)

where the real coefficients λi, i = 0, 1, 2 are chosen so that
˜̇x0(κ, µ; 3) corresponds to ẋ(τ2T ), with τ2 being a root of

P
κ,µ
3 . If κ = µ, which is the case here, then τ2 = 0.5 is a

common root of all Jacobi polynomials of odd degree. The

dashed line curve was obtained with this choice of τ2.

IV. SECOND ILLUSTRATION: NONLINEAR FEEDBACK

CONTROL

A. System description

Consider with [5] the mechanical system, which consists

of a DC-motor joined to an inverted pendulum through a

torsional spring:

Jmθ̈m = κ
�
θl − θm

�
− Bθ̇m + Kτu

Jlθ̈l = −κ
�
θl − θm

�
− mgh sin(θl)

y = θl



θm and θl represent respectively the angular deviation of

the motor shaft and the angular position of the inverted

pendulum. Jm, Jl, h, m, κ, B, Kτ and g are physical

parameters which are assumed to be constant and known.

This system, which is linearizable by static state feedback, is

flat (cf. [12], [22]); y = θl is a flat output, which is measured.

B. Control design

Asymptotic tracking of a given smooth reference trajectory
y∗(t) = θ∗l (t) is achieved by the feedback controller

u = 1
Kτ

�
Jm

κ

�
Jlv + κÿe + mgh(ÿe cos ye − (ẏe)

2 sin ye)
�

+Jlÿe + mgh sin ye
B
κ

�
Jly

(3)
e + κẏe + mghẏe cos ye

��
where

v = [y∗(t)](4) − γ4(y
(3)
e − [y∗(t)](3))

−γ3(ÿe − ÿ∗(t)) − γ2(ẏe − ẏ∗(t)) − γ1(ye − y∗(t))

The subscript “e” denotes the estimated value. The design

parameters γ1, ..., γ4 are chosen so that the resulting char-

acteristic polynomial is Hurwitz. The state θm is estimated

via

[θm]e =
1

κ

(

Jlÿe + mgh sin ye

)

+ ye

C. Numerical simulations

The physical parameters have the same numerical values

as in [5]: Jm = 3.7 × 10−3 kgm2, Jl = 9.3 × 10−3 kgm2,

h = 1.5 × 10−1 m, m = 0.21 kg, B = 4.6 × 10−2 m,

Kτ = 8 × 10−2 NmV−1. The numerical simulations (see

also [11]), which are much better than in [13], where less

efficient differentiators were employed, are presented in

Figures 5. Robustness has been tested with an additive white

Gaussian noise N (0; 0.01) on the output y (this noise level

is quite relevant in such applications). Note that the off-line

estimations of ÿ and θm, where a “small” delay is allowed,

are more accurate than the on-line estimation of ÿ.

V. CONCLUSION

The basic elements of our differentiators are essentially in-

tegrators, the advantage of which is twofold: easy implemen-

tation and good robustness with respect to noise corruption.

Our estimators may be given a least squares interpretation

(see [20] for more details), although our approach is based on

quite different mathematical ingredients, which are mainly of

algebraic flavor. This interpretation is a key point leading to

improved numerics.
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Fig. 5. Simulation results for DC-motor




